
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR THESIS

Kristi Žampach̊u
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ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

495641Osobní číslo:KristiJméno:ŽampachůPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Visual analysis of beehive queen behaviour

Název bakalářské práce anglicky:

Systém pro analýzu chování včelí královny

Pokyny pro vypracování:
The aim of the project is to implement a system for automatic detection and localisation of the honeybee queen and analysis
of her movement. The system should enable basic analysis of the honeybee queen's interactions with her surroundings.
1) Learn (from the literature) about the basics of the honeybee behaviours and the interactions that within the beehive
colony.
2) Learn about the systems capable of automated detection, tracking and behaviour analysis of the honeybees within the
beehive.
3) Establish a set of key performance indicators (KPI) that characterize the performance of the aforementioned systems
in the context of the project aim.
4) Select the most relevant method(s) and extend them so their performance in queen and court detection can be assessed.
5) Assess the method(s) performance using the selected KPIs and discuss the results.
6) Based on the results, integrate your method into the pipeline for honeybee queen detection and court behaviour analysis.

Seznam doporučené literatury:
[1] Bozek, Katarzyna, Laetitia Hebert, Yoann Portugal, Alexander S. Mikheyev, and Greg J. Stephens. 'Markerless tracking
of an entire honey bee colony.' Nature communications 12, no. 1 (2021): 1-13.
[2] Schmickl et al.: The Queen and her Robotic Court: A Minimally-Invasive Form of Ecosystem Hacking: In International
Science Fiction Prototyping Conference (SciFi-It' 2021).
[3] Boenisch, Franziska, Benjamin Rosemann, Benjamin Wild, David Dormagen, Fernando Wario, and Tim Landgraf.
'Tracking all members of a honey bee colony over their lifetime using learned models of correspondence.' Frontiers in
Robotics and AI 5 (2018): 35.
[4] Redmon, Joseph, and Ali Farhadi. 'Yolov3: An incremental improvement.' arXiv preprint arXiv:1804.02767 (2018).

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Tomáš Krajník, Ph.D. centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 04.02.2022

Platnost zadání bakalářské práce: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Tomáš Krajník, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1



III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1



Declaration

I hereby declare that I have completed this thesis independently and that I have used
only the sources (literature, software, etc.) listed in the enclosed bibliography.

In Prague on............................. ...............................................



Acknowledgements

I would like to thank my family for the continuous support during my studies. Also I
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Abstrakt

Tato práce se zabývá detekćı včeĺı královny uvnitř včeĺıho úlu. Z metod
na detekci a sledováńı objekt̊u jsme vybrali WhyCode, který nejlépe
splňuje naše požadavky, výpočetně nenáročnou detekci a přesný odhad
pozice. V práci navrhujeme nový systém, WhyComb, který vycháźı z
WhyCode. WhyComb implementuje filtry na odchytáváńı falešně pozi-
tivńıch detekćı. Dále přidává detekci pomoćı konvoluce, která detekuje
královnu při okluzi WhyCode markeru. Oba systémy jsme porovnávali
pomoćı ’precision’, ’recall’ a Wilcoxonova párového testu. Výsledky
ukazuj́ı že WhyComb detekuje královnu častěji s menš́ı pr̊uměrnou chy-
bou detekce. Whycomb je součást́ı projektu ’RoboRoyale’, který má za
ćıl integrováńı robotických včel do dvoru královny.

Abstract

This thesis deals with detecting the honey bee queen inside the hive.
From different detection and tracking methods, we selected Whycode,
which best met our requirements, computationally efficient detection and
precise position estimation. Here we propose a new system, WhyComb,
that is built upon WhyCode. Whycomb implements filters to filter out
false-positive detections. Futhermore, it adds convolution-based detec-
tion, which is used in where the WhyCode marker is occluded. We com-
pared both systems with precision, recall, and Wilcoxon pairwise test.
The results show that WhyComb detects the queen more often and has
a lower average detection error. WhyComb is part of a larger project,
’RoboRoyale’, that aims to integrate robotic bees into the queen’s court.



CONTENTS Visual analysis of beehive queen behaviour

Contents

1 Introduction 1

2 State of the art systems 3

2.1 Short introduction to vision-based object detection . . . . . . . . . . . . . 4

2.1.1 YOLOv3 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 WhyCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 ArUco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Systems used for bee tracking . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Markerless tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Beesbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Selecting the most relevant method . . . . . . . . . . . . . . . . . . . . . . 12

3 WhyComb 14

3.1 Filtering of false positive detections . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dealing with occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Datasets 19

5 Experiments 22

5.1 Precision and recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 2D error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Statictical analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.2 Qualitative analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Filter testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusion 28

i



LIST OF FIGURES Visual analysis of beehive queen behaviour

List of Figures

1 Visualization of a bee performing the waggle dance [1] . . . . . . . . . . . . 1

2 Basic concept from a physical robotic system.[2] . . . . . . . . . . . . . . . 2

3 One side of the observation hive . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Schematics and realisation of the observation hive[3]. . . . . . . . . . . . . 4

5 [4, YOLOv3 neural network consist of 106 layers. Besides using convolutional
layers, its architecture also contains residual layers, upsampling layers, and
skip (shortcut) connections.] . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Various situations where the WhyCon marker is used, mainly in robotics. . 7

7 An example of how the Manchester Encoding is used with the Necklace
System: The inner circle of the WhyCode marker encodes a binary string
which is bit-shifted to match a Necklace code. Apart from identification, the
number of bit-shifts allows us to identify the marker’s rotation [5]. . . . . . 8

8 Possible ArUco markers.[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

9 UNet architecture used for object detection. A temporal component was
added (pink box) to incorporate information from the previous video frame
as a prior to improve the prediction of object positions in the following frame.
An additional convolutional layer was added before the nal two loss function
layers - softmax for class prediction and angle loss function as proposed in [7]. 10

10 The diagram shows the working process of two convolutional neural net-
works, bee detection network(a,b,c) and brood cell detection network(d,e,f).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

11 A - Visualization of the Circulatrix marker and its encoding. B - Circulatrix
markers glued onto the bee’s thoraxes . . . . . . . . . . . . . . . . . . . . . 12

12 Visualization of aforementioned features. A - Euclidean distance, B - For-
ward error, C - Angular difference, D - Backward error . . . . . . . . . . . 13

13 ROS computation graph of the observation setup in Graz. . . . . . . . . . 14

14 Falsely detected comb cell.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

15 Falsely detected comb cell filled by WhyCode. . . . . . . . . . . . . . . . . 16

16 Detected WhyCode marker.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

17 Detected WhyCode marker filled out by WhyCode. . . . . . . . . . . . . . 17

18 Occluded markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

19 Graph of the interaction between WhyCode and Cropper in the ROS pipeline. 18

ii



LIST OF FIGURES Visual analysis of beehive queen behaviour

20 WhyCode marker. Red corners are not part of the marker, they define the
outer white circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

21 Convolution kernel based on the WhyCode marker. Red part is zeroed out
to not affect the result of the convolution . . . . . . . . . . . . . . . . . . . 18

22 Observation hive from side with the bee tunnel. . . . . . . . . . . . . . . . 19

23 Infrared cameras recording combs in the observation hive. . . . . . . . . . . 20

24 Covered observation hive, to emulate the conditions inside a normal beehive. 20

25 Queen with the other marked worker bee. . . . . . . . . . . . . . . . . . . 21

26 Annotated frame from the Occluded dataset in LabelStudio. . . . . . . . . 21

27 The graph depicts a cumulative distribution function errors of WhyCode,
WhyComb and Convolution on the Two Markers dataset. The function
shows the probability that the method will have error equal or less than
the threshold on the x axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

28 The graph depicts a cumulative distribution function errors of WhyCode,
WhyComb and Convolution on the Occluded dataset. The function shows
the probability that the method will have error equal or less than the thresh-
old on the x axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



LIST OF TABLES Visual analysis of beehive queen behaviour

List of Tables

1 Precision and recall in Two Markers dataset . . . . . . . . . . . . . . . . . 23

2 Precision and recall in Occluded dataset . . . . . . . . . . . . . . . . . . . 23

3 Precision and recall in combined dataset of Two Markers dataset and Oc-
cluded dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Result of the Wilcoxon pairwise test on Two Markers dataset . . . . . . . . 24

5 Result of the Wilcoxon pairwise test on Occluded dataset . . . . . . . . . . 24

6 Means of both methods on both datasets. . . . . . . . . . . . . . . . . . . . 24

7 Result of the Wilcoxon pairwise test on a partial Two Markers dataset . . 24

8 Result of the Wilcoxon pairwise test on a partial Occluded dataset . . . . . 24

9 Result of the Wilcoxon pairwise test on a combined partial Two marker and
Occluded dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Means of both methods on all partial datasets. . . . . . . . . . . . . . . . . 25

11 Standard deviations of both methods on all partial datasets. . . . . . . . . 25

12 OwnCloud Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



Visual analysis of beehive queen behaviour

1 Introduction

Honey bees are vital to the earth’s ecosystem. They are the primary pollinators of
flowering plants in both agricultural and natural ecosystems. Their contribution to the
economy is immense, estimated at Fourteen billion dollars in the US [8], by pollinating
important crops, including apples, coffee, pumpkins , and tomatoes. The bees are able to
pollinate plants in an area of up to 280 km2 around their beehive, with tens of thousands
of pollination flights per day [9]. In natural ecosystems, bees advance the reproduction of
plants and the spread of vegetation and, in turn, provide food for animals [2].

This all is possible because the honey bees are social insects, the beehive acting as a
singular superorganism. At the centre of this organism is the honey bee queen, who is
influencing the whole colony. The main form of interaction and communication between
honey bees is pheromones. The primary pheromone created by the queen is the queen
mandibular pheromone (QMP). It is responsible for inducing ’attraction’ to the queen and
the creation of the queen’s retinue (the queen’s court) that is responsible for feeding and
grooming the queen [10]. It also attracts drones to her during mating flight and inhibits
the development of ovaries in workers, and this is so that no new queen will rise [11].

Despite the queen being the primary coordinator, the worker bees are able to achieve
a coordinated activity between tens of thousands of bees[12]. The instance where it is
most visible is food gathering with the waggle dance. It is a form of interaction between a
successful forager bee that came back to the hive and other forager bees inside the hive. It
consists of movement and odour information. The dancer bee dances in an 8-like shape to
the sides and a forward waggle in the middle, see Figure 1 and paper [1]. The dances occur
at the honeycombs, which means that the dancer can not use their head to point in the
direction of the food source. Instead, they use the orientation of the body of the dancer
relative to gravity to indicate the direction. The duration of the waggle in the middle of
the dance pattern tells other foragers the distance from the hive. The longer the waggle,
the further the food source is. The onlooking bees can also use the odour of the food that
the dancer brought in [13].

Figure 1: Visualization of a bee performing the waggle dance [1]
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As stated above, the main recipients of the communication from the queen are the worker
bees in the queen’s court. These worker bees are the bridge between the queen and the hive
and so have a direct influence on the queen. The RoboRoyale project aims to integrate a
set of biomimetic robots into the queen’s court to influence the queen and subsequently on
the whole beehive [2]. This integration would allow for optimising the hive’s macroscopic
variables by regulating the queen’s pheromone production.

Figure 2: Basic concept from a physical robotic system.[2]

To be able to form the court around the queen reliably, we need to be able to detect and
track the queen with the robotic system presented in Figure 2. This thesis aims to give an
overview of commonly used detection systems and to extend and specialise one so that it
can reliably track the queen’s position on the comb of the beehive.

The thesis is divided into four chapters. Firstly, an introduction to state-of-the-art meth-
ods used for tracking and detection, with a focus on systems that were deployed on honey
bees. Then an overview of extensions of the relevant methods. The penultimate chapter
describes data collection and used datasets. In the final chapter are the experiments and
evaluations of the used methods.
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2 State of the art systems

Honey bees are a popular observation target. Mainly it is to learn about the inner
workings of the honey bee colony. From how they communicate to how they respond to
climate change. Honey bees are globally crucial for food production, and the observation
of the colony helps us to monitor the health of the beehive.

The observation is done in observation hives, which are a simplified version of the classic
beehive. Observation hives are usually two honeycombs placed vertically, one on top of the
other, enclosed by two glass panels, as can be seen in Figure 3. The honeycombs can be 3D
printed to ease the establishment of new observation hives. The observation hive is sealed
from the top and bottom, and the bees have a designated way out of the hive for foraging.
From each side are recording infrared cameras and infrared lights to illuminate the combs
see Figure 4.

Figure 3: One side of the observation hive
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Figure 4: Schematics and realisation of the observation hive[3].

The usage of the infrared lights and cameras is vital because honey bees do not see
infrared light, but the cameras do, so this setup allows observation without disturbing the
colony. The captured data from the camera is then sent to a computer, and the image is
stored, usually as a matrix of values indicating brightness. These matrices are the backbone
of computer vision as they are the virtual representation of the real world and are used by
a myriad of computer vision methods.

Recognition Recognition is the method for classifying an object in an image from a
predefined set of classes.

Localisation Localisation is the method for determining the object’s position in the frame
coordinates and in real world coordinates.

Detection Detection is a combination of recogntion and localisation used when we do not
know the number of objects in the image.

Semantic segmentation Semantic segmentation is the method for classifying all pixels
of an image to a class based on its context, multiple objects of the same class are
treated as a single entity.

Instance segmentation Instance segmentation is the method for classifying all pixels of
an image to a class so each instance of the same class is treated as a separate object.
[14]

2.1 Short introduction to vision-based object detection

The goal of vision-based object detection is to locate an object on a given image. This can
be achieved by engineered image analysis methods, which process the image in a sequence
of steps, often consisting of preprocessing, segmentation, identification and localisation.
However, modern machine-learning-based methods can process the image in an end-to-end
fashion [15].
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Preprocessing is the act of preparing an image for image analysis. It prepares the im-
age to satisfy the input requirements of the detection system. Preprocessing can include
noise and outlier removal, filtering background out, changing the image’s dimensions or
converting the image to greyscale.

Segmentation is the process of dividing the image into multiple image segments, thus
simplifying the image. For example in [16] the segmentation is done by thresholding the
pixels so the pixel is black or white and then flood-filling neighbouring black pixels, creating
segments that can be further processed.

Identification is extracting a set of visual features and then using these features to decide
on the class of the object. Visual features can range from the size and shape to the local
convexity of the object [17].

Localisation determines the object’s position in the image and global coordinate systems.
[16] localises the segment inside the image by calculating the centre of the segment from the
mean of its pixels’ positions. The coordinates in the canonical camera frame are obtained
from the positions of canonical vertices and co-vertices. Finally, the segment is transformed
into the global coordinates using homography transformation calculated from the positions
of the four calibration markers.

The two types of systems introduced in this section are markerless systems (YOLO)
and marker-based systems (WhyCode, ArUco).

2.1.1 YOLOv3 algorithm

YOLOv3 (You Only Look Once version three) is a system based on a convolutional
neural network. The YOLOv3 network needs to be trained first to be able to detect any
specific objects.

The convolutional neural network takes a 416x416 pixel image and returns a tensor
with the coordinates of a bounding box, the probability that the bounding box contains
one of the trained objects, and the class probabilities of the object inside the bounding box
for each class that is being detected. The network is capable of simultaneously detecting
multiple objects in one input image. Detections with a probability of detection less than 0.5
are discarded. The detections that are of the same object are filtered out with the nonmax
suppression algorithm [4].

2.1.2 WhyCode

WhyCon [16], and its extension WhyCode [5], is a localisation system designed for
computationally efficient localisation of a large number of circular black and white fiducial
markers of known diameter.

The detection algorithm incorporates flood fill segmentation and on-demand threshold-
ing to pick out possible marker locations, which are then subjected to more rigorous tests
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Figure 5: [4, YOLOv3 neural network consist of 106 layers. Besides using convolutional
layers, its architecture also contains residual layers, upsampling layers, and skip (shortcut)
connections.]

to determine if it is the marker. The algorithm begins with searching for the inner black
circle of pixels by finding black pixels and flood filling the segment of black pixels. The
algorithm searches for the inner white circle if the segment passes the roundness tests.
Concentricity and area ratio tests are performed when the white segment is found. Should
these tests be successful, the pattern is considered to be found, and the algorithm will
use its position as the starting point for detection on the next frame. A pixel is classified
as black or white by the threshold value t, which is adaptively set after each detection.
If successful, threshold t is set to the average of the means of the inner and outer circle
segment [16].

WhyCode extended WhyCon by identifying the individual markers with an encoding
necklace. One of the strengths of the necklace is its invariance to rotations. To get the
marker’s identification number, the detected encoding has to be bit-shifted to the lowest
value. The number of times the encoding was bit-shifted also gives us the rotation of the
marker [5]. The necklace is encoded in Manchester encoding to allow for six degrees of
freedom position estimation [18, 19].

To get the marker’s location, WhyCode transforms the centre of the segment and its
eigenvectors into the canonical camera coordinate system. The coefficients of the ellipse’s
characteristic equation are calculated from the transformed parameters. Eigenvalue analysis
is then used on the characteristic equation to obtain the relative position and orientation
of the detection, which are then converted into the global coordinate system [16].
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Figure 6: Various situations where the WhyCon marker is used, mainly in robotics.

Tracking in WhyCode is done by repeated re-detection of the marker in real-time. If the
marker was detected in the previous frame, then WhyCode will begin its search for the
marker at the location of the last detection [16].

2.1.3 ArUco

ArUco is a square-based fiducial marker system. The marker consists of a black square
enclosing a binary matrix that encodes its identification code, and it has redundant bits
for error correction. In the detection process of the ArUco marker, adaptive thresholding is
used to extract contours from a greyscale image. A polygonal approximation is then used
on the contours, and then only the ones with an approximation of a 4-vertex polygon are
kept [20].

The identification of the ArUco marker is done by analysing the inner region of the
detected areas by removing perspective projection and transforming the area into a square.
The square is binarized and divided into a regular grid. If all the squares on edge are black,
the code inside the area is compared against markers in a dictionary of possible markers
[20]. If the code exist in the dictionary then the area is a valid ArUco marker.

To estimate the ArUco marker’s relative position by [20, iteratively minimizing the re-
projection error of the corners] through the use of the Levenberg-Marquardt algorithm[21].

Similarly to WhyCode, the tracking of the ArUco marker is done by re-detection on
each subsequent frame.
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Figure 7: An example of how the Manchester Encoding is used with the Necklace System:
The inner circle of the WhyCode marker encodes a binary string which is bit-shifted to
match a Necklace code. Apart from identification, the number of bit-shifts allows us to
identify the marker’s rotation [5].

2.2 Systems used for bee tracking

Honey bees present a challenge to various multi-object detection and tracking systems.
That is due to the high density of nearly identical specimens, constantly moving and
occluding each other. Usually, these systems are accompanied by physical fiducial markers
that are put on some or all members of the honey bee colony. Fiducial markers facilitate
the detection of individual honey bees, but they can also get in the way of the bees’
movement. Some systems do not require markers. Instead, they rely on extracting distinct
visual features through the use of convolutional neural networks. This section will elaborate
on both of these approaches.

2.2.1 Markerless tracking

One of the systems that use distinct visual features is the ‘pixel personality’ system.
This system combines position and angle loss function, which allows for simultaneous
computation of both bee orientation and class. The convolutional neural network (Fig.
2) distinguishes between a fully visible bee and a bee inside a comb. The output of this
network is the x and y coordinates and the estimated angle and class of the honey bee [22].

From the output of the detection network shown above is calculated the similarity
measure used for matching detections across neighbouring frames. Honey bee tracks became
only detections that were sufficiently close, had low similarity measure, and occurred for
at least 50 consecutive frames. These tracks were then used as a training dataset for
learning pixel personalities. The training process consists of two repeating steps, learning,
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Figure 8: Possible ArUco markers.[6]

and matching. The network is trained until its loss reaches the selected threshold in the
training step. Then in the matching step, the learned pixel personalities are used to match
together the most similar detection in the following frames that were not a part of the
training set, the closest detection is then added to the training set.

Another system that builds upon the pixel personality approach by using pixel person-
alities for its initial training dataset can additionally detect filled cell combs, see Figure 10,
and thus keeping count of the brood numbers. This system uses a modified aforemen-
tioned neural network for detection that uses a 3-class softmax function that separates
background, visible bee, and bee in a comb. Mainly, this extended system uses multiple
visual features per bee, vector embeddings, rather than a singular pixel identity. Vector
embeddings allow for an easy calculation of similarity between bee detections and matching
corresponding detections together as a track. The tracking convolutional learns by com-
paring the correct matching of detections against an incorrect matching by measuring the
Euclidean distance between the vector embeddings of the pairs.

The figure 10 shows the training process of the two neural networks. The training inputs
for the bee detection network are a class segmentation map and an angle segmentation
map. They are created from a hand-annotated image patch, yellow arrows for fully visible
bees, and a yellow circle for bees inside a comb cell. An image segment is fed into the
network and passed through its layers, each with its own number of convolutional filters.
The network uses the data from the previous frame to enhance detection precision. The
network produces two images, one with the bee class estimations and the other with the
angle estimation. When combined together, the orange result is nearly identical to the hand-
annotated image segment . The training input for the brood cell network is a manually
annotated segmentation map of brood cells. An image segment is put into the network and
passed through its layers, each with its own number of convolutional filters. An image with
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Figure 9: UNet architecture used for object detection. A temporal component was added
(pink box) to incorporate information from the previous video frame as a prior to improve
the prediction of object positions in the following frame. An additional convolutional layer
was added before the nal two loss function layers - softmax for class prediction and angle
loss function as proposed in [7].

position estimations of the brood cells is the output of the network.

This form of detection and tracking is relatively easy to use. One inhibition is that the
dimensions of input images must be divisible by 256. Another big limitation is that the
systems can not reliably differentiate between a worker bee and a queen bee.

2.2.2 Beesbook

Another approach to tracking the honey bee queen is to use markers. Beesbook uses a
curved circular tag, ’Circulatrix’, to best fit the bee’s thorax, printed on a polyester film.
The centre of the marker is divided into two halves, which shows the marker’s and the
bee’s orientation. The white semicircle is always pointing towards the head of the bee. The
marker is also capable of encoding 12 bit (4096) unique identification numbers [23].

The detection and decoding of the marker itself is done in multiple layers.

Preprocessor full honey cells are filtered out as they are brighter than the rest of the
comb and may lead to false positives.

Tag localization regions with multiple strong edges are picked out and edges are ex-
tracted through Sobel filter. The edges are then eroded and dilated[24] to remove

10/32



2.2 Systems used for bee tracking Visual analysis of beehive queen behaviour

Figure 10: The diagram shows the working process of two convolutional neural networks,
bee detection network(a,b,c) and brood cell detection network(d,e,f).

noise and connect neighbouring edges[23].

Ellipse fitting probabilistic Hough transform[25] is used to find ellipse-like configurations
of pixels.

Grid fitting A 3D model of the marker(‘grid’) is fitted, rotated in space, over every
detected ellipse segment. If more than one grid configuration can be fitted to the
ellipse then the best three are sent to the decoder layer.

Decoding Decoding of the identification number of the bee is done by computing the
brightness of each segment of the middle ring and classifying the segments as either
0 or 1.

The Beesbook tracking system works in two steps. Firstly they detect bees on each frame
and construct ‘tracklets’, which are trajectories of individual bees in consecutive frames.
Secondly, they merge appropriate tracklets into one larger track of an individual bee.

In the process of creating a tracklet, each detection is given a group of possible candi-
dates from the next frame. From each pair of the original detection and the candidate are
extracted three features (euclidean distance, angular distance, Manhattan distance between
their ID probabilities) that are then used to train a support vector machine. Detections
that are not paired with an existing tracklet are the starting points for new tracklets.[3]
For merging tracklets into tracks, the BeesBook system used six features as a metric to
measure tracking results.
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Figure 11: A - Visualization of the Circulatrix marker and its encoding. B - Circulatrix
markers glued onto the bee’s thoraxes

1. Manhattan distance of both tracklets’ bitwise averaged IDs.

2. Euclidean distance of last detection of tracklet 1 to first detection of tracklet 2.

3. Forward error: Euclidean distance of linear extrapolation of last motion in first track-
let to first detection in second tracklet.

4. Backward error: Euclidean distance of linear extrapolation of first motion in second
tracklet to last detection in first tracklet.

5. Angular difference of tag orientation between the last detection of the first tracklet
and the first detection of the second tracklet.

6. Difference of confidence: All IDs in both tracklets are averaged with a bitwise median,
we select the bit that is closest to 0.5 for each tracklet, calculate the absolute difference
to 0.5 (the confidence) and compute the absolute difference of these two confidences.

These six were used in finding correct correspondences by a random forest classifier. The
resulting tracks are of variable length and can contain gaps between frames with detection.

2.3 Selecting the most relevant method

To reliably detect the honey bee queen, we need a system that is capable of detection
even in lower resolution in the observation hives and be accurate in differentiating the queen
and the worker bees. The ArUco markers need to be quite large compared to the bees and
are highly susceptible to occlusions. The Beesbook markers require to be spherical and high
resolution of the processed frames. The markerless systems work well with lower resolution,
but they can not reliably differentiate the queen from the worker bees. We have elected
to use WhyCode because of its ability to detect the markers even on lower resolution[16],
ability to detect in real-time, and the markers can easily be printed on paper.
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Figure 12: Visualization of aforementioned features. A - Euclidean distance, B - Forward
error, C - Angular difference, D - Backward error
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3 WhyComb

WhyComb is a proposed system for vision-based queen localisation. WhyComb builds
upon the WhyCode system and specialises in detecting the honey bee queen. The Why-
Comb system implementation is spread over two Robot Operating System (ROS) nodes, a
modified WhyCode node and a Cropper node, in addition to the WhyComb methods also
crops the received image for further analysis of the queen’s surroundings.

To enable a basic analysis of the honey bee queen’s interactions with her surroundings,
we integrated the WhyComb into a network of ROS nodes, see Figure 13. This graph shows
the computation graph of our ROS nodes setup. Each observation hive has four recorded
combs, one Collector node, Statistics node, and a Court detection node, which is described
in more detail in [26]. In Figure 13 the hexagons represent the ROS nodes, and the arrows
between them indicate the publisher (start of the arrow) and the subscriber of the topic
(head of the arrow). Every observation hive and comb inside it has a unique prefix for its
topics, so it is clear from which node a topic is being published. The orange highlighted
ones, WhyCode and Cropper node, are where the implementation of the WhyComb is.

Figure 13: ROS computation graph of the observation setup in Graz.

Camera The Camera node is directly connected to the recording camera. It takes the
camera’s image output stream, converts it into a ROS image message and publishes
the message in the Image topic.

WhyCode The WhyCode is subscribed to the Image topic, processes it in real time and
publishes the detections in the Queen detection topic.

Cropper The Cropper node subscribes to the Image and Queen detection topics and based
on their sequential numbers it matches the messages from both topics together. When
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the queen’s marker is detected, it will use the WhyCode’s detection coordinates to
crop an area around the detection. If the marker is not detected, the Cropper will
estimate the queen’s position by convolutional pattern matching. The cropped area
is published in the Cropped image topic.

Controller The Controller is in charge of filtering the Cropped image and Queen detection
topics from each of the four combs in the observation hive. Based on the detections
in the Queen detection topic it sends forward the crop that has the queen in it and
her coordinates.

Statistics The statistics node gathers relevant information from the Queen position and
court visualisation topics and publishes a summary of what happened in the beehive
in the statistics topic.

Court visualisation The Court node detects worker bees around the queen on the cropped
image. Then it uses support vector machine algorithm on the angle and proximity of
the worker bees from the queen to identify the queen’s court.

Record The Record node takes the subscribed topics and stores them into a ROSbag.

Twitter The Twitter node is publishing tweets based on the subscribed topic with statis-
tics from the hive.

3.1 Filtering of false positive detections

One of the major weaknesses that we observed while working with WhyCode is the
presence of false detections. The hive comb is made out of cells that are elliptical to
hexagonal, which makes them susceptible to being mistaken for the queen’s marker. This
is due to the dynamically changing threshold for classifying black and white pixels. The
comb cells are not the only elements liable to be falsely detected, and they can be any
circular bits of debris or comb.

These false positives are interfering with our ability to track the queen reliably. If the
queen’s marker is obscured, and a false detection occurs on a different comb, the controller
node will switch to it and gather data only from that specific comb.

The WhyCode checks for circularity, concentricity of the segment, and the number of
pixels inside of the segment, but not for the size of the segment from the centre. We have
extended the WhyCode code by adding an inequality equation of the general analytical
ellipse equation (Equation 1) to verify that all the pixels inside the potential segment are
inside an ellipse constructed from the eigenvalues and eigenvectors (Equation 2). WhyCode
computes the eigenvalues and eigenvectors from the covariance matrix of the detected pixel
segment. This allows for filtering out the falsely detected cells because they have a larger
diameter than the queen’s marker.
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Figure 14: Falsely detected comb cell. Figure 15: Falsely detected comb cell filled by
WhyCode.

((u− uc) cos(α) + (v − vc) sin(α))2

a2
+

((u− uc) sin(α) + (v − vc) cos(α))2

b2
= 1 (1)

((u− uc) ν1,u + (v − vc) ν1,v)
2 µ1 + ((u− uc) ν2,u + (v − vc) ν2,v)

2 µ2 < d (2)

In equation 1 is shown the general analytical equation for an ellipse. u, v is the pair of
coordinates in the Cartesian coordinate system of each point on the ellipse. uc, vc are the
coordinates of the centre of the ellipse. α is the angle by which the major axis is rotated.
a, b are the respective lengths of the semi-major axis and semi-minor axis.

Equation 2 is showing the analytical equation for ellipse with the use of eigenvalues and
eigenvectors. ν1 and ν2 are the unit eigenvectors of the segment’s covariance matrix, µi,u,
µi,v are the u and v coordinates of the i-th eigenvector, substituting the cos(α) and sin(α),
and representing the rotation of the ellipse. µ1, µ2 are the eigenvalues of the matrix and
are representing the lengths of the semi-major and semi-minor axis.

Another filter that we added to WhyComb to filter out the false detections is a size
filter inside the Cropper node. The detections of debris and comb bits are much smaller
than the marker. The filter also filters out the four calibration markers on the corners of
each comb from the detection message received from the WhyCode node.

3.2 Dealing with occlusions

The second major problem we have encountered is the occlusions of the queen’s marker
by the worker bees. WhyCode is quite sensitive even to minor obstruction of the marker
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so that only part of it is hidden, but the rest is visible.

Figure 16: Detected WhyCode marker. Figure 17: Detected WhyCode marker filled
out by WhyCode.

Figure 18: Occluded markers

One of the possible solutions is to store the frames in which the queen was not detected
and wait for the next detection. We linearly interpolate the queen’s position from the two
newest detections when the queen is detected. This is quite an easy solution to missing
detections , but it does not guarantee the precise position of the queen if the queen moves
in a nonlinear path.

Another possible solution is to publish the cropped images at the last detected coordi-
nates. This way, it would be possible to process an image before the next one arrives and
without the need to have the storage space for it if necessary, but it could happen that the
queen would move out of the area that is being cropped, thus losing sight of her.
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Figure 19: Graph of the interaction between WhyCode and Cropper in the ROS pipeline.

The solution that we have selected to be implemented in WhyComb is to substitute
the WhyCode with a convolution when the detection fails. Convolution is a mathematical
operation where a kernel, a matrix of weights, is moved over a picture. In each position,
element-wise multiplication between the values of the kernel and the pixels under the
kernel, the sum of this multiplication is then saved as an output entry. We have used a
kernel modelled after the WhyCode marker, only with the necklace encoding zeroed out
to account for the rotation of the queen on the comb. The convolution is done on a small
area around the last WhyCode detection. Then from that area, the coordinates with the
highest value are selected and used as the new detection.

If the queen’s marker is completely obscured, the maximum from the convolution could
move away from the queen because this solution cares only about the pixel with the highest
value, even when the marker is not visible.

Figure 20: WhyCode marker. Red cor-
ners are not part of the marker, they de-
fine the outer white circle.

Figure 21: Convolution kernel based on
the WhyCode marker. Red part is zeroed
out to not affect the result of the convo-
lution
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4 Datasets

Our datasets were recorded at the Karl-Franzesns-Universität in Graz, Austria. The
recording setup in Graz is a single observation hive 22 that holds four honeycombs. On
both sides of the hive are two 12Mpx infrared cameras 23, each one connected to an NVIDIA
Jetson Nano microcomputer. The Jetsons are running an Ubuntu operating system, and
the Camera, WhyCode and Cropper nodes. On both sides of the cameras are infrared LED
lights to provide the necessary illumination for observing the combs.

Figure 22: Observation hive from side with the bee tunnel.

The recording setup of ROS nodes can be seen in 13, the Recorder node runs on a sepa-
rate computer and records relevant topics from the observation hive into one rosbag. Each
recorded ROS topic has a comb and observation hive number, a unique prefix indicating
its comb and hive of origin. One observation hive averages 50 GiB of data per day.

We used infrared cameras and lights to not disturb the honey bee colony, as the bees are
incapable of perceiving it. The cameras’ output is greyscale images with a width of 4032
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Figure 23: Infrared cameras recording combs in the observation hive.

pixels and a height of 3040 pixels. The framerate of the recording cameras is six frames per
second. The observation hive is covered in black cloth to prevent the daylight from seeping
into the hive, thus imitating the darkness of a normal beehive 24.

Figure 24: Covered observation hive, to emulate the conditions inside a normal beehive.

The first dataset, ’False Positive dataset’, was created by gathering frames where Why-
Code had a false positive detection and contains 995 images. The filters in section 3.1 were
tested on a subset of 75 images from this dataset.

The second dataset, ’Two Markers dataset’, recorded soon after the recording setup was
finished, contains 453 frames. As it was early after the marking of the queen, the worker
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bees tried to pry the marker from her. That is why in this dataset, there are two marked
bees 25. If the workers succeeded in removing the marker, we could still track the other
marked bee. This dataset was used to evaluate methods in section 3.2.

The third dataset, ’Occluded dataset’, was recorded a week later, and contains 27403
frames. The worker bees have accepted the marker on the queen, so they treated it as a
part of her body and frequently occluded it. Only a subset of 800 frames from this dataset
was used in evaluating methods in section 3.2.

Figure 25: Queen with the other marked worker bee.

The datasets were annotated by hand in the Label Studio [27] annotation tool.

Figure 26: Annotated frame from the Occluded dataset in LabelStudio.
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5 Experiments

We selected two methods, WhyCode and WhyComb, to evaluate their performance in
localisation and detection. Precision and Recall were used to evaluate the detection of the
methods. It is a standard performance metric for detection algorithms, but it neither reflects
the magnitude of the error of the false detection nor how near the successful detection from
the ground truth. To measure and compare the accuracy of the localisation we performed
a Wilcoxon pairwise test over the calculated error vectors. To provide further insight, we
also calculated the cumulative distribution function over the errors.

To calculate the error vectors for the experiments, we used the detections of the Why-
Code, WhyComb, WhyCode, and just convolution, on the ’Two marker’ and ’Occluded’
datasets. Our form of representing a detection on a frame consists of two values, x and
y coordinate together, and they describe any pixel in the frame. Because the WhyCode
does have significantly fewer detections than the WhyComb, we used the coordinates from
the last successful detection and used them in the following frames where WhyCode did
not detect the queen. We calculated the Euclidean distance between its detection and the
hand-annotated ground truth on all frames in both datasets for each method. This resulted
in error vectors for all the methods, one vector per method per dataset. The error vectors
are the primary data entry for the tests, even for precision and recall, as we can detect a
false positive detection by thresholding the WhyComb method.

5.1 Precision and recall

While retrieving information, in our case, information about the detection of the queen,
every retrievable item can be classified into one of four categories defined by the two
characteristics: Retrieved or Not Retrieved, Relevant or Not Relevant. The four categories
are True positive, retrieved and relevant, False positive, retrieved but not relevant, True
negative, not relevant and not retrieved and False negative, relevant but not retrieved [28].

Precision is the purity of the retrieval of information and is the number of retrieved
relevant items divided by the number of retrieved items 3. Recall is the effectiveness of
including relevant items in the retrieval and is the number retrieved relevant items divided
by the number of all relevant items that could be retrieved 4.

Precision =
True positives

True positives+ False positives
(3)

Recall =
True positives

True positives+ False negatives
(4)

The WhyComb will always retrieve an estimation of the position of the honey bee
queen due to the convolution pattern matching will always find a local maximum. We
have selected a threshold of detection error that will separate the true positive detection
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from false-positive ones. It is the largest detection error that was produced by WhyCode
detection, 5.1. We did so instead of using a precision and recall curve to make convolution
consistent with WhyCode.

Method Precision Recall

WhyCode 100.0% 61.9%
WhyComb 99.8% 100.0%

Table 1: Precision and recall in Two Markers dataset

Method Precision Recall

WhyCode 100.0% 24.9%
WhyComb 98.5% 100.0%

Table 2: Precision and recall in Occluded dataset

Method Precision Recall

WhyCode 100.0% 38.3%
WhyComb 99.0% 100.0%

Table 3: Precision and recall in combined dataset of Two Markers dataset and Occluded
dataset

5.2 2D error analysis

The aim of the 2D error analysis is to statistically and qualitatively compare the precision
and error of each method. To conclude which method performs statistically significantly
better, we used the Wilcoxon pairwise test on the pairs of error vectors created from the
same dataset. For the qualitative comparison, we computed the cumulative distribution
function of the error vectors on both datasets.

5.2.1 Statictical analisys

The Wilcoxon pairwise test is a nonparametric test used for two independent samples
that do not have a Gaussian distribution. Its null hypothesis is that, for randomly selected
values X and Y from two populations, the probability of X being greater than Y is equal
to the probability of Y being greater than X. When the probabilities are equal, it means
that the two populations have the same distribution [29]. We performed the test on the
error vectors of WhyCode and the combination of WhyCode and convolution on both
datasets.
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From 4 and 5 we can see that the p-value of the Wilcoxon pairwise test is less than
0.001 for both datasets, so we reject the null hypothesis and can see that there is a sta-
tistically significant difference between errors of the two compared methods. Due to the
statistical significance, we can compare the means of both methods’ error vectors to see
which performs better 6.

H0 p-value

DistributionWhyCode = DistributionWhyComb 0.00

Table 4: Result of the Wilcoxon pairwise test on Two Markers dataset

H0 p-value

DistributionWhyCode = DistributionWhyComb 0.00

Table 5: Result of the Wilcoxon pairwise test on Occluded dataset

Method µdataset1 µdataset2

WhyCode 4.79 10.52
WhyComb 2.71 4.25

Table 6: Means of both methods on both datasets.

In 6 you can see that the mean of WhyComb is lower by a significant margin. Due to
this fact, we compared the error vectors of WhyCode and only convolution, but only on the
frames where WhyCode had a successful detection to see if there is any statistical difference
between the errors of the true detections. Suppose there was a statistically significant
difference, and the convolution performed better. In that case, we could modify WhyComb
further, having WhyCode select the area where the marker is and pinpoint the location
with convolutional pattern matching.

H0 p-value

DistributionWhyCode = DistributionWhyComb 0.00

Table 7: Result of the Wilcoxon pairwise test on a partial Two Markers dataset

H0 p-value

DistributionWhyCode = DistributionWhyComb 0.11

Table 8: Result of the Wilcoxon pairwise test on a partial Occluded dataset

From the results in 7 and 8 we cannot reject the null hypothesis. Both datasets are the
same observation hive, just recorded at different times. That is why we decided to merge
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H0 p-value

DistributionWhyCode = DistributionWhyComb 0.18

Table 9: Result of the Wilcoxon pairwise test on a combined partial Two marker and
Occluded dataset

Method µpartial TwoMarkers µpartial Occluded µcombined partial

WhyCode 2.64 2.46 2.56
Convolution 2.70 2.23 2.51

Table 10: Means of both methods on all partial datasets.

Method σpartial TwoMarkers σpartial Occluded σcombined partial

WhyCode 0.67 0.62 0.66
Convolution 0.75 0.72 0.77

Table 11: Standard deviations of both methods on all partial datasets.

the two partial datasets to try to get more relevant results because as the number of cases
increases, the result gets more precise. This test 9 showed us that we cannot reject the
null hypothesis and that the means and standard deviation are quite similar ??. From
the results on the combined partial dataset, we decided not to prioritise convolution for
detection in the combined method.

5.2.2 Qualitative analisys

Cumulative distribution function (F) of random variable X at x is the probability that
X will be a value equal of less than x, shown in equation 5. This means that the steeper
the curve of the function goes to 1, the smaller the standard deviation is, and also that the
majority of measurements have a small value.

FX(x) = P (X ≤ x) (5)

The cumulative distribution function’s graphical representation offers a more intuitive
comparison of the tested methods than the statistical analysis. For our evaluation, we used
the calculated error vectors of each method to create the cumulative distribution error
function. The graphs are made from the same error vectors that the Wilcoxon pairwise
test 5.2 was conducted from.
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Figure 27: The graph depicts a cumulative distribution function errors of WhyCode, Why-
Comb and Convolution on the Two Markers dataset. The function shows the probability
that the method will have error equal or less than the threshold on the x axis.

5.3 Filter testing

To evaluate the filters implemented in section 3.1, we used a subset of the False Positive
dataset of 75 frames. The filters performed well, filtering out all the false detections resulting
from this dataset. The size filter removed 68 of the false detections, while the ellipse filter
discarded the remaining seven false detections.
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Figure 28: The graph depicts a cumulative distribution function errors of WhyCode, Why-
Comb and Convolution on the Occluded dataset. The function shows the probability that
the method will have error equal or less than the threshold on the x axis.
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6 Conclusion

This thesis aimed to implement a system capable of automatic detection and localisa-
tion of the honey bee queen. The system implemented in this thesis called WhyComb, is
built upon the WhyCode system, which uses a circular black and white marker with a
binary identification number encoded inside. The WhyCode is not suited for the working
conditions of a observation hive due to the frequent occlusions of the marker and comb cell
being similar to the marker.

WhyComb handles these problems by implementing two-factor filtering of detections
and substituting WhyCode’s misses with convolutional pattern matching. The first filter
checks if the detections are an ellipse, and the second filter judges the detection based on
their size. The convolutional substitution uses a kernel created from the WhyCode marker
with the slight modification that the binary encoding is zeroed out so that the kernel is
centrosymmetric and thus invariant to the queen’s rotation on the comb.

We evaluated the WhyComb’s solutions to the aforementioned problems, the filters on
how efficient they are, and the convolutional pattern matching on the detection and local-
isation. The results of our experiments showed that the WhyComb performs significantly
better in the set tests.

To allow for the analysis of the queen’s surroundings, we integrated the WhyComb into
a network of ROS nodes. In the network, WhyComb provides positions of the queen and
an image cutout of her surroundings to perform further analysis.

We are gathering more data for future improvements to the WhyComb. With them, we
plan to do more rigorous testing and analysis. We plan to implement thresholding for the
convolutional detection so that it can identify when the queen is completely not visible. In
addition, we plan to add an angle estimation method to the WhyComb.

28/32



REFERENCES Visual analysis of beehive queen behaviour

References

[1] Candy Rowe. Receiver psychology and the evolution of multicomponent signals. An-
imal behaviour, 58(5):921–931, 1999.

[2] Stefanec et al. A minimally invasive approach towards “ecosystem hacking” with
honeybees. Frontiers in Robotics and AI, 9, 2022.

[3] Franziska Boenisch, Benjamin Rosemann, Benjamin Wild, David Dormagen, Fernando
Wario, and Tim Landgraf. Tracking all members of a honey bee colony over their
lifetime using learned models of correspondence. Frontiers in Robotics and AI, 5,
2018.

[4] Aleksa Corovic, Velibor Ilic, Sinǐsa Duric, Malǐsa Marijan, and Bogdan Pavkovic.
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Appendix

OwnCLoud Content

In table 12 are listed names of all root directories on OwnCloud, containing all the
attachements.

Directory name Description
Two Marker dataset Two Marker dataset
Occluded dataset Subset of Occluded dataset
False Positive dataset Subset of False Positive dataset
rr msgs ROS messages used for communicaton between nodes
rr courdetector ROS Cropper node
rr whycode ROS WhyCode node

Table 12: OwnCloud Content
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