
Title:

Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of master’s thesis

Recommendation using image data enriched by interaction
data
Bc. Kamil Kader Agha
Ing. Petr Kasalický
Informatics
Knowledge Engineering
Department of Applied Mathematics
until the end of summer semester 2022/2023

Instructions

Explore the topic of Recommendation Systems with a focus on a content-based
recommendation. Examine state-of-the-art methods for feature extraction from images,
especially for the area of Recommendation Systems. Propose a method to incorporate
interaction data into image data to improve the recommendation of never interacted
items. Design a Recommendation System based on images and implement its prototype
with your choice of tools. Select suitable non-trivial input data and perform an
experiment to measure its predictive success (e.g., recall). Evaluate results and discuss
possible future improvements of the suggested approach.

Electronically approved by Ing. Karel Klouda, Ph.D. on 31 January 2022 in Prague.

Master’s thesis

Recommendation using image data
enriched by interaction data

Bc. Kamil Kader Agha

Department of Applied Mathematics
Supervisor: Ing. Petr Kasalický

May 4, 2022

Acknowledgements

I would like to thank my supervisor Ing. Petr Kasalický, for his professional
guidance. Whenever I needed him, he was available to help me and will-
ingly answered all my questions. Moreover, he spends several more hours
correcting my work and discussing it. I would also like to thank the company
Recombee s.r.o. for providing me the opportunity for cooperation, datasets,
and equipment that was available to me during my research.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 4, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Kamil Kader Agha. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kader Agha, Kamil. Recommendation using image data enriched by interac-
tion data. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2022.

Abstrakt

Ćılem této diplomové práce je popsat doporučovaćı systémy založené na ob-
sahu na základě obrazových dat, nejmoderněǰśı konvolučńı neuronové śıtě pro
extrakci př́ıznak̊u z obrázk̊u a možnosti vytvářeńı doporučeńı na základě v́ıce
než jednoho obrázku jedné položky, tzv. multiple instance learning. Následně
jsme navrhli prototyp doporučovaćıho systému založeném na obsahu položek,
který využ́ıvá jeden a v́ıce obrázk̊u jedné položky a začleňuje i interakce z
chováńı uživatel̊u pro zlepšeńı doporučeńı. Dále jsme implementovali a porov-
nali několik prototyp̊u doporučovaćıch systémů založených na konvolučńıch
neuronových śıt́ı a jejich schopnost extrahovat př́ıznaky, které jsou d̊uležité
pro doporučeńı při cold-start problému. Nejlepš́ı modely jsme poté trénovali na
uživatelských interakćıch. Také jsme implementovali dva modely multiple in-
stance learning a porovnali všechny navržené modely v offline testech. Závěrem
jsme čtyři modely porovnali v online A/B testu proti sobě. Výsledky ukázaly,
že začleněńı uživatelských interakćı a v́ıce obrázk̊u do doporučovaćıho systému
zlepšilo měřenou metriku mı́ru prokliku.

Kĺıčová slova Konvolučńı neuronové śıtě, multiple instance learning, ex-
trakce př́ıznak̊u, content-based doporučovaćı systém, zpracováńı obrazu, ma-
ticová faktorizace, interakčńı embedding

vii

Abstract

This master thesis aims to survey content-based recommendation systems
based on image data, state-of-the-art convolutional neural networks for feature
extraction from images, and possibilities of producing recommendations based
on more than one image of a single item, so-called multiple instance learning.
Subsequently, new content-based recommendation methods that use one and
more images of a single item and incorporate interactions from users behav-
ior to improve the recommendations were described. Several prototypes were
implemented based on the state-of-the-art convolutional neural networks, and
compared in offline tests in their ability to extract important features for
recommendations on cold start problem. Finally, four of the models were
compared in the online A/B test against each other. The results showed that
the incorporation of user interactions and more images into the recommender
system improved the measured click-through rate metric.

Keywords Convolutional neural networks, multiple instance learning, fea-
ture extraction, content-based recommendation, image processing, matrix fac-
torization, interaction embedding

viii

Contents

Introduction 1
Motivation . 1
Outline . 2

1 Recommender systems 3
1.1 Recommender system and its usage 3
1.2 Recommender systems types 4
1.3 Collaborative filtering recommendation 5

1.3.1 User feedback . 6
1.3.2 Rating matrix . 6
1.3.3 Recommendation approaches 6
1.3.4 Limitations . 7

1.4 Content-based recommendation 7
1.5 Recommendation . 8

1.5.1 Processing of rating matrix 9
1.5.2 Processing of item attributes 11
1.5.3 Producing a recommendation 11
1.5.4 Cosine similarity . 12

1.6 Evaluation of recommendations 13
1.6.1 Recall . 13
1.6.2 Precision . 14

1.7 Leave-one-out cross-validation 14
1.8 Summary of recommender system 15

2 Artifical Neural Networks 17
2.1 Introduction . 17
2.2 Perceptron . 18
2.3 Learning of perceptron . 19
2.4 Deep neural networks . 20

ix

2.5 Learning and optimization algorithm 21
2.6 Convolutional Neural Network 22

2.6.1 VGGNet . 26
2.6.2 DenseNet . 27
2.6.3 EfficientNet . 27
2.6.4 EfficientNetV2 . 28
2.6.5 Other networks . 29

2.7 State-of-the-art image feature extraction 31
2.8 Multiple Instance Learning . 31

3 Analysis and design 35
3.1 Motivation . 35
3.2 Model selection and Default recall 36
3.3 Model evaluation . 36
3.4 Search for the best hyperparameters and One-to-one training . 37
3.5 Many-to-one training . 37
3.6 MIL training . 38
3.7 Workflow summary . 38

4 Realisation 41
4.1 Used technologies . 41

4.1.1 TensorFlow . 41
4.1.2 Jupyter Notebook . 42
4.1.3 Other libraries . 42

4.2 Folder description . 42
4.3 Evaluation framework . 42
4.4 Hyperparameters and models 43
4.5 MIL implementations . 44

5 Experiments 47
5.1 Datasets . 47
5.2 Keras Tuner configuration . 48
5.3 Results of Default recall . 49
5.4 Results of One-to-one and Many-to-one 50
5.5 Results of MIL . 52
5.6 Online tests . 55

Conclusion 61

Bibliography 63

A Acronyms 73

B Contents of enclosed CD 75

x

List of Figures

1.1 The difference between Euclidean distance and cosine similarity.
Inspired by [1]. 13

1.2 Illustration of recall, precision, and F1 score. Inspired by [2]. . . . 14

2.1 Example of Multilayer Perceptron Network [3]. 21
2.2 Visualization of 2d binary convolutional operation with stride 1

and padding 0 (we can see the resulting image is smaller without
padding). 25

2.3 Visualisation of CNN architecture [4]. 25
2.4 The standard VGG16 network architecture [5]. 26
2.5 DenseNet connectivity with channel-wise concatenation in one block.

Image based on [6]. 27
2.6 The EffecientNetB0 general architecture [7]. 29
2.7 Comparision of Fused-MBConv and MBConv in EfficientNets [8]. . 30
2.8 Comparison of top-1 and top-5 accuracy of selected CNN models

on ImageNet validation dataset. They are sorted by top-1 accuracy
[9]. 32

2.9 “Comparison of supervised learning and multi-instance learning.
The classifier is learned over bags instead of instances in MIL” [10].
In this example target class is positive or negative, i.e., bag can
be positively or negatively labeled. A bag is considered negative
if it contains only negative instances and no positive instances,
otherwise it is considered as positive. 33

2.10 “Sketch of the neural network optimizing the embedding in embedding-
space paradigm.” [11] . 34

4.1 Comparison of Simple MIL and Ragged MIL. 45

5.1 Default recall@5 of the best output layer of different models and
ALS embeddings. 51

5.2 Recall@5 of trained models on 1-4 images to one ALS embedding. 53

xi

5.3 Recall@5 of MIL with different architecture and hyperparameters
(blue is Simple MIL, red is Ragged MIL). Y-axis starts at 0.021 to
stress out the difference between individual versions. 55

5.4 Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second
row on Sim 3072 MAX, then trained VGG16 on One-to-one and
not trained VGG16. 56

5.5 Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second
row on Sim 3072 MAX, then trained VGG16 on One-to-one and
not trained VGG16. 57

5.6 Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second
row on Sim 3072 MAX, then trained VGG16 on One-to-one and
not trained VGG16. 58

5.7 Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second
row on Sim 3072 MAX, then trained VGG16 on One-to-one and
not trained VGG16. 59

xii

List of Tables

2.1 Inp. is input in one dimension of the square RGB image (for Effi-
cientNetB0 that is 224 × 224 × 3), Param. means the number of
parameters [12]. 29

2.2 Inp. is input in one dimension of the square RGB image (for Effi-
cientNetV2B0 that is 224 × 224 × 3), Param. means the number
of parameters [12]. 30

2.3 Comparison of different CNNs [12], [13], [14], [9], [15]. 31

5.1 Table of Default recall@5 in % of the best output layer of different
models and ALS embeddings (the higher, the better). 50

5.2 Loss value of models after Keras Tuner trained and searched for
the best hyperparameters (the lower, the better). 51

5.3 Table of recall@5 in % of trained models on 1-4 images to one ALS
embedding. 52

5.4 Table of recall@5 in % of MIL with different architectures and
hyperparameters. 54

5.5 Resulting CTR of models in the online A/B test. 56

xiii

Introduction

Motivation

Nowadays, we spend more and more time on the Internet looking for an answer
to our questions, for our favorite music, movie, and last but not least, our ideal
product to buy of any kind. In this search, we can encounter thousands of
results that we have to choose from, and the more options we have, the more
time-consuming and more challenging it becomes to decide, as the choice
paradox implies1. Selection can be so overwhelming that we totally give up
on the search and perhaps never find the desired goal.

Therefore, there is a need for some mechanism to help us sort, filter, and
find the perfect item for us, save our time, and minimize the overload of choices
we experience. A recommender system can solve this task by comparing all
available items and providing personalized user recommendations where only
a few of the most relevant items are presented, which are hopefully what the
user was looking for.

This work focuses on solving this problem for a specific use case of prod-
uct recommendation based on image data. We will design and build a rec-
ommender system solution for an e-shop selling furniture based purely on the
picture of the product, later enhanced with interaction data collected on the
website. The recommender system will use machine learning and state-of-the-
art image recognition and classification models. In the first part, we will use
only one image of each product, and then we will try to increase the prob-
ability of successful recommendations by taking into account more than one
image.

Such a system can save the time of customers searching for the ideal furni-
ture, increase e-shop sales, and help keep their customers as they will be less

1The choice paradox can also be called choice overload or simply over choice. When
there are many options available, it prevents us from making any decision resulting in no
action.

1

Introduction

likely to leave the e-shop and search elsewhere. This can bring a significant
concurrency advantage to the e-shop, together with increased profits.

Outline
This work is organized as follows. First and foremost, in the two first chapters,
we will describe the basics of recommender systems based on images of items
and a brief introduction to artificial neural networks and their state-of-the-
art image recognition models. Furthermore, we will research the problem of
multiple instance learning.

In Chapter 3, we will propose a recommender system based on one and
more images, where we incorporate interaction data to improve the recom-
mendation of never-interacted items.

Next, in Chapter 4, we will implement the proposed solution. After that,
in Chapter 5, recommender system on the real-world offline and online data
will be evaluated, and the results discussed.

Finally, we will summarize the findings of this work in the last chapter and
outline possible future work.

2

Chapter 1
Recommender systems

This chapter will introduce recommender systems, their different types and
overall recommendations processes. Finally, we will describe how to evaluate
our recommender system.

1.1 Recommender system and its usage
Recommender systems (RS) are information filtering tools that personalize
the information that comes to a user based on his interests, behavior, relevance
of the information to him, and the like. They are widely used to recommend
movies, articles, places to visit, items to buy, etc. [16], [17].

Everyday Internet users can meet recommender systems quite often. Ac-
cording to [18] and [19] they are used mainly in:

• E-commerce - Internet shops want to sell as many products as possible,
and the recommender system is one way to achieve this. E-Shops can
customize their front page for each customer2 with a purchasing history
that can meet the needs of the user. It can make further recommenda-
tions on the product detail page, guessing what users may need for the
specific item.

• Media - When we consume multimedia (movies, music, news, and oth-
ers), we get recommendations on other content (another movie, article)
according to our history.

• Social network - Social networks can propose to the user whom to
follow, employ, subscribe to, etc.

• Advertising - We can recommend specific products in an e-shop and
advertise an e-shop to a specific group of people who may be interested

2Unlike regular physical shops where usually the best seller is promoted or products with
high discount.

3

1. Recommender systems

in some of our products according to their behavior on the Internet.
This approach is usually more efficient than advertising to all possible
users.

We will call the recommendations objects (product, music, etc.) items.
Furthermore, simply by the term users will mean all people who interact with
items (they can buy, view, review items, and more) and to whom we want
to make recommendations. The recommender system is then a collection of
algorithms and tools that produce recommendations.

“Formally, a recommender system then deals with a set of users
U = {u1, u2, ..., un} and a set of items I = {i1, i2, ..., im}. For
each pair (ui, ij)3, a recommender can compute a score ri,j that
measures the expected interest of user ui in item ij (or the expected
utility of object oj for user ui)” [20].

1.2 Recommender systems types
In general, there are two4 [19], [21] different strategies for deriving a recom-
mendation for users.

Each type of recommendation strategy expects different input data on
which to make the recommendation. These input data consist of different
sources of information about users and items. We can collect their ratings of
items, visited pages, history of purchase, likes, time spent on specific pages,
viewed content, mouse movement, and many more. On items, we already have
some information that can be physical dimensions, duration of video or music,
color, picture of the product, etc. [19].

The two main strategies are Content-based and Collaborative filtering rec-
ommender systems.

• In Content-based (CB), we recommend items based on a similarity
between all items and items liked by a user based on item attributes,
such as image, category, dimensions, color, description, and so forth, to
make recommendations. We assume that users like items with similar
attributes. Therefore, we focus only on item similarity [18].
An example can be that the user purchased a chair in the Art Nouveau
style; thus, we can recommend a table in the same style and not in the
Renaissance style.

• Collaborative filtering (CF) takes a different approach and tries to
predict the rating or preference that a user would give to an item by

3Authors note: ui means i-th user and ij means j-th item.
4In some other works, they refer to 4 or 3 types. We will discuss all of them later in this

work.

4

1.3. Collaborative filtering recommendation

matching his ratings with users with similar behavior [18], [22]. Two
ways to do so are item-based and user-based. CF does not require item
attributes, as an opposite to content-based recommenders.

For an example of the item-based system, if a user is looking for a night
stand, there will probably be many users who bought a lamp with it;
thus, despite having few or none of the same attributes (between lamp
and night stand), it will recommend it to the user.

There can also be different systems such as Knowledge-based, Demographics-
based, and a combination of all, referred to as a Hybrid system [23].

• Knowledge-based systems require active user interaction with the sys-
tem in the form of a dialog and knowledge of the items [24]. It does not
need to collect user information because its decisions are independent of
individual tastes. Therefore, they work better at the beginning of their
deployment, but if knowledge-based systems do not improve with time,
they may become less relevant than other methods (such as CF) [18].

• Demographics-based systems distinguish different demographic niches
and generate different recommendations among them. It can differen-
tiate users by age, gender, profession, location, etc. Each group will
combine the ratings of other users in the same group [18], [23].

• Hybrid systems combine all or some of the approaches discussed above.
A hybrid system aims to use all available information about the users
and the items and overcome possible disadvantages of a single system
(namely, the cold start problem). The combination usually produces
higher accuracy than the standalone system. [23] The outcome can be
produced as a combination of results from a single system, or more sys-
tems can be combined into one algorithm internally with a single result
[19].

1.3 Collaborative filtering recommendation
“System based on existing rating data and computing users (or items) similar-
ity, according to the similarity search for the nearest neighbors of the target
users (or items), thus according to the nearest neighbor prediction score to
generate recommendation, which most commonly used were user-based col-
laborative filtering and item-based collaborative filtering” [25].

In collaborative filtering (CF) recommender systems, we need a history
of user interactions with the items to produce a recommendation, so-called
user feedback.

5

1. Recommender systems

1.3.1 User feedback
In general, we have two types of user interactions: [26]

• Explicit Feedback - Users specify their opinion by direct actions, such
as thumb-up or down, rating an item with stars, or giving some percent-
age (where higher is better). It can be positive or negative feedback.

• Implicit Feedback - The user’s opinion is reflected and recorded indi-
rectly by observing the user’s actions and behavior, such as page views,
search patterns, purchase history, clicks (even mouse movements), etc.
They are easy to collect, but negative feedback is absent5 [21].

We store user feedback in the so-called Rating matrix.

1.3.2 Rating matrix
Storing all possible interactions between all users and all items eventually leads
to creating a matrix, where the rows identify the users (user1, user2, ..., usern)
and the columns identify the items (item1, item2, ..., itemm) as shown in Equa-
tion 1.1. This matrix is called a Rating matrix or simply R, sometimes
referred to as a User-item interaction matrix, where R ∈ Rn,m. When user1
interacts with item2 we will note a specific value r12 (usually between 0 and 1)
in the corresponding column and row representing the rating given by user1
to item2. This matrix is usually very sparse, as users do not interact with all
available items [19].

R =

r11 r12 ... r1m

r21 r22 ... r2m
...

...
rn1 rn2 ... rnm

(1.1)

1.3.3 Recommendation approaches
With collected user feedback in the Rating matrix, CF analyzes the relation-
ships between other users and searches for interdependencies between products
to identify new user-item associations [21].

Identifying associations can be done in two ways: [27]

• Item-based analyzes the relationships between the items. It assumes
that if several users rated two items similarly, the other users would
probably rate them likewise.

5We cannot say if the user dislikes an item he has not interacted with or simply the user
did not know the item existed. On the other hand, buying a product as a gift may not mean
that the user likes the product

6

1.4. Content-based recommendation

• User-based relies on past preferences of users similar to a target user.
The most similar users are found to a specific user and give recommenda-
tions based on what they liked the most. The more similar the other user
opinion is, the more impact it will have on the final recommendation.

Similar users are users who are interacting with many similar items. In
Rating matrix, we compare vectors in different rows. Moreover, similar items
are items that are interacted with similar users; in the Rating matrix, we
compare vectors in different columns. Since users and items are represented
as vectors of n dimensions and m dimensions, similarity can be measured with
standard methods such as Cosine Similarity6, Adjusted Cosine Similarity, or
Pearson’s Correlation Coefficient [27].

1.3.4 Limitations
There are several limitations to the CF method: [28]

• Noise - it is hard to separate more users under one account.

• Possibility of attacks - some sellers can create many fake profiles
prising their products.

• Popularity bias - popular items tend to be suggested, more over long-
tail items7. This results in the recommendation of only a few of the
most popular items over and over [29].

• Cold start problem - when new users or products are added to the
system, we do not have any interaction with them. Therefore, we cannot
find any similar users or items and make a recommendation. [30]

1.4 Content-based recommendation
“The system learns to recommend items that are similar to the ones that
the user liked in the past. The similarity of items is calculated based on the
features associated with the compared items” [18].

In content-based (CB) systems, we focus on item attributes apart from
user behavior. It recommends items similar to previously rated items from an
attribute point of view [17], [27]. The attributes of an item can be anything
from the genre, length, color, image of a product8, type, dimensions, and other
metadata.

The advantages of content-based recommendations are: [18]
6We will present this method later in this work.
7Long-tail items do not have a lot of interactions(ratings/likes).
8In this work, we will focus on an image of the product.

7

1. Recommender systems

• User independence - it is based on the ratings of a single user, but is
not affected by other users (in contrast to CF).

• Newly added items - can be easily included in recommendations since
it needs only item attributes (the CB recommender does not suffer from
Cold start as CF).

• Transparency - it can explain how the recommendation was made by
explicitly listing content features or descriptions that were important in
the decision (CF are black boxes, where only users can explain their
behavior).

However, there are also several limitations, mainly: [18]

• Limited content analysis - content may not be easily extractable
(multimedia), or the attributes may not be distinguishable enough. Fur-
thermore, captured attributes may not cover all aspects of the item,
lacking some information (for example, the design of a website that may
seduce the user into action more effortlessly than displeasing looking
website, but items do not contain this information).

• Overspecialization - recommends similar items with a slight chance
of recommending something novel9 [17].

• New user - for a new user, the recommender system does not know user
preferences and, therefore, what items to recommend. Some ratings or
user information have to be collected to produce better recommenda-
tions.

1.5 Recommendation

In the previous section, we described different approaches and types of rec-
ommendation systems. This section will focus on the CF and the CB recom-
mendations, where we need to measure the distance and similarities between
users or items. Therefore, we need a vector representation of either users or
items to measure similarities that the target users may like; we will call these
vectors embeddings. After we have embeddings, the recommendation process
becomes the same for both methods. We will discuss now where we can take
embeddings in both methods and describe how the actual recommendation is
made.

9This is also called the serendipity problem.

8

1.5. Recommendation

1.5.1 Processing of rating matrix
In CF, we already have vectors (in Rating matrix), and we can start making
predictions.

However, Rating matrix is usually processed before being used in training
a recommendation algorithm. There can be many misinterpretations when we
collect user feedback, especially with implicit feedback. It can be challenging
to guess user preferences and true motives as only positive feedback exists. For
example, watching a video does not suggest user likes the video or forgets to
switch the video off, or when the user does not buy some product, we cannot
say he does not like the product or the user does not have enough money to
buy it or does not even know such a product exists. Explicit feedback also has
its ambiguities, such as shared accounts with many users, where more people
rate different products and have different interests, etc. [21].

We should already think of these domain-specific cases when preparing
the rating matrix. For example, buying the product is a more meaningful
interaction for an e-shop than viewing only a product page or first played
show is stronger interaction than fifth on autoplay mode.

Another thing is that Rating matrix is usually very sparse, as there can
be thousands of items available, and even the active user does not visit most
of them [27].

Here the matrix factorization comes into place. We can extract features
from the rating matrix and improve our predictions [19]. The feature extrac-
tion will help us,

• reduce noise in data,

• reduce dimensionality and size of the matrix, [31], [21]

• find similar users or items, and find patterns in the whole matrix [32].

Subsequently, we can apply different feature extraction methods to pro-
duce two and more matrices where one is from Rn,x and the second is from
Rx,m, where x can be common for both matrices or equal to n and m, re-
spectively, depending on the method of our choice. This factorization helps
us with the problems mentioned earlier.

Matrix factorization

“Matrix factorization models map both users and items to a joint latent factor
space of dimensionality f , such that user-item interactions are modeled as
inner products in that space” [32].

We can associate each item i and user u with vectors, qi ∈ Rf and pu ∈ Rf .
When we do a dot product of these two vectors, we get the approximation of
user u rating of item i as [32]

9

1. Recommender systems

rui = qT
i pu.

The problem is to map each user-item rating into two matrices. This
can be done with methods such as Alternating Least Square (ALS), Singular
Value Decomposition (SVD), Principal Component Analysis (PCA), Proba-
bilistic Matrix Factorization (PMF), and Non-negative Matrix Factorization
(NMF) [31], [21].

We eventually want to minimize function

minq∗,p∗
X

rui∈k

(rui − qT
i pu)2 + λ(||qi||2 + ||pu||2) (1.2)

[32], where k is known ratings, and λ ∈ R controls regularization.

Alternating Least Square (ALS)

ALS produces two matrices

R ≈ XT × Y,

where X ∈ Rm,n and Y ∈ Rn,m10. We produce these matrices by keeping one
fixed while calculating (minimizing function 1.2) the other by solving a least
squares problem and vice versa (fixing the other matrix and minimizing the
first matrix) in several iterations as shown in code 1.

This factorization into two separate matrices better reflects the nature of
the data and improves prediction accuracy with a more holistic approach that
uncovers latent features, which explains the observed ratings better.

ALS is used to predict implicit data in collaborative filtering [32] [21].

Algorithm 1 The ALS algorithm [33]
.
Require: (R, k, λ; X, Y)
Ensure: X ← 0, Y ← random initial guess

1: while (reached max iterations) do
2: for row u ← 1,m do
3: xu ← (Y T Y + λI)−1Y T ru

4: end for
5: for column i ← 1,n do
6: yi ← (XT X + λI)−1XT ri

7: end for
8: end while

10X matrix is also called user-factor, and Y is called item-factor.

10

1.5. Recommendation

Singular Value Decomposition (SVD)

SVD creates three matrices that produce the original matrix

SV D(R) = U × S × V T ,

where U ∈ Rm,r, S ∈ Rr,r and V ∈ Rr,n. The matrices U and V are orthogonal,
S is a diagonal matrix called the singular matrix11 [31].

The final decomposition is a linear combination of vectors, and we can add
or subtract vectors as needed. SVD can then provide the best low-ranking
linear approximation of the original R matrix [34].

SVD is used to predict explicit data in collaborative filtering [35].

1.5.2 Processing of item attributes
As stated in Section 1.4 about CB, items can have various attributes and
representations, and we need to measure the distance between two items.
Therefore, we need to transfer these attributes into a vector space, where we
can use a standard evaluation method such as cosine similarity [19].

Numerical features can be connected to a vector. We can use methods
such as one-hot-encoding for categorical features. However, creating vector
space from texts and multimedia usually requires unique methods.

For text attributes, we can use the method bag of words followed by Term
frequency and inverse document frequency (TF-IDF) [36] a method that pro-
duces a table of words scores within a given text, where each score represents
the relevancy of the word for the document. In other words, we produce
embedding based on words that the given text contains for each document
[37]. Alternatively, we use a more advanced model like Bidirectional Encoder
Representations from Transformers (BERT) or other transformer12 models
[38].

With image attributes, we can generate vector embeddings, for example,
with image histogram, ORB, and artificial neural networks which is examined
in [39].

1.5.3 Producing a recommendation
When we have vectors representing given items or users processed as ALS,
SVD, or attributes encoded in embeddings, we can easily differentiate items
that are the most similar (and probably the most interesting) to some given
item and suggest them to the target user. We can do it from content-based
RS, where we recommend similar items, or in collaborative filtering RS, where
we look at ratings given to similar items, as item-based recommendation, or

11Therefore, Singular Value Decomposition.
12A transformer is a deep learning model.

11

1. Recommender systems

if we look for similar users, we recommend items that the most similar users
liked the most, as user-based recommendation [40], [27].

This can be done with neighborhood-based methods where we find K
the most similar items (or users), where K represents the number of items
(or users) we want to recommend. Neighborhood methods can be K-Nearest
neighbors (KNN), k-Means, k-d Trees, and Locality Sensitive Hashing [41].

A KNN method is based on finding the top K nearest neighbors to an item
or user and recommending the closest/most similar ones13 [42].

We can do this with different similarity metrics between two vectors like
Pearson correlation, Mean Squared differences (MSE), Jaccard Similarity, Co-
sine similarity (COS), and others.

MSE metric measures the average of the squares of the errors, i.e., the
average squared difference between the estimated values and the actual value
[41], [43].

1.5.4 Cosine similarity
Cosine similarity measures the similarity between two vectors of an inner
product space irrespective of its size. It measures as a cosine of the angle
between the two vectors as projected in a multi-dimensional space and deter-
mines whether two vectors are pointing in roughly the same direction. The
smaller the angle, the higher the cosine similarity.

“Let x and y be two vectors for comparison. Using the cosine similarity
as a similarity function, we compute it as

cos(x, y) = x ∗ y

||x|| ∗ ||y|| ,

where ||x|| is the Euclidean norm of vector x = (x1, x2, ..., xp), defined as
x =

q
x2

1 + x2
2 + ... + x2

p. Conceptually, it is the length of the vector. Similarly,
||y|| is the Euclidean norm of vector y” [44].

The result is cos(x, y) ∈ [−1, 1]. A cosine value of -1 means that the two
vectors are opposite, 1 means that the vectors are the same, and 0 indicates
orthogonality (90 degrees to each other).

We can translate cosine similarity into cosine distance by subtracting co-
sine similarity from 1. Then 0 will indicate two precisely the same vectors (in
contrast to 1 in cosine similarity) [45].

After we compute the similarity between all items (each one to all of the
others), we can make a final step in a recommendation - prediction to a par-
ticular item by taking the first K items that are the most similar and showing
them to the target user as an ordered list of these items. Alternatively, find
the closes users and recommend items they liked the most [46].

13In CF, we can measure the similarity of two items if they have been both rated by the
same users.

12

1.6. Evaluation of recommendations

Figure 1.1: The difference between Euclidean distance and cosine similarity.
Inspired by [1].

1.6 Evaluation of recommendations
When we build a recommender system, and we can provide recommendations,
it is crucial to measure the accuracy of these recommendations. We have to
set goals depending on what we want to achieve. That can be any interaction
- user visit product detail page, purchase a product, review it, etc.

We can use recall, precision or F1 measure performance metrics to calculate
accuracy using confusion matrix. The higher the resulting value, the more
successful the recommendations are [27].

For this purpose we can use the Leave-one-out cross-validation method.

1.6.1 Recall
In the classification task, recall14 refers to the percentage of relevant items
correctly classified by the recommender system to a total number of relevant
items available [47], [48].

recall = # of recommendations that are relevant
of all the possible relevant items .

It would be trivial to achieve a recall of 100% by recommending all the
items, but this recommendation would not be of any value to the user. There-
fore, we measure the recall only on top-K 15 most relevant items. Recall at K
or Recall@k is the proportion of relevant items found in the top-k (closest)
recommendations [49].

Recall@k is defined as
14Recall can also be referred to as the true positive rate or sensitivity(in binary classifi-

cation).
15K usually equals 1, 5, 10, and 25.

13

1. Recommender systems

Figure 1.2: Illustration of recall, precision, and F1 score. Inspired by [2].

recall@k = # of recommended items @k that are relevant
total # of relevant items .

1.6.2 Precision
Precision16 in recommender systems represents the percentage of relevant rec-
ommended items to the number of items selected (again, we speak about top-K
items). Precision measures the recommender’s ability to deny any nonrelevant
items in the retrieved set [47], [48].

In our case, precision in the top-k recommendations is defined according
to [50] as

precision@k = # of recommended items @k that are relevant
total # of recommended items @k .

1.7 Leave-one-out cross-validation
“Leave-one-out cross-validation is a special case of cross-validation where the
number of folds equals the number of instances in the data set. Thus, the
learning algorithm is applied once for each instance, using all other instances
as a training set and using the selected instance as a single-item test set” [51].

Leave-one-out cross-validation (LOOCV) takes on input user-item
matrix, where each user has interacted with at least two different items. Then
‘hides’ one item, and finds out if the recommender system would recommend
this hidden item based on other visited items of the same user. In other words,

16Precision is also referred to as positive predictive value or confidence.

14

1.8. Summary of recommender system

it will look at the nearest neighbors of the visible items, combines theirs re-
sults, and if they would recommend the hidden item in the top K positions,
recommendation was successful and we can increase the recall value. This
process repeats for all items, always leaving one item, therefore leave-one-out.

1.8 Summary of recommender system
We have described the possible workflow of the recommender system based on
two approaches Content-based and Collaborative filtering. From data collec-
tion to the recommendation process and evaluation of our recommendations.

15

Chapter 2
Artifical Neural Networks

This chapter will introduce artificial neural networks and related topics, in-
cluding architecture and basic functionality, learning, and optimization of a
network focusing on convolutional neural networks. We will continue with a
description of several state-of-the-art models, which are used in this work. At
the end of this chapter, we will expand on multi-instance learning, which can
be used to aggregate multiple features into one.

2.1 Introduction
Artificial Neural Networks (ANN) are computational models inspired by
biological neural networks whose capabilities they attempt to mimic.

Compared to modern computers, the human brain can solve many complex
real-world tasks that are still difficult or impossible to achieve with hard-coded
algorithms [52]. Moreover, the human brain can learn and solve new, never
seen before tasks or similar tasks he already acquired. Therefore, we try to
mimic these abilities to learn, transfer our knowledge and solve complex tasks
in computer science, where artificial neural networks can adapt to several
different situations and provide a solution.

ANN has a rich history starting in 1958 with the introduction of an artifi-
cial neuron called perceptron [53] and deep neural networks with many layers
and the ability to learn. Since then, many new concepts, models, and architec-
tures have been introduced, such as convolutional neural networks (CNNs),
autoencoder (AE), deep belief networks (DBNs), restricted Boltzmann ma-
chines (RBMs) [54].

Each of them focuses on different tasks, namely [52]

• pattern classification - assigning a class to an unknown pattern (i.e.,
name of an animal in image),

• clustering - discovering similarities or dissimilarities in a dataset and
assigning them class,

17

2. Artifical Neural Networks

• function approximation (modeling) - training ANN to fit input on
output where we approximate some underlying function. (i.e., prediction
of microbial growth),

• forecasting - prediction of time series (i.e. price of some asset in the
future),

• optimization - solving nonlinear optimization problems (i.e., Knapsack
problem17),

• association - develops a pattern (mask) that can be applied to noise-
corrupted data (i.e., reconstruction of old photo),

• control - learn to control adaptive system (i.e., autonomous driving).

In this work, we will focus mainly on networks that are designed to deal
with image recognition (pattern classification), which means convolutional
neural networks.

2.2 Perceptron
Firstly, we will introduce the perceptron as it shows the main idea behind
of ANNs. The perceptron can represents one neuron (node) in ANN and
can learn and process simple linear problems [56]. It has inputs x1, x2, ...xn,
(i.e. sensor or dataset input) and each input has his corresponding weight
(w1, w2, ...wn). There is also added one special input x0 = 1 called bias with
its weight w0. Bias is a threshold the perceptron must reach before the output
is produced. All inputs are then multiplied by their respective weights and
then summed

z =
nX

j=0
wjxj .

After summarization, the activation function φ() is applied, which deter-
mines the output of the perceptron [57]

ŷ = φ(z).

We can use many activation functions according to our problem, but by
default, the perceptron uses a simple threshold function [58]

φ(z) =
(

1 if z ≥ 0
0 Otherwise.

17“Given weights and values of n items, put these items in a knapsack of capacity W to
get the maximum total value in the knapsack” [55].

18

2.3. Learning of perceptron

Another widely used activation function is sigmoid function

S(z) = 1
1 + e−z

,

where S(z) ∈ [0, 1], [59] and Rectified Linear Unit (ReLu)

φ(z) =
(

0 if z < 0
z if z ≥ 0.

There are also Leaky ReLU, TanH, Binary Step, Linear, SELU, and others
[60]. We can enable perceptron to solve non-linear problems and even speed up
the learning process with different functions [61]. A suitable activation func-
tion has the first derivation for all points of its definition domain. However, in
specific situations, partially differentiable activation functions are used [62].

2.3 Learning of perceptron
We will describe supervised learning of perceptron with a set of known inputs
and known target output values that should be mapped by weights and the
linear activation function as described in [63].

Learning is a process of minimizing the error, also known as loss function18,
between the output value from the perceptron and the target output value.
This is achieved by changing the weights of the perceptron, which is usually
determined by the descent gradient of the error. After the learning process
is completed and successful, we should get the required output for the given
input.

First, we define the error E between the output and target output values
as a summation of quadratic differences.

E(w) = 1
2

mX

i=0
(yi − ŷi)2,

where m is a total number of train samples, yi is a target output value, and
ŷi ∈ R is the neuron’s output.

Then, we calculate the change of weights against the direction of the gra-
dient as

∆w = −η∇E(w),

where η is the learning rate and we get a partial derivation for every weight
as

18Also called objective function, cost function (minimization) or fitness function (maxi-
mization).

19

2. Artifical Neural Networks

∆wj = −η
∂E

wj
.

The derivation of the error function is as follows

∂E

∂wj
= 1

2

mX

i=0

∂E

wj
(yi − ŷi)2

= 1
2

mX

i=0
2(yi − ŷi)

∂E

∂wj
(yi −

nX

j=0
wjxi,j)

=
mX

i=0
(yi − ŷi)(−xi,j).

Finally, the weights are updated as

∆w = η
mX

i=0
(yi − ŷi)xi,j .

Training process is a cycle of 3 steps: feed-forward input, calculate the
error, and change weights.

2.4 Deep neural networks
We can create multiple copies of perceptron and stack them vertically, creat-
ing one layer or horizontally creating more layers called hidden layers, which
results in a bipartite graph. This can produce Multilayer Perceptron Network
(MLP) or, in general deep neural network19 (DNN) [54].

When we use our described perceptron as one node (with a sigmoid acti-
vation function to incorporate nonlinearity), we can create a multilayer per-
ceptron (MLP) network where all nodes from one layer are connected to all
nodes from a previous layer where the output of previous nodes becomes the
input of the following layer. There are no connections between neurons in the
same layer (this structure is also known as a fully connected layer or dense
layer) as illustrated in image 2.1. The passing of data from one layer to the
following layer defines a feedforward network as a finite acyclic graph.

Networks based on these principles contain an input and output layer and
hidden layer [62]. Each layer may have any number of neurons, but at least
one in the input layer and one in the output layer. Every node has its weights
and can have different activation functions.

DNNs have multiple variants with different architectures defined by “the
structure of the nodes, the topology of the network, and the learning algorithm
used to find the weights of the network” [64]. For example, convolutional

19MLP is one type of DNN. There are many other variants of DNN networks.

20

2.5. Learning and optimization algorithm

Figure 2.1: Example of Multilayer Perceptron Network [3].

neural networks (CNNs), which are not fully connected between layers, are
suitable for image-related tasks, or recurrent neural networks (RNN), where
the connections can be backward, are suitable for time-series related tasks.

2.5 Learning and optimization algorithm
To begin with, we need to evaluate the error of our model with a loss function
that compares two vectors. That can be done with mean squared error (MSE),
cosine distance, and others. Our goal is to minimize the loss function. We can
adjust the network weights to get better and better results until we achieve a
convergence criterion or a local minimum.

With the weight update described in the learning of one perceptron, we
can teach only one neuron, but we need a different method to teach hidden
layers of DNN. This method is called backpropagation which can propagate
the error backward as the gradient of the loss function to previous layers
and attribute the error associated with each parameter and achieve the whole
network learning.

In backpropagation, each weight is adjusted by taking a small step in the
opposite direction in which the loss function decreases the most in its value
i.e., the gradient of the function. The size of each step is controlled with η
(learning rate). The whole process is based on the Gradient Descent algorithm.
Nevertheless, we can use different training approaches such as Adaptive Mo-
ment Estimation (Adam), Root Mean Square Propagation (RMSProp), and
not last Adaptive Gradient Algorithm (AdaGrad).

21

2. Artifical Neural Networks

One of the first optimizers is gradient descent with weights update [65]

wt+1 = wt − η∇f(wt),

where f is a differentiable loss function. This method updates the weights w
for each input individually, which is not very efficient.

In our work, we will use only the Adam optimizer [66]. Adam optimizer
combines Adaptive Gradients (estimates of first and second moments of gradi-
ent) and RMSProp algorithms. Compared to the gradient descent algorithm,
Adam does not use the entire dataset to calculate the actual gradient, but
rather a randomly selected data subset to create a stochastic approximation.
This makes Adam computationally efficient, and therefore, Adam requires less
memory. Adam updates weights as

mt ← β1mt−1 + (1 − β1)∇wt

vt ← β2vt−1 + (1 − β1)(∇wt)2

m̂t ← mt

(1 − βt
1)

v̂t ← vt

(1 − βt
2)

wt+1 ← wt − η
m̂t

(
√

v̂t + ϵ)
,

where wt are weights in time t, η is the learning rate, mt is the exponential
average of gradients along wj , vt exponential average of the squares of gradi-
ents along wj , and β1 and β2 are hyperparameters. Suitable hyperparameters
can be β1 = 0.9, β2 = 0.999 and ϵ = 0.002.

Running average of the gradient mt will ensure that we will not rely only
on a current gradient and instead rely on the overall behavior of the gradients
over many timestamps as the exponentially moving average. The third and
fourth steps, m̂ and v̂, are bias corrections [67].

2.6 Convolutional Neural Network
Based on DNNs, we can change the architecture and get new types of networks
called Convolutional neural networks (CNNs) utilized for image recogni-
tion, pattern recognition, and computer vision. By applying filters, also called
kernel, together with Hadamard product, they identify patterns within an im-
age in multiple layers of abstraction. Before we describe CNNs, we will first
introduce the ImageNet dataset.

ImageNet Challenge or “The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) evaluates algorithms for object detection and image clas-
sification at large scale” [68] provides a dataset called ImageNet of more than

22

2.6. Convolutional Neural Network

1 million images with 1000 human-annotated objects classes and more than
100,000 synonym sets. It was released in 2010 and became the base for train-
ing and evaluation of image recognition models. The accuracy of a model
evaluated on the ImageNet dataset is measured as the top-1 and top-5 error
rate, i.e., if the correct class of input image is not in the top-1 or top-5 output
classes of a model, it gets a lower score.

Since 2012 when AlexNet (which is a CNN-based model) significantly im-
proved score and won the ImageNet Challenge, convolutional neural networks
have become widely used in computer vision.

The following description of CNN is based on [69]. A CNN has on input the
whole image usually in format width×height×depth, where depth represents
a number of image channels - 1 can mean grayscale image, 3 can mean RGB-
colored image, and so on. The key difference from other networks is in specific
layers, which are not fully connected but only to a small region of neurons (or
image pixels) in the preceding layer, i.e., 2-dimensional input is in front of
each neuron.

This architecture helps us to accept larger images on input. Otherwise,
we would need significantly more computational power, and overfitting would
happen, as well as the network would not be able to generalize enough, which
would reduce the performance of the model.

Common CNN comes with three main types of layers. These are convolu-
tional layers, pooling layers, and fully-connected layers or dense layers [70].

• Convolutional layers - They are not connected to each neuron in
the previous layer. Instead, they focus only on a few corresponding
neurons (or pixels if it is an input layer) in front of them of fixed size
n × n, where n ∈ N+ commonly equals 2 to 5. This focus on only a few
neurons is called kernel or kernel filter. Each kernel is applied and
can detect different low-level patterns such as diagonal or horizontal lines
and others. The following layers form more complex patterns, creating
abstract visualization of the original image. Several units of these kernels
filters can be stacked in one layer (creating depth) where each has its
filter but looks at the same area (i.e., input is identical).

Instead of moving filters always by 1, we can move filters with more
steps, reducing image size, and requiring fewer parameters. This step
size is called stride.

With each layer and increased stride, the image shrinks. We can add
padding to the edges of the image (all 0 would be zero-padding), in-
creasing the original image size, which will prevent the image from
shrinking and keeps the information on the border. Padding allows us
to have any number of convolutional layers without collapsing the image
into a few pixels.

23

2. Artifical Neural Networks

We illustrated the function of filter with stride 1 and padding 0 on 2d
binary convolutional operation in Figure 2.2.
The final step is the non-linear activation function ReLU. The convolu-
tional layer keeps local information about individual pixels (local spatial
features) [71].

• Pooling layers - performs downsampling and reduces the spatial di-
mension of each feature map [72] in the given input and reduces the
input size for further layers. It combines local spatial features with
higher-order features. In CNN the most commonly used pooling is Max-
pooling. Input is n×n area, and Max-pooling takes the maximum value
from the selected area as output to the following layer. The pooling does
not affect the number of filters. Other variants can also be Sum-pooling
(which sums all input values), Average-pooling (which takes the average
value from input), and others. Usually they have dimension 2 × 2 and a
stride of 2.

• Dense layers - are at the end of a model, fully connected between each
layer. They take high-level feature maps from previous layers as input
and determine an image’s final class score.

There is also Flatten layer in an implementation, which only changes the
dimension after convolutional layers, for example, from the 2×2×4 convolution
layer to the 1 × 1 × 16 flat layer, suitable as input into a dense layer.

Another commonly used layer is dropout which removes nodes randomly
from each training process. Dropouts protect the network from overfitting
and work as a regularization method [73], [70].

The kernel application is a Hadamard product (⊙) with a summation
of its elements. Hadamard product of two matrices produces a new matrix as
a dot product of the corresponding elements i, j. The result is a single scalar
value c, as illustrated in Equation 2.1 [74].

"
x00 x10
x01 x11

#
⊙

"
w00 w10
w01 w11

#
=

"
x00 ∗ w00 x10 ∗ w10
x01 ∗ w11 x11 ∗ w11

#
=

= (x00 ∗ w00) + (x10 ∗ w10) + (x01 ∗ w11) + (x11 ∗ w11) = c

(2.1)

Dense layers usually take the longest to train as they obtain many param-
eters concerning the rest of a network [70].

CNN architecture usually repeats convolutional layers with pooling layers
(for example, repeating the pattern of 2 convolutional and one pooling layer),
and at the end, there are dense layers as illustrated in Figure 2.3.

Nowadays, we have many different types and variants of CNN with im-
proving recognition accuracy, namely VGGNet, EfficientNet, DenseNet, and

24

2.6. Convolutional Neural Network

Figure 2.2: Visualization of 2d binary convolutional operation with stride 1
and padding 0 (we can see the resulting image is smaller without padding).

Figure 2.3: Visualisation of CNN architecture [4].

25

2. Artifical Neural Networks

Figure 2.4: The standard VGG16 network architecture [5].

many more. Typically, these networks were trained and evaluated on the Im-
ageNet dataset, and their output layer consists of 1 × 1 × n, where n is the
number of object classes. In the case of ImageNet, that is, 1000 neurons.

2.6.1 VGGNet

VGG stands for Visual Geometry Group, which published in 2014 several CNN
networks with different configurations referred to as VGGNet [75]. VGGNet
is trained and used for object and image recognition tasks. There are two
basic models, called VGG16 and VGG19. The difference is in the number of
convolutional layers, where the number at the end of the model name refers
to a number of weight layers (16 and 19, where we do not count pooling layers
because they do not have any weights).

The input layer is 224 × 224 × 3, which represents the RGB image of
224 × 224 pixels.

The network architecture follows the pattern of 2 or 3 convolution layers
and one pooling layer. These segments repeat several times until the end,
where is a flatten layer and 3 dense layers, where the first two have 4096
neurons and the last dense layer with 1000 neurons (channels), giving the
final output. The architecture is illustrated in Figure 2.4.

The conv. layer uses 3x3 kernel-sized filters, the minimum required size to
identify directions and center in a given segment. The pooling layer is max-
pooling with a 2 × 2 pixel window, and stride 2. The activation function in
all hidden layers is ReLu.

The total number of parameters is 138M for VGG16 and 144M for VGG19.

26

2.6. Convolutional Neural Network

Figure 2.5: DenseNet connectivity with channel-wise concatenation in one
block. Image based on [6].

2.6.2 DenseNet
Densely Connected Convolutional Networks, known as DenseNet, were pub-
lished in 2016 [76]. DenseNet is a newer model than VGGNet and was also
trained on ImageNet for the image classification task.

DenseNet network architecture tries to improve the problems with deep
CNNs, where “information about the input or gradient passes through many
layers, can vanish and wash out by the time it reaches the end (or beginning)
of the network” [76]. This is accomplished by connecting all layers (with
corresponding feature map sizes) directly and concatenating their features as
illustrated in Figure 2.5. The concatenation is done by the convolution layer,
pooling layer, batch normalization, and non-linear activation layer.

The network then has L(L + 1)/2 connections between layers, where L is
the number of layers.

However, this results in fewer parameters than the existing algorithms with
comparable accuracy.20

There are different versions of the DenseNet, where the number in the name
denotes the number of layers. The versions are DenseNet121, DenseNet160,
DenseNet201, and DenseNet264. Compared to the VGGNet architecture with
a maximum of only 19 layers, this is a significant enlargement.

The resulting architecture has from 8.1M (DenseNet121) parameters to
20.2M (DenseNet201) parameters. All DenseNet versions have the same input
size as VGGNet - 224 × 224 × 3 [77].

2.6.3 EfficientNet
Research on CNN has already reached the hardware limit for state-of-the-art
CNN models, and adding only more layers is not sufficient. Moreover, there

20At least in 2016 when this model was released.

27

2. Artifical Neural Networks

is an increasing demand to use CNNs on mobile devices with limited com-
putational power. Therefore, researchers focus on different approaches and
minimize hardware requirements and easy scaling of input size. The resulting
family of networks is called EfficientNet, introduced in 2019 [78]. Efficient-
Nets continues a process of scaling, increasing efficiency, learning speed, input
size, and decreasing parameters for the similar result as other networks.

For the reasons mentioned above, a new method was developed called
compound coefficient. This method scales all dimensions of a network (resolu-
tion21, width, and depth22) with a constant ratio of 1.1 (width), 1.2 (depth),
and 1.15 (resolution).

The main building block consists of an inverted bottleneck, for exam-
ple, denoted as MBConv5 k3x3, where 5 means the expansion factor after
the bottleneck and 3 × 3 is the kernel size of the separable convolution, to
which squeeze-and-excitation optimization is added. This is based on a block
described in a MobileNetV2 network [79].

“Regular convolution is replaced by separable convolution, which consist
of a depthwise separable convolution (for example, 3 × 3) acting on each
channel separately (which reduces the time and space complexity of a regular
convolution by a factor equal to the number of channels); a pointwise 1 × 1
convolution acting on each position independently (which reduces time and
space complexity of a regular convolution by a factor of 3 · 3). There is no
non-linear activation on the bottlenecks (it would lead to loss of information
given the small capacity of bottlenecks)” [80, 1:24].

Furthermore, it expands into a high dimension, filtered with a lightweight
depthwise convolution, and then it maps back to the low dimension. The high
dimension acts as a non-linear transformation. Between these low-dimensional
layers (bottlenecks) are residual connections that help propagate input and
gradient. This block is called squeeze-and-excitation, “which learns to em-
phasize information channels and suppress less useful ones according to global
information” [80, 1:24].

EfficientNet comes with different variations, which can be seen in Table 2.1.
In Figure 2.6 is illustrated architecture of EffecientNetB0.

2.6.4 EfficientNetV2
There were several limitations in EfficientNet, such as “(1) training with very
large image sizes is slow; (2) depthwise convolutions are slow in early layers.
(3) equally scaling up every stage is sub-optimal” [81]. Therefore, a new ver-
sion called EfficientNetV2 was published in 2021. EfficientNetV2 improves
mainly training speed and decreases the size of the models.

Research replaced some of the main building blocks with Fused-MB Conv
layers. The Fused-MB Conv layer ’fused’ the pointwise 1 × 1 convolution

21Resolution of the input image.
22Width is the number of channels, and depth is the number of layers.

28

2.6. Convolutional Neural Network

Name Param. Inp. Name Param. Inp.
EfficientNetB0 5.3M 224 EfficientNetB4 19M 380
EfficientNetB1 7.8M 240 EfficientNetB5 30M 456
EfficientNetB2 9.2M 260 EfficientNetB6 43M 528
EfficientNetB3 12M 300 EfficientNetB7 66M 600

Table 2.1: Inp. is input in one dimension of the square RGB image (for
EfficientNetB0 that is 224×224×3), Param. means the number of parameters
[12].

Figure 2.6: The EffecientNetB0 general architecture [7].

and a 3 × 3 depthwise convolution into a regular convolution as can be seen in
Figure 2.7. The Fused-MB Conv layer has more parameters and requires more
computation, but is executed faster due to the possibility of parallelization [80,
1:46]. This, together with a few more changes (smaller expansion ratio for the
MBConv layers, smaller kernel sizes with more layers, removal of the stride-1
stage, introduction of dropouts and data augmentation during training), gives
better results in a faster time [82].

EfficientNetV2 comes with different variations. Some of them are in the
Table 2.2 and are currently one of the best CNNs available for image recogni-
tion.

2.6.5 Other networks
There are many different network architectures. We will briefly mention only
a few that we will use in our work.

29

2. Artifical Neural Networks

Figure 2.7: Comparision of Fused-MBConv and MBConv in EfficientNets [8].

Name Param. Inp. Name Param. Inp.
EfficientNetV2B0 7.2M 224 EfficientNetV2S 21.6M 384
EfficientNetV2B1 8.2M 240 EfficientNetV2M 54.4M 480
EfficientNetV2B2 10.2M 260 EfficientNetV2L 119.0M 480
EfficientNetV2B3 14.5M 300

Table 2.2: Inp. is input in one dimension of the square RGB image (for Effi-
cientNetV2B0 that is 224×224×3), Param. means the number of parameters
[12].

ResNet was introduced before DenseNet and was one of the first architec-
tures that tried to overcome the problem of input and gradient degradation in
long convolutional networks. Its architecture consists of residual connections
(also known as skip connections) between layers that connect with summation
with only all preceding layers (in contrast to DenseNet, where all layers are
connected to each other by concatenation) [83], [84].

InceptionV3 architecture consists of symmetric and asymmetric blocks
of acyclic graphs, concatenated at the end. These blocks are easier to fit into
memory [85], [86].

InceptionResNetV2 combines the architecture of Inception and ResNet
into one architecture, which, due to residual connections, significantly accel-
erates the training of the Inception parts [87].

NASNetLarge architecture was found with an automatic search method
called Neural Architecture Search (NAS, therefore, NAS-Net). It searched
the possible space of options on a smaller dataset where the main building

30

2.7. State-of-the-art image feature extraction

Name # of parameters Image size Released
ResNet-50 25.6M 224x224 2015
ResNet-101 44.7M 224x224 2015
ResNet-152 60.4M 224x224 2015
InceptionV3 23.9M 299x299 2015
InceptionResNetV2 55.9M 299x299 2016
Xception 22.9M 299x299 2016
NASNetLarge 88.9M 331x331 2017

Table 2.3: Comparison of different CNNs [12], [13], [14], [9], [15].

block is established and then transferred the block (and stacked more copies
of it) to a final model on a large dataset. The new design is found after this
process [88].

Xception means Extreme Inception since it is based on IncetionV3 net,
where the standard convolution is replaced by depthwise separable convolu-
tions. The resulting architecture gives slightly better results. Depthwise,
separable convolutions operate in two phases. First, depthwise convolution oc-
curs (which reduces width and height), and then pointwise convolution (which
reduces channel dimension) [89].

We compared the top-1 and top-5 accuracy of these models in Figure 2.8,
and Table 2.3 compares the number of parameters, the input image resolution,
and the release year.

2.7 State-of-the-art image feature extraction
Historically, feature extractions from images were taken using different meth-
ods such as color histogram, Oriented FAST and Rotated BRIEF (ORB),
Scale-Invariant Feature Transform (SIFT), and Speeded Up Robust Features
(SURF) [39].

Nowadays, due to progress in CNNs, which showed their performance in
the ImageNet challenge, state-of-the-art CNN models described in the previ-
ous section are being used for extracting features from images. We can use
the final output, in fact, the output of any layer of each model as an em-
bedding of the image, which can be further used for different tasks, including
recommendations [80, 1:51].

2.8 Multiple Instance Learning
Many things in nature could be represented by a set of feature vectors of fixed
length but with one label (representing one entity). A simple example can be
a photo of an animal where only the rear view, where the tail is visible, can

31

2. Artifical Neural Networks

Figure 2.8: Comparison of top-1 and top-5 accuracy of selected CNN models
on ImageNet validation dataset. They are sorted by top-1 accuracy [9].

reveal the correct species, and having just a front view would not be sufficient
for correct labeling.

For similar cases, a method called Multiple Instance Learning23 (MIL)
was introduced, which can aggregate multiple features into one feature [90].
It expects samples to be composed of multiple lower-level instances with more
than one set of fixed-sized vectors (together, these instances are called bags)
and only one high-level label (of the bag). This can be represented as multiple
photos and single name of a species compared to one fixed-sized vector (one
photo), as is common in ANN models presented in previous sections. This
should lead to higher accuracy as more information is present [11].

The example introduced by the authors of [91] demonstrates the usage of
this system for the description of a person from a series of images. They take
sub-images (instances) with different centers and sizes from an image (bag)
and label them as positive if the person is present or negative if the person is
missing.

23Or multi-instance learning.

32

2.8. Multiple Instance Learning

Figure 2.9: “Comparison of supervised learning and multi-instance learning.
The classifier is learned over bags instead of instances in MIL” [10]. In this
example target class is positive or negative, i.e., bag can be positively or
negatively labeled. A bag is considered negative if it contains only negative
instances and no positive instances, otherwise it is considered as positive.

In Figure 2.9 is another example of MIL problem illustrated.
In other real-life problems, we may not always have the same number of

instances. Therefore, our model needs to be flexible and not only accept a
constant number of instances, but dynamically adjust.

In view of the fact that the input data vary from classical machine learning
approaches, that is supervised learning, unsupervised learning24, and reinforce-
ment learning25 [92], the multi-instance learning was regarded as the fourth
approach for machine learning and “should be placed in somewhere between
supervised learning, whose training sets are with no ambiguity, and unsuper-
vised learning, whose training sets are with maximal ambiguity” [92].

As in [11] MIL method can be defined as

ϕi = g({k(x, θi)}x∈b),

where b represents the bag, x is a single instance of the bag, k is a distance
function (or kernel) over the bags, and the dictionary (Θ = {θi ∈ χ|i ∈
{1, ..., m}}, χ is a non-empty instance space) containing bags. Moreover, g
is a pooling function (e.g., minimum, maximum, or mean) that aggregates
multiple instances from bags into one instance (ϕ).

The whole model can be represented as a neural network, where the dis-
tance function k can be the first part of a model (or the whole model itself),

24Unsupervised learning discovers patterns and similarities on its own.
25“The examples are with no labels but with delayed rewards that could be viewed as

delayed labels.”

33

2. Artifical Neural Networks

Figure 2.10: “Sketch of the neural network optimizing the embedding in
embedding-space paradigm.” [11]

followed by pooling layers g (after which we get one vector) and ended by the
second part of a neural network model f to map the final vector to a bag
label. Backpropagation algorithms can optimize the weights of the resulting
architecture.

This process is summarized in Figure 2.10, where (x1, x2, ..., xl) ∈ Rd are
single instances of one bag mapped by second model f to one output vector.

34

Chapter 3
Analysis and design

In this chapter, we propose several methods for feature extraction from an im-
age with the help of CNNs and evaluate extracted features on recommendation
task with recall metrics.

3.1 Motivation

Visual presentation of a product on a website can take a large proportion of the
space dedicated to the product demonstration. That can strongly influence
customers when they decide whether to view and purchase the product or not.
Therefore, we can use this fact and implement a recommender system based
on the image representation.

Martin Pavlicek already tried this in his work [39], where he compared
several methods of producing an embedding from an image and, after that, a
recommendation. Pavlicek concludes that VGG16 outperforms other methods
not based on CNNs (such as color histogram and ORB). However, he did not
compare VGG16 with other CNNs, and since the release of his work in 2018,
several new architectures have been introduced that could outperform even
the VGG16 model.

Since training our own CNN is not possible with our resources, we will
retain the standard practice of using pre-trained models and only fine-tune
their weights (or only their dense layers) for our use case.

We will focus on three situations. Firstly, on a cold start problem where
we do not have any interaction data but only pictures of items. We will
follow up with Pavlicek and compare VGG16 with other newer CNNs models.
The second case will be when we have interaction data in the form of ALS
embeddings of items, and we can train our model on these embeddings with
one given image of the item. Lastly, we will propose a method to use more
images of one item with one ALS embedding based on the description of MIL
in Section 2.8 and see if this can increase the recall.

35

3. Analysis and design

3.2 Model selection and Default recall
As we described in the previous chapter, state-of-the-art CNNs can encode
the image of an item into an embedding, where we can take the output of
any CNN layer and consider it as an embedding. We can then compare these
embeddings with some distance metrics and find similar items to a selected
item. The similar items are then suitable for a recommendation, and we can
calculate the recall of these embeddings. However, embeddings generated from
different layers will produce different recalls. Therefore, we will compare the
recall of different layers of trained but not fine-tuned models. Only embeddings
generated by dense layers or whole CNN without any dense layers will be
compared for simplification.

Since the recall calculation does not depend on the length of the embed-
ding26, we can calculate the recall on the output of any layer with the same
method and compare the results.

We will call Default recall the highest recall of each CNN model of these
not fine-tuned models. This is the cold start problem situation, where we will
mainly compare VGG16 to newer CNNs. Later, we will try to improve this
Default recall.

For the reasons mentioned above, we will create an evaluation framework,
where we will calculate the recall of a given model.

3.3 Model evaluation
When we have a given model, we need to evaluate its performance. We will
create an evaluation framework with four steps.

1. Train the model. (optional)

2. Using a (non)trained model, predict embeddings of all images.

3. Find K Nearest Neighbors (KNN) to all items we predicted.

4. Evaluate the embeddings, i.e., calculate the recall with item-KNN from
step 4.

In the third step, we predict embeddings of not-yet-seen items on a given
model (optionally) trained on items with known ALS embeddings.

With a leave-one-out cross-validation evaluation, we will calculate the re-
call of our recommender model.

26Cosine similarity or MSE can be calculated on a vector of any size.

36

3.4. Search for the best hyperparameters and One-to-one training

3.4 Search for the best hyperparameters and
One-to-one training

After collecting Default recalls from all models and their different layers, we
will select the top-10 best performing models and fine-tune them further with
the goal of increasing the recall.

We will consider every model only once, with the layer which achieved the
highest Default recall. This will help us discover and compare more models,
which we prefer more than only comparing different outputs of a single model.

Since all used models were pre-trained on the object classification task,
their architecture may not be optimal for the recommendation task. Therefore,
models may need more (or less) dense layers on top and perhaps even different
widths of dense layers compared to the original architecture used to adjust to
a new problem.

For the reasons above, we will search for the best hyperparameters of these
top-10 models: the number of dense layers after the best performing layer and
the width of these layers.

The final step is to train and evaluate the resulting architectures with the
best hyperparameters of all top-10 models using our framework and calculate
a new (hopefully better) recall. This is called transfer learning when we try
to reuse a trained network for a different task it was originally designed. We
will call this step One-to-one training as we map one image to one ALS
embedding, i.e., the embedding based on the user’s interactions.

The learning (or training) process means fine-tuning model output to the
item ALS embedding and minimizing the loss function. In our case, map the
first image (and later images) of the item (input) to the ALS embedding of its
item (target output). However, as already stated in [93], training models on
ALS embeddings are not in monotonic relation, and minimizing loss function
may not improve the quality of recommendation algorithms. Nevertheless,
the training should improve final recall. In other words, the model tries to
learn connections based on user interactions encoded in ALS embeddings of
the items.

3.5 Many-to-one training
Until now, training was done using only one image of an item to the ALS
embedding of the same item. At this moment, we will take advantage of
multiple images we have from one item and try to train all top-10 models
with their best hyperparameters on more than one image to one single ALS
embedding and see if recall improves.

During training, we will proportionally lower the importance of an image
if it shares the ALS embedding with some different images of the same item.
If, for example, we would train on 1000 images of one item and the other items

37

3. Analysis and design

would have only one image, the model could overfit to this one item with 1000
images. The reduction of the importance of each image should prevent this.

As we provide more information to a model, we hope to get a better
recall. We will call this phase Many-to-one training as we map one and
more images to one ALS embedding.

As a result of these experiments, the best model is found, which we will
call the best model.

3.6 MIL training
We propose two more implementations for the use case when we have two
and more embeddings (representing several images of one item) with only one
corresponding ALS embedding. As we described MIL in the previous chapter,
we assume that the MIL model should be able to combine multiple embeddings
of one item into a single embedding, which can then be fine-tuned on the ALS
embedding.

We will use the best model found in previous experiments (i.e., one with
the highest recall) as our base model to produce embeddings from images in
our MIL implementation (as a function k according to the previous description
in Figure 2.10).

We propose two methods of MIL. A naive solution we will call Simple MIL,
and a solution based on [11] we will call Ragged MIL.

In the Simple MIL method, we will take the embeddings produced by
the best model, and then we will perform operation maximum (max), mini-
mum (min), or mean on these embeddings of one item. For example, if there
are two embeddings (from two different pictures of one item) of size l, i.e.,
x1, x2, ..., xl ∈ Rl and y1, y2, ..., yl ∈ Rl, the result of the max operation is

MAX(x1, y1), MAX(x2, y2), ...MAX(xl, yl)

embedding. We will fit the resulting embedding of this operation with our
custom model, which contains only dense layers, to the ALS embedding of the
corresponding item.

In Ragged MIL, we will also produce embeddings from images with the
best model, and then we will use neural networks to fit a variable number of
images to one final ALS embedding.

We will always find the best hyperparameters before mapping our embed-
ding(s) to the ALS embedding.

3.7 Workflow summary
To wrap up everything, we will first calculate the Default recall of each model
and its various outputs. Then, we will select the top-10 different models and
search for the best hyperparameters for our task. Train each of these top-10

38

3.7. Workflow summary

models with its best hyperparameters as One-to-one and Many-to-one. Lastly,
we will implement two solutions to the MIL problem, Simple MIL and Ragged
MIL. The result of these experiments should be the best CNN-based model
for recommendations based on an image of items.

39

Chapter 4
Realisation

This chapter will describe our implementation of the proposed solution with
a short description of the used technologies.

4.1 Used technologies
Firstly, we will briefly describe the technologies and tools that we will use dur-
ing development. The implementation is written in the Python3.8 program-
ming language in the Jupyter Notebook environment. For our experiments, we
have been provided with a 250 GB RAM computer with processor Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 40 threads, and Tesla V100-DGXS
32 GB graphic card.

4.1.1 TensorFlow
TensorFlow (tf) is an open-source platform for machine learning. It contains
many state-of-the-art models that have already been trained, same as an in-
terface to build and modify models, and many tools to prepare data, tune
hyperparameters, and evaluation.

The tf.data.Dataset API (we will call it shortly tf.Dataset) provides input
pipelines for training a model. As in our case, dataset can have several GB of
data, which is not always possible to load into memory. Tf.Dataset provides
a simple interface to preprocess input data and split them into batches, which
can be streamed one by one into a graphic card where we trained the model.

Part of the TensorFlow is the Keras Tuner library, which contains state-of-
the-art methods for searching for hyperparameters, such as number of layers,
neurons in one layer, learning rate, the best optimizer, and many more. We
will use the Hyperband tuning algorithm, which trains more networks at once
in just a few epochs and carries forward only part of the best to further
training. Moreover, Hyperband uses adaptive resource allocation and early
stopping during the search process and is suitable for our use case.

41

4. Realisation

4.1.2 Jupyter Notebook
We will use Jupyter Notebooks for the development environment, which allows
interactive development and avoids repeatedly loading large amounts of data.
It allows checking the results on the go, which saves time.

4.1.3 Other libraries
Other essential libraries that we will use are

• Numpy - simplifies and significantly improves the speed of mathematic
operations such as work with multidimensional arrays (matrices) and
shape manipulation,

• Pandas - helps with data manipulation, presentation, and modifications,

• Pickle - serialize and de-serialize data which helps store them in a file,

• Matplotlib - a library that helps with data visualization,

• Logger - a library that helps with logging information,

• Sklearn - similarly to TensorFlow, Sklearn provides tools for machine
learning; we will use it for searching for nearest neighbors.

4.2 Folder description
The code is divided into several Python files and three main Jupyter Note-
books. In the first, we cleaned the data; in the second, we implemented model
selection - the Default recall, One-to-one, and Many-to-one training. In the
last notebook, we implemented both MIL methods - simple and ragged. Fur-
thermore, several supporting Python files contain classes that we import into
the Notebooks.

Moreover, in a file called CONFIG, we can change some constant values
such as path to an image, path for logs, path for saved models, and more.

In class DatasetsHandler, we implemented functions for loading datasets
into pandas dataframes, processing them into tf.Dataset and other dataset-
related functions.

4.3 Evaluation framework
Framework for evaluation of the model is implemented in class ModelEvalu-
ator with its main function train eval model as can be seen in Algorithm 2.
First, we can train a model and then evaluate it. For tasks related to mod-
els (loading model, compiling model, and Keras Tuner implementation), we

42

4.4. Hyperparameters and models

created the class CModels, and we are using the TensorFlow library, to use
already implemented models.

Training is implemented with ModelCheckpoint and EarlyStopping call-
backs. The EarlyStopping ensures that the model will automatically stop
after no improvement over a few epochs. ModelCheckpoint ensures that the
best model (on validation dataset) is saved on disk for later usage.

For the computation of the nearest neighbors, we used a function called
NearestNeighbors from the sklearn library. Moreover, for the computation
of Recall, we used a class called RecallMeter and its measure leave one out
function.

Algorithm 2 The pseudocode of the train eval model function.
Require: (model, trainDSs, imgesWithoutEmbeddings, rawInteractions)
Ensure: resultRecall

1: if trainModel then
2: trainModel(model, trainDSs)
3: end if
4: computedEmbeddings ← predictEmbeddings(model, imgesWithoutEm-

beddings)
5: similarItems ← findKNNItems(computedEmbeddings)
6: resultRecall ← computeRecall(similarItems, rawInteractions)

We can calculate Default recall by passing a model and the required
datasets into our framework with a number of epochs = 0, which means that
the model will be only evaluated and not trained.

4.4 Hyperparameters and models

After Default recall is computed, we can take the top-10 models and search
for the best end layers with the help of Keras Tuner and the Hyperband search
method. We created one function, get all models, which takes as parameter
name of the model in format MODEL NAME X, where X represents a num-
ber of omitted dense layers at the end of a model. For example, if X = 3
in the VGG16 model, we will not include any of the last layers. Further-
more, the function get all models also returns the required image size for each
model. Therefore, before starting the Keras Tuner, we create tf.Dataset with
corresponding image sizes.

We would note that during training, the convolutional parts of our models
are frozen27. We train only the top dense layers.

27The weights of frozen layers do not change during training.

43

4. Realisation

4.5 MIL implementations
In a Notebook called MIL, we implemented the last two proposed methods
(Ragged and Simple MIL, where users can switch between modes). In MIL-
Class are necessary functions to prepare datasets, define Keras Tuners hyper-
parameters, and manipulate with the models of both methods. MILRagged
class in the same file contains the crucial part of the Ragged MIL method.

There are several hyperparameters in the MIL notebook that help to ac-
celerate experiments, such as

• MIL VARIANT - switch between Ragged and Simple MIL, where True
= Simple MIL, False = Ragged MIL.

• MIL OPERATION - switch between underlying operation; options are
MEAN,MIN, and MAX.

• LAST LAYER - determines whether we cut the model in the first phase
of its last layer, which can give better results, where True = no, use last
layer, False = yes, cut the last layer.

• TOP K IMGS - the maximum number of images the model will work
with from one item.

• IMG SIZE - the size of the input image in pixels.

• PHASE1 BATCH - the batch size of phase 1.

• PHASE2 BATCH - the batch size of phase 2.

• EPOCHS KT - Number of epochs in Keras Tuner.

Other hyperparameters were found again with the help of Keras Tuner.
We are implementing a simplified version, where we do not train end-to-

end (i.e., the base model in MIL, which produces embeddings from images, is
not being trained). Therefore, we first extract the embeddings and then try to
map them to ALS embeddings. An important part is the difference between
the mapping in Simple and Ragged MIL.

In the case of Ragged MIL, we predict embeddings of images called em-
beddings big in the dataframe. We need to process them before using them as
input into the second model, which will map them into ALS embedding. The
embeddings must be in format n, k, l, where n is a number of items, k means
a maximum number of images on input, and l is the size of embeddings big.
This will become input into the second model, where if an item has less than
the maximum number of images, we fill missing items with zeros. We can
finally use Keras Tuner to find a model with the best hyperparameters and
train and evaluate the final model with our evaluation framework.

44

4.5. MIL implementations

Figure 4.1: Comparison of Simple MIL and Ragged MIL.

On the other hand, Simple MIL performs the selected operation (min,
max, mean) on extracted embeddings from images and creates one embedding
for one item. Therefore, the second model contains only dense layers and is
trained on items with only one input and one output embedding. Once more,
we use Keras Tuner to find the best hyperparameters of the second model.
The architecture of both MILs is shown in Figure 4.1.

45

Chapter 5
Experiments

Experiments proposed in Chapter 3 were verified using our implementation
and provided datasets. The results of these experiments will be presented in
this chapter.

We measured recall on k ∈ 5, 25, 50, 100, but since we are mostly interested
in recall@5, we will present only this value. The rest of the results can be seen
on the attached medium in the folder named results.

5.1 Datasets
We have available a dataset consisting of around 700,000 path to images from a
furniture e-shop based in Australia and around 1.3 million interactions for our
experiments. The dataset used during this work is confidential and was only
provided to us for research purposes. Therefore, the dataset is not included
in the attached medium.

First, this data set needs to be pre-processed, which we do in Notebook
called data preprocess. That means we need to ensure that all images are work-
ing (we can read them from disk and use them as input). All the dataframes
are in pickle format on disk, and we work with them using the Pandas library,
where we expect a column with a path to the image.

The cleaning process consists of more tests. Namely, we check if the value
is not empty, is a legitimate path, and has the correct file extension (.jpg or
.png). Next, we check the encoding of a file and try to load the image into
the TensorFlow library, which will be essential for our future work. All entries
that do not comply with only one of these tests are deleted.

The dataframe contains the following columns:

• item id - unique ID of the product,

• property - which can have two values, main image which is the main
picture of the product and additional images, which symbolizes an ad-

47

5. Experiments

ditional image of the product (that can be seen, for example, in product
detail),

• filename - path to the image on disk.

After this process, we have 350,000 unique paths to images of approxi-
mately 70,000 different items (in the dataframe only functional paths), which
we will use for the evaluation process. We also have 66,000 unique items with
their ALS embeddings with the size of 1024 (in dataframe final merge), which
will be used during training. Furthermore, we split the dataframe with ALS
embeddings into a train and a valid dataframes, where the training dataframe
will be used during training, and the valid dataframe will be used after ev-
ery epoch for validation (the valid dataframe will prevent our models from
overfitting).

We also have two more dataframes, representing the rating matrix of in-
teractions - raw interaction valid and raw interaction test, which we will use
for the evaluation of the recall of our models as well. As the names suggest,
the first (valid) dataset will be used during training, and the second (test)
dataset will be used only once for the final evaluation of our models. Both
dataframes have the following columns:

• item id - unique ID of the product,

• user id - unique ID of the user,

• interaction type - type of interaction (detail views, cart additions, book-
marks, purchases),

• timestamp - timestamp when interaction happened,

• value - value of interaction (number).

5.2 Keras Tuner configuration
We used the TensorFlow library implementation of all models with pre-trained
weights on the ImageNet dataset. We used Adam as an optimizer and a custom
loss function inspired by [94] as a ratio between cosine similarity (COS) and
mean squared error (MSE)

loss = αCOS + βMSE + 1,

where α = 1 and β = 0.01. When cosine similarity is calculated, it normal-
izes the vectors, giving us no information about the magnitude of the vector.
Our loss functions ensure that the vectors have a similar angle and a similar
magnitude.

48

5.3. Results of Default recall

In general, we use Keras Tuner to find the optimal architecture of the
top layers. In the One-to-one method, we set the hyperparameters to append
0, 1, 2 dense layers on top of the model, each with 1, 2, 3 times 1024 neurons
and a learning rate in (1e − 5, 1e − 2).

For Ragged MIL, we set the output of each operation as hyperparameters
and the possible values are 1024, 1536, 2048, 3072. For example, if Keras Tuner
selects value 2048 and configures Ragged MIL to append output from opera-
tions min and max, we get output consisting of 2*2048 values (+1 represent-
ing a number of embeddings in the input as suggested in [95]). Moreover, we
search for other hyperparameters similar to those in the One-to-one method,
namely, how many layers to append to output (0-3), each containing 1-3 times
1024 neurons and the learning rate in (1e − 5, 1e − 2).

Finally, for Simple MIL, we searched a number of layers on top (0-3),
neurons in each layer (1-3 times 1024), and the learning rate in (1e−5, 1e−2).

In each Keras Tuner search of hyperparameters, we append the output
layer consisting of 1024 neurons, which corresponds to the size of our ALS
embedding.

5.3 Results of Default recall
We compared all these models: ResNet versions 50, 101, and 152, InceptionV3,
InceptionResNetV2, DenseNet versions 121, 169, and 201, NASNetLarge, and
Xception, where we measured recall on 2 layers, EfficientNet versions B0, B1,
B2, B3, B4, B5, B6, B7, and EfficientNetV2 versions L, M, S, B0, B1, B2, B3,
where we measured recall on 3 layers and finally VGG19 and VGG16, where
we measured recall on 4 layers. In total 10 × 2 + 15 × 3 + 2 × 4 = 73 output
layers of 27 different models.

We consider the output of VGG16 as our baseline as we follow the results
of [39], which we hope to surpass. We also measured the recall of given ALS
embeddings, which we use for training. Recall of ALS embeddings should
correspond to the ideal recall we would like to achieve.

The results can be seen in Table 5.1, where we compared the best result-
ing outputs of each model. In Figure 5.1, we compare only the best output
layers of each model. We experimentally verified that the best performing
embeddings were found in the layer placed right after the convolutional part
in all cases. The model with the highest recall is DenseNet201, which
achieved approximately half of the recall of ALS embeddings and performed
approximately 15% better than the best recall of VGG16. All three versions of
DenseNet (201, 169, and 121) are in the top-3 positions, followed by Efficient-
NetV2 and its versions B1, B3, and B0. VGG16, EfficientNetV2B2, VGG19,
and EfficientNetV2L ended the top-10 best performing models. We will use
all these models without their dense layers in the following experiments (in
Keras Tuner and the following).

49

5. Experiments

Model name Rec@5 (%) Model name Rec@5 (%)
ALS embeddings 3.62% ResNet152 1 1.03%
DenseNet201 1 1.82% ResNet50 1 1.03%
DenseNet169 1 1.76% ResNet101 1 0.98%
DenseNet121 1 1.73% NASNetLarge 1 0.84%
EfficientNetV2B1 2 1.70% EfficientNetV2S 2 0.80%
EfficientNetV2B3 2 1.70% InceptionV3 1 0.77%
EfficientNetV2B0 2 1.68% EfficientNetB5 2 0.57%
VGG16 3 1.57% EfficientNetB7 2 0.51%
EfficientNetV2B2 2 1.55% EfficientNetB6 2 0.42%
VGG19 3 1.54% EfficientNetB4 2 0.42%
EfficientNetV2L 2 1.37% EfficientNetB3 2 0.37%
EfficientNetV2M 2 1.31% EfficientNetB1 2 0.32%
Xception 1 1.29% EfficientNetB2 2 0.29%
InceptionResNetV2 1 1.14% EfficientNetB0 2 0.26%

Table 5.1: Table of Default recall@5 in % of the best output layer of different
models and ALS embeddings (the higher, the better).

On the other hand, the first version of EfficientNet had the worst recall,
filling the lowest positions on the chart. Additionally, the ResNets family
architectures did not perform well either.

5.4 Results of One-to-one and Many-to-one
We continued our experiments by running Keras Tuner on all top-10 models
with a maximum of 50 epochs and a batch size of 128. Keras Tuner needed
around 25 days to find the best hyperparameters. Significantly longer time
was needed for both VGG16 and VGG19, about 5 days, and other models
usually needed around 2 days to complete the search process.

Except for one model, all preferred to append only one more dense layer
with 3*1024 neurons inside28. In Table 5.2 we can see the result of the loss
function.

After finding the best hyperparameters, we trained the networks on our
items with ALS embeddings and evaluated them in our framework. Surpris-
ingly, VGG16 retreated to the top with the highest-scoring recall, about 30%
worse than the recall of ALS embeddings, and 35% increased than non-trained
DenseNet201 (winner or previous experiment). In second place is VGG19,
followed by EfficientNetV2B3. We can tell that fine-tuning output of our
models to ALS embeddings significantly improved the recall.

28More details can be seen in attached medium in file One-to-one Keras Tuner.txt inside
result folder.

50

5.4. Results of One-to-one and Many-to-one

Figure 5.1: Default recall@5 of the best output layer of different models and
ALS embeddings.

Model name Loss value Model name Loss value
EfficientNetV2B1 2 0.7193 DenseNet121 1 0.7313
DenseNet201 1 0.7233 EfficientNetV2B2 2 0.7316
DenseNet169 1 0.7241 EfficientNetV2L 2 0.7389
EfficientNetV2B3 2 0.7249 VGG16 3 0.7796
EfficientNetV2B0 2 0.7287 VGG19 3 0.7800

Table 5.2: Loss value of models after Keras Tuner trained and searched for
the best hyperparameters (the lower, the better).

51

5. Experiments

Model name 1 image 2 images 3 images 4 images
VGG16 3 2.44% 2.42% 2.36% 2.32%
VGG19 3 2.33% 2.22% 2.20% 2.12%
EfficientNetV2B3 2 2.30% 2.14% 2.11% 2.10%
EfficientNetV2B1 2 1.99% 1.92% 1.88% 1.87%
EfficientNetV2B2 2 1.89% 1.84% 1.82% 1.82%
DenseNet201 1 1.84% 1.81% 1.82% 1.79%
EfficientNetV2B0 2 1.76% 1.78% 1.75% 1.73%
EfficientNetV2L 2 1.76% 1.73% 1.71% 1.69%
DenseNet121 1 1.71% 1.68% 1.68% 1.73%
DenseNet169 1 1.52% 1.53% 1.54% 1.54%

Table 5.3: Table of recall@5 in % of trained models on 1-4 images to one ALS
embedding.

Interestingly, not all networks improved their recall after training. Namely,
the DenseNet family did not perform well after the training process, and
DenseNet121 and DenseNet169 ended up with the worst recall than without
training and DenseNet201 with only a small improvement. This may be be-
cause the network weights would need significantly more time to escape from
local optima.

We also tried to train models with the hyperparameters found with Keras
Tuner on more images. In almost every case, the more images we provided,
the lower the recall was. The reason for this could be that despite training
on multiple images, we evaluate the model only on one. Perhaps, if we used
some more advanced technique of weighting recommended items for multiple
different images of one item, we could achieve different results.

The results can be seen in Figure 5.2 and Table 5.3. Interestingly, when
trained on One-to-one embedding, VGG16, which scored almost the worst
in the loss value, had the highest recall. It is worth comparing the order of
the models sorted by the best loss metric and the models sorted by the best
recall in Tables 5.2 and 5.3. We can observe that loss and recall are not
in monotonic relation, and the best loss does not translate into the
best recall.

5.5 Results of MIL
We will first describe all experiments with Simple MIL and then Ragged MIL
as the experiments need more description than the previous ones. We always
changed baseline architecture, then ran Keras Tuner, and the resulting model
with searched hyperparameters we trained and measured recall.

In Simple MIL, we set up the architecture to produce embeddings (model
with the best recall - trained VGG16 on one image, but few experiments were

52

5.5. Results of MIL

Figure 5.2: Recall@5 of trained models on 1-4 images to one ALS embedding.

done on VGG19 and EfficientNetV2B3) on the last and penultimate layers
and also on operations min, max, mean. We will make a name convention of
Sim X Y C Z, where X is the size of the embedded that is produced from the
first model (in the case of VGG16, that is 1024 or 3072 if we do not use the
last layer), Y is operation (min, max, mean), C can have values EF meaning
EfficientNetV2B3 as baseline model or VGG19 baseline model (optional), and
Z number of images on input (optional). By default, we used 2 images in our
MIL model and VGG16 trained on one image as our baseline model. Results
can be seen in Figure 5.3.

Similarly, with Ragged MIL, we performed several experiments with dif-
ferent hyperparameters. We first used Keras Tuner to search for the best hy-
perparameters, then trained and evaluated the resulting model. We will use
a similar name convention for our model Rag X Y C Z M, where X (size), C
(different base model, new value is 2VGG which is VGG16 trained on two im-
ages), and Z (number of images) remain the same, but Y (operation) may also
contain a combination MAX-MIN, MIN-MEAN, MEAN-MAX, and MMM,
which means MIN-MAX-MEAN.

Figure 5.3 shows only the top of the graph from the range 0.021 to better
visualize the difference between experiments, which may not be that apparent
otherwise.

We were systematically filtering the best hyperparameters with the follow-

53

5. Experiments

Model Name Rec@5 Model Name Rec@5
Sim 3072 MAX 2.460 Sim 1024 MAX 2.367
Sim 3072 MEAN 2.435 Sim 1024 MIN 2.362
Rag 1024 MAX 2.424 Rag 1024 MIN-MAX 2.355
Rag 1024 MAX-MEAN 2.421 Rag 1024 MIN-MEAN 2.325
Rag 1024 MAX-MAX 2.415 Rag 1024 MMM 2VGG 2.277
Rag 3072 MAX 2.414 Rag 3072 MMM 2VGG 2.272
Rag 1024 MAX 3PIC 2.412 Rag 1024 MIN 2.252
Rag 1024 MEAN 2.406 Sim 3072 MAX VGG19 2.241
Rag 1024 MAX 4PIC 2.405 Rag 1024 MAX VGG19 2.239
Sim 3072 MAX 3PICS 2.398 Rag 1024 MAX EF 2.215
Sim 3072 MAX 4PICS 2.397 Sim 1024 MEAN EF 2.171
Sim 1024 MEAN 2.396 Sim 1024 MAX EF 2.147
Rag 1024 MMM 2.380 Sim 1024 MIN EF 2.143
Rag 3072 MMM 2.380 Sim 3072 MIN 1.603

Table 5.4: Table of recall@5 in % of MIL with different architectures and
hyperparameters.

ing observations. 1) Taking the final layer (1024) gives a better recall than
the second last in Ragged MIL. In Simple MIL, this is vice versa - removing
the final layer gives better recall. 2) Performing max operation gives the best
results, and on the contrary min operation gives the worst results. 3) The
more input image we use, the worse recall we get.

Many experiments took place, but we were unable to beat the recall of
VGG16 trained on one image on offline tests. The Simple MIL with 3072
input embedding and VGG16 baseline network using two images was the best
performing model. We also tried different models, more pictures, and a com-
bination of min, max, and mean in Ragged MIL.

Several illustrations of the recommendations produced can be seen in Fig-
ures 5.4, 5.5, 5.6 and 5.7. In each figure, recommendations of four models
are shown to the item on the left (first column), with descending impor-
tance of recommended items (items on right are less relevant). The models
are Rag 1024 MAX, Sim 3072 MAX, trained VGG16 on One-to-one and not
trained VGG16 in this order from the first row to the last row. We can see
that not trained VGG16 recommends more based on shapes. However, after
the model is fine-tuned on ALS embeddings, it recommends more based on
semantic similarities of items.

54

5.6. Online tests

Figure 5.3: Recall@5 of MIL with different architecture and hyperparameters
(blue is Simple MIL, red is Ragged MIL). Y-axis starts at 0.021 to stress out
the difference between individual versions.

5.6 Online tests

From April 25, 2022, to March 2, 2022, we compared 4 models in online A/B
test. The 4 models are non-trained VGG16 as our baseline, then the best
performing models in their category on offline tests, thus trained VGG16 on
one image (the best model we found on One-to-one and Many-to-one training),
and both best performing MILs - Sim 3072 MAX and Rag 1024 MAX. In
total, we get 31,362 participants randomly and equally divided between all
models.

We measured the click-through rate of each model recommendation as the
average click-through of all users in the test group.

The results can be seen in Table 5.5. The observed conversion rate of
7.64% of Rag 1024 MAX is 1.43% higher than trained VGG16, and we

55

5. Experiments

Figure 5.4: Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second row on
Sim 3072 MAX, then trained VGG16 on One-to-one and not trained VGG16.

Model Name # of recomm. Clicked recomm. CTR (%)
Rag 1023 MAX 302,977 23,143 7.63853
Sim 3072 MAX 306,840 23,635 7.70271
Trained VGG16 302,239 22,761 7.53079
non-trained VGG16 293,885 19,744 6.71827

Table 5.5: Resulting CTR of models in the online A/B test.

can conclude that Rag 1024 MAX is better than trained VGG16 with 94.3%
confidence (p-value = 0.0567). An even better result obtained the model
Sim 3072 MAX with a conversion rate of 7.70%, which is 2.28% better
than trained VGG16 and we can also conclude that Sim 3072 MAX is
better than trained VGG16 with 99% confidence. And non-trained VGG16
ended up last with the worst recall.

From the results, we can come to the conclusion that Sim 3072 MAX is
the best model, and making recommendations based on more than one
image can increase the click-through rate. We would point out that the
model which achieved the highest recall (trained VGG16) is different from the

56

5.6. Online tests

Figure 5.5: Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second row on
Sim 3072 MAX, then trained VGG16 on One-to-one and not trained VGG16.

model that achieved the highest click-through rate (Sim 3072 MAX) in online
A/B tests.

57

5. Experiments

Figure 5.6: Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second row on
Sim 3072 MAX, then trained VGG16 on One-to-one and not trained VGG16.

58

5.6. Online tests

Figure 5.7: Showcase of recommendations (to the first image in each row).
First row recommendations are based on Rag 1024 MAX, second row on
Sim 3072 MAX, then trained VGG16 on One-to-one and not trained VGG16.

59

Conclusion

The goal of this thesis was to compare state-of-the-art convolutional neural
networks in their ability to extract important features for recommendation,
propose a method to incorporate interaction data into image data, and im-
plement a prototype of such a recommender system which can produce rec-
ommendations based on more than one image of a single item. We presented
several methods and experiments using one and more images from a single
item, and we successfully enhanced the recall with a user’s interaction data.

The experiments showed that if we do not have any interaction data, it
is better to use a newer CNN model than VGG16, such as DenseNet201,
which gives better recommendations. However, we can train the models on a
collection of interactions and achieve an even higher score in most cases.

Interestingly, trained VGG16 on interactions got the highest score of all
models in offline evaluation despite having the smallest accuracy score in the
ImageNet dataset. This can be due to overfitting or too narrow focus of these
other networks on the ImageNet dataset, and their representations of objects
in the image may be too concrete. In other words, say EfficientNetV2L can
exactly name the object in the image (therefore, achieving higher accuracy on
ImageNet). However, such information is not enough to capture small features
critical to the production of a good recommendation. On the other hand,
VGG16 cannot distinguish so well between objects (i.e., smaller accuracy on
ImageNet) and identify a more general feature representation of items that
are more useful and critical for a better recommendation.

Moreover, we showed that using more than one image for training on
classical CNNs with a nonflexible number of inputs does not result in improved
recall, but rather the opposite.

Furthermore, we also implemented two versions of the MIL problem and
trained our models on more than one image, which did not outperform VGG16
in offline tests. On the other hand, our two MIL implementations (namely
Rag 1024 MAX and Sim 3072 MAX) in online tests achieved a higher score
of click-through rate of 1.43% and 2.28%, and we can conclude that they are

61

Conclusion

better than trained VGG16 with confidence levels of 94.3% and 99% compared
to trained VGG16. Therefore, it was manifested that using more images
of a single product leads to better recommendations and could be further
researched and implemented in recommender systems.

In future work, we propose to implement MIL as one model, which can be
trained end-to-end and see if it can further improve recall. Another option is
to use a more advanced evaluation technique of the classic CNNs trained on
multiple images. Furthermore, the last suggestion for future work is to use
Visual Transformers for image recognition.

62

Bibliography

[1] Wang, L.; Chen, Z.; et al. An Opportunistic Routing for Data Forwarding
Based on Vehicle Mobility Association in Vehicular Ad Hoc Networks.
Information, volume 8, 11 2017: p. 140, doi:10.3390/info8040140.

[2] Calero Valdez, A.; Ziefle, M.; et al. Recommender Systems for Health
Informatics: State-of-the-Art and Future Perspectives. Lecture Notes in
Computer Science, volume 9605, 11 2016, doi:10.1007/978-3-319-50478-
0 20.

[3] Hassan, H.; Negm, A.; et al. Assessment of artificial neural network for
bathymetry estimation using high resolution satellite imagery in Shal-
low lakes: case study el Burullus lake. International Water Technology
Journal, volume 5, 12 2015.

[4] Sharma, P. Basic introduction to convolutional neural net-
work in Deep Learning. Mar 2022. Available from: https:
//www.analyticsvidhya.com/blog/2022/03/basic-introduction-
to-convolutional-neural-network-in-deep-learning/

[5] Ferguson, M.; ak, R.; et al. Automatic localization of casting defects
with convolutional neural networks. 12 2017, pp. 1726–1735, doi:10.1109/
BigData.2017.8258115.

[6] Huaxiao, M. DenseNet implemented by tensorflow. Jun 2018. Available
from: https://mohuaxiao.github.io/2018/06/09/tensorflow/

[7] Alhichri, H.; Alsuwayed, A.; et al. Classification of Remote Sensing Im-
ages Using EfficientNet-B3 CNN Model with Attention. IEEE Access,
volume PP, 01 2021: pp. 1–1, doi:10.1109/ACCESS.2021.3051085.

[8] Ha, C. Convergence of SOTA CV models. Sep 2021. Available
from: https://medium.com/@hac541309/convergence-of-sota-cv-
models-ad985a597173

63

Bibliography

[9] Team, K. Keras Documentation: Keras Applications. Available from:
https://keras.io/api/applications/

[10] Kumar, J.; Pillai, J.; et al. Document Image Classification and Labeling
Using Multiple Instance Learning. 10 2011, pp. 1059 – 1063, doi:10.1109/
ICDAR.2011.214.

[11] Pevný, T.; Somol, P. Using Neural Network Formalism to Solve Multiple-
Instance Problems. In Advances in Neural Networks - ISNN 2017, edited
by F. Cong; A. Leung; Q. Wei, Cham: Springer International Publishing,
2017, ISBN 978-3-319-59072-1, pp. 135–142.

[12] Team, K. Keras, efficientnet v2.py at v2.8.0 Keras Team, Keras. Oct
2021. Available from: https://github.com/keras-team/keras/blob/
v2.8.0/keras/applications/efficientnet_v2.py

[13] Team, K. Keras Documentation: Resnet and RESNETV2. Available from:
https://keras.io/api/applications/resnet/

[14] Team, K. Keras Documentation: NasNetLarge and NasNetMobile. Avail-
able from: https://keras.io/api/applications/nasnet/

[15] Team, K. Keras Documentation: Xception. Available from: https://
keras.io/api/applications/xception/

[16] Mahmood, T.; Ricci, F. Improving Recommender Systems with Adap-
tive Conversational Strategies. In Proceedings of the 20th ACM Con-
ference on Hypertext and Hypermedia, HT ’09, New York, NY, USA:
Association for Computing Machinery, 2009, ISBN 9781605584867, p.
73–82, doi:10.1145/1557914.1557930. Available from: https://doi.org/
10.1145/1557914.1557930

[17] Kim, B. M.; Li, Q.; et al. A new approach for combining content-based
and collaborative filters. Journal of Intelligent Information Systems, vol-
ume 27, no. 1, 2006: pp. 79–91.

[18] Ricci, F.; Rokach, L.; et al. Introduction to Recommender Systems Hand-
book. Boston, MA: Springer US, 2011, ISBN 978-0-387-85820-3, pp. 1–
35, doi:10.1007/978-0-387-85820-3 1. Available from: https://doi.org/
10.1007/978-0-387-85820-3_1

[19] Holeňa, M.; Pulc, P.; et al. Classification Methods for Internet Applica-
tions. Springer, 2020.

[20] Albanese, M.; d’Acierno, A.; et al. A Multimedia Recommender System.
ACM Trans. Internet Technol., volume 13, no. 1, nov 2013, ISSN 1533-
5399, doi:10.1145/2532640. Available from: https://doi.org/10.1145/
2532640

64

Bibliography

[21] Hu, Y.; Koren, Y.; et al. Collaborative Filtering for Implicit Feedback
Datasets. In 2008 Eighth IEEE International Conference on Data Mining,
2008, pp. 263–272, doi:10.1109/ICDM.2008.22.

[22] Brusilovski, P.; Kobsa, A.; et al. The adaptive web: methods and strategies
of web personalization, volume 4321. Springer Science & Business Media,
2007.

[23] Geetha, G.; Safa, M.; et al. A Hybrid Approach using Collaborative fil-
tering and Content based Filtering for Recommender System. Journal
of Physics: Conference Series, volume 1000, apr 2018: p. 012101, doi:
10.1088/1742-6596/1000/1/012101. Available from: https://doi.org/
10.1088/1742-6596/1000/1/012101

[24] Trewin, S. Knowledge-based recommender systems. Encyclopedia of li-
brary and information science, volume 69, no. Supplement 32, 2000: p.
180.

[25] Chen, Q.; Li, W.; et al. Collaborative filtering algorithm based on item
attribute and time weight. In The 2016 International Conference on Au-
tomatic Control and Information Engineering, 2016, pp. 12–15.

[26] Jawaheer, G.; Weller, P.; et al. Modeling User Preferences in Rec-
ommender Systems: A Classification Framework for Explicit and Im-
plicit User Feedback. ACM Trans. Interact. Intell. Syst., volume 4,
no. 2, jun 2014, ISSN 2160-6455, doi:10.1145/2512208. Available from:
https://doi.org/10.1145/2512208

[27] Jalili, M.; Ahmadian, S.; et al. Evaluating Collaborative Filtering Rec-
ommender Algorithms: A Survey. IEEE Access, volume 6, 2018: pp.
74003–74024, doi:10.1109/ACCESS.2018.2883742.

[28] Pelanek, R. Collaborative Filtering. 3 2022. Available from:
https://www.fi.muni.cz/˜xpelanek/PV254/slides/collaborative-
filtering.pdf

[29] Yalcin, E.; Bilge, A. Investigating and counteracting popularity
bias in group recommendations. Information Processing & Manage-
ment, volume 58, no. 5, 2021: p. 102608, ISSN 0306-4573, doi:
https://doi.org/10.1016/j.ipm.2021.102608. Available from: https://
www.sciencedirect.com/science/article/pii/S0306457321001047

[30] Lika, B.; Kolomvatsos, K.; et al. Facing the cold start problem in recom-
mender systems. Expert Systems with Applications, volume 41, no. 4, Part
2, 2014: pp. 2065–2073, ISSN 0957-4174, doi:https://doi.org/10.1016/
j.eswa.2013.09.005. Available from: https://www.sciencedirect.com/
science/article/pii/S0957417413007240

65

Bibliography

[31] Mehta, R.; Rana, K. A review on matrix factorization techniques in rec-
ommender systems. In 2017 2nd International Conference on Commu-
nication Systems, Computing and IT Applications (CSCITA), 2017, pp.
269–274, doi:10.1109/CSCITA.2017.8066567.

[32] Koren, Y.; Bell, R.; et al. Matrix Factorization Techniques for Recom-
mender Systems. Computer, volume 42, no. 8, 2009: pp. 30–37, doi:
10.1109/MC.2009.263.

[33] Chen, J.; Fang, J.; et al. Efficient and Portable ALS Matrix Factoriza-
tion for Recommender Systems. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 409–
418, doi:10.1109/IPDPSW.2017.91.

[34] Vozalis, M.; Margaritis, K. Applying SVD on item-based filtering. In 5th
International Conference on Intelligent Systems Design and Applications
(ISDA’05), 2005, pp. 464–469, doi:10.1109/ISDA.2005.25.

[35] Sarwar, B.; Karypis, G.; et al. Incremental singular value decomposition
algorithms for highly scalable recommender systems. In Fifth interna-
tional conference on computer and information science, volume 1, Cite-
seer, 2002, pp. 27–8.

[36] Wang, D.; Liang, Y.; et al. A content-based recommender system
for computer science publications. Knowledge-Based Systems, volume
157, 2018: pp. 1–9, ISSN 0950-7051, doi:https://doi.org/10.1016/
j.knosys.2018.05.001. Available from: https://www.sciencedirect.com/
science/article/pii/S0950705118302107

[37] Ullman, J. D. Data Mining. Available from: http://i.stanford.edu/
˜ullman/mmds/ch1.pdf

[38] Devlin, J.; Chang, M.-W.; et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. 2018, doi:
10.48550/ARXIV.1810.04805. Available from: https://arxiv.org/abs/
1810.04805

[39] Pavlicek, M. Recommendation Models Based on Images. 2018.

[40] Desrosiers, C.; Karypis, G. A Comprehensive Survey of Neighborhood-
Based Recommendation Methods. 01 2011, pp. 107–144, doi:10.1007/978-
0-387-85820-3 4.

[41] Dommeti, R. Neighborhood based methods for collaborative filtering. A
Case Study, I, 2009: pp. 1–5.

[42] Su, X.; Khoshgoftaar, T. M. A survey of collaborative filtering techniques.
Advances in artificial intelligence, volume 2009, 2009.

66

Bibliography

[43] Melville, P.; Sindhwani, V. Recommender systems. Encyclopedia of ma-
chine learning, volume 1, 2010: pp. 829–838.

[44] Sarwar, B.; Karypis, G.; et al. Item-Based Collaborative Filtering Rec-
ommendation Algorithms. In Proceedings of the 10th International Con-
ference on World Wide Web, WWW ’01, New York, NY, USA: Asso-
ciation for Computing Machinery, 2001, ISBN 1581133480, p. 285–295,
doi:10.1145/371920.372071. Available from: https://doi.org/10.1145/
371920.372071

[45] Prabhakaran, S. Cosine similarity - understanding the math and how
it works (with python codes). Oct 2018. Available from: https://
www.machinelearningplus.com/nlp/cosine-similarity/

[46] Hernández del Olmo, F.; Gaudioso, E. Evaluation of recommender sys-
tems: A new approach. Expert Systems with Applications, volume 35,
no. 3, 2008: pp. 790–804, ISSN 0957-4174, doi:https://doi.org/10.1016/
j.eswa.2007.07.047. Available from: https://www.sciencedirect.com/
science/article/pii/S0957417407002928

[47] Arguello, J. Evaluation Metrics. 3 2013. Available from: https:
//ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-
EvaluationMetrics.pdf

[48] Herlocker, J. L.; Konstan, J. A.; et al. Evaluating Collaborative Filter-
ing Recommender Systems. ACM Trans. Inf. Syst., volume 22, no. 1,
jan 2004: p. 5–53, ISSN 1046-8188, doi:10.1145/963770.963772. Available
from: https://doi.org/10.1145/963770.963772

[49] Malaeb, M. Recall and Precision at k for Recommender Systems. 8
2017. Available from: https://medium.com/@m_n_malaeb/recall-and-
precision-at-k-for-recommender-systems-618483226c54

[50] Powers, D. M. W. Evaluation: From Precision, Recall and F-
Factor to ROC, Informedness, Markedness & Correlation. Tech-
nical report, School of Informatics and Engineering, 2007. Avail-
able from: https://web.archive.org/web/20191114213255/https:
//www.flinders.edu.au/science_engineering/fms/School-CSEM/
publications/tech_reps-research_artfcts/TRRA_2007.pdf

[51] Sammut, C.; Webb, G. I. (editors). Leave-One-Out Cross-Validation.
Boston, MA: Springer US, 2010, ISBN 978-0-387-30164-8, pp. 600–601,
doi:10.1007/978-0-387-30164-8 469. Available from: https://doi.org/
10.1007/978-0-387-30164-8_469

[52] Basheer, I.; Hajmeer, M. Artificial neural networks: fundamentals,
computing, design, and application. Journal of Microbiological Meth-
ods, volume 43, no. 1, 2000: pp. 3–31, ISSN 0167-7012, doi:https:

67

Bibliography

//doi.org/10.1016/S0167-7012(00)00201-3, neural Computting in Mi-
crbiology. Available from: https://www.sciencedirect.com/science/
article/pii/S0167701200002013

[53] Brain, I. T.; Rosenblatt, F. The perceptron: a probabilisticmodel for
information storage and organization.

[54] Liu, W.; Wang, Z.; et al. A survey of deep neural network architec-
tures and their applications. Neurocomputing, volume 234, 2017: pp. 11–
26, ISSN 0925-2312, doi:https://doi.org/10.1016/j.neucom.2016.12.038.
Available from: https://www.sciencedirect.com/science/article/
pii/S0925231216315533

[55] GeeksforGeeks. 0-1 Knapsack problem: DP-10. Mar 2022. Available from:
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

[56] Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural
network (ANN) modeling and its application in pharmaceutical research.
Journal of Pharmaceutical and Biomedical Analysis, volume 22, no. 5,
2000: pp. 717–727, ISSN 0731-7085, doi:https://doi.org/10.1016/S0731-
7085(99)00272-1. Available from: https://www.sciencedirect.com/
science/article/pii/S0731708599002721

[57] Begum, A.; Fatima, F.; et al. Implementation of Deep Learning Algo-
rithm with Perceptron using TenzorFlow Library. In 2019 International
Conference on Communication and Signal Processing (ICCSP), 2019, pp.
0172–0175, doi:10.1109/ICCSP.2019.8697910.

[58] Noriega, L. Multilayer perceptron tutorial. School of Computing. Stafford-
shire University, 2005.

[59] Balaji, S. A.; Baskaran, K. Design and Development of Artificial
Neural Networking (ANN) system using sigmoid activation function
to predict annual rice production in Tamilnadu. 2013, doi:10.48550/
ARXIV.1303.1913. Available from: https://arxiv.org/abs/1303.1913

[60] Baheti, P. 12 types of neural networks activation functions: How to
choose? Apr 2022. Available from: https://www.v7labs.com/blog/
neural-networks-activation-functions

[61] Karlik, B.; Olgac, A. V. Performance analysis of various activation func-
tions in generalized MLP architectures of neural networks. International
Journal of Artificial Intelligence and Expert Systems, volume 1, no. 4,
2011: pp. 111–122.

[62] Da Silva, I. N.; Spatti, D. H.; et al. Artificial neural networks. Cham:
Springer International Publishing, volume 39, 2017.

68

Bibliography

[63] Rojas, R. Perceptron learning. In Neural Networks, Springer, 1996, pp.
77–98.

[64] Feldman, J.; Rojas, R. Neural Networks: A Systematic Introduction.
Springer Berlin Heidelberg, 2013, ISBN 9783642610684, 77-98 pp. Avail-
able from: https://books.google.cz/books?id=4rESBwAAQBAJ

[65] Bock, S.; Weiß, M. A Proof of Local Convergence for the Adam Optimizer.
In 2019 International Joint Conference on Neural Networks (IJCNN),
2019, pp. 1–8, doi:10.1109/IJCNN.2019.8852239.

[66] Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimiza-
tion. 2014, doi:10.48550/ARXIV.1412.6980. Available from: https://
arxiv.org/abs/1412.6980

[67] Khapra, M. M. Deep Learning(CS7015): Lec 5.9 (Part-2) Bias Correction
in Adam. 2002. Available from: https://www.youtube.com/watch?v=
-0ZMU-gnm2g

[68] Russakovsky, O.; Deng, J.; et al. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV), vol-
ume 115, no. 3, 2015: pp. 211–252, doi:10.1007/s11263-015-0816-y.

[69] O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Net-
works. 2015, doi:10.48550/ARXIV.1511.08458. Available from: https:
//arxiv.org/abs/1511.08458

[70] Albawi, S.; Mohammed, T. A.; et al. Understanding of a con-
volutional neural network. In 2017 International Conference on
Engineering and Technology (ICET), 2017, pp. 1–6, doi:10.1109/
ICEngTechnol.2017.8308186.

[71] Marais, W.; Holz, R.; et al. Leveraging spatial textures, through machine
learning, to identify aerosols and distinct cloud types from multispectral
observations. Atmospheric Measurement Techniques, volume 13, 10 2020:
pp. 5459–5480, doi:10.5194/amt-13-5459-2020.

[72] Singh, P.; Raj, P.; et al. EDS pooling layer. Image and Vision
Computing, volume 98, 2020: p. 103923, ISSN 0262-8856, doi:
https://doi.org/10.1016/j.imavis.2020.103923. Available from: https:
//www.sciencedirect.com/science/article/pii/S026288562030055X

[73] Srivastava, N. Improving neural networks with dropout. University of
Toronto, volume 182, no. 566, 2013.

[74] Zhang, Y.; Robertson, J.; et al. All-optical neuromorphic binary con-
volution with a spiking VCSEL neuron for image gradient magni-
tudes. Photon. Res., volume 9, no. 5, May 2021: pp. B201–B209,

69

Bibliography

doi:10.1364/PRJ.412141. Available from: http://opg.optica.org/prj/
abstract.cfm?URI=prj-9-5-B201

[75] Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2014, doi:10.48550/ARXIV.1409.1556.
Available from: https://arxiv.org/abs/1409.1556

[76] Huang, G.; Liu, Z.; et al. Densely Connected Convolutional Net-
works. 2016, doi:10.48550/ARXIV.1608.06993. Available from: https:
//arxiv.org/abs/1608.06993

[77] Abadi, M.; Agarwal, A.; et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. 2015, software available from tensorflow.org.
Available from: https://www.tensorflow.org/api_docs/python/tf/
keras/applications/densenet/DenseNet121

[78] Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks. In Proceedings of the 36th International Confer-
ence on Machine Learning, Proceedings of Machine Learning Research,
volume 97, edited by K. Chaudhuri; R. Salakhutdinov, PMLR, 09–15 Jun
2019, pp. 6105–6114. Available from: https://proceedings.mlr.press/
v97/tan19a.html

[79] Sandler, M.; Howard, A.; et al. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[80] Milan, S. Convolutional Neural Network II. Available from:
https://lectures.ms.mff.cuni.cz/video/rec/npfl114/2122/
npfl114-05-czech.mp4

[81] Tan, M.; Le, Q. EfficientNetV2: Smaller Models and Faster Training.
In Proceedings of the 38th International Conference on Machine Learn-
ing, Proceedings of Machine Learning Research, volume 139, edited by
M. Meila; T. Zhang, PMLR, 18–24 Jul 2021, pp. 10096–10106. Available
from: https://proceedings.mlr.press/v139/tan21a.html

[82] Ibrahim, M. Google releases EfficientNetV2 - a smaller, faster,
and better EfficientNet. Apr 2021. Available from: https:
//towardsdatascience.com/google-releases-efficientnetv2-
a-smaller-faster-and-better-efficientnet-673a77bdd43c

[83] Zhang, C.; Benz, P.; et al. ResNet or DenseNet? Introducing Dense
Shortcuts to ResNet. 2020, doi:10.48550/ARXIV.2010.12496. Available
from: https://arxiv.org/abs/2010.12496

70

Bibliography

[84] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[85] Cloud, G. Advanced guide to inception V3 — cloud TPU — google cloud.
Available from: https://cloud.google.com/tpu/docs/inception-v3-
advanced

[86] Szegedy, C.; Vanhoucke, V.; et al. Rethinking the Inception Architecture
for Computer Vision. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

[87] Szegedy, C.; Ioffe, S.; et al. Inception-v4, inception-resnet and the impact
of residual connections on learning. In Thirty-first AAAI conference on
artificial intelligence, 2017.

[88] Zoph, B.; Vasudevan, V.; et al. Learning Transferable Architectures
for Scalable Image Recognition. 2017, doi:10.48550/ARXIV.1707.07012.
Available from: https://arxiv.org/abs/1707.07012

[89] Chollet, F. Xception: Deep Learning With Depthwise Separable Convo-
lutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[90] Yang, C.; Lozano-Perez, T. Image database retrieval with multiple-
instance learning techniques. In Proceedings of 16th International Con-
ference on Data Engineering (Cat. No.00CB37073), 2000, pp. 233–243,
doi:10.1109/ICDE.2000.839416.

[91] Maron, O.; Lozano-Pérez, T. A Framework for Multiple-Instance
Learning. In Advances in Neural Information Processing Systems, vol-
ume 10, edited by M. Jordan; M. Kearns; S. Solla, MIT Press, 1997.
Available from: https://proceedings.neurips.cc/paper/1997/file/
82965d4ed8150294d4330ace00821d77-Paper.pdf

[92] Zhou, Z.-H.; Zhang, M.-L. Neural networks for multi-instance learning.
In Proceedings of the International Conference on Intelligent Information
Technology, Beijing, China, 2002, pp. 455–459.

[93] Cremonesi, P.; Koren, Y.; et al. Performance of recommender algo-
rithms on top-N recommendation tasks. 01 2010, pp. 39–46, doi:10.1145/
1864708.1864721.

[94] Martinek, L. Recommendations Model Based on Recurrent Neural Net-
works. 2020.

71

Bibliography

[95] Vančura, V. Neural Basket Embedding for Sequential Recommendation.
In Fifteenth ACM Conference on Recommender Systems, 2021, pp. 878–
883.

72

Appendix A
Acronyms

AdaGrad Adaptive Gradient Algorithm

Adam Adaptive Moment Estimation

ANN Artifical neural network

CB Content-based

CF Collaborative filtering

COS Cosine similarity

CNN Convolutional neural network

CTR Click-through rate

MIL Multiple Instance Learning

MLP Multilayer perceptron

MSE Mean Squared Error

ReLu Rectified Linear Unit

RMSProp Root Mean Square Propagation

RNN Recurrent neural network

RS Recommender System

73

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
results.........................results of our experiments in text form
src.......................................the directory of source codes

implementation implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP Kader Agha Kamil 2022.pdf the thesis text in PDF format

75

