

Master’s thesis

Parallel algorithms for data hashing on
GPUs

Bc. Jan Groschaft

Department of theoretical computer science
Supervisor: doc. Ing. Tomáš Oberhuber, Ph.D.

May 4, 2022

Acknowledgements

I would like to thank my family and friends for support during writing this
thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 4, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jan Groschaft. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Groschaft, Jan. Parallel algorithms for data hashing on GPUs. Master’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstrakt

Tato práce se zabývá problematikou hešovacích tabulek na grafických kartách
využívajících technologii CUDA. Je zaveden potřebný teoretický základ, ve
kterém je kladen důraz na datovou strukturu HashGraph, propojující hešo-
vání a teorii grafů. V práci jsou prezentovány možnosti reprezentace struktury
HashGraph v paměti pomocí datových struktur pro práci s řídkými maticemi.
Je uvedena upravená verze struktury HashGraph podporující dynamické při-
dávání a mazání prvků. Popsané datové struktury jsou implementovány v ja-
zyce C++ a TNL knihovny. Implementace jsou porovnány s vybranými volně
dostupnými hešovacími tabulkami.

Klíčová slova Hešovací tabulky, GPU, CUDA, HashGraph, TNL, Template
Numerical Library.

Abstract

In this thesis, we study hash tables on GPUs using CUDA technology. The
necessary theoretical concepts are introduced, with emphasis on the Hash-
Graph data structure, which connects hashing to graph theory. The possibil-
ities of using different sparse matrix storage formats to represent HashGraph

vii

are analyzed. A modified version of the HashGraph data structure is intro-
duced, providing support for dynamic insertion and removal of elements. The
described data structures are implemented in the C++ language using the TNL
library. Implementations are compared against selected freely available hash
tables.

Keywords Hash tables, GPU, CUDA, HashGraph, TNL, Template Numer-
ical Library.

viii

Contents

Introduction 1
Motivation . 1
Goals . 1
Structure of Work . 2

1 Preliminaries 3
1.1 GPU Architecture . 3

1.1.1 Hardware Architecture 3
1.1.2 Thread Hierarchy . 5
1.1.3 Memory Model . 6
1.1.4 CUDA Programming Model 6
1.1.5 Kernels . 6
1.1.6 Synchronization . 7
1.1.7 Memory Management 7

1.2 Template Numerical Library . 8
1.2.1 TNL Containers and Views 8
1.2.2 TNL Algorithms . 8

2 Theory 11
2.1 Hashing . 11

2.1.1 Closed Addressing . 12
2.1.2 Open Addressing . 14

2.1.2.1 Probing . 15
2.1.2.2 Cuckoo Hashing 16

2.2 HashGraph . 16
2.2.1 Compressed Sparse Row 18
2.2.2 Representing Hash Graph With CSR 18
2.2.3 HashGraph Build . 19
2.2.4 Relationship With Sorting 21

ix

2.2.5 HashGraph Find . 24
2.3 Alternative Sparse Matrix Storage Formats 25

2.3.1 Ellpack . 25
2.3.2 Sliced Ellpack . 27

2.4 Dynamic HashGraph . 28
2.4.1 Rehashing . 28
2.4.2 The Hornet Data Structure 28
2.4.3 Using Techniques From Open Addressing 29

2.4.3.1 Build . 29
2.4.3.2 Insert . 30
2.4.3.3 Find . 31
2.4.3.4 Delete . 32
2.4.3.5 Storage Format Considerations 32

3 Realization 35
3.1 State-Of-The-Art . 35
3.2 TNL Segments . 36
3.3 Storage of Key-Value Pairs . 37

3.3.1 Array-Of-Structures . 37
3.3.2 Structure-Of-Arrays . 37

3.4 Summary of Implemented Hash Tables 38
3.4.1 HashGraphSet . 38
3.4.2 HashGraphSetDynamic 39
3.4.3 HashGraphMap and HashGraphMapDynamic 39

4 Testing 41
4.1 Testing Methodology and Correctness Tests 41
4.2 Existing Solutions . 41
4.3 Testing Environment . 42
4.4 CPU Tests . 42

4.4.1 Segment Memory Usage 43
4.4.2 Build . 43
4.4.3 Retrieve . 45

4.5 GPU Tests . 45
4.5.1 Comparing Hash Graph Build Algorithms 45
4.5.2 Comparing Static And Dynamic Hash Graph 48

4.5.2.1 Build . 48
4.5.2.2 Retrieve . 48

4.5.3 Comparing Hash Graph Probing Algorithms 49
4.5.4 Hash Graph Map Performance 50

4.5.4.1 Build . 51
4.5.4.2 Retrieve . 51
4.5.4.3 Insert . 53

4.5.5 Retrieval After Dynamic Insertion 54

x

4.6 Commentary . 55
4.6.1 Segment Types . 55
4.6.2 Dynamic Hash Graph 57
4.6.3 AOS and SOA Storage 57
4.6.4 Comparison to State-Of-The-Art Implementations . . . 57

5 Conclusion 59
5.1 Future Work . 59

Bibliography 61

A Contents of CD 65

xi

List of Figures

1.1 High level comparison of CPU and GPU architecture [3]. 4
1.2 CUDA memory model [5]. 7

2.1 An example separate chaining hash table representation with 5
buckets and 4 items . 14

2.2 An example hash graph representation of a hash table with 5 buck-
ets and 4 items . 17

2.3 A 5× 5 matrix and its corresponding CSR representation 18
2.4 An example of HashGraph representation corresponding to the ex-

ample in Figure 2.2 . 19
2.5 A 5× 5 matrix and its corresponding Ellpack representation . . . 27
2.6 A 5× 5 matrix and its corresponding Sliced Ellpack representation 27

4.1 Memory footprint of different segment types. 43
4.2 CPU build performance of std::unordered_set and HashGraphSet. 44
4.3 CPU build speedup of HashGraphSet over std::unordered_set. . 45
4.4 CPU retrieve performance of std::unordered_set and HashGraphSet. 46
4.5 CPU retrieve speedup of HashGraphSet over std::unordered_set. 46
4.6 GPU build performance of V1 and V2 build algorithms. 47
4.7 GPU build speedup of HashGraphSet over std::unordered_set. . 47
4.8 GPU build performance of static and dynamic set. The V2 build

algorithm is used in all cases. 48
4.9 GPU retrieve performance of static and dynamic set. 49
4.10 GPU retrieve performance of HashGraph-Probe-Standard 6 and

HashGraph-Probe-New 7. 50
4.11 CPU retrieve speedup of HashGraphSet over std::unordered_set. 50
4.12 GPU build performance of HashGraphMapDynamic, WarpCore and

SlabHash. 52
4.13 GPU retrieve performance of HashGraphMapDynamic using the HashGraph-

Probe-Standard algorithm 6, WarpCore and SlabHash. 53

xiii

4.14 GPU retrieve performance of HashGraphMapDynamic using the HashGraph-
Probe-New algorithm 6, WarpCore and SlabHash. 53

4.15 GPU insert performance of HashGraphMapDynamic using V2 build
algorithm 2, WarpCore and SlabHash. 55

4.16 GPU retrieve performance of HashGraphMapDynamic using HashGraph-
Probe-Standard algorithm 6 after dynamically inserting items. . . 56

4.17 GPU retrieve performance of HashGraphMapDynamic using HashGraph-
Probe-New algorithm 6 after dynamically inserting items. 56

xiv

List of Tables

4.1 Time in milliseconds to build the hash table of N million key-
value pairs on a GPU. Ellpack is shortened to E, Sliced Ellpack is
shortened to SE. 51

4.2 Time in milliseconds to retrieve N million key-value pairs from
the hash table on a GPU using the HashGraph-Probe-Standard
algorithm 6. Ellpack is shortened to E, Sliced Ellpack is shortened
to SE. 52

4.3 Time in milliseconds to retrieve N million key-value pairs from the
hash table on a GPU using the HashGraph-Probe-New algorithm 7.
Ellpack is shortened to E, Sliced Ellpack is shortened to SE. 54

4.4 Time in milliseconds to insert N million key-value pairs into the
hash table on a GPU. Ellpack is shortened to E, Sliced Ellpack is
shortened to SE. 54

xv

Introduction

Motivation
Hash tables are data structures used primarily to represent sets or associa-
tive arrays. Data is stored and retrieved using a hash function, which maps
individual elements to their probable location inside the data structure. For
certain hash functions, data can be stored and retrieved in expected constant
time. Because of this, hash tables are widely used and studied.

In recent years, many-core systems have been increasingly popular for their
ability to process massive amounts of data in parallel. One such system is the
Graphics Processing Unit (GPU). While GPUs have been originally designed
to handle graphics rendering, they have since evolved into general-purpose
programming platforms suitable for high-performance computing. This gave
rise to new kinds of hash tables suitable for GPUs and focusing on highly
parallel workloads.

Goals
The goal of this thesis is to study the HashGraph [1] data structure and im-
plement it using the Template Numerical Library. Special attention should
be paid to analyzing the possibility of using a data structure called Segments
as the internal storage for HashGraph.

The original HashGraph paper introduces a standard and an optimized
algorithm for building the hash table. Both should be implemented and com-
pared as a part of this work. The main focus is on exploring possibilities of
making the HashGraph a dynamic hash table, i.e., supporting the addition
and removal of elements once the table has been constructed. Finally, the

1

Introduction

resulting implementation shall be tested for correctness and its performance
shall be compared to state-of-the-art solutions.

Structure of Work
In chapter 1, we describe the hardware architecture of a modern GPU, and
we provide an overview of the Template Numerical Library.

Chapter 2 introduces the necessary theoretical framework for analyzing
hash tables and related concepts.

Comments on implementation choices follow in chapter 3, and, finally,
we describe the correctness tests and experimental performance evaluation in
chapter 4.

2

Chapter 1
Preliminaries

1.1 GPU Architecture
A Graphics processing unit (GPU) is a special type of processor designed to
perform massively parallel operations. Whereas a standard CPU typically
has a few general-purpose high-performance cores, GPUs tend to have many
comparatively weaker cores, and are optimized for high throughput workloads.

As the name suggests, GPUs were originally designed as independent pro-
grammable processing units responsible for graphics manipulation and of-
floading the output rendering pipeline from the CPU. However, due to their
high performance in certain workloads, they have more recently found use
cases in general-purpose computing. Such GPU is referred to as a General-
Purpose Graphics Processing Unit (GPGPU). Present-day applications of
general-purpose GPU computing include, among others, large-scale numerical
simulations, linear algebra processing, molecular dynamics, protein folding,
signal processing, ray tracing, and machine learning [2].

1.1.1 Hardware Architecture
Let us briefly describe the high-level hardware architecture of a GPU and high-
light some of the important differences between a CPU and a GPU. Through-
out this work, we will be focusing on NVIDIA GPUs and their CUDA (Com-
pute Unified Device Architecture) general-purpose parallel computing platform
and programming model. Note that similar principles should apply to other
solutions as well.

Since the invention of the transistor, CPUs have been getting exponentially
more powerful. In the early days, the majority of performance improvements
came from frequency increases and instruction-level parallelism (ILP). How-
ever, both approaches have started to become increasingly difficult to further

3

1. Preliminaries

Figure 1.1: High level comparison of CPU and GPU architecture [3].

improve, mainly due to the high thermal output associated with high fre-
quency and the difficulty to scale ILP in inherently sequential programs [4,
page 5].

In the early 2000s, there was a paradigm shift towards multicore CPUs,
which had the advantage of increasing the package power linearly with the
number of cores while also only increasing the power requirements linearly1.
Modern CPUs are increasingly becoming bottle-necked by the memory sub-
system, especially in shared memory architectures, where cache consistency
issues arise.

1Power requirements increase quadratically with increasing frequency [4, page 1].

4

1.1. GPU Architecture

In contrast, the GPU is composed of a number of streaming multiprocessors
(SMs), a shared L2 cache and shared DRAM. Each SM consists of

• N streaming processors (called CUDA Cores for NVIDIA GPUs) capable
of executing threads

• Registers for the streaming processors

• Instruction cache

• Shared memory

The total number of CUDA Cores (and thus the number of threads that
are able to run simultaneously) in a modern GPU is in the order of tens of
thousands, in contrast with tens of cores in a typical modern CPU. The hard-
ware differences between CPUs and GPUs can be seen in Figure 1.1.

A group of 32 threads makes up an execution unit called a warp. When a
warp is scheduled by the SM to run on some particular set of CUDA Cores,
all threads in this warp must always execute the same instruction. This ar-
chitecture is called Single Instruction Multiple Threads (SIMT), and it can be
thought of as a generalization of the Single Instruction Multiple Data (SIMD)
instruction set available in most modern CPUs.

1.1.2 Thread Hierarchy
GPU threads are arranged into groups of 32 called warps. Warps are then
scheduled by the SM to run on some particular set of CUDA Cores. Individ-
ual threads composing a warp all start at the same program address, and all
threads in a warp execute one common instruction at a time. All threads in a
given warp must either execute the same instruction or be temporarily paused.
This architecture is called Single Instruction Multiple Threads (SIMT), and it
can be thought of as a generalization of the Single Instruction Multiple Data
(SIMD) instruction set available in most modern CPUs.

Importantly, when a branch is encountered in the execution path, and
only a subset of the warp’s threads take the branch, the rest of the threads
must idly wait until the execution path is joined again. This is called warp
divergence. Therefore, a warp is most efficient when all 32 threads agree on
the execution path [3, page 111].

In CUDA, threads are logically arranged into blocks, which can be either
one-, two-, or three-dimensional, and which are themselves arranged into a
one-, two- or three-dimensional grid. Threads in the same thread block run
on the same SM. There can be up to 1024 threads in a single block, and there

5

1. Preliminaries

can be up to 232−1 blocks in the grid. See subsection 1.1.4 for details on how
these blocks are used by the programmer.

1.1.3 Memory Model
During execution, a CUDA thread may access several memory spaces, namely

• private local memory visible only to a given thread used to store local
variables,

• shared memory local to an SM visible to all threads in a given block,

• global shared memory accessible from all threads,

• constant memory serving as a read-only cache

• texture memory for graphics-related applications

Much like in a CPU, the global memory has an L1 cache per SM and an
L2 cache shared by all SMs. Threads also have access to a register file residing
on an SM. For a graphical overview of the memory model, see Figure 1.2.

1.1.4 CUDA Programming Model
CUDA comes with a software environment that allows developers to use a
high-level programming language, such as C, C++ or FORTRAN, to write
programs for execution by the device. We will be describing the CUDA C++
language extensions. From now on, we shall refer to the system on which the
GPU resides as the host, and to the GPU itself as the device.

1.1.5 Kernels
CUDA C++ introduces kernel functions that execute on CUDA threads on
the GPU device. Those functions are defined using the __global__ specifier
and are callable from the host with the special call operator <<<gridDim,
blockDim>>>. This call results in

n = blockDim.x∗blockDim.y∗blockDim.z∗gridDim.x∗gridDim.y∗gridDim.z

threads being scheduled and eventually executed on some SM.

Each of the n threads can be uniquely identified by its thread index inside
the block and the blocks’ index inside the grid. Inside the function, individual
threads can access those indices via the threadIdx and blockIdx variables
automatically created by the CUDA runtime.

6

1.1. GPU Architecture

Figure 1.2: CUDA memory model [5].

1.1.6 Synchronization
Within a block, threads can communicate by sharing data through the shared
memory, or alternatively—if the shared memory is too small—through the
global memory. Threads inside a single block can be synchronized by the
__syncthreads() function, which serves as a barrier on which arriving threads
wait until all threads in the block reach the barrier.

1.1.7 Memory Management
Memory allocated on the host side cannot be used on the device and vice versa.
To circumvent this, the programmer must typically first allocate the data on
the host side, allocate the appropriate space on the device, copy the data from
the host to the device, perform the required computations and finally copy the
data back to the host. The CUDA framework provides cudaMalloc, cudaFree
and cudaMemcpy functions for exactly those purposes2.

2See [3] for a complete list of memory management options in CUDA

7

1. Preliminaries

1.2 Template Numerical Library
The Template Numerical Library (TNL) is a collection of building blocks
that facilitate the development of efficient numerical solvers and HPC algo-
rithms [6]. It is developed at the Department of Mathematics, Faculty of
Nuclear Science and Physical Engineering at Czech Technical University in
Prague.

TNL is written in C++ and aims to provide unified memory management
for CPUs and GPUs, along with many containers and algorithms optimized for
highly parallel workloads. The main advantage of TNL is that it alleviates the
programmer from manual and often tedious memory and thread management
and instead provides a high-level interface with minimal runtime overhead.

1.2.1 TNL Containers and Views
Like in the Standard Template Library of C++, containers in TNL are generic
implementations of abstract data types. Additionally, they are also generic
over the type of device they are stored on. For example, the class tem-
plate TNL::Containers::Array<Value, Device> implements a contiguous
sequence of elements of type Value on a device Device.

As in STL, containers in TNL are value types, which implies that the copy
constructor and the assignment operator both produce a deep copy of the given
container. How do we pass an object of a type like TNL::Containers::Array
from the host to a CUDA kernel? Creating a deep copy is not optimal since
the internal pointer to the contiguous storage is already allocated on the cor-
rect device. We cannot pass a pointer nor a reference to such objects because
it would be pointing to an address in the host’s address space, which is unus-
able in the kernel.

TNL solves this by providing View types. Specifically, for our array ex-
ample, there is TNL::Containers::ArrayView<Value, Device>. A view pro-
vides non-owning access to the underlying container, so copying the view ob-
ject will result in a new view pointing to the original container. Views can be
cheaply copied from the host to a device, but the user must ensure the lifetime
of the view does not outlive the lifetime of the viewed container.

1.2.2 TNL Algorithms
TNL provides a variety of algorithms that are also generic over the type of
device they can be performed on. Together with containers and views, they
create a set of powerful abstractions, making it convenient to write code that
can be executed both on a CPU and on a GPU. TNL provides parallel for-

8

1.2. Template Numerical Library

loops, sorting algorithms, parallel reductions and scans, numerical solvers,
expression templates, and more. Example usage of TNL containers and algo-
rithms can be found in the code section 3.1.

9

Chapter 2
Theory

In this chapter, we shall describe the theoretical concepts related to hash
tables, and then we present the HashGraph, a scalable hash table using a sparse
graph data structure [1]. We use some definitions and theorems from [7].

2.1 Hashing
Notation 2.1. We shall denote the set of integers {0, . . . , U − 1} by [U].

Notation 2.2. We use #i : condition to denote the number of integers i that
satisfy the given condition.

Definition 2.3. Let U be an arbitrary set called the universe and B = [m] a
set of buckets. We define a hash function h : U → B.

It is usual for the universe to be a set of integers [U] and that the size
of the universe |U| is much larger that the number of buckets m, denoted
m ≪ U . We shall also assume that any hash function h can be evaluated in
constant time.

A hash table is a data structure that has a fixed hash function h, a set
m buckets B = {b0, . . . , bm−1} and stores elements from U into one of those
buckets. Note that multiple elements might be stored in a single bucket, and
that an element x might not necessarily reside in the bucket bh(x).

Definition 2.4. Let h : U → [m] be a hash function and x, y ∈ U two distinct
elements of the universe. We say that x collides with y if h(x) = h(y).

Definition 2.5. Let H be a set of hash functions from U to [m]. We say that
H is c-universal for some constant c ≥ 1 if

∀x, y ∈ U , x ̸= y :
∑
h∈H

P (h(x) = h(y)) ≤ c

m
|H|.

11

2. Theory

In other words, given two distinct elements x, y ∈ U and a hash function
h ∈ H picked uniformly at random, the probability that x and y collide in
the same bucket is at most c-times higher than for a hash function that is
completely random.

Theorem 2.6. Let H be a c-universal set of hash functions from U to [m]
and let h be a hash function picked from H uniformly at random. Let also
X = {x1, . . . , xn} ∈ U a set of items stored in a hash table T , and y ∈ U \ X
some item not stored in T . Then

E[#i : h(xi) = h(y)] ≤ cn

m
.

Stated differently, given a hash function h picked H uniformly at random,
the expected number of items stored in T that collide with the new element
y is at most cn

m .

Proof. Let h ∈ H be a hash function picked uniformly at random. Let us
introduce indicator random variables ∀i ∈ [n]

Ai

{
1 if h(xi) = h(y)
0 otherwise.

Then E[Ai] = P (Ai = 1) = P (h(xi) = h(y)). Since H is universal, we have

P (h(xi) = h(y)) ≤ c

m
.

Let A = (#i : h(xi) = h(y)) be a random variable, then A can be also written
as A =

∑
i Ai, and—by linearity of expectation—we have E[Ai] = E[

∑
i Ai] =∑

i E[Ai] ≤
∑

i
c
m = cn

m .

Let us now describe some techniques to handle hash collisions inside hash
tables.

2.1.1 Closed Addressing
Definition 2.7. A hash table T using a hash function h with a set of m
buckets B uses a so-called closed addressing if

∀x ∈ U : (x ∈ T =⇒ x ∈ B[h(x)]) .

That means for each item x from U , the exact bucket where x is stored
is determined by the hash function alone. This, of course, implies that when
collisions occur, there will be multiple elements inside a single bucket. Buckets
must therefore implement a nested data structure to hold these elements. A
question then arises: what sort of data structure should we choose to imple-
ment the buckets?

12

2.1. Hashing

A popular choice is to use a linked list. The combination of closed ad-
dressing with linked lists inside buckets is referred to as separate chaining.

In a separate chaining hash table T with m buckets using a hash function
h : U → [m], we define operations Insert, Find and Delete as follows:

• Insert(x) inserts x to the front of the linked list in bucket bh(x).

• Find(x) will iterate over items in the linked list located in the bucket
bh(x) until it either finds x, or until it reaches the end of the list. Finally,
it returns a result indicating whether x was found.

• Delete(x) will first look for x the same way as Find, and if x is present
in bh(x) it removes x from the linked list.

It turns out that if we have a hash function from a c-universal set, using
a linked list is enough to support all of these operations in expected constant
time.

Lemma 2.8. Let T be a separate chaining hash table using a hash function
from a c-universal set. Suppose T has m buckets {b0, . . . , bm−1} and contains
n elements {x1, . . . , xn}. Finally, suppose n = O(m). Then the expected time
complexity for the operations Insert, Find and Delete is constant.

Proof. Let us analyze all operations one by one.

• Unsuccessful find for item y will start to look in bucket bh(y) and then
go through all elements in the bucket one by one. Since y /∈ bh(y), we
have to traverse all elements in bh(y), and from theorem 2.6 the expected
number of those elements is at most cn

m , and because n = O(m), the
expected number of elements is O(c).

• Successful find is the same as unsuccessful find, except the search for
item y inside bh(y) may end before we traverse the entire linked list.

• Insert of y first does a find, and if the element is already present in T
it terminates. Otherwise, y is inserted into the linked list in bh(y) in
constant time to an arbitrary position.

• Delete of y first does a find, and if the element is not present in T , it
terminates. Otherwise, y is removed from the linked list in constant
time.

13

2. Theory

The ratio of n/m is known as the load factor. If the number of elements
to be inserted is unknown up-front, the table can be dynamically resized and
inserted elements rehashed whenever the load factor grows too much. If the
table is resized in a way that new_size− old_size = Ω(old_size), it can be
easily shown that the expected amortized time for insertions is constant.

Using separate chaining is a common choice for hash table implementa-
tions, like the STL containers std::unordered_set and std::unordered_map.
An example of how a separate chaining hash table stores elements is drawn in
Figure 2.1.

b0

b1

b2

b3

b4

B

x0 x2 null

null

x1 null

x3 null

null

Figure 2.1: An example separate chaining hash table representation with 5
buckets and 4 items

2.1.2 Open Addressing
Definition 2.9. A hash table T using a hash function h with a set of m
buckets B uses a so-called open addressing if

∀X ⊂ U : (X ∈ T =⇒ ∀b ∈ B : |b| ≤ 1) .

The above definition states that for an open addressing hash table T , there
is an invariant that every bucket must hold at most one element. Typically,
the buckets are implemented as a contiguous array. The advantage over sep-
arate chaining is that buckets can store elements of U directly in the array,
making it more space-efficient than having additional pointers for the linked
list and more cache-friendly as well.

However, the invariant also implies that in case of a collision between two
distinct elements x and y, at least one of them must be placed into a bucket

14

2.1. Hashing

other than bh(x) = bh(y). There are many ways to choose where an element
will be placed in case of a collision.

2.1.2.1 Probing

We define a probing sequence ∀x ∈ U as a function that assigns each element
of the universe U a unique order of buckets in which the probing shall occur.
Generally, given the item y, the sequence starts at bucket bh(y).

When inserting an item y into the table, we look to see whether the bucket
bh(y) is empty. If so, we insert the element there, otherwise we select the next
bucket in the order given by the probing sequence and try again. We continue
this process until we find an empty space. Note that for this to work, we must
ensure the table is not full before we start inserting.

When finding y, we follow the same probing sequence until we find the
element in some bucket, or we terminate if we find an empty bucket.

When deleting y from the table, we first find the element. Then, if found,
we can not just delete the item from the table since it would break the probing
sequence for consequent finds. Instead, we replace the element with a tomb-
stone element, a special type that can be overwritten by insert and is skipped
by find.

Commonly used probing algorithms include

• Linear probing: The next bucket is determined as bh(y)+l mod m, where
l is the current number of elements probed and m is the number of
buckets.

• Quadratic probing: Same as linear probing, but the next bucket is defined
as bh(y)+l2 mod m.

• Double hashing: Let h2 be a secondary hash function. The probing
sequence is defined as bh(y)+l∗h2(y) mod m.

Using linear probing is the most cache-friendly approach since the next
element to probe is almost always stored right after the current one3. On
the other hand, linear probing tends to produce large clusters of full buckets,
meaning all operations have to probe through more items.

Quadratic probing attempts to solve this while also being somewhat cache-
friendly since the distance between the first few elements in the probing se-
quence is small.

3Except for the last element, for which the next element in the probing sequence is the
first one.

15

2. Theory

2.1.2.2 Cuckoo Hashing

Cuckoo hashing works with two hash functions h1 and h2. Given a table T ,
we maintain an invariant

∀x ∈ T : (x ∈ bh1(x)) ∨ (x ∈ bh2(x)).

When finding an item y, we just search buckets bh1(y) and bh2(y) in constant
time. Delete is also trivial, we do a find and then remove the found item, or
do nothing if find is unsuccessful.

Insert first makes sure item y is not already present by doing a find. Then,
if bh1(y) or bh2(y) is empty, we put y into any one of them. If both buckets are
full, we select one of the two buckets arbitrarily, say, without loss of generality,
we choose bh1(y). We ”kick out” the existing item z = bh1(y), put y in its place,
and continue the process by inserting z using h2. If bh2(z) is full, we again swap
z with the existing item w, and we continue inserting w with h1 and so on. If
we are unable to finish the insert after some pre-defined amount of attempts—
called the insertion timeout—we rehash the table with a new pair of functions
h′

1 and h′
2.

Claim 2.10. For some choices of h1, h2 and some insertion timeout, the
expected time complexity of insert is O(1).

Proof. See [8].

2.2 HashGraph
Let us now present HashGraph [1], a novel approach introduced by Oded Green
that examines hash tables from the point of view of graph theory. HashGraph
supports two operations, find and build which constructs the HashGraph given
a set of items X ⊂ U .

Definition 2.11. A graph is a pair G = (V, E), where V is a set of vertices
and E = {{u, v}|u, v ∈ V }} a set of edges.

Definition 2.12. A bipartite graph is a graph G = ({A ∪ B}, E), where
A ∩B = ∅ and

∀{u, v} ∈ E : (u ∈ A ∧ v ∈ B) ∨ (u ∈ B ∧ v ∈ A)

Definition 2.13. Let U be a universe, B = {b0, . . . , bm−1} a set of m buckets
and X ⊂ U a set of elements. Let h be a hash function h : U → [m]. A hash
graph is a bipartite graph G = (([m] ∪ X), E), such that(

{u, v} ∈ E, WLOG u ∈ [m], v ∈ X
)
⇔ h(v) = u

16

2.2. HashGraph

That is, we can represent the relationship between elements and their cor-
responding buckets by a bipartite graph. Note that under this definition, any
closed addressing hash table has a corresponding hash graph. See Figure 2.2
for an example of a hash table representation using a hash graph.

To see why using a graph to represent the relationship between buckets
and elements is beneficial, we observe that every hash graph is sparse.

b0

b1

b2

b3

b4

B

x0

x1

x2

x3

X ⊂ U

Figure 2.2: An example hash graph representation of a hash table with 5
buckets and 4 items

Definition 2.14. We call a graph G = (V, E) sparse, if |E| ∈ O(|V |). Other-
wise, we refer to G as dense.

Observation 2.15. Every hash graph G = (([m] ∪ X), E) is sparse, since it
has exactly |X | edges.

How should we represent a hash graph in a computer program? A common
way to represent graphs in memory is the adjacency matrix.

Definition 2.16. Let G = ((A ∪ B), E) be a bipartite graph. An adjacency
matrix A = N|A|×|B| of G is defined as

Ai,j

{
1 if {i, j} ∈ E

0 otherwise.

Definition 2.17. We call a matrix A = Nn×m sparse, if

{#(i, j) : Ai,j = 0} = O(min(n, m)).

Otherwise, we call to A dense.

17

2. Theory

It follows from observation 2.15 that the adjacency matrix of every hash
graph is also sparse. This means that we can use various sparse matrix storage
formats to represent hash tables. There are many such formats [9], but the
original HashGraph uses the Compressed Sparse Row (CSR) storage.

2.2.1 Compressed Sparse Row
In a sparse matrix, the majority of its elements are zero by definition. It is,
therefore, wasteful to store all n ∗m elements of a square matrix with n rows
and m columns. One of the data structures to represent sparse matrices is the
CSR format.

In CSR, we store all non-zero elements of the matrix A = Nn×m in a one-
dimensional array called values. For each element in this array, we have to
remember its column index, so we also keep an array called columns of the
same size. Finally, we have an array rows of size n + 1, where we store for
each row of A the index to the values array to keep track of where elements
of individual rows begin and end. For example, to retrieve all elements from
the 3rd row, we look at the elements values[rows[2] . . . rows[3]]. An example
of a matrix and its CSR representation can be found if Figure 2.3.

0 3 0 1 2
5 0 0 0 0
0 0 0 0 0
1 0 0 0 4
0 0 0 2 0





3 1 2 5 1 4 2
values

1 3 4 0 0 4 3
columns

0 3 4 4 6 7
rows

Figure 2.3: A 5× 5 matrix and its corresponding CSR representation

2.2.2 Representing Hash Graph With CSR
We want to represent a hash graph G = (([m] ∪ X), E) using a hash function
h and its corresponding adjacency matrix A similarly to the CSR format. We
make a few observations.

1. Since the adjacency matrix contains only ones and zeros, we don’t need
to store them in the values array. Instead, we will replace all 1’s in the
matrix with the corresponding item. Put differently, ∀j : Ai,j = 1 we
store X [j] into the values array.

18

2.2. HashGraph

2. If a pair x, y ∈ X , x ̸= y collide and get stored in the same bucket, i.e.,
when they are in the same row of the adjacency matrix, the column they
are at is irrelevant to us for the purposes of hashing. Thus, we can also
drop the columns array.

Figure 2.4 illustrates the way HashGraph is stored. Notice the differences
from the separate chaining representation in Figure 2.1. Instead of having
a linked list in each bucket, the lists are flattened into contiguous arrays,
and those arrays are then laid out in memory one after another in a single
allocation.

Bucket b0 b1 b2 b3 b4

Rows 0 2 2 3 4 4

rows

x0 x2 x1 x3

values

Figure 2.4: An example of HashGraph representation corresponding to the
example in Figure 2.2

2.2.3 HashGraph Build
The only thing that remains is to show how to efficiently construct a Hash-
Graph from a set of items X ⊂ U .

Definition 2.18. Let ⊕ be a binary associative operator. Then an exclusive
scan4 is a function of an array of n elements

(x0, . . . , xn−1)

and returns the n + 1 element array

(0, x0, (x0 ⊕ x1), . . . , (x0 ⊕ x1 ⊕ . . .⊕ xn−1).

Claim 2.19. Given an array of n elements and p processors, exclusive scan
can be computed in O(n/p + log p) time.

Proof. See [10].

When building a HashGraph, we first need to determine the number of
buckets to be used. The fewer buckets we use, the more collisions are going

4Sometimes also called a prefix sum

19

2. Theory

Algorithm 1: HashGraph-Build-V1
Input : An array X of n items to insert

The number of buckets m
A hash function h : X → [m]

1 //first we count how many elements are in each bucket
2 for i = 0 . . .m− 1 do in parallel
3 CounterArray[i]← 0
4 for i = 0 . . .n− 1 do in parallel
5 AtomicAdd(CounterArray[h(X [i])], 1)

6 //now we know the bucket offsets
7 Rows = ExclusiveScan(CounterArray)
8 //finally, we reorder the input array into their buckets
9 for i = 0 . . .m− 1 do in parallel

10 CounterArray[i]← 0
11 for i = 0 . . .n− 1 do in parallel
12 pos← Rows[h(X [i])] + AtomicAdd(CounterArray[h(X [i])], 1)
13 V alues[pos]← X [i]

14 HG← (Rows, V alues)
15 return HG

Output : HashGraph HG

to occur per bucket. On the other hand, too many buckets will leave more of
them empty, wasting space. It has been shown in [1] that setting the number
of buckets to the total number of elements in the table is a good choice.

The original HashGraph build is summarized in Algorithm 1. Note that
because we set m = n, the load factor of HashGraph table is always 1.

Observation 2.20. Let p be the number of processors, n the number of el-
ements to be inserted, and m = n the number of buckets. Then Algorithm 1
runs in O(n/p + log p) time.

Proof. All four for loops of Algorithm 1 are embarrassingly parallel. As de-
scribed in claim 2.19, the exclusive scan on line 7 runs in O(n/p + log p)
time.

The authors of HashGraph also present an optimized cache-friendly build
algorithm. The main idea is to reduce the number of cache-misses incurred by
accesses to memory in a non-predictable way. We observe that Algorithm 1
has three points where memory accesses have poor spacial locality.

1. On line number 5 we access the CounterArray in pretty much random
order.

20

2.2. HashGraph

2. We do it again on line number 12.

3. Finally, on line number 13 we access the V alues array non-sequentially.

To mitigate this, we can divide the build algorithm into two phases. In the
first phase, we partially reorder the input array X so that elements that fall
into nearby buckets are closer together in memory. Then, in the second phase,
we build the HashGraph the same way as in Algorithm 1. This approach is
laid out in Algorithm 2.

Let us analyze the memory access patterns of Algorithm 2. Assume that
BinCnt is set so that an array of integers of size BinSize is small enough to
fit into the cache.

1. First, on line 6 we no longer miss the cache, since BinOffsets fits into it.

2. Same situation occurs on line 14.

3. On line 15, we are still likely to miss the cache many times.

4. For the remainder of the algorithm, we use the reorganized array Xreorg,
so we are much less likely to miss the cache when indexing by the hash
value of elements since nearby elements now have hash values close to-
gether.

Note that Algorithm 2 does not improve the time complexity of Algo-
rithm 1.

2.2.4 Relationship With Sorting
When analyzing algorithms 1 and 2 more carefully, we can observe an in-
teresting relationship with sorting. In both of them, we end up sorting the
input array X of items to be inserted by the bucket they belong into, i.e., we
sort individual elements by the hash function. Both of the algorithms use the
bucket sort algorithm5 to do the sorting, with the latter HashGraph Build V2
algorithm additionally optimizing memory access patterns.

Bucket sort is summarized in Algorithm 3. If we only need the buckets
themselves, we can skip constructing the sorted list in steps 5 to 8.

Notice that we are not restricted to the choice of bucket sort. We can use
any sorting algorithm to construct the HashGraph. This leads to a generalized
HashGraph build procedure, which is presented in Algorithm 4.

5Note that we are using the bucket sort algorithm to sort elements into hash table
buckets!

21

2. Theory

Algorithm 2: HashGraph-Build-V2
Input : An array X of n items to insert

The number of buckets m
A hash function h : X → [m]
Number of bins BinCnt

1 BinSize = ⌈m/BinCnt⌉
2 //first we count how many elements are in each bin
3 for i = 0 . . .BinCnt− 1 do in parallel
4 BCounterArray[i]← 0
5 for i = 0 . . .n− 1 do in parallel
6 Bin← h(X [i])/BinSize
7 AtomicAdd(BCounterArray[Bin], 1)

8 //now we know the bin offsets
9 BinOffsets = ExclusiveScan(BinCounterArray)

10 for i = 0 . . .BinCnt− 1 do in parallel
11 BinCounterArray[i]← 0
12 for i = 0 . . .n− 1 do in parallel
13 Bin← h(X [i])/BinSize
14 pos← BinOffsets[Bin] + AtomicAdd(BinCounterArray[Bin], 1)
15 Xreorg[pos]← X [i]

16 //first we count how many elements are in each bucket
17 for i = 0 . . .m− 1 do in parallel
18 CounterArray[i]← 0
19 for i = 0 . . .n− 1 do in parallel
20 AtomicAdd(CounterArray[h(Xreorg[i])], 1)

21 //now we know the bucket offsets
22 Rows = ExclusiveScan(CounterArray)
23 //finally, we reorder the Xreorg array into their buckets
24 for i = 0 . . .m− 1 do in parallel
25 CounterArray[i]← 0
26 for i = 0 . . .n− 1 do in parallel
27 pos← Rows[h(Xreorg[i])] + AtomicAdd(CounterArray[h(Xreorg[i])], 1)
28 V alues[pos]← Xreorg[i]

29 HG← (Rows, V alues)
30 return HG

Output : HashGraph HG

Generalizing the HashGraph build procedure to essentially a sorting prob-
lem is an important step to simplifying future analyses and exploring alter-
native implementations. An example might be using Quicksort, Bitonic sort,
Radix sort, or Merge sort in step 9 of Algorithm 4. See [11] for a survey of

22

2.2. HashGraph

Algorithm 3: Bucket Sort
Input : Input X = (x0, . . . , xn−1)

Buckets B = (b0, . . . , bm−1)
Key function k : X → [m]

1 for i = 0 . . .m− 1 do
2 bi ← ∅

3 for i = 0 . . .n− 1 do
4 Insert xi into bucket bk(xi)

5 S ← emptyList
6 for i = 0 . . .m− 1 do
7 Append items from bi to S

8 return S

Output : Sorted list S by the key function k

Algorithm 4: Generalized HashGraph-Build
Input : An array X of n items to insert

The number of buckets m
A hash function h : X → [m]

1 //first we count how many elements are in each bucket
2 for i = 0 . . .m− 1 do in parallel
3 CounterArray[i]← 0
4 for i = 0 . . .n− 1 do in parallel
5 AtomicAdd(CounterArray[h(X [i])], 1)

6 //now we know the bucket offsets
7 Rows = ExclusiveScan(CounterArray)
8 //finally, sort the input array X w.r.t. the hash function h
9 V alues← Sort(X , h)

10 HG← (Rows, V alues)
11 return HG

Output : HashGraph HG

GPU sorting algorithms. Studying ways to improve Bucket sort (or the closely
related Counting sort) might also be relevant [12].

Observation 2.21. Let p be a number of processors, n number of elements
to be inserted and m = Θ(n) the number of buckets. Let Tsort be a time
complexity of sorting n elements on p processors. Then the time complexity
of Algorithm 4 is O(n/p + log p + Tsort).

Proof. Because n = Θ(m) and the first two loops are embarrassingly parallel,
both of them take O(n/p) time. As per 2.19, the exclusive scan runs in

23

2. Theory

O(n/p + log p) time. Finally, we presumed that sorting takes Tsort time.

2.2.5 HashGraph Find
To find item y in a HashGraph, we first determine the target bucket as
b = h(y), and then we query the Rows array to get an offset into the V alues
array for bucket b as ofset ← Rows[b]. Then, similarly to linear probing de-
scribed in section 2.1.2.1, we iterate over all elements in the bucket until we
either reach the end or until we find y.

This is summarized in Algorithm 5.

Algorithm 5: HashGraph-Find
Input : HashGraph HG

Item y to find
1 b← h(y)
2 offset← HG.Rows[b]
3 length← HG.Rows[b + 1]−HG.Rows[b]
4 for i = 0 . . .length− 1 do
5 if HG.V alues[offset + i] = y then
6 return True

7 return False
Output : True if y is present in HG, False otherwise

Observation 2.22. Let HG be a HashGraph with m buckets, a hash function
h from a c-universal set, and finally let n = O(m) be the number of elements
present in HG. Then the expected time complexity of Algorithm 5 is constant.

Proof. Let y be the element we want to find and b = h(y) the bucket where
we shall look for it. From lemma 2.8, it follows that the expected number of
items in b is constant, and so we expect that looping through all elements in
b will take us constant time.

If we want to do a bulk search of many keys in parallel, we can easily
extend Algorithm 5. In the original HashGraph paper, this method is referred
to as HashGraph-Probe-Standard.

While Algorithm 6 is simple, it may result in inefficient cache access pat-
terns. Consider the situation where we want to look up two subsequent el-
ements y1 = Y[i] and y2 = Y[i + 1]. We have no way of guaranteeing that
the bucket bh(y1) lies anywhere close to bh(y2). Therefore, we might fetch all
elements from one bucket to see if it contains a given element, and then be-
fore we get to processing another element that hashes to the same bucket, the

24

2.3. Alternative Sparse Matrix Storage Formats

Algorithm 6: HashGraph-Probe-Standard
Input : HashGraph HG

Array of n items Y to find
1 for i = 0 . . . n− 1 do in parallel
2 y ← Y[i]
3 Result[i]← HashGraph_Find(HG, y)
4 return Result

Output : Array Result where i-th element is True if and only if Y[i] is
present in HG

contents of that bucket might have already been evicted from the cache.

To solve this, another version of the bulk find algorithm is introduced in [1]
called HashGraph-Probe-New. The main idea is to first sort the input array
Y of items to find by the hash value so that subsequent items hash to buckets
that are next to each other. We already know from section 2.2.4 that we can
use the HashGraph Build algorithm to do exactly that. The algorithm then
can be summarized in two steps:

1. Create a second HashGraph HG2 from the elements we want to find
using the same hash function as in the original table.

2. Go through all the elements in HG2 (notice they are all stored contigu-
ously in the V alues array) and try to find them using Algorithm 5.

This procedure is summarized in 7. We add that creating the entire HG2
is not necessary, we can just partially sort the items we want to insert like in
steps 1 to 15 of Algorithm 2.

2.3 Alternative Sparse Matrix Storage Formats
In section 2.2.1 we showed how HashGraph uses concepts from sparse matrix
storage formats. In particular, we outlined the similarities with the Com-
pressed Sparse Row format. A natural question arises whether we could lever-
age other storage formats to implement HashGraph. In this section, we shall
describe a few other sparse matrix storage formats and comment on their
viability as the internal storage for buckets in HashGraph.

2.3.1 Ellpack
The Ellpack format [13, page 6] is similar to the CSR format. Instead of hav-
ing irregularly sized rows and indexing them by the Rows array, in Ellpack,
all rows have the same size that is equal to the largest number of non-zero

25

2. Theory

Algorithm 7: HashGraph-Probe-New
Input : HashGraph HG

Array of n items Y to find
1 // construct a second HashGraph using the hash function h
2 h← HG.h
3 m← n
4 HG2← HashGraph_Build(Y, m, h)
5 Ysorted ← HG2.V alues

6 for i = 0 . . . n− 1 do in parallel
7 y ← Ysorted[i]
8 Result[i]← HashGraph_Find(HG, y)
9 return Result

Output : Array Result where i-th element is True if and only if Y[i] is
present in HG

elements in any given row. Subsequently, this means that rows with the lower
number of non-zero elements must be padded with zeroes. The memory lay-
out of the Ellpack format can be seen in Figure 2.5.

Note that unlike in CSR, in Ellpack we do not need to keep the Rows
array because the offset of i-th row can be calculated as i ∗ n, where n is the
maximum number of non-zero elements over all rows.

It is clear that the Ellpack format is very inefficient in case there are a few
rows with many non-zero elements and many rows with few non-zero elements,
since there will be large padding overhead. In the special case that there is
at least one row with all elements being non-zero, the Ellpack format will use
O(nm) memory for a matrix An×m.

Let us now consider the possibility of using Ellpack to store the internal
state of HashGraph. First, there is no strong guarantee that elements will be
evenly distributed into buckets, and therefore there might be relatively large
padding overhead. On the other hand, if we use a c-universal hash function,
and we have enough buckets, then it follows from theorem 2.6 that the ex-
pected number of elements in each row is constant.

Another point to consider is that using Ellpack might speed up accessing
individual buckets due to the ability to compute the bucket offset without
having to access memory to do so.

26

2.3. Alternative Sparse Matrix Storage Formats

0 3 0 1 2
5 0 0 0 0
0 0 0 0 0
1 0 0 0 4
0 0 0 2 0




3 1 2
5 0 0
0 0 0
1 4 0
2 0 0

values

1 3 4
0 0 0
0 0 0
0 4 0
3 0 0

columns

Figure 2.5: A 5× 5 matrix and its corresponding Ellpack representation

2.3.2 Sliced Ellpack

The Sliced Ellpack format [14] is a modification of Ellpack that tries to re-
duce the padding overhead in case of uneven distribution of non-zero elements
across rows. We divide rows into groups of 32, and we only pad rows to the
maximum number of non-zero elements in a row inside the given group. The
benefit is that a row with a relatively high number of non-zero elements only
affects the padding of 31 surrounding rows and not the entire matrix.

The now-familiar example matrix, this time using Sliced Ellpack storage
format, is outlined in Figure 2.6. Note that for simplicity and compactness
reasons, the example uses groups of size 2 instead of 32.

Importantly, we must now again store the information where individual
rows begin. We only need to keep a single number per 32 rows, since all 32
will always have the same length. Using Sliced Ellpack as the backing data
structure for HashGraph should be a compromise between CSR and Ellpack.
The overhead associated with padding should be lesser than when using plain
Ellpack, but at the same time, we need to perform one additional memory
access when determining bucket offsets, albeit stored more compactly than in
CSR.

0 3 0 1 2
5 0 0 0 0
0 0 0 0 0
1 0 0 0 4
0 0 0 2 0




3 1 2
5 0 0

values

0 0
1 4

2

1 3 4
0 0 0

columns

0 0
0 4

3

Figure 2.6: A 5×5 matrix and its corresponding Sliced Ellpack representation

27

2. Theory

2.4 Dynamic HashGraph
In this section, we will explore ways how to modify HashGraph in a way that
it can support dynamic operations, namely Insert and Delete operations. So
far, we have only described HashGraph as an entirely static data structure,
supporting only Build and Find operations.

Let us begin by analyzing the original CSR variant of HashGraph. Because
of the way that elements are compressed into individual buckets in a single
contiguous memory allocation, there is not any space available for the insertion
of elements.

2.4.1 Rehashing
The solution at hand is to always rehash the entire table into a new Hash-
Graph when inserting new items. While this is a naive approach in the general
case, it can be a good strategy if the number of elements we want to insert n
is roughly at least the same as number of elements that are already present
in the table, or in other words, if n = Ω(|HG|).

The procedure is also very simple to implement. We need to concatenate
the existing V alues array inside the HashGraph with the new array of ele-
ments to be inserted and then call HashGraphBuild from algorithm 1, 2 or 4.
This is summarized in Algorithm 8.

Algorithm 8: HashGraph-Insert-Rehash
Input : HashGraph HG

An array X of n items to insert
1 X ′ ← Concatenate(HG.V alues,X)
2 HG′ ← HashGraph_Build(X ′)
3 return HG′

Output : HashGraph HG′ containing HG ∪ X

Rehashing the entire table is, of course, not a good solution when the
number of items to insert is too small, i.e., in the order of n = O(|HG|),
because the rehashing cost would dominate the insertion time per element.

2.4.2 The Hornet Data Structure
Authors of HashGraph suggest using the Hornet data structure [15] to support
dynamic operations. Hornet is designed to efficiently represent the storage
layer of dynamic graphs and matrices. The data structure is essentially a set
block-arrays, where each block-array consists of contiguous memory chunks of

28

2.4. Dynamic HashGraph

the same size called blocks. Each block has a size of power of two. Block-
arrays are coupled with auxiliary data structures that support fast allocation
and deallocation of individual blocks, those being a Vectorized Bit Tree and
B+Tree respectively.

Instead of having individual buckets laid out contiguously in memory one
after another, Hornet can be used to represent adjacency lists of the bipar-
tite graph associated with the hash table, along with supporting extending or
shrinking the adjacency lists, thus providing the basis for Insert and Delete
operations.

While the investigation on the usage of Hornet alongside HashGraph has
started [1, page 11], there was no publicly available version of it at the time of
writing this thesis. We shall not delve deeper into analyzing the Hornet data
structure in this text and will instead attempt to explore other options.

2.4.3 Using Techniques From Open Addressing

Let us return to the main problem of why HashGraph is not able to support
dynamic operations—the lack of space in the densely packed array of buckets.
We could add some empty positions to the end of each bucket that could be
eventually filled up with new items.

How many empty positions should we reserve in each bucket? If we build
a HashGraph with n elements, we have m = n buckets, and so having 1 empty
space per bucket means there will be 50% empty positions in total. Similarly,
having 2 empty spaces in each bucket will result in 2/3 of the positions being
empty. Having too many empty slots per bucket is not desirable, as it will
negatively affect the memory footprint of the data structure.

We shall describe a possible way to extend HashGraph with empty slots,
so it can support Insert and Delete operations. We start with a version that
uses a CSR-like storage format akin to the original HashGraph.

2.4.3.1 Build

The procedure to build such HashGraph can be found in Algorithm 9. It can
be trivially extended to a version similar to Algorithms 2. Notice that we ini-
tialize the size of each bucket to e on line 3 and that we initialize the V alues
array to a special value k_empty on line 10. This will be important during
insertion.

29

2. Theory

Algorithm 9: HashGraph-Dynamic-Build
Input : An array X of n items to insert

The number of buckets m
A hash function h : X → [m]
Number of empty slots per bucket e

1 //first we count how many elements are in each bucket
2 for i = 0 . . .m− 1 do in parallel
3 CounterArray[i]← e

4 for i = 0 . . .n− 1 do in parallel
5 AtomicAdd(CounterArray[h(X [i])], 1)

6 //now we know the bucket offsets
7 Rows = ExclusiveScan(CounterArray)
8 //initialize all elements to a special empty value
9 for i = 0 . . .m ∗ (e + 1)− 1 do in parallel

10 V alues[i]← k_empty

11 //finally, we reorder the input array into their buckets
12 for i = 0 . . .m− 1 do in parallel
13 CounterArray[i]← 0
14 for i = 0 . . .n− 1 do in parallel
15 pos← Rows[h(X [i])] + AtomicAdd(CounterArray[h(X [i])], 1)
16 V alues[pos]← X [i]

17 HG← (Rows, V alues)
18 return HG

Output : HashGraph HG

2.4.3.2 Insert

Now that we have built a HashGraph with some empty slots, we can imple-
ment a dynamic insert. As we discussed, there are only a few empty slots
per bucket, and we might run out of space after a few insertions. So far,
HashGraph has adhered to a closed-addressing hash table definition outlined
in 2.7. For the purposes of supporting dynamic insertions, we allow items to
be placed in buckets other than the ones corresponding to the hash function
of said items.

This will leave us with a hash table that uses neither closed nor open-
addressing—there can be multiple elements per bucket, and at the same time,
items can be stored in buckets not corresponding to their hash functions. Put
differently, neither the condition in definition 2.9 nor in definition 2.7 will not
hold.

When inserting element y, we will go through the bucket bh(y) and at-

30

2.4. Dynamic HashGraph

tempt to find an empty slot. If we find one, we will place y there and finish.
Otherwise, we will choose another bucket according to some probing sequence
(see section 2.1.2.1 about probing sequences) and try to put the element there.

Algorithm 10 outlines the way insert might be implemented with a simple
linear probing over all buckets. Note that it can be easily extended to bulk
insertion of multiple elements in parallel with the use of Compare-And-Swap
instruction on line 10.

Algorithm 10: HashGraph-Dynamic-Insert
Input : Dynamic HashGraph HG

Item y to insert
1 //probe over all buckets
2 for i = 0 . . .m− 1 do
3 bucket← (h(y) + i) mod m
4 offset← HG.Rows[bucket]
5 length← HG.Rows[bucket + 1]−HG.Rows[bucket]
6 //try to find an empty space inside the bucket
7 for i = 0 . . .length− 1 do
8 if HG.V alues[offset + i] = y then
9 return ErrorDuplicateEntry

10 if HG.V alues[offset + i] = k_empty then
11 HG.V alues[offset + i]← y
12 return Success

13 return ErrorNoSpaceLeft
Output : Status indicating whether the insert was successful

If the table is full, new inserts will fail with the error ErrorNoSpaceLeft.
In that case, the table needs to be rebuilt to make space for additional items.

2.4.3.3 Find

Finding elements is also very similar to how it works in open-addressing ta-
bles. We start looking for y in bh(y) and iterate over all elements in that
bucket until we either find it or until we reach an empty slot, which means
the element is not in the hash table. If we neither find y nor reach any empty
slot, we continue the process by looking into the next bucket defined by the
probe sequence.

Refer to Algorithm 11 to see how Find is implemented with linear probing
over all buckets.

31

2. Theory

Algorithm 11: HashGraph-Dynamic-Find
Input : Dynamic HashGraph HG

Item y to find
1 //probe over all buckets
2 for i = 0 . . .m− 1 do
3 bucket← (h(y) + i) mod m
4 offset← HG.Rows[bucket]
5 length← HG.Rows[bucket + 1]−HG.Rows[bucket]
6 //try to find y inside the bucket
7 for i = 0 . . .length− 1 do
8 if HG.V alues[offset + i] = y then
9 return True

10 if HG.V alues[offset + i] = k_empty then
11 return False

12 return False
Output : True if y is present in HG, False otherwise

2.4.3.4 Delete

When deleting an element, we first try to find it. If the element is not present
in the table, we return immediately. Otherwise, we replace the current value
with a special value called a delete-marker6, 7.

2.4.3.5 Storage Format Considerations

In previous sections, we have outlined an extension to the HashGraph data
structure, adding support for Insert and Delete operations. We can now con-
sider using storage formats other than CSR, like the ones described in sec-
tions 2.3.1 and 2.3.2.

Using Ellpack and Sliced Ellpack in static HashGraph had the disadvan-
tage of potentially wasting storage space if elements were unevenly distributed
into buckets. With dynamic HashGraph, we can use those empty slots to store
newly inserted items. This allows us to use the space allocated by the data
structure more efficiently and, at the same time, keep the benefit of having
equally-sized buckets and, therefore, cheaper indexing.

6We can again use a Compare-And-Swap instruction if we want to support concurrent
operations.

7Sometimes also called a tombstone.

32

2.4. Dynamic HashGraph

Algorithm 12: HashGraph-Dynamic-Delete
Input : Dynamic HashGraph HG

Item y to delete
1 //probe over all buckets
2 for i = 0 . . .m− 1 do
3 bucket← (h(y) + i) mod m
4 offset← HG.Rows[bucket]
5 length← HG.Rows[bucket + 1]−HG.Rows[bucket]
6 //try to find y inside the bucket
7 for i = 0 . . .length− 1 do
8 if HG.V alues[offset + i] = y then
9 HG.V alues[offset + i]← DeleteMarker

10 return True
11 if HG.V alues[offset + i] = k_empty then
12 return False

13 return False
Output : True if y was present in HG, False otherwise

33

Chapter 3
Realization

In this chapter, we first describe State-Of-The-Art implementations of hash
tables on GPGPUs and then outline our own implementation of static and
dynamic HashGraph in the TNL library.

3.1 State-Of-The-Art
A survey of existing approaches to GPU hash tables implementations is pro-
vided by Lessley et al. [16]. We outline some notable implementations below.

• Alcantara et al. [17] introduce analysis and implementation of a set
of parallel hash tables using open addressing, separate chaining, and
cuckoo hashing as a part of the CUDA Data Parallel Primitives Library
(cuDPP).

• Khorasani et al. [18] provide a double hashing based approach called Sta-
dium hashing, which stores data in host memory and only keeps an aux-
iliary densely-packed data structure on the GPU called the ticket board.
The ticket board contains one bit per table slot, indicating whether the
slot is occupied. Optionally, each slot might also carry a few bits of
additional information describing the key currently present in the slot.
The key idea is to speed up probing by traversing through this densely
packed ticket board quickly.

• cuDF [19] is part of NVIDIA RAPIDS framework. It serves as a pandas-
like [20] data frame manipulation library that also includes an open
addressing hash table for CUDA using linear probing.

• SlabHash [21] is a dynamic hash table implementation that utilizes tech-
niques of separate chaining. The linked lists inside the table are com-
prised of slabs, and each slab is capable of storing multiple items.

35

3. Realization

• WarpCore [22] is a novel implementation of an open addressing dynamic
hash table that utilizes using multiple threads per single probe using
CUDA’s cooperative groups, thus supporting faster searches in high
load-factor scenarios. The implementation achieves up to 1.6 billion
inserts and up to 4.3 billion retrievals per second on a single GV100
GPU.

3.2 TNL Segments
TNL supports data structures for sparse matrices outlined in section 2.3. They
can be accessed through an abstraction layer called segments, which represents
data structures for manipulation of several arrays having different sizes in gen-
eral.

Notably, a TNL segment does not hold any data itself. The data of the
sparse matrix is stored in one contiguous array, and a segment only provides a
mapping between the indices of this single array and the logical representation.

Listing 3.1 shows how the TNL::Algorithms::Segments::CSR segment
provides indexing capabilities to matrix values stored in CSR format.
TNL: : Containers : : Array<int> values {3, 1 , 2 , 5 , 1 , 4 , 2};
TNL: : Algorithms : : Segments : :CSR<TNL: : Devices : : Host , int> segment

{3, 1 , 0 , 2 , 1};

segment . forAllElements ([=] (int segmentIdx , int localIdx , int globalIdx)
{

cout << segmentIdx << ’␣ ’
<< localIdx << ’␣ ’
<< globalIdx << ’␣ ’
<< values [globalIdx] << ’\n ’ ;

});

// output
// 0 0 0 3
// 0 1 1 1
// 0 2 2 2
// 1 0 3 5
// 3 0 4 1
// 3 1 5 4
// 4 0 6 2

Listing 3.1: Example of CSR Segment in TNL

TNL provides multiple segment types. For our purposes, we use

• TNL::Algorithms::Segments::CSR

• TNL::Algorithms::Segments::Ellpack

• TNL::Algorithms::Segments::SlicedEllpack

which correspond to the storage formats described in sections 2.2.1, 2.3.1
and 2.3.2 respectively.

36

3.3. Storage of Key-Value Pairs

3.3 Storage of Key-Value Pairs
So far, we have talked about storing a set of items from some universe U
in a hash table. We can refer to those items as keys. Often, we want to
store some metadata associated with each key, or in other words, we want to
store a pair (key, value). For the purpose of hashing, the items (key, value)
and (key, value′) are considered equivalent. We have to slightly modify the
operations supported by hash tables.

• Find searches for a given key the same as before, but instead of return-
ing a boolean value indicating the presence of the key, it returns the
associated value (or some special empty value in case the key is not
found).

• Insert looks for an empty slot, and stores both key and value if it finds
one. If it encounters a slot with the same key already present in the
hash table, it returns with a failure.

• Delete tries to find a given key, and if present, it deletes both the key
and the associated value.

We explore two ways how to store key-value pairs.

3.3.1 Array-Of-Structures
The first option is to directly store the pair (key, value) in each slot instead of
just plain keys. Such memory layout is called an array of structures, signifying
that we have a single array that stores structs of keys and values.

This has the advantage that the value of a given key is always stored in
an adjacent place in memory, making the access to both of them at the same
time cache-efficient.

Conversely, this can also be a disadvantage. Consider a hash table with
relatively many collisions. We have to potentially traverse multiple slots dur-
ing Find, Insert, or Delete operations, each time fetching both the key and the
value from the cache, only to continue looking for our key in a different slot.
This can be especially inefficient if the values have a large memory footprint
compared to the keys.

3.3.2 Structure-Of-Arrays
We can also take, in some sense, the opposite approach and use a structure of
arrays instead. That means storing all the keys in one array and all values in
a separate one. Those arrays are intrinsically connected by indices, meaning
that a key stored at i-th index in the keys array has the associated value

37

3. Realization

stored at i-th index in the values array.

Since keys are densely packed together, it makes iterating over them faster.
On the other hand, we have to perform extra memory access to an entirely
different memory location when we want to fetch the value.

3.4 Summary of Implemented Hash Tables
Here we describe hash tables implemented as a part of this thesis using TNL.

3.4.1 HashGraphSet
HashGraphSet represents a hash graph implementations of a set of items. The
C++ class definition can be seen in listing 3.2.

template<
typename Key,
typename Hash,
typename Device = TNL: : Devices : : Host ,
typename Segment = TNL: : Algorithms : : Segments : :CSR<Device , Key>,
HashGraphType HashGraphBuildType = HashGraphType : : v2 ,
typename Index = int>

class HashGraphSet ;

Listing 3.2: HashGraphSet class declaraion

The class has several template parameters.

• Key is the type of the stored items.

• Hash is a function object representing the hash function.

• Device is the device the hash table is stored on. Can be specified either as
TNL::Devices::Host, representing the CPU, or TNL::Devices::Device,
representing a GPU.

• Segment is the type of segment that is used to index the internal array
of stored items. See section 3.2.

• HashGraphBuildType is an enumeration stating which algorithm shall
be used for building the hash graph. Options are HashGraphType::v1
and HashGraphType::v2 for Algorithms 1 and 2 respectively.

• Index is the integral type used to store indices (like the Rows array).
For example, using a 32 bit integer means we can index up to 232 items.

HashGraphSet is a static hash table, meaning that it only supports Build
and Find operations. We also provide limited Insert functionality with the
naive rehash-everything algorithm 8. This data structure can store keys of
arbitrary types as long as the user provides the corresponding hash function.

38

3.4. Summary of Implemented Hash Tables

3.4.2 HashGraphSetDynamic
HashGraphSetDynamic is an extension of HashGraphSet, and it has the same
set of template parameters. Additionally, it adds support for Insert and Delete
operations. The implementation follows the theoretical description that we
presented in section 2.4.3.

As mentioned in section 2.4.3, we use compare-and-swap instructions pro-
vided by the CUDA platform to support parallel operations. Thus, we can
only store specific data types that are either 16-, 32-, or 64-bit wide.

3.4.3 HashGraphMap and HashGraphMapDynamic
HashGraphMap is like a HashGraphSet, but it stores key-value pairs. It has
one additional template parameter Storage, which specifies whether keys and
values are stored in an array-of-structures, or in a structure-of-arrays as out-
lined in sections 3.3.1 and 3.3.2. The static map can—like the static set—store
arbitrary types of key-value pairs.

HashGraphMapDynamic is an extension of HashGraphMap supporting In-
sert and Delete operations. This implementation does not support executing
all kinds of operations concurrently. In other words, we can only run any
single one of Find, Insert, or Remove at a time. The reason for this is that in
order to support those operations concurrently, some additional synchroniza-
tion would be needed. Consider the following sequence of operations:

1. Insert of key k and value v is executed. Suppose k is not present in the
table. Because there is no intrinsic operation in CUDA to store both k
and v atomically, we must first store k into some empty bucket using
atomic compare-and-swap, and only if we successfully insert the key we
store the value v.

2. Find of key k is executed, and it reads the key that was just inserted,
but the value is not yet stored, so we return an incorrect result.

3. Insert completes the store of v.

In addition, the dynamic map also uses compare-and-swap instructions
when manipulating the keys. This means that we are again limited to 16-,
32-, or 64-bit keys. Note that values can be of arbitrary type.

39

Chapter 4
Testing

In this chapter, we describe the testing and evaluation methodology of our im-
plementation. We then compare our implementation against selected existing
implementations under various scenarios.

4.1 Testing Methodology and Correctness Tests
In our performance evaluation scenarios, we store 4-byte integer keys and 4-
byte integer values unless stated otherwise. Each test is run 10 times, and only
the average result of those runs is shown. We measure mainly the number of
operations performed by a given data structure in a given amount of time,
shown in the order of billion operations per second. Given two time durations
T1 and T2, we also define a speedup of T2 over T1 as

∆T = T1
T2

.

We only measure the time the operations themselves take, i.e., we exclude
the time to set up the input data. The hash function used is the Murmur
hash, which is available from [23].

We used the Google Test [24] testing framework to implement a set of
tests checking the correctness of our implementation of static and dynamic
HashGraphs. We test all supported operations for individual sets and maps.
Our tests can run either on a CUDA device, or on the host CPU.

4.2 Existing Solutions
We selected the following implementations of hash tables to compare against.

• std::unordered_set from the C++ standard template library. This
container is usually implemented as a separate chaining hash table, and

41

4. Testing

it only supports sequential operations on the CPU. We choose this con-
tainer mainly to provide a reference base-case scenario.

• WarpCore is an implementation of the hash table described in sec-
tion 3.1. It is available from Github [25].

• SlabHash has also been described in section 3.1. The implementation
is open source and available from Gihub [26].

• HashGraph is an implementation of the hash table introduced in the
original HashGraph paper [1]. It is available from [27].

We believe the chosen GPU hash table implementations are among the
most performant solutions currently available.

4.3 Testing Environment
All tests have been performed on a machine running Arch Linux running on
kernel 5.17.4-arch1-1, with the following hardware configuration:

CPU: 2x Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz (8 cores, 20480 KB
cache)

RAM: 125Gi

GPU: NVIDIA Quadro P6000, 24576 MiB

The CPU tests were compiled using the g++ 11.2.0 compiler with flags
set to -O3 -march=native -funroll-loops -ftree-vectorize -mavx.

The GPU tests were compiled using the nvcc V11.6.112 compiler with
flags set to -O3 -arch=compute_70 -code=sm_70 –ptxas-options=-O3 –expt-
relaxed-constexpr –extended-lambda -march=native -Xcompiler -funroll-loops
-Xcompiler -ftree-vectorize.

4.4 CPU Tests
Since our implementation is based on and extends the Template Numerical
Library, all data structures presented in this work are capable of running both
on a CPU and a GPU. We leverage this fact and test our static set imple-
mentation HashGraphSet against the hash table implementation provided in
STL, namely the std::unordered_set.

Note that we use the Murmur hash rather than the default STL hash
function for the unordered set because the default hash function is usually

42

4.4. CPU Tests

implemented as an identity function for integers, and so it can heavily skew
synthetic benchmark results.

4.4.1 Segment Memory Usage
We begin by analyzing the storage space required by different kinds of sparse
matrix storage formats. Figure 4.1 shows the number of slots allocated when
n items {1, . . . , n} are used to build the table. We observe the following:

• CSR always allocates exactly as many slots as the number of items that
are used to build the table. In other words, no space is wasted.

• Using the Murmur hash, Ellpack allocates 10 times as many slots as the
number of items, which means that at least one bucket has 10 collisions.
This shows the Ellpack format can be extremely wasteful, especially
when used for static hash tables. For dynamic tables, the space is still
initially wasted, but subsequent inserts can occupy these empty slots.

• Sliced Ellpack is somewhere in between, as expected.

Figure 4.1: Memory footprint of different segment types.

4.4.2 Build
We start with a scenario where we build a set of n integers {1, . . . , n}.

43

4. Testing

In the case of std::unordered_set, this is done by calling insert n times.
The array of buckets can be pre-allocated.

For HashGraphSet, the build procedure is called. We compare the usage
of CSR, Ellpack, and SlicedEllpack segments as the underlying storage type.
In this particular test, we use the enhanced Algorithm 2 for building the hash
graph. We examine the differences between Algorithm 1 and 2 in a later sec-
tion.

Figure 4.2 shows the relationship between n and the number of operations
processed per second8. We see that the CSR and SlicedEllpack outperform
the Ellpack variant, likely because the internal storage for Ellpack is much
larger, lowering the locality of individual items. Because the STL set is usu-
ally implemented as a separate chaining table, it means that a new node has
to be dynamically allocated for every insert, which is the main reason why the
performance is lower.

The speedup of our implementation over the STL container is summarized
in Figure 4.3.

Figure 4.2: CPU build performance of std::unordered_set and
HashGraphSet.

8For example, if n = 1000 and the number of operations per second processed is 100,
then the build took 1000

100 = 10 seconds.

44

4.5. GPU Tests

Figure 4.3: CPU build speedup of HashGraphSet over std::unordered_set.

4.4.3 Retrieve

For retrieval tests, we build a table with n integers {1, . . . , n} and then we
retrieve all of them. The time for building the table is excluded from the
measurement.

We used the probing Algorithm 7 for HashGraphSet. Retrieval perfor-
mance is summarized in Figure 4.4. All versions of the hash graph show
similar performance, while the STL is again much slower, likely due to the
internal linked lists not utilizing the cache fully.

4.5 GPU Tests
We now proceed to evaluate our implementations on a GPU. First, we study
some of the differences between various hash-graph-related algorithms and
implementation details described in chapters 2 and 3. We then compare them
against state-of-the-art GPU implementations publicly available.

4.5.1 Comparing Hash Graph Build Algorithms

In this section, we focus on comparing the two different build algorithms,
namely HashGraph-Build-V19 and HashGraph-Build-V210. The number of

9See Algorithm 1
10See Algorithm 2

45

4. Testing

Figure 4.4: CPU retrieve performance of std::unordered_set and
HashGraphSet.

Figure 4.5: CPU retrieve speedup of HashGraphSet over
std::unordered_set.

bins in the V2 version was set to 32000. We again test the static HashGraphSet.

The results can be seen in Figure 4.6. We also include the open-source
hash graph implementation [27] for comparison, which internally uses the V2
build algorithm and a CSR-like memory layout. It is labeled HashGraph in
the legend.

46

4.5. GPU Tests

Notice that the difference between performance on the CPU and the GPU
is around 20-fold on our hardware configuration. As expected, the V2 algo-
rithm outperforms the V1 algorithm for all segment types. From now on, we
shall only consider the V2 build algorithm.

When compared to std::unordered_set, the speedup is even larger. Re-
fer to Figure 4.7 for speed up of the V2 build algorithm running on GPU
compared to the STL container.

Figure 4.6: GPU build performance of V1 and V2 build algorithms.

Figure 4.7: GPU build speedup of HashGraphSet over std::unordered_set.

47

4. Testing

4.5.2 Comparing Static And Dynamic Hash Graph

We continue by comparing the original static hash graph with the dynamic
versions we introduced in section 2.4.3. Specifically, we measure the differences
between HashGraphSet and HashGraphSetDynamic.

4.5.2.1 Build

As in previous sections, we start with the build performance of n integers
{1, . . . , n}. We expect the dynamic versions to be slower because they have to
initialize some additional empty slots during the build. Results can be seen
in Figure 4.8.

Figure 4.8: GPU build performance of static and dynamic set. The V2 build
algorithm is used in all cases.

4.5.2.2 Retrieve

We use the HashGraph-Probe-Standard algorithm to compare the retrieval
performance of the two sets. We first build a table of n integers {1, . . . , n},
and then we retrieve all of them. Only the retrieval time is considered in the
measurement.

From Figure 4.9, we can see that the retrieve performance of the dynamic
set is virtually identical to the static version. This is because after a build,
every item x ∈ T is stored in the bucket bh(x), and therefore the dynamic
version behaves exactly like the static one.

48

4.5. GPU Tests

Note that if we were to insert additional items after the build, new items
would not be necessarily stored in the bucket determined by the hash function,
and the retrieve would start to behave more like a traditional open-addressing
hash table. We shall investigate such a scenario in a later section.

The open-source HashGraph implementation unfortunately only supports
the build operation, and so it is not included in this test.

Figure 4.9: GPU retrieve performance of static and dynamic set.

4.5.3 Comparing Hash Graph Probing Algorithms
As outlined in section 2.2.5, there are two algorithms for finding items stored
in a hash graph, namely the HashGraph-Probe-Standard 6 and HashGraph-
Probe-New 7. We can follow their performance in Figure 4.10. The static
HashGraphSet data structure was used.

We observe that Ellpack is the fastest one using the HashGraph-Probe-
Standard algorithm, followed by all the HashGraph-Probe-New algorithms. It
seems most time is spent in building the second hash graph during HashGraph-
Probe-New, and subsequent probing takes very little time and is not impacted
by the storage format.

The large performance advantage of Ellpack is attributed to one fewer
memory access because it does not have to look up the offset of each bucket.

When compared to the std::unordered_set, the speedup of retrieving
items is over 100× in some cases, as illustrated by the Figure 4.11.

49

4. Testing

Figure 4.10: GPU retrieve performance of HashGraph-Probe-Standard 6 and
HashGraph-Probe-New 7.

Figure 4.11: CPU retrieve speedup of HashGraphSet over
std::unordered_set.

4.5.4 Hash Graph Map Performance

In this section, we compare the performance of HashGraphMapDynamic to the
WarpCore and SlabHash implementations. We store and retrieve n key-value
4-byte integer pairs ((1, 1), . . . , (n, n)).

For hash graph map, we test both the array-of-structures and the structure-

50

4.5. GPU Tests

of-arrays storage types, referred to as aos and soa in the measurements.

4.5.4.1 Build

Figure 4.12 shows the performance of individual implementations when build-
ing the table. We see that WarpCore is clearly the most performant in this
scenario. One possible reason might be that WarpCore uses a single atomic
store instruction to store the key-value pair, as long as the size of the pair
does not exceed 8 bytes. Since we tested with 4-byte keys and 4-byte val-
ues, this reduces the number of memory writes by half. We believe that such
optimization could be made for the hash graph as well, as long as the array-
of-structures storage is used.

SlabHash seems to have a high constant overhead when initializing the
table because the build rate increases with the size of the input set.

Our implementations seem to be able to process around half the number
of items per second compared with the HashGraphSet. The map effectively
utilizes twice the amount of memory, reducing the amount of effective cache
available by half.

A surprising result is that the array-of-structures variant outperforms the
structure-of-arrays one for all segment types, even with 4-byte values.

The same result presented differently is laid out in table 4.1, where we can
see the time in milliseconds taken to build the hash tables.

N SlabHash WarpCore CSR-aos E-aos SE-aos CSR-soa E-soa SE-soa
10 196.0 13.0 35.0 53.0 40.0 33.0 35.0 33.0
20 208.2 26.0 77.9 130.0 95.0 68.6 89.0 75.0
30 218.0 41.0 119.2 196.0 145.0 106.9 140.0 119.3
40 226.7 54.0 162.1 263.6 197.0 143.8 189.0 163.2
50 232.6 68.0 212.0 331.9 251.9 185.5 238.3 208.9
60 245.9 82.0 259.0 401.0 307.4 224.5 287.8 254.7
70 252.4 95.0 307.4 482.4 366.4 266.7 339.3 304.7
80 258.8 109.1 354.2 539.0 415.9 312.9 387.6 349.4
90 272.8 123.0 404.5 607.9 475.8 355.6 437.8 397.2

100 280.8 137.0 460.2 679.1 537.1 407.8 490.0 447.9

Table 4.1: Time in milliseconds to build the hash table of N million key-value
pairs on a GPU. Ellpack is shortened to E, Sliced Ellpack is shortened to SE.

4.5.4.2 Retrieve

Retrieval performance measurements follow. We first show the HashGraph-
Probe-Standard algorithm in Figure 4.13. SlabHash shows excellent perfor-
mance, followed by Ellpack using the structure-of-arrays layout and Warp-

51

4. Testing

Figure 4.12: GPU build performance of HashGraphMapDynamic, WarpCore and
SlabHash.

Core.

Figure 4.14 shows the usage of HashGraph-Probe-New. We can see that
rearranging the data when building the second hash graph is again dominating
the total time. While the Ellpack variants are slower when using this algo-
rithm, CSR and Sliced Ellpack are somewhat faster.

The measurements of both algorithms are also summarized in Tables 4.2
and 4.3.

N SlabHash WarpCore CSR-aos E-aos SE-aos CSR-soa E-soa SE-soa
10 4.0 6.0 11.0 6.0 11.0 11.0 6.0 11.0
20 9.0 13.0 24.0 14.0 29.0 24.0 13.0 29.0
30 13.0 20.0 36.0 21.0 46.0 37.0 20.0 46.0
40 18.0 27.0 49.0 28.0 64.0 49.0 27.0 64.0
50 22.0 34.0 61.0 35.0 82.0 62.0 34.0 82.0
60 27.0 40.6 73.4 43.0 100.0 74.0 41.0 100.0
70 31.0 47.0 86.0 54.4 118.0 87.0 47.0 117.8
80 35.7 54.0 98.0 63.0 135.8 99.0 55.0 135.3
90 42.0 61.0 110.4 74.1 153.0 112.0 62.0 153.0

100 45.0 68.0 123.0 85.7 171.0 124.0 69.0 171.0

Table 4.2: Time in milliseconds to retrieve N million key-value pairs from
the hash table on a GPU using the HashGraph-Probe-Standard algorithm 6.
Ellpack is shortened to E, Sliced Ellpack is shortened to SE.

52

4.5. GPU Tests

Figure 4.13: GPU retrieve performance of HashGraphMapDynamic using the
HashGraph-Probe-Standard algorithm 6, WarpCore and SlabHash.

Figure 4.14: GPU retrieve performance of HashGraphMapDynamic using the
HashGraph-Probe-New algorithm 6, WarpCore and SlabHash.

4.5.4.3 Insert

Finally, we measure the insert performance. We insert n key-value pairs
{(1, 1), . . . , (n, n)}, but instead of inserting them all at once into an empty
table, we first allocate an empty table with enough space and then we insert
the items in 100 iteration. In the first iteration, we insert items

{(1, 1), . . . , (n/100, n/100)},

53

4. Testing

N SlabHash WarpCore CSR-aos E-aos SE-aos CSR-soa E-soa SE-soa
10 4.0 6.0 9.6 9.8 9.9 10.0 9.8 9.6
20 9.0 13.0 22.0 21.8 21.2 22.0 21.8 21.1
30 13.0 20.0 33.0 33.0 33.0 33.0 33.0 33.0
40 18.0 27.0 42.7 42.7 42.8 42.2 43.0 42.7
50 22.0 34.0 54.0 52.9 52.4 53.2 53.1 53.1
60 27.0 40.6 64.8 64.8 64.3 64.8 64.8 64.4
70 31.0 47.0 73.8 73.8 73.5 73.5 73.5 73.2
80 35.7 54.0 85.9 85.9 85.8 85.7 85.9 85.8
90 42.0 61.0 96.7 96.8 97.1 98.3 98.3 98.3

100 45.0 68.0 107.5 107.3 107.3 108.6 108.5 108.6

Table 4.3: Time in milliseconds to retrieve N million key-value pairs from the
hash table on a GPU using the HashGraph-Probe-New algorithm 7. Ellpack
is shortened to E, Sliced Ellpack is shortened to SE.

in the second iteration we insert

{(n/100 + 1, n/100 + 1), . . . , (2n/100, 2n/100)},

and so on.

Note that in this scenario, the HashGraphMap behaves more like an open-
addressing hash table with linear probing, and all the underlying segment
types allocate the same amount of slots. Thus, we expect Ellpack to do well
while not having any memory overhead compared to CSR.

Results are displayed in Figure 4.15, and WarpCore again has superior
performance. Interestingly, the array-of-structures version of Ellpack outper-
forms the structure-of-arrays one, unlike in previous tests. Sliced Ellpack is
consistently one of the worst performers among the tested implementations.

N SlabHash WarpCore CSR-aos E-aos SE-aos CSR-soa E-soa SE-soa
10 67.5 12.0 30.0 25.0 29.0 33.0 28.0 33.0
20 56.1 24.0 56.0 46.0 61.1 66.0 56.0 70.0
30 80.3 36.0 82.0 66.0 94.0 98.0 83.0 108.0
40 106.3 48.0 107.0 85.5 125.0 130.0 111.0 145.0
50 132.7 60.0 131.0 105.0 156.0 161.9 138.0 181.9
60 295.3 72.1 156.0 124.5 186.9 193.0 165.0 218.0
70 391.0 84.0 180.8 144.0 217.0 225.0 192.0 254.0
80 208.9 96.0 205.0 163.0 248.0 257.0 219.0 290.5
90 458.4 108.0 230.0 183.0 279.0 289.0 246.1 327.0

100 1403.7 120.0 254.8 202.0 309.0 321.0 273.3 363.0

Table 4.4: Time in milliseconds to insert N million key-value pairs into the
hash table on a GPU. Ellpack is shortened to E, Sliced Ellpack is shortened
to SE.

4.5.5 Retrieval After Dynamic Insertion
We conclude this chapter by showing a special case for retrieval of items in
HashGraphMapDynamic. We first allocate an table T and insert n items into

54

4.6. Commentary

Figure 4.15: GPU insert performance of HashGraphMapDynamic using V2 build
algorithm 2, WarpCore and SlabHash.

it in batches of n/100 like in section 4.5.4.3. This results in some items x ∈ T
not being stored in bucket bh(x). Thus, T behaves like an open-addressing
table with the linear probing scheme.

The purpose of this last test is to show that the performance of retriev-
ing items scattered outside their original buckets does not differ substantially
from retrieving right after a build, where each item x ∈ T is stored in the
bucket bh(x).

The results of this test for HashGraph-Probe-Standard and HashGraph-
Probe-New algorithms are shown in Figures 4.16 and 4.17, respectively. We
can see that the performance is not degraded compared to retrieving items
right after build, which is shown in Figures 4.13 and 4.14. HashGraph-Probe-
New is again limited by the time building the second hash graph.

4.6 Commentary
Our experimental tests show that the GPU-based hash tables are faster than
STL’s sequential containers by order of 100× in our testing environment.

4.6.1 Segment Types

We conclude the following about using different sparse matrix storage formats
for hash graphs:

55

4. Testing

Figure 4.16: GPU retrieve performance of HashGraphMapDynamic using
HashGraph-Probe-Standard algorithm 6 after dynamically inserting items.

Figure 4.17: GPU retrieve performance of HashGraphMapDynamic using
HashGraph-Probe-New algorithm 6 after dynamically inserting items.

• The CSR storage was usually the fastest for building the table, and it
also uses the least amount of memory.

• The Ellpack storage has superior retrieval performance at the cost of
a potentially much larger memory footprint. It also trails CSR when
building the table, which we think is caused by the large number of
empty slots that need to be initialized.

56

4.6. Commentary

• The Sliced Ellpack does not seem to be the best choice in any scenario,
and like the classic Ellpack, it requires more memory.

4.6.2 Dynamic Hash Graph
The dynamic version of the hash graph we introduced in section 2.4.3 seems
to have the same performance when retrieving items compared to the static
version. It is slightly slower at building the table due to the additional slots
being initialized.

4.6.3 AOS and SOA Storage
When it comes to our map implementations, they are generally around two
times slower than the corresponding set version. We believe further work is
needed to investigate the root cause of this relatively large discrepancy.

The structure-of-arrays storage type seems to outperform the array-of-
structures one, except for the dynamic insert test case.

4.6.4 Comparison to State-Of-The-Art Implementations
Our tests show that the WarpCore implementation consistently shows the
best performance, with the one exception being retrieval, where SlabHash is
around 50% faster.

Our map implementations lag behind WarpCore in all build tests, and
only the Ellpack variant is able to match it for retrieval.

57

Chapter 5
Conclusion

The goal of this work was to study the HashGraph algorithm, implement it
using the Template Numerical Library, and study the impact of using different
sparse matrix storage formats for HashGraph’s internal representation. Ad-
ditionally, our aim was to introduce a dynamic version of HashGraph capable
of supporting the insertion and deletion of elements.

We first outlined concepts about GPU hardware and software architecture,
followed by an introduction to TNL. We followed by describing the theoretical
concepts behind hashing and formalizing the hash graph data structure. Fur-
thermore, we showed the relationship between the hash graph build algorithm
and sorting.

We described the CSR, Ellpack, and Sliced Ellpack sparse matrix storage
formats, along with their representation in TNL called Segments. We also
proposed two different approaches for extending hash graphs to support stor-
ing key-value pairs. Finally, a new dynamic version of hash graph capable of
supporting the insertion and deletion of items was introduced.

The concepts described in the theoretical part were implemented using
TNL, and the performance of this implementation was evaluated against ex-
isting state-of-the-art GPU solutions.

5.1 Future Work

It seems our map implementations are unnecessarily slower than their set
counterparts. Further work needs to be done in order to see if any improve-
ments can be made in this regard.

59

5. Conclusion

Usage of some techniques employed by WarpCore may be brought over to
the hash graph implementation, like using cooperative groups for each indi-
vidual operation to reduce warp divergence, or combining storage of key-value
pair into one atomic instruction.

The dynamic hash graph presented in this thesis uses linear probing to
access elements outside the first bucket. Analysis of different probing schemes
is another thing to be considered.

Last but not least, a variety of sorting algorithms may, in theory, be used
to build a hash graph. It remains to be seen if this has practical use cases.

60

Bibliography

[1] Green, O. HashGraph – Scalable Hash Tables Using A Sparse Graph
Data Structure. 2019, doi:10.48550/ARXIV.1907.02900. Available from:
https://arxiv.org/abs/1907.02900

[2] Oancea, B.; Andrei, T.; et al. GPGPU Computing. CoRR, volume
abs/1408.6923, 2014, 1408.6923. Available from: http://arxiv.org/
abs/1408.6923

[3] NVIDIA CORPORATION. CUDA C++ Programming Guide. Avail-
able from: https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf

[4] Etiemble, D. 45-year CPU evolution: one law and two equations. CoRR,
volume abs/1803.00254, 2018, 1803.00254. Available from: http://
arxiv.org/abs/1803.00254

[5] Yang, X.; Parthasarathy, S.; et al. Fast Sparse Matrix-Vector Multiplica-
tion on GPUs: Implications for Graph Mining. Proceedings of The Vldb
Endowment - PVLDB, volume 4, 03 2011.

[6] Oberhuber, T.; Klinkovský, J.; et al. Template Numerical Library. Avail-
able from: https://tnl-project.org

[7] Mareš, M. Lecture notes on data structures. Available from: http://
mj.ucw.cz/vyuka/dsnotes

[8] Pagh, R.; Rodler, F. F. Cuckoo hashing. Journal of Algorithms,
volume 51, no. 2, 2004: pp. 122–144, ISSN 0196-6774, doi:
https://doi.org/10.1016/j.jalgor.2003.12.002. Available from: https://
www.sciencedirect.com/science/article/pii/S0196677403001925

61

https://arxiv.org/abs/1907.02900
1408.6923
http://arxiv.org/abs/1408.6923
http://arxiv.org/abs/1408.6923
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
1803.00254
http://arxiv.org/abs/1803.00254
http://arxiv.org/abs/1803.00254
https://tnl-project.org
http://mj.ucw.cz/vyuka/dsnotes
http://mj.ucw.cz/vyuka/dsnotes
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://www.sciencedirect.com/science/article/pii/S0196677403001925

Bibliography

[9] Shahnaz, R.; Usman, A.; et al. Review of Storage Techniques for Sparse
Matrices. In 2005 Pakistan Section Multitopic Conference, 2005, pp. 1–7,
doi:10.1109/INMIC.2005.334453.

[10] Sengupta, S.; Harris, M.; et al. Scan Primitives for GPU Computing.
In SIGGRAPH/Eurographics Workshop on Graphics Hardware, edited
by M. Segal; T. Aila, The Eurographics Association, 2007, ISBN 978-3-
905673-47-0, ISSN 1727-3471, doi:10.2312/EGGH/EGGH07/097-106.

[11] Arkhipov, D. I.; Wu, D.; et al. Sorting with GPUs: A Survey. CoRR,
volume abs/1709.02520, 2017, 1709.02520. Available from: http://
arxiv.org/abs/1709.02520

[12] Kolonias, V.; Housos, E. A High-Performance Implementation of Count-
ing Sort on CUDA GPU. 02 2011.

[13] Bell, N.; Garland, M. Efficient Sparse Matrix-Vector Multiplication on
CUDA. 01 2009.

[14] Oberhuber, T.; Suzuki, A.; et al. New Row-grouped CSR format for
storing the sparse matrices on GPU with implementation in CUDA.
CoRR, volume abs/1012.2270, 2010, 1012.2270. Available from: http:
//arxiv.org/abs/1012.2270

[15] Busato, F.; Green, O.; et al. Hornet: An Efficient Data Structure for
Dynamic Sparse Graphs and Matrices on GPUs. In 2018 IEEE High
Performance extreme Computing Conference (HPEC), 2018, pp. 1–7, doi:
10.1109/HPEC.2018.8547541.

[16] Lessley, B. Data-Parallel Hashing Techniques for GPU Architectures.
CoRR, volume abs/1807.04345, 2018, 1807.04345. Available from: http:
//arxiv.org/abs/1807.04345

[17] Alcantara, D. A.; Volkov, V.; et al. Chapter 4 - Building an Effi-
cient Hash Table on the GPU. In GPU Computing Gems Jade Edi-
tion, edited by W. mei W. Hwu, Applications of GPU Computing Se-
ries, Boston: Morgan Kaufmann, 2012, ISBN 978-0-12-385963-1, pp.
39–53, doi:https://doi.org/10.1016/B978-0-12-385963-1.00004-6. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
B9780123859631000046

[18] Khorasani, F.; Belviranli, M. E.; et al. Stadium Hashing: Scalable
and Flexible Hashing on GPUs. In 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 63–74, doi:
10.1109/PACT.2015.13.

[19] Team, R. D. cuDF - GPU DataFrame Library. Available from: https:
//github.com/rapidsai/cudf

62

1709.02520
http://arxiv.org/abs/1709.02520
http://arxiv.org/abs/1709.02520
1012.2270
http://arxiv.org/abs/1012.2270
http://arxiv.org/abs/1012.2270
1807.04345
http://arxiv.org/abs/1807.04345
http://arxiv.org/abs/1807.04345
https://www.sciencedirect.com/science/article/pii/B9780123859631000046
https://www.sciencedirect.com/science/article/pii/B9780123859631000046
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf

Bibliography

[20] McKinney, W. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, edited by S. van der
Walt; J. Millman, 2010, pp. 51 – 56.

[21] Ashkiani, S.; Farach-Colton, M.; et al. A Dynamic Hash Table for the
GPU. CoRR, volume abs/1710.11246, 2017, 1710.11246. Available from:
http://arxiv.org/abs/1710.11246

[22] Jünger, D.; Kobus, R.; et al. WarpCore: A Library for fast Hash Tables
on GPUs. CoRR, volume abs/2009.07914, 2020, 2009.07914. Available
from: https://arxiv.org/abs/2009.07914

[23] SMHasher. Available from: https://github.com/aappleby/smhasher

[24] Google. GoogleTest - Google Testing and Mocking Framework. Available
from: https://github.com/google/googletest

[25] Jünger, D.; Kobus, R.; et al. WarpCore: A Library for fast Hash Tables
on GPUs. Available from: https://github.com/sleeepyjack/warpcore

[26] Ashkiani, S.; Farach-Colton, M.; et al. SlabHash - A warp-oriented
dynamic hash table for GPUs. Available from: https://github.com/
owensgroup/SlabHash

[27] Tripathy, A.; Fender, A. Hashgraph - Multi-GPU Hash Table Backed by
Sparse-Graph Data Structures. Available from: https://github.com/
alokpathy/hashgraph

63

1710.11246
http://arxiv.org/abs/1710.11246
2009.07914
https://arxiv.org/abs/2009.07914
https://github.com/aappleby/smhasher
https://github.com/google/googletest
https://github.com/sleeepyjack/warpcore
https://github.com/owensgroup/SlabHash
https://github.com/owensgroup/SlabHash
https://github.com/alokpathy/hashgraph
https://github.com/alokpathy/hashgraph

Appendix A
Contents of CD

README.md..............................the description of media contents
src/................................ the source code related to this work

README.md the description of the implementation
src/include/..................the implementation of data structures
src/benchmark/....................the benchamring framework used
src/test/..the unit tests
third_party/..............the source code of third party hash tables

thesis/..............................the LATEX source files of this thesis
thesis.pdf this thesis in PDF format

65

	Introduction
	Motivation
	Goals
	Structure of Work

	Preliminaries
	GPU Architecture
	Hardware Architecture
	Thread Hierarchy
	Memory Model
	CUDA Programming Model
	Kernels
	Synchronization
	Memory Management

	Template Numerical Library
	TNL Containers and Views
	TNL Algorithms

	Theory
	Hashing
	Closed Addressing
	Open Addressing
	Probing
	Cuckoo Hashing

	HashGraph
	Compressed Sparse Row
	Representing Hash Graph With CSR
	HashGraph Build
	Relationship With Sorting
	HashGraph Find

	Alternative Sparse Matrix Storage Formats
	Ellpack
	Sliced Ellpack

	Dynamic HashGraph
	Rehashing
	The Hornet Data Structure
	Using Techniques From Open Addressing
	Build
	Insert
	Find
	Delete
	Storage Format Considerations

	Realization
	State-Of-The-Art
	TNL Segments
	Storage of Key-Value Pairs
	Array-Of-Structures
	Structure-Of-Arrays

	Summary of Implemented Hash Tables
	HashGraphSet
	HashGraphSetDynamic
	HashGraphMap and HashGraphMapDynamic

	Testing
	Testing Methodology and Correctness Tests
	Existing Solutions
	Testing Environment
	CPU Tests
	Segment Memory Usage
	Build
	Retrieve

	GPU Tests
	Comparing Hash Graph Build Algorithms
	Comparing Static And Dynamic Hash Graph
	Build
	Retrieve

	Comparing Hash Graph Probing Algorithms
	Hash Graph Map Performance
	Build
	Retrieve
	Insert

	Retrieval After Dynamic Insertion

	Commentary
	Segment Types
	Dynamic Hash Graph
	AOS and SOA Storage
	Comparison to State-Of-The-Art Implementations

	Conclusion
	Future Work

	Bibliography
	Contents of CD

