
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

GPU Parallelization of the
Backtracking Algorithm for
Single-vehicle DARP

Lukáš Kulhánek
Open Informatics

May 2021
Supervisor: Ing. David Fiedler

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474407Osobní číslo:LukášJméno:KulhánekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Paralelizace backtracking algoritmu pro Single-vehicle DARP s pomocí grafické karty

Název bakalářské práce anglicky:

GPU Parallelization of the Backtracking Algorithm for Single-vehicle DARP

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] T. Carneiro Pessoa, J. Gmys, F. H. de C. Júnior, N. Melab, and D. Tuyttens, ‘GPU-
accelerated backtracking using CUDA Dynamic Parallelism’, Concurrency and
Computation: Practice and Experience, vol. 30, no. 9, p. e4374, 2018, doi:
10.1002/cpe.4374.
[2] R. Finkel and U. Manber, ‘DIB - a distributed implementation of backtracking’, ACM
Trans. Program. Lang. Syst., vol. 9, no. 2, pp. 235–256, Mar. 1987, doi:
10.1145/22719.24067.
[3] V. N. Rao and V. Kumar, ‘On the efficiency of parallel backtracking’, IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 4, pp. 427–437, Apr.
1993, doi: 10.1109/71.219757.
[4] E. Speckenmeyer, B. Monien, and O. Vornberger, ‘Superlinear speedup for parallel
backtracking’, in Supercomputing, Berlin, Heidelberg, 1988, pp. 985–993, doi:
10.1007/3-540-18991-2_58.
[5] J. Jenkins, I. Arkatkar, J. D. Owens, A. Choudhary, and N. F. Samatova, “Lessons
Learned from Exploring the Backtracking Paradigm on the GPU,” in Euro-Par 2011
Parallel Processing, Berlin, Heidelberg, 2011, pp. 425–437, doi: 10.1007/978-3-642-
23397-5_42.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. David Fiedler, centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 04.03.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Fiedler

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank to my thesis su-
pervisor Ing. David Fiedler for his guid-
ance and helpful input.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 21. 05. 2021

. .

v

Abstrakt / Abstract

Tato práce se zabývá paralelizací
backtracking algoritmu pro řešení jed-
novozidlového Dial-a-ride problému.
Jednovozidlový Dial-a-ride problém je
dobře známý teoretický problém, ve
kterém je vozidlo použito k obsluze
zákazníků. Každý zákazník má přiřa-
zeny dva body (místo vyzvednutí a
místo vyložení) a každý z těchto bodů
má přiřazeno časové okno, ve kterém
musí vozdilo tento bod navštívit. Tento
algoritmus je používán v projektu darp-
benchmark, kde je používán v rámci
Vehicle Group Assignment (VGA) al-
goritmu. Jsou představena dvě řešení -
paralelní algoritmus pro běh na CPU a
paralelní algoritmus pro běh na GPU.
Zlepšení v rychlosti paralelních verzí je
změřeno a porovnáno oproti původní
sériové verzi.

Klíčová slova: dial-a-ride, paraleli-
zace, CUDA, OpenMP

Překlad titulu: Paralelizace backtrac-
king algoritmu pro Single-vehicle DARP
s pomocí grafické karty

This thesis aims to design and imple-
ment a parallel version of a backtracking
algorithm used for solving Single vehicle
Dial-a-ride problem. The Single vehi-
cle Dial-a-ride problem (DARP) is a
well-known problem in which a vehicle
is used to serve customers’ requests.
Each user transportation request has
two points associated with it (pickup
and delivery point) and each point has
a specific time window within which the
point must be visited by a vehicle. The
backtracking SVDARP solver is used in
the darp-benchmark project as a part of
the Vehicle Group Assignment (VGA)
algorithm. The VGA algorithm solves
the general Dial-a-ride by decomposing
it into many SVDARPs. A GPU par-
allel and a CPU parallel approaches to
the solution are proposed and imple-
mented. The performance of the new
algorithms is measured and compared
to the original SVDARP solver.

Keywords: dial-a-ride; paralleliza-
tion; CUDA; OpenMP

vi

/ Contents

1 Introduction .1
2 Problem Specification3
3 State Of The Art .4
3.1 Parallel Indexed Search Tree

Algorithm .4
3.2 GPU Parallel Tree Searching4
3.3 GPU-based Integer-Vector-

Matrix (IVM) Algorithm5
3.4 Buffered Workpool5
3.5 GPU Dynamic Parallelism5
3.6 Methods for Solving SVDARP . .5

4 Proposed Solution7
4.1 Serial Algorithm7
4.2 CPU Parallel Algorithm7
4.3 GPU Parallel Algorithm7

5 Implementation .9
5.1 Data Representation9
5.2 Serial Algorithm9
5.3 CPU Parallel Algorithm 10
5.4 GPU Parallel Algorithm 12

6 Results . 17
6.1 Methods Comparison 17
6.2 Parallel CPU Algorithm

Depth . 19
6.3 Parallel CPU Algorithm

Thread Count 19
6.4 Parallel GPU Algorithm

Block Size . 21
6.5 Parallel GPU Sequential

Search Depth 22
7 Conclusion . 24

References . 25
A Thesis Specification 29

vii

Tables / Figures

6.1. Comparison of performance . . . 18
6.2. CPU depth parameter per-

formance results 20
6.3. CPU thread count perfor-

mance results 21
6.4. GPU block size performance

results. 22
6.5. GPU sequential depth per-

formance results 23

5.1. CPU Algorithm Visualization . 11
5.2. GPU Algorithm Visualization . 13
6.1. Performance on select in-

stances . 18
6.2. CPU depth parameter per-

formance . 19
6.3. CPU thread count parameter

performance . 20
6.4. GPU block size parameter

performance . 21
6.5. GPU sequential depth pa-

rameter performance 22

viii

Chapter 1
Introduction

On-demand transportation has become quite popular in today’s world. It offers an al-
ternative to fixed schedule/route transportation services. Examples of such on-demand
models are carsharing, bikesharing or ridesharing.

Ridesharing is a service that provides a one-way transportation on a short notice.
Instead of having vehicles go through regular routes at specific times, the customers
send requests specifying where and when they want to be picked up and dropped off.
Some of the more notable ridesharing companies are Uber and Lyft. Possible benefits
compared to the standard means of transportation are cost and time optimizations,
lesser environmental impact or increased passenger comfort. As the routes of the vehi-
cles are not known in advance a way to determine the best possible order in which to
serve the customers is needed. This problem is known as the dial-a-ride problem.

The general dial-a-ride problem (DARP) is a well-known problem in which a fleet
of vehicles is used to serve customers’ requests. Each user transportation request has
two points associated with it (pickup and delivery point) and each point has a specific
time window within which the point must be visited by a vehicle. Limitations on
how much time the user spends in the vehicle and how long the vehicle can travel are
usually also imposed. The goal is to construct routes for the vehicles in such a way that
all aforementioned constraints are satisfied while keeping the distance travelled by the
vehicles minimal.

Since the DARP was formulated, many different algorithms used for solving it were
proposed. The DARP is considered to be NP-hard [1], therefore an exact solution
usually cannot be found in a practical time and the solution is usually approximated
using heuristic algorithms [2] [3] [4]. However, an exact algorithm called Vehicle Group
Assignment (VGA) [5] was recently proposed. The algorithm can be used for solving
DARP. It decomposes the main problem into solving many single-vehicle dial-a-ride
problems (SVDARP) for which the exact solution can be established in a reasonable
time.

The VGA algorithm is implemented in the darp-benchmark1 project. It uses a back-
tracking algorithm for solving the SVDARP subproblems. The time complexity of the
most commonly used DARP evaluation scheme for determining the feasibility and the
cost of a solution proposed by [6] is known to be O(n2) where n is the number of nodes
in the plan [1]. Due to that complexity the time spent solving SVDARP instances
makes up a significant part of the execution time of the VGA implementation in the
darp-benchmark project. Achieving a significant speedup of the algorithm solving the
SVDARP would therefore improve the overall time performance of the algorithms using
it dramatically.

This thesis proposes two approaches to speeding up the backtracking algorithm. The
first one uses the CUDA framework to solve the SVDARP in parallel using GPU. The
second approach uses the OpenMP library to achieve parallelization using CPU threads.
The approaches are described in Chapter 4 and their implementation in the project is
1 https://gitlab.fel.cvut.cz/fiedlda1/darp-benchmark

1

1. Introduction .
described in Chapter 5. The results and parameter tuning are presented in Chapter
6. The remainder of this thesis is organized as follows. In Chapter 2 the SVDARP is
formally defined. The Chapter 3 presents the work related to solving SVDARP and
solving backtracking problems in parallel.

2

Chapter 2
Problem Specification

The dial-a-ride problem is an extension of the Pickup and Delivery Problem With Time
Windows (PDPTW)[7] which falls under the class of Vehicle Routing Problem (VRP)
[8]. The SVDARP is a special case of DARP where only one vehicle is available. It
is defined on a complete weighted digraph G = (V,E) and a set of n transportation
requests. The set V = {0, 1, ..., 2n, 2n+1} is the set of nodes where nodes 0 and 2n+1
represent the depot, For a transportation request i it’s pickup point is represented by
node i and it’s delivery point by node n + i. For each node j ∈ V , the interval [ej ; lj]
is the associated time window: ej is the earliest possible starting time and lj is the
latest possible starting time, dj is the service time and qj is the number of persons
to transport. Given an edge (i, j) ∈ E, tij is the transportation time and cij is the
transportation cost. The vehicle can hold up to Q persons at a time [1].

Given a node i ∈ V , following variables are specified:

. Ai the arrival time of the vehicle at the node. Bi beginning of service time at the node. Di = Bi + di departure time from the node. Wi = Bi −Ai waiting time at the node

For a transportation request i, Ri = Bn+i −Di is the total ride time. A solution s
can be defined as a permutation node list λ such that every node i ∈ {1, 2...n} is used.
λ(i) then denotes the i-th node visited on the vehicle trip. The first and last nodes in
the trip must be the depot nodes so that λ(0) = 0, λ(n+ 1) = n+ 1. The total cost c
of a solution s is given as c(s) =

∑n
i=0 cλ(i)λ(i+1) where cλ(i)λ(j) is the cost of travelling

from node λ(i) to node λ(j). The objective of the SVDARP is to find the minimal total
cost. A valid solution must satisfy the following constraints:

. the vehicle must carry at most Q persons at any point of the trip. the beginning of service Bi ∈ [ei; li]. the ride time Ri does not exceed maximum allowed ride time L for all requests i. the trip duration for the vehicle does not exceed the maximum allowed time

3

Chapter 3
State Of The Art

In this chapter a definition of backtracking is established. An overview of the published
methods for parallelizing backtrack search is provided aswell as a short summary of
some proposed methods for solving SVDARP.

Backtracking is a general algorithm used for solving various computational problems,
most notably constraint satisfaction problems [9]. It is a complete algorithm meaning
that a solution is guaranteed to be found if any exists. Problems that are solved using
backtrack search generally have a property (such as cost) that can be used to decide
which nodes in the search tree are worth to be explored and which should be abandoned.
If a node is abandoned the algorithm backtracks to a point where a new search can be
started [10]. The nodes in the search tree are usually explored in a depth-first fashion
as finding a solution early can affect how early are the non-optimal nodes abandoned.
A typical example of a problem solved using the backtrack search is the N-Queens
problem. In the N-Queens problem a chessboard of NxN squares is considered and
N queens need to be placed on the chessboard in such a way that no two queens can
attack each other [11].

The backtrack search is primarily used for solving NP-hard computatinal problems
which have exponential time complexity. Many approaches to improving the perfor-
mance were proposed ranging from algorithmic improvements to the sequential algo-
rithm, parallelization using distributed systems and, in the recent years, parallelization
using GPU frameworks.

3.1 Parallel Indexed Search Tree Algorithm
The algorithm presented in [12] aims to improve scalability of backtracking algorithms
solving any general NP-hard graph problem. The search space is represented using
indexed search trees. Each node in the search tree has a weight assigned representing
an estimated computation time required. The tasks are then distributed between the
processing nodes according to the weights. Linear speed gains were observed even in
systems with tens of thousands of cores.

3.2 GPU Parallel Tree Searching
The approach presented in [13] is an idea based on the limitations of the available
GPU frameworks. The jobs cannot be distributed on the fly and additionally, the
communication cost is high. The search tree is divided into two parts based on depth.
The nodes starting from the root up to a depth s are processed sequentially and all the
valid nodes at depth s are stored into an array/list. After that the nodes are copied
over to the GPU and processed in parallel. If the number of nodes at depth s exceeds
the number of threads available on the GPU using a queue on the GPU is proposed.
The GPU loads the tasks (represented by nodes found in the sequential search) from
the queue until all are completed.

4

. 3.3 GPU-based Integer-Vector-Matrix (IVM) Algorithm

3.3 GPU-based Integer-Vector-Matrix (IVM) Algorithm
Integer-Vector-Matrix is a data structure used for representing the search tree of per-
mutation problems. The integer I in the data structure represents the depth of the next
subproblem. The vector V points to the nodes present in the current permutation. The
matrix M contains the nodes that remain to be visited at each depth. The IVM data
structure is well suited for use in GPU processing as the memory requirements are
known in advance, minimizing the need for dynamic memory allocation. Work steal-
ing is then used for load balancing. When a thread completes its work, it increases
a counter in the global memory by one. If a certain threshold is reached, all threads
will pause exploring the search space and the work-stealing phase starts. Threads with
completed IVMs will steal a portion of the interval to be explored in threads with in-
complete IVMs. Exploration of the search space then continues again until all IVMs
are completed [14].

3.4 Bu�ered Workpool
The Buffered Work-Pool approach is a hybrid dynamic load balancing technique that
combines threading and message passing between the different processors of any cluster.
The technique is based on the Master-Worker paradigm. The master prepares the
initial tasks specific to the problem and distributes them to the workers. After that the
master’s goal is to communicate with the workers. The workers can request the master
to either get more tasks or share some of its tasks with other workers[15].

3.5 GPU Dynamic Parallelism
The algorithms [16] [17] and [18] use a recently introduced feature of the NVIDIA
CUDA framework called Dynamic Parallelism. This allows new kernels (functions run
on GPU) to be launched from kernels that were already running without any need
of CPU intervention so that overhead is minimized. A finer control of load-balancing
can be achieved by dynamically launching new kernels on-demand with a possibility to
combine multiple search strategies.

3.6 Methods for Solving SVDARP
In [19] the SVDARP was formulated as a integer linear program and a forward dynamic
programming algorithm was proposed. At the first iteration the states represent a route
from the depot to a first pickup node. At each subsequent iteration the new states are
constructed from the previous states by adding another pickup or dropoff node to the
route. At the last iteration the route has to end at the depot node again. The efficiency
is further improved upon by eliminating states which violate the capacity, precedence
or time constraints. The proposed algorithm has O(n2 · 3n) complexity.

A minimum spanning tree algorithm is proposed in [20]. First it starts by constructing
a Travelling Salesman (TS) tour through all the user nodes based on their minimal
spanning tree. Then it chooses any node that is a pickup node and moves clockwise
until all points are visited. At this point a local interchange operator [21] [22] can be
performed on the TS tour. These steps (except for the first one) are then repeated for
every pickup node and the tour with minimum length is chosen.

5

3. State Of The Art .
An adaptive insertion algorithm for solving the SVDARP is proposed in [23]. It

proposes a new insertion heuristic, which operates as follows. For each customer it
performs an insertion of the new customer to all feasible service sequences with respect
to existing customers. The heuristic then determines the set of feasible service sequences
with respect to the new customer and existing customers. This approach provides a
globally optimal solution and has reasonable execution time for smaller instances. For
larger instances an extension to the heuristic is proposed. For each user only a specified
number of service sequences is explored. This reduces the execution time but also
removes the guarantee of finding a globally optimal solution.

6

Chapter 4
Proposed Solution

When choosing an approach to the parallelization, various factors were taken into con-
sideration. Although parallelization using one of the distributed computing algorithms
could provide superior performance for very large instances, it also requires the algo-
rithm to be run on a cluster with many computing nodes which is fairly impractial from
a convenience standpoint. Using a GPU seems to be a better choice as many computers
come equipped with GPUs already. The speedups presented in [16] [17] and [18] seem
to be significant enough to provide the necessary speed boost. Therefore a multistage
algorithm based on work presented in [16], [17] and [24] is proposed in this section. A
CPU parallel version is also proposed using the OpenMP tasks [25].

4.1 Serial Algorithm
The current implementation uses a backtracking algorithm to solve the SVDARP. It
starts with an empty plan and builds the solution up in a depth-first fashion. A first
unused user request node is placed in the current position in the plan. The plan is then
checked for feasibility. If the plan is feasible, the algorithm moves to the next position
in the plan and attempts to place nodes at that position. If the plan is not feasible,
the algorithm removes the user request node it placed at the position and tries placing
another user request node instead. When all the user request nodes were placed at the
current position or the plan was completed, the algorithm backtracks, removing the
node at the current position and moving one position back in the plan. A complete
plan with the minimal cost is returned as the final best solution. The algorithm is also
presented in the Implementation chapter as Algorithm 5.1.

4.2 CPU Parallel Algorithm
The CPU parallel version of the algorithm follows the same principles as described in
Section 4.1. The parallelization occurs every time a new incomplete plan is found. If the
plan is feasible a new parallel task is created that explores the next position in the plan.
This occurs up to a specified position in the plan at which no new task is created and
the remainder of the plan is explored sequentially in the current task instead. When
a new best plan is found replacing the old one should be done in a critical section to
prevent a race condition as done in Algorithm 5.3.

4.3 GPU Parallel Algorithm
A visual summary of the main components of the algorithm can be seen in Figure 5.2.
The first step of the algorithm is to explore the search space up to depth max depth
using the same approach as described in Section 4.1. All feasible partial solutions found

7

4. Proposed Solution .
at this depth are stored for later processing as described in Algorithm 5.4. This is done
using a modified version of the serial algorithm described in the Section 4.1.

The required amount of memory on the GPU is allocated beforehand as doing so
during the kernel execution presents a significant performance hit. Therefore the host
code has to determine the required memory size and allocate it on the GPU accordingly.
The following memory requirements are made by the algorithm:

. An array where the feasible nodes discovered by the initial serial search are stored. An array where each thread stores the best found result and the cost. An array where each block stores the best found solution and the cost. Space to fit the data associated with the SVDARP instance. Space to fit the stack of each thread

An important aspect to take into consideration is the total memory available on the
GPU. If the memory requirements are greater than the GPU can handle at once, the
problem can be split and solved in multiple runs as described in [16].

Once the memory requirements have been established and the memory has been
alocated (as in Algorithm 5.5) the algorithm then proceeds to the next phase. The
partial solutions are copied to the GPU and a GPU kernel is launched as in Algorithm
5.6. The kernel (Algorithm 5.7) should be configured to run one thread per partial
solution. The thread block size of the kernel can be set to a value of up to 1024. Each
thread stores its best solution separately. Once all threads have finished running the
master thread of the thread block then iterates through all the solutions found by the
threads in the block and saves the best one as the block’s best solution. After that the
final result is retrieved by the host code. The block solutions are examined and the
solution with the best cost is chosen as the final solution of all blocks.

8

Chapter 5
Implementation

The implementation of the proposed solution was integrated into the darp-benchmark1

project. The CPU parallel solution was implemented using the OpenMP library and
C++. The GPU parallel solution was implemented using the CUDA framework and
C++. For clarity the algorithms are presented in a simplified form and many language
specifics and optimizations are ommited.

5.1 Data Representation
Various classes used for representing the data were already present in the darp-
benchmark. Their simplified versions are used in the descriptions of the algorithms in
this chapter.

Class VehiclePlan

. int arrival time - the time at which the vehicle arrives at the depot. int departure time - the time at which the vehicle leaves the depot. int cost - cost of the plan. std::vector<PlanNode> nodes - vector of the user nodes present in the plan

Class PlanNode

. int arrival time - the time at which the vehicle arrives at the user node. int departure time - the time at which the vehicle departs from the user node. int node id - the index of the associated user node

Class InstanceData

. int instance size - total count of the user nodes

5.2 Serial Algorithm
The implementation of the serial algorithm was already present in the darp-benchmark
project. The algorithm uses a general recursive backtracking approach to solve the
problem. It iterates through all the user requests present in the SVDARP instance.
Then it inserts each user request currently not present in the vehicle plan at the given
position and marks it as used. If the solution is feasible the algorithm recursively calls
itself for position + 1 if the vehicle plan is not complete. When the vehicle plan has
been completed (a leaf in the search tree was reached) it compares the final cost of the
plan to the best found solution and saves it as the best found solution if the cost is
better. If the generated solution is not feasible the user request is declared unused and
the algorithm proceeds to the next user request.

1 https://gitlab.fel.cvut.cz/fiedlda1/darp-benchmark

9

5. Implementation .
void svdarp_serial(VehiclePlan& plan, std::vector<int>& used_nodes,

InstanceData& data, VehiclePlan& best_plan,
int position = 0)

{
for (int i = 0; i < data.request_nodes.size(); ++i)
{

if (used_nodes[i] == -1)
{

plan.nodes[position].node_id = i;
used_nodes[i] = position;
bool is_feasible = evaluate(plan, used_nodes, data);

if (is_feasible)
{

if (position == data.instance_size + 1)
{

if (plan.cost < best_plan.cost)
best_plan = plan;

}
else

svdarp_serial(plan, used_nodes, data, position + 1);
}
used_nodes[i] = -1;

}
}

}

Algorithm 5.1. Serial SVDARP
The svdarp serial function is initially launched with an empty plan, vector of inte-

gers of size data.instance size named used nodes, data associated with the instance
being solved and another empty plan best plan with its cost set to the maximal possi-
ble value in the C++ language, as parameters. When the function finishes, best plan
will contain either the vehicle plan with the minimal cost or an empty plan in case no
feasible solution was found.

5.3 CPU Parallel Algorithm
The CPU parallel version is realized using the OpenMP library. The parallelization
is done using the OpenMP task paradigm. The algorithm is launched using the sv-
darp parallel launch function which accepts the SVDARP instance data as an ar-
gument. A variable representing the best solution, an empty plan and a vector of
integers is defined initially the same way as described in the Serial Algorithm. A par-
allel OpenMP section then starts in which the svdarp parallel search function is
launched on a single thread.

VehiclePlan svdarp_parallel_launch(InstanceData& instance)
{

VehiclePlan plan;
VehiclePlan best_plan;
best_plan.cost = NUMERIC_MAX;
std::vector<int> used_nodes;

#pragma omp parallel

10

. 5.3 CPU Parallel Algorithm

{
#pragma omp single
svdarp_parallel_search(instance, plan, used_nodes, best_plan);

}
return best_plan;

}

Algorithm 5.2. Parallel CPU SVDARP launcher

The svdarp parallel search is a modified version of the Serial Algorithm. To
prevent a race condition the comparison of the costs and assignment of the best plan
(if a better one is found) is done in an OpenMP critical section. The consequent calls
to the function are launched as a OpenMP tasks.

Figure 5.1. Visualization of the CPU parallel algorithm

void svdarp_parallel_search(InstanceData& instance, VehiclePlan plan,
std::vector<int> used_nodes,
VehiclePlan& best_plan, int position = 0)

{
for (int i = 0; i < data.request_nodes.size(); ++i)
{

11

5. Implementation .
if (used_nodes[i] == -1)
{

plan.nodes[position].node_id = i;
used_nodes[i] = position;
bool is_feasible = evaluate(plan, used_nodes, data);

if (is_feasible)
{

if (position == data.instance_size + 1)
{

#pragma omp critical
{

if (plan.cost < best_plan.cost)
best_plan = plan;

};
}
else {

if (position < PARALLEL_DEPTH_END) {
#pragma omp task priority(position + 1)
svdarp_parallel_search(instance, plan,

used_nodes, best_plan,
position + 1);

}
else

svdarp_parallel_serial(instance, plan,
used_nodes, best_plan,
position + 1);

}
}
used_nodes[i] = -1;

}
}

}

Algorithm 5.3. Parallel SVDARP CPU search

The svdarp parallel serial function is identical to the svdarp parallel search
function except the arguments plan and used nodes are now passed as reference for bet-
ter performance. Any call of the function svdarp parallel serial is never launched
as a task.

A deep copy of the variables plan and used nodes is performed at every consequent
call. In C++ a deep copy is done implicitly as the variables are passed to the function as
values and not as references as in the serial version. At a specified depth the function
is no longer launched as a task to mitigate the impact of the overhead of launching
OpenMP tasks.

5.4 GPU Parallel Algorithm
The implementation follows the approach outlined in Chapter 4. The limitations of
the capabilities of the CUDA framework have influenced the way the algorithm was
implemented. The first issue was that although the CUDA framework supports the

12

. 5.4 GPU Parallel Algorithm

C++ the C++ Standard Library (STL) is not present at all. Although an alternative
library called Thrust exists and enables the basic functionality of the STL to be used
in the GPU code, its performance has been described as lacking in the official CUDA
forums. Another issue that complicated the implementation a lot is that CUDA is
unable to perform deep copy of data to the GPU. Therefore special data structures
that use only basic data types available in the C++ and a way to convert them to the
data structures used in the rest of the darp-benchmark project had to be implemented.

Figure 5.2. Visualization of the main functions used in the GPU parallel algorithm

The sequential search used in the first stage for finding feasible partial solutions at
a specified depth is based on the Algorithm 5.1. Instead of saving the vehicle plan as
a best solution at the maximum depth tt is modified to save the current vehicle plan
when a specified depth is reached and the plan is still feasible.

void svdarp_gpu_sequential(InstanceData& instance,
std::vector<PlanData>& plan,
std::vector<int>& used_nodes,
std::vector<PlanData>& partial_solutions,
int max_depth
int position = 0)

{
for (int i = 0; i < data.request_nodes.size(); ++i)
{

if (used_nodes[i] == -1)

13

5. Implementation .
{

plan.nodes[position].node_id = i;
used_nodes[i] = position;
bool is_feasible = evaluate(plan, used_nodes, data);

if (is_feasible)
{

if (position == max_depth)
{

svdarp_gpu_store(plan, partial_solutions);
}
else {

svdarp_gpu_sequential(instance, plan,
used_nodes, stored,
max_depth,
position + 1);

}
}
used_nodes[i] = -1;

}
}

}

Algorithm 5.4. GPU Sequential search

The function svadrp gpu store copies the current VehiclePlan plan to the collection
of partial sollutions. The entire plan is deep copieed and emplaced at the back of the
vector.

The svadrp gpu prepare function determines the maximal count of the partial so-
lutions that can be copied to the GPU at once. The required memory is calculated
using get memory requirements function which takes into consideration the memory
requirements specified in Chapter 5. If the memory required for the entire collection
of the partial solutions is larger than the available memory on the GPU the number of
partial solutions to be copied is decreased and the memory requirements are calculated
again until it fits.

void svdarp_gpu_prepare(InstanceData& instance,
std::vector<PlanData>& partial_solutions)

{
size_t gpu_available_memory = get_gpu_free_memory();
size_t chunk_size = partial_solutions.size();
size_t required_memory = get_memory_requirements(chunk_size,

block_size);
void* gpu_instance_data, gpu_partial_solutions;
while (required_memory > gpu_available_memory);
{
chunk_size = decrease_chunk_size(chunk);
required_memory = get_memory_requirements(chunk_size, block_size);

}
cudaMalloc(gpu_partial_solutions,

chunk_size * sizeof(partial_solutions[0]));
cudaMalloc(gpu_instance_data, instance_data);
cudaMemcpy(gpu_instance_data, instance_data, sizeof(instance_data));

14

. 5.4 GPU Parallel Algorithm

cudaDeviceSetLimit(cudaLimitStackSize, 32768);

svdarp_gpu_run(gpu_partial_solutions, partial_solutions,
chunk_size, block_size, instance);

}

Algorithm 5.5. GPU Preparation

After the memory requirements are settled the memory on the GPU is then allocated
for the partial solutions and for the instance data. The instance data is copied over
to the GPU. The thread stack size is slightly increased using cudaDeviceSetLimit as
keeping it at the default value often causes runtime errors.

The function svdarp gpu run is used to send the data to the GPU and then retrieve
complete solutions. It can also divide the collection of the partial solutions into smaller
chunks should they not fit in the GPU memory all at once. The partial solutions are
copied over to the GPU and the GPU kernel is launched. The best solutions is then
retrieved from the GPU using the function gpu best solution. The function copies the
best solutions of the thread blocks back to the host memory. This can occur multiple
times until all partial solutions have been explored by the GPU. Then it iterates over
all the solutions and finds the one with the best cost. If it is better than the overall
best solution it is deep copied and set as the new overall best solution.

VehiclePlan svdarp_gpu_run(void* gpu_partial_solutions,
std::vector<PlanData>& partial_solutions, size_t chunk_size,
size_t block_size, InstanceData& instance)

{
size_t processed_count = 0;
VehiclePlan best_solution;
best_plan.cost = NUMERIC_MAX;
void* gpu_solutions = gpu_allocate_solutions(chunk_size, block_size);
while (processed_count < partial_solutions.size())
{

int remaining = partial_solutions.size() - processed_count;
int copy_size = (remaining < chunk_size) ? remaining : chunk_size;
cudaMemcpy(gpu_partial_solutions,

partial_solutions.data()[processed_count], copy_size);
block_count = ceil(copy_size \ block_size);
svdarp_gpu_kernel<<<block_count, block_size>>>(instance,

gpu_partial_solutions, gpu_solutions, copy_size);
cudaDeviceSynchronize();
best_solution = gpu_best_solution(gpu_solutions, best_solution);
processed_count += copy_size;

}
return best_solution;

}

Algorithm 5.6. GPU Kernel runner

The function gpu allocate solutions allocates memory on the GPU for storing
the best solutions of the thread blocks and the single threads. Pointer to the best
solutions of the thread blocks and single threads can either be passed to the kernel as
an argument or copied to the GPU memory using cudaMemcpyToSymbol.

15

5. Implementation .
The svdarp gpu kernel is the main kernel function launched on the GPU. Each

thread initializes it’s best solution and the master thread also initializes the best thread
block solution. The tid represents the index of the partial solution the thread is
supposed to explore.

__global__ svdarp_gpu_kernel(InstanceData instance,
PlanData *partial_solutions, PlanData* solutions, size_t chunk_size)

{
size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
if (threadIdx.x == 0)
{

gpu_init_block_solution(blockIdx.x);
}
gpu_init_thread_solution(thread_id);

if (thread_id < chunk_size)
{

gpu_backtrack(instance, tid, partial_solutions);
}
__syncthreads();

if (threadIdx.x == 0)
gpu_save_block_solution(blockIdx.x, blockDim.x);

}

Algorithm 5.7. GPU Kernel

The gpu backtrack function is identical to the serial version of the SVDARP al-
gorithm except the best solution found by the thread is compared and saved to the
thread’s best solution instead of the global best solution. All functions that are called
on the GPU should be marked as either global or device . At the end the mas-
ter thread goes through all the complete solutions found by the threads in the block and
chooses the best one as the block’s best solution using the gpu save block solution
function.

16

Chapter 6
Results

In this chapter the performance of the different approaches to parallelization is measured
and compared against the original serial algorithm. Both of the parallel versions of the
backtracking algorithm contain tunable parameters which can influence the performance
significantly. The impact of each parameter on performance is investigated.

The testing instances used for running the experiments are available in a repository
on the faculty’s gitlab1. Most of the testing scenarios are based on the DARP dataset
published in [6]. Slight modifications had to be made to them in order for the datasets
to be usable in SVDARP. The scenarios used in this project are made by taking all user
requests from a single plan from the published solution. This ensures that a feasible
solution exists for given requests.

The experimental results presented in this section were obtained on the RCI cluster2.
The cluster nodes are equipped with Intel Xeon Silver 4110 CPUs and NVIDIA Tesla
V100 GPUs with 32GB of graphic memory. The source code of the project was compiled
using GCC version 10.2.0 and NVCC 11.1. The compiler flags used for compilation were
-O2 -march=native. All times presented here are an average of 3 separate runs with
the exact same settings.

6.1 Methods Comparison

This section compares the performance of the three versions of the backtracking algo-
rithm on instances of varying sizes. Table 6.1 contains the execution times of the serial
algorithm, the CPU parallel algorithm running on 16 threads and the GPU algorithm
using block size of 32. The improvement column is given as the execution time of the
serial algorithm divided by the execution time of the parallel algorithm.

As can be seen, the serial version of the algorithm had a superior performance on
instances of size up to 18. The CPU parallel version with proper parameter tuning
offered the best performance on large instances. On smaller instances it suffers from
an overhead of the OpenMP tasks. The GPU parallel version suffers from an overhead
required to start the GPU kernel on the smaller instances. On the larger instances it
performed better than the serial version, but worse than the CPU parallel version. A
visual comparison of a few select instances is provided as Figure 6.1.

1 https://gitlab.fel.cvut.cz/kulhalu8/cuda-svdarp/-/tree/master/dataset
2 http://rci.cvut.cz

17

6. Results .
Nodes Instance Serial [s] CPU [s] CPU Improvement GPU [s] GPU Improvement

10 pr06.v2 0.001 0.051 0.02 0.142 0.01
10 pr15.v11 0.0 0.043 0.0 0.146 0.0
12 pr13.v5 0.001 0.045 0.02 0.143 0.01
12 pr19.v2 0.029 0.054 0.54 0.152 0.19
14 pr03.v1 0.002 0.033 0.06 0.163 0.01
14 pr17.v2 0.096 0.037 2.59 0.149 0.64
16 pr05.v10 0.182 0.035 5.2 0.322 0.57
16 pr17.v3 0.302 0.063 4.79 0.363 0.83
18 pr04.v3 0.021 0.037 0.57 0.182 0.12
18 pr17.v4 5.428 0.658 8.25 3.637 1.49
20 pr02.v5 2.511 0.27 9.3 1.239 2.03
20 pr12.v1 10.829 0.596 18.17 6.46 1.68
22 pr05.v1 0.921 0.12 7.68 0.654 1.41
22 pr20.v5 16.883 2.009 8.4 7.922 2.13
24 pr08.v3 0.249 0.066 3.77 0.163 1.53
24 pr12.v3 514.084 50.799 10.12 128.137 4.01
26 pr01.v3 5.269 1.37 3.85 3.228 1.63
26 pr20.v2 392.612 79.555 4.94 203.657 1.93
28 pr03.v3 33.237 4.901 6.78 12.302 2.7
28 pr09.v6 49.935 15.603 3.2 21.911 2.28
30 pr05.v6 493.031 62.748 7.86 102.608 4.8
30 pr06.v3 52.633 11.027 4.77 31.351 1.68

Table 6.1. Performance of all versions of the algorithm

Figure 6.1. Performance of all versions of the algorithm on a few select instances

18

. 6.2 Parallel CPU Algorithm Depth

6.2 Parallel CPU Algorithm Depth

The parallel CPU algorithm uses the parameter PARALLEL DEPTH END to determine
where serialization should occur as explained in Algorithm 5.3. The results were ob-
tained on the instance pr12.v3 which contains 22 user nodes (11 user requests). The
measured results are visualized in Figure 6.2 The detailed results are presented in Table
6.2.

Figure 6.2. CPU depth parameter performance

As can be seen in Table 6.2 the depth at which the serialization occurs influences
the performance significantly. The worst performance occured with the parameter set
to 20 where the execution time was 144.5 seconds which is 3.56x faster than the serial
version of the algorithm. The best performance occured with the parameter set to 8
with an execetuion time of 24.7 seconds which is 20.8x faster than the serial version.

6.3 Parallel CPU Algorithm Thread Count

The parallel CPU algorithm is in theory able to utilize as many cores as possible.
However, as shown in [26] the performance of the OpenMP tasks approach usually does
not scale linearly with thread count. The results were obtained on the instance pr12.v3
with PARALLEL DEPTH END set to 12. The measured results are visualized in Figure 6.3
The detailed results are presented in Table 6.3.

19

6. Results .
Serialization depth Run time [s] Improvement

21 138.4 3.71
20 144.5 3.56
19 130.7 3.93
18 110.9 4.64
17 122.1 4.21
16 81.8 6.28
15 61.2 8.4
14 40.3 12.76
13 35.3 14.56
12 38.4 13.39
11 27.3 18.83
10 36.8 13.97
9 31.2 16.48
8 24.7 20.81
7 28.5 18.04
6 29.1 17.67
5 30.1 17.08
4 28.4 18.1

Table 6.2. Performance of the CPU parallel algorithm depending on the depth of serial-
ization

Figure 6.3. CPU thread count performance

20

. 6.4 Parallel GPU Algorithm Block Size

As can be seen in Table 6.3 even with just 4 threads the parallel CPU algorithm was
2.12x faster compared to the serial version. With 16 threads, which is the usual thread
count of the CPUs in modern desktop computers, the parallel CPU algorithm finished
10.12x faster than the serial version.

Thread count Run time [s] Improvement
4 242.2 2.12
8 98.1 5.24
16 50.8 10.12
32 28.1 18.29
48 20.4 25.2
64 17.3 29.72
96 13.5 38.08
128 12.8 40.16

Table 6.3. Performance of the CPU parallel algorithm depending on the number of threads

6.4 Parallel GPU Algorithm Block Size
The block size parameter in Algorithm 5.6 influences the amount of threads in a thread
block on the GPU. The results were obtained on the instance pr12.v3 with max depth
set to 12. The measured results are visualized in Figure 6.4 The detailed results are
presented in Table 6.4.

Figure 6.4. GPU threads per block performance

21

6. Results .
Block Size Run time [s] Improvement

16 128.2 4.01
32 136.8 3.76
64 146.2 3.52
128 179.3 2.87
256 203.4 2.53
512 263.6 1.95

Table 6.4. Performance of the GPU parallel algorithm depending on the number of threads
in a block

6.5 Parallel GPU Sequential Search Depth
The max depth parameter in Algorithm 5.4 influences the degree of parallelism of the
GPU algorithm. A new thread is created for every valid node discovered at max depth.
Picking a too low value for the parameter could lead to an underutilization of the GPU
as not enough threads will be created. On the other hand a value too high could lead
to non-optimal performance due to high memory requirements and therefore a need to
split the workload to multiple kernel runs as described in Algorithm 5.6. The results
were obtained on the instance pr12.v3 with block size set to 32. The measured results
are visualized in Figure 6.5 The detailed results are presented in Table 6.5.

Figure 6.5. GPU sequential depth search performance

22

. 6.5 Parallel GPU Sequential Search Depth

Depth Cutoff Run time [s] Improvement
3 368.3 1.4
4 292.1 1.76
5 196.7 2.61
6 142.5 3.61
7 133.4 3.85
8 128.2 4.01
9 134.4 3.83
10 142.3 3.61
11 131.2 3.92
12 157.9 3.26

Table 6.5. Performance of the GPU parallel algorithm depending on the sequential search
depth

23

Chapter 7
Conclusion

In this thesis, two methods of parallelization of the backtracking algorithm used for
solving the SVDARP were proposed. The parallel GPU version of the algorithm uses
CUDA to offload the computations to the graphic card. The solution was implemented
in the darp-benchmark project and experimentally evaluated on the RCI cluster.

The implementation proved to be very challenging, as the CUDA framework supports
only barebone C++ without the standard library and without the language features of
the current C++20 specification. The inability to perform deep copies from the host to
the GPU device complicated every step of the implementation, as the data types used
in the darp-benchmark project had to be converted to newly proposed flattened data
types. Debugging the code running on the GPU device proved to be very tricky, as the
runtime errors reported by the CUDA framework were usually very generic and finding
the problematic portions of the implemented code was therefore very difficult. It seems
the same sentiment is shared by at least some authors [16].

Although results in the work [16] show that speedups achieved using the CUDA ver-
sion were in some cases comparable to a parallel CPU version run on a 40 thread CPU,
such results were not achieved in this thesis. This could be attributed to the nature
of the SVDARP, as the problems evaluated in the paper [16] are computationaly much
simpler than the SVDARP. The implementation of the SVDARP evaluation function
contains a lot of branching, which could be the cause of the lower performance as the
divergent branches lead to thread serialization on the GPU [27]. This seems to be sup-
ported by the fact that results in Section 6.4 show that the execution time increases
with more threads in a block. Overall though the results of the GPU parallel version
show some performance improvement at least on larger data instances, performing up
to 4 times faster than the serial version on some instances.

The results of the CPU parallel version show that with proper parameter tuning, the
performance of the proposed solution could be up to 20 times faster on large instances
with lower core count and up to 40 times faster with 128 CPU cores allocated.

An option for further research could be exchanging the evaluation scheme used in
the SVDARP algorithm for the recently proposed evaluation scheme published in[28].
The new evaluation scheme was proven to have O(n) time complexity.

24

References

[1] M. Chassaing, C. Duhamel, and P. Lacomme. An ELS-based approach with
dynamic probabilities management in local search for the Dial-A-Ride Prob-
lem. Engineering Applications of Artificial Intelligence. 2016, 48 119–133.
DOI 10.1016/j.engappai.2015.10.002.

[2] Sophie Parragh, Karl Doerner, and Richard Hartl. Variable neighborhood search
for the dial-a-ride problem. Computers & Operations Research. 2010, 37 1129–1138.
DOI 10.1016/j.cor.2009.10.003.

[3] Masmoudi Mohamed Amine, Manar Hosny, Emrah Demir, and Erwin Pesch. Hy-
brid adaptive large neighborhood search algorithm for the mixed fleet heteroge-
neous dial-a-ride problem. Journal of Heuristics. 2020, 26 DOI 10.1007/s10732-
019-09424-x.

[4] Jean-Francois Cordeau, and Gilbert Laporte. The dial-a-ride problem: mod-
els and algorithms. Annals of Operations Research. 2007, 153 (1), 29–46.
DOI 10.1007/s10479-007-0170-8.

[5] Michal Čáp, and Javier Alonso-Mora. Multi-Objective Analysis of Ridesharing in
Automated Mobility-on-Demand. 2018.

[6] Jean-Francois Cordeau, and Gilbert Laporte. A tabu search heuristic for the static
multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological.
2003, 37 (6), 579–594. DOI 10.1016/S0191-2615(02)00045-0.

[7] Yvan Dumas, Jacques Desrosiers, and Francois Soumis. The pickup and delivery
problem with time windows. European Journal of Operational Research. 1991, 54
(1), 7–22. DOI 10.1016/0377-2217(91)90319-Q.

[8] Paolo Toth, and Daniele Vigo. The Vehicle Routing Problem. 2002. Journal Ab-
breviation: SIAM Publication Title: SIAM.

[9] Peter van Beek. Chapter 4 - Backtracking Search Algorithms. Handbook of Con-
straint Programming. 2006.
https://www.sciencedirect.com/science/article/pii/S1574652606800088.

[10] Richard M. Karp, and Yanjun Zhang. Randomized parallel algorithms for back-
track search and branch-and-bound computation. Journal of the ACM. 1993, 40
(3), 765–789. DOI 10.1145/174130.174145.

[11] A. Bruen, and R. Dixon. The n-queens problem. Discrete Mathematics. 1975, 12
(4), 393–395. DOI 10.1016/0012-365X(75)90079-5.

[12] Faisal N. Abu-Khzam, Khuzaima Daudjee, Amer E. Mouawad, and Naomi
Nishimura. On scalable parallel recursive backtracking. Journal of Parallel and
Distributed Computing. 2015, 84 65–75. DOI 10.1016/j.jpdc.2015.07.006.

[13] Kamil Rocki, and Reiji Suda. Parallel Minimax Tree Searching on GPU. In: Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski, eds.
Parallel Processing and Applied Mathematics. Berlin, Heidelberg: Springer, 2010.
449–456. ISBN 978-3-642-14390-8.

25

http://dx.doi.org/10.1016/j.engappai.2015.10.002
http://dx.doi.org/10.1016/j.cor.2009.10.003
http://dx.doi.org/10.1007/s10732-019-09424-x
http://dx.doi.org/10.1007/s10732-019-09424-x
http://dx.doi.org/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1016/S0191-2615(02)00045-0
http://dx.doi.org/10.1016/0377-2217(91)90319-Q
https://www.sciencedirect.com/science/article/pii/S1574652606800088
http://dx.doi.org/10.1145/174130.174145
http://dx.doi.org/10.1016/0012-365X(75)90079-5
http://dx.doi.org/10.1016/j.jpdc.2015.07.006

References .
[14] Tiago Pessoa, Jan Gmys, Nouredine Melab, Francisco de Carvalho-Junior, and

Daniel Tuyttens. A GPU-Based Backtracking Algorithm for Permutation Combi-
natorial Problems. In: 2016. 310–324. ISBN 978-3-319-49582-8.

[15] Faisal N. Abu-Khzam, Mohamad A. Rizk, Deema A. Abdallah, and Nagiza F.
Samatova. The Buffered Work-Pool Approach for Search-Tree Based Optimization
Algorithms. In: Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and
Jerzy Wasniewski, eds. Parallel Processing and Applied Mathematics. Berlin, Hei-
delberg: Springer, 2008. 170–179. ISBN 978-3-540-68111-3.

[16] Tiago Carneiro Pessoa, Jan Gmys, Francisco Heron de Carvalho Júnior,
Nouredine Melab, and Daniel Tuyttens. GPU-accelerated backtracking using
CUDA Dynamic Parallelism. Concurrency and Computation: Practice and Ex-
perience. 2018, 30 (9), e4374. DOI https://doi.org/10.1002/cpe.4374. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4374.

[17] Peter Zhang, Eric Holk, John Matty, Samantha Misurda, Marcin Zalewski,
Jonathan Chu, Scott McMillan, and Andrew Lumsdaine. Dynamic parallelism for
simple and efficient GPU graph algorithms. In: Proceedings of the 5th Workshop
on Irregular Applications: Architectures and Algorithms. New York, NY, USA:
Association for Computing Machinery, 2015. 1–4. ISBN 978-1-4503-4001-4.
https://doi.org/10.1145/2833179.2833189.

[18] Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. Using Dynamic
Parallelism for Fine-Grained, Irregular Workloads: A Case Study of the N-Queens
Problem. In: 2015 Third International Symposium on Computing and Networking
(CANDAR). 2015. 404–407. ISSN: 2379-1896.

[19] Jacques Desrosiers, Yvan Dumas, and F. Soumis. A Dynamic Programming
Solution of the Large-Scale Single-Vehicle Dial-A-Ride Problem with Time Win-
dows. American Journal of Mathematical and Management Sciences. 1986, 6
DOI 10.1080/01966324.1986.10737198.

[20] Harilaos N. Psaraftis. Analysis of an O(N2) heuristic for the single vehicle many-
to-many Euclidean dial-a-ride problem. Transportation Research Part B: Method-
ological. 1983, 17 (2), 133–145. DOI 10.1016/0191-2615(83)90041-3.

[21] Shen Lin. Computer solutions of the traveling salesman problem. The Bell
System Technical Journal. 1965, 44 (10), 2245–2269. DOI 10.1002/j.1538-
7305.1965.tb04146.x. Conference Name: The Bell System Technical Journal.

[22] S. Lin, and B. W. Kernighan. An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research. 1973, 21 (2), 498–516. Publisher: IN-
FORMS.

[23] Lauri Häme. An adaptive insertion algorithm for the single-vehicle dial-a-ride prob-
lem with narrow time windows. European Journal of Operational Research. 2011,
209 (1), 11–22. DOI 10.1016/j.ejor.2010.08.021.

[24] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU graph
traversal. ACM SIGPLAN Notices. 2012, 47 (8), 117–128. DOI 10.1145/2370036.2145832.

[25] Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The De-
sign of OpenMP Tasks. IEEE Transactions on Parallel and Distributed Systems.
2009, 20 (3), 404–418. DOI 10.1109/TPDS.2008.105. Conference Name: IEEE
Transactions on Parallel and Distributed Systems.

26

http://dx.doi.org/https://doi.org/10.1002/cpe.4374
https://doi.org/10.1145/2833179.2833189
http://dx.doi.org/10.1080/01966324.1986.10737198
http://dx.doi.org/10.1016/0191-2615(83)90041-3
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
http://dx.doi.org/10.1016/j.ejor.2010.08.021
http://dx.doi.org/10.1145/2370036.2145832
http://dx.doi.org/10.1109/TPDS.2008.105

. .
[26] Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang,

and Barbara Chapman. High performance computing using MPI and OpenMP
on multi-core parallel systems. Parallel Computing. 2011, 37 (9), 562–575.
DOI 10.1016/j.parco.2011.02.002.

[27] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hard-
wick, Scott Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Paral-
lel Computing Experiences with CUDA. IEEE Micro. 2008, 28 (4), 13–27.
DOI 10.1109/MM.2008.57. Conference Name: IEEE Micro.

[28] Murat Firat, and Gerhard J. Woeginger. Analysis of the dial-a-ride problem of
Hunsaker and Savelsbergh. Operations Research Letters. 2011, 39 (1), 32–35.
DOI 10.1016/j.orl.2010.11.004.

27

http://dx.doi.org/10.1016/j.parco.2011.02.002
http://dx.doi.org/10.1109/MM.2008.57
http://dx.doi.org/10.1016/j.orl.2010.11.004

Appendix A
Thesis Specification

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474407Osobní číslo:LukášJméno:KulhánekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Paralelizace backtracking algoritmu pro Single-vehicle DARP s pomocí grafické karty

Název bakalářské práce anglicky:

GPU Parallelization of the Backtracking Algorithm for Single-vehicle DARP

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] T. Carneiro Pessoa, J. Gmys, F. H. de C. Júnior, N. Melab, and D. Tuyttens, ‘GPU-
accelerated backtracking using CUDA Dynamic Parallelism’, Concurrency and
Computation: Practice and Experience, vol. 30, no. 9, p. e4374, 2018, doi:
10.1002/cpe.4374.
[2] R. Finkel and U. Manber, ‘DIB - a distributed implementation of backtracking’, ACM
Trans. Program. Lang. Syst., vol. 9, no. 2, pp. 235–256, Mar. 1987, doi:
10.1145/22719.24067.
[3] V. N. Rao and V. Kumar, ‘On the efficiency of parallel backtracking’, IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 4, pp. 427–437, Apr.
1993, doi: 10.1109/71.219757.
[4] E. Speckenmeyer, B. Monien, and O. Vornberger, ‘Superlinear speedup for parallel
backtracking’, in Supercomputing, Berlin, Heidelberg, 1988, pp. 985–993, doi:
10.1007/3-540-18991-2_58.
[5] J. Jenkins, I. Arkatkar, J. D. Owens, A. Choudhary, and N. F. Samatova, “Lessons
Learned from Exploring the Backtracking Paradigm on the GPU,” in Euro-Par 2011
Parallel Processing, Berlin, Heidelberg, 2011, pp. 425–437, doi: 10.1007/978-3-642-
23397-5_42.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. David Fiedler, centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 04.03.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Fiedler

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

29

A Thesis Specification .

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

30

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Problem Specification
	State Of The Art
	Parallel Indexed Search Tree Algorithm
	GPU Parallel Tree Searching
	GPU-based Integer-Vector-Matrix (IVM) Algorithm
	Buffered Workpool
	GPU Dynamic Parallelism
	Methods for Solving SVDARP

	Proposed Solution
	Serial Algorithm
	CPU Parallel Algorithm
	GPU Parallel Algorithm

	Implementation
	Data Representation
	Serial Algorithm
	CPU Parallel Algorithm
	GPU Parallel Algorithm

	Results
	Methods Comparison
	Parallel CPU Algorithm Depth
	Parallel CPU Algorithm Thread Count
	Parallel GPU Algorithm Block Size
	Parallel GPU Sequential Search Depth

	Conclusion
	References
	Thesis Specification

