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Abstract

In recent years, many methods for hierar-
chical image classi�cation have been de-
veloped showing great promises in the au-
tomation of histology image analysis. In
this thesis, we implemented some existing
methods, mainly the Quadtree approach
and the Recurrent visual attention model,
for the detection of metastasis in sentinel
lymph nodes and compared their perfor-
mance according to various criteria. We
propose modi�cations to the existing al-
gorithms which improve their ability to
correctly distinguish between tumorous
and normal tissue.

We also show and utilize di�erent tools
and techniques for the preprocessing of
whole slide images, namely the patch ex-
traction of the Clustering-constrained at-
tention multiple instance learning method
or the Quadtree patch extraction.

The implemented methods have been
compared between each other and their
references by providing them with test
data from the CAMELYON16 challenge.
The results were satisfactory for the clas-
si�cation of tiles in whole slide images,
with accuracy converging at 87% for the
Recurrent visual attention model and 92%
for the Quadtree method reaching refer-
ence accuracy and sometimes surpassing
it. On the other hand, best slide clas-
si�cation from our implementations was
around 81% from the Quadtree method
and accuracy of the tested CLAM method
was around 99% surpassing all other mod-
els.
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cancer, hierarchical classi�cation, neural
network, pathology
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Abstrakt

V posledních letech bylo vyvinuto
mnoho metod pro hierarchickou klasi�-
kaci obrazu, které vykazují uplatn¥ní v ob-
lasti automatizace analýzy histologických
obraz·. V této práci jsme implemento-
vali n¥které existující metody, p°edev²ím
Quadtree a Recurrent visual attention mo-
del, pro detekci metastáz v sentinelových
lymfatických uzlinách a porovnali jejich
výkonnost na základ¥ r·zných kritérií. Na-
vrhujeme úpravy stávajících algoritm·,
které zlep²ují jejich schopnost správn¥ roz-
li²it mezi nádorovou a normální tkání.

Ukazujeme a vyuºíváme také r·zné
nástroje a techniky pro p°edzpracování
snímk· celých preparát·, konkrétn¥ ex-
trakci vý°ezk· Clustering-constrained at-
tention multiple instance learning meto-
dou nebo metodou Quadtree.

Implementované metody byly porov-
nány mezi sebou a svými referencemi tak,
ºe jim byla poskytnuta testovací data ze
sout¥ºe CAMELYON16. Výsledky byly
uspokojivé pro klasi�kaci dlaºdic na sním-
cích celých preparát·, p°i£emº p°esnost
konvergovala k 87% u Recurrent visual
attention modelu a u metody Quadtree k
92% kde dosahovala referen£ní p°esnosti
a n¥kdy ji p°ekonávala. Na druhou stranu
nejlep²í klasi�kace snímk· celých prepa-
rát· z na²ich implementací byla p°ibliºn¥
81% u metody Quadtree a p°esnost testo-
vané metody CLAM byla p°ibliºn¥ 99%
která p°ekonala v²echny ostatní modely.

Klí£ová slova: strojové u£ení, rakovina
prsu, hierarchická klasi�kace, neuronové

sít¥, patologie

P°eklad názvu: Metody pro
hierarchickou klasi�kaci
histopatologických obraz·
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Chapter 1

Introduction

Breast cancer is one of the main causes of cancer worldwide. Early diagnostics
signi�cantly increase the chances of correct treatment and survival.

In the process of histology image analysis for cancer diagnosis, pathologist
standardly observes the tissue, its distribution and regularities in cell shapes.
Because the tissue slides, called WSIs (Whole Slide Images), are so complex
and large in scale (often over 2GB), correct classi�cation of tissue whether it
is benign or malignant is often very time-consuming. Fortunately computer-
aided analysis has become a rapidly expanding �eld within the past decade.
Computerised scans of stained tissue slides are used by various algorithms to
automate tissue classi�cation and aid pathologists.

1.1 Motivation

In the recent past, methods for hierarchical image classi�cation have become
quite popular with researchers from di�erent countries tackling on the problem
of WSI image classi�cation using various resources and approaches. In practice,
these are valuable to automate classi�cation for example of cancer metastasis
in lymph nodes of breasts [3] or colon cancer [15]

Most approaches[8][14] try to solve this problem by applying real world
practice. WSIs have various staining methods applied to them, most com-
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1. Introduction .....................................
monly the usage of haematoxylin and eosin (H&E) staining can be observed.
This gives the observer, whether it is a human or a machine, information
about the most discriminate regions of a tissue slide.

Same as a human analyst, computers have access to di�erent parts of
the images at di�erent scales and resolutions. This image decomposition
is called the multi-resolution pyramid [11]. It lets researchers use tools
for manipulation with these "pyramids" and write algorithms for automatic
passing through di�erent levels of magni�cation and extract information used
for image classi�cation.

Many such methods have been developed in recent years, with a di�erence in
performances between each one. Comparison between such methods is crucial,
since a researcher or a medical expert could be in search of automatising
tissue classi�cation. Having so many options online at our disposal, �nding
the optimal approach and doing its re-implementation could often be time-
consuming.

1.2 Goals

The main focus of this work is to compare di�erent methods for hierarchical
image classi�cation, preferably on the same datasets.

In the following chapters some methods for hierarchical image classi�cation
will be introduced. Some focus on tissue segmentation to extract only the most
informative regions, others try to develop state-of-art deep neural networks
which aggregate large quantities of extracted patches to correctly classify
given images.

While some methods may be already implemented and used for demon-
stration [27], others [15][3] will be implemented according to the architecture
given to us by the papers. Some articles may not be thorough in the archi-
tecture speci�cations. In these cases, we will try adding modi�cations, which
have improved other models in the past. In the �nal chapters referenced and
modi�ed versions will be discussed for their ability to correctly classify tissue
images and how they are able to ful�ll their proposed functions.
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Chapter 2

Background

2.1 Introduction

Before we begin explaining each method, we �rst need to get an understanding
about tools we will be working with while constructing and testing di�erent
approaches. Better understanding of terms explained in this chapter will help
us deal with the task.

2.2 Whole slide imaging

Also commonly referred to as "virtual" microscopy [19] involves the scanning
of glass slides to produce digital slides. These systems o�er pathologists an
alternate mechanism to menage and interpret information.

The virtualization is commonly achieved by capturing many small high
resolution image tiles and then stitching them together to create a full image
for histology analysis. The sequential parts [21] which make the process of
digitisation are: image acquisition, storage, editing and display of images.

. Scanners
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2. Background.....................................
Whole slide image scanners are specialized devices that are dedicated to
acquiring high resolution images of entire slides. These slide scanners
consist of 4 main components: light source, slide stage, objective lenses
and a high resolution camera for image capture. Whole slide scanners
capture images of tissue tile by tile and then "stitch" them to create a
digital image of the entire slide.. WSI

The slide is standardly captured at high resolutions. Common being x20
or x40 magni�cation. The resulting structure of the WSI is then called
a multi-resolution pyramid.

Figure 2.1: Multi-resolution pyramid showing the same WSI image on di�erent
levels of magni�cation taken from the CAMELYON16 challenge [2]

Resolution of a WSI is typically expressed in� m per pixel. A typical
whole slide image scanned at x40 magni�cation has a resolution of about
0.25 � m per pixel with a 24-bit color depth [21].. Storage

Acquiring a decently sized dataset leads to huge storage requirements.
Since compression of scanned images leads to loss of information and
resolution of the image, WSIs are loaded into lossless [25] image formats
to preserve data. Lossy data format would be something like JPEG
since it compresses the �les to a smaller size, but at the cost of data loss,
whereas lossless data-formats preserve the information at the cost of a
large size. The most common formats used in Medical imaging being .tif
or .svs.

2.3 Image tools

Working with gigapixel images is a challenging if not impossible task for
standard tools since these are typically designed for images that can be
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