
Instructions

The main goal is to develop an application that will allow users to analyze chosen cryptocurrencies

within ClueMaker.

Analyze and describe the structure of cryptocurrency transactions and describe the ways to retrieve

information about the transactions in chosen cryptocurrencies (Bitcoin and Ethereum).

Design and implement a connector for a chosen graph database, which will be used for storing the

data about the transactions. Propose support tools to track the flow of cryptocurrencies, determine if

the coins do not come from stolen wallets, etc. Describe possible optimizations to make working with

tools faster and easier (if the wallet is empty, it is possible to remove it and connect the transactions

directly, etc).

Electronically approved by Ing. Michal Valenta, Ph.D. on 12 October 2021 in Prague.

Assignment of master’s thesis

Title: Cryptocurrency analysis support for ClueMaker

Student: Bc. Matěj Adamec

Supervisor: Ing. Marek Sušický

Study program: Informatics

Branch / specialization: Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Master’s thesis

Cryptocurrency analysis support for
ClueMaker

Bc. Matěj Adamec

Department of Software Engineering
Supervisor: Ing. Marek Sušický

May 5, 2022

Acknowledgements

My thanks belongs to the supervisor Ing. Marek Sušický, who provided me
with valuable insights and right questions. My thanks also go to the Profinit
EU s.r.o. company that provided infrastructure to develop the application.
Lastly, I would like to thank to my family, friends and those who provided
moral support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Matěj Adamec. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Adamec, Matěj. Cryptocurrency analysis support for ClueMaker. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2022.

Abstrakt

Tato diplomová práce se věnuje analýze kryptoměn, konkrétně Bitcoin a Ethe-
reum. Zdroje dat o transakćıch na daných blockchainech jsou popsány a jsou
navrženy a implementovány zp̊usoby pro extrakci dat a uložeńı v grafové da-
tabázi JanusGraph. Následně práce popusije implementaci konektoru pro apli-
kaci ClueMaker, vyvýjenou firmou Profinit EU s.r.o., který umožńı prohĺıžeńı
a analýzu dat.

Kĺıčová slova ClueMaker, kryptoměny, transakce, blockchain, bitcoin, ethe-
reum.

Abstract

This master thesis deals with the analysis of Bitcoin and Ethereum cryp-
tocurrencies. The multiple data sources are analyzed, and an application that
extracts them and stores the acquired structures in a JanusGraph database
is designed and implemented. As part of the thesis, the application called
ClueMaker, from company Profinit EU s.r.o. is extended for connector, en-
abling communication with JanusGraph database and thus allowing the users
to explore the stored nodes and edges.

vii

Keywords ClueMaker, cryptocurrencies, transactions, blockchain, bitcoin,
ethereum

viii

Contents

Introduction 1
Motivation and objectives . 1

1 Analysis 3
1.1 Blockchain and cryptocurrencies 3

1.1.1 Blockchain structure . 5
1.1.2 Wallet . 6
1.1.3 Transaction . 7
1.1.4 Address . 7

1.2 Mining algorithms . 8
1.2.1 Proof of Work . 8
1.2.2 Proof of Stake . 9
1.2.3 Proof of storage . 9
1.2.4 Proof of Authority . 9

1.3 Bitcoin . 10
1.3.1 Transaction . 10
1.3.2 Script language . 12
1.3.3 SegWit . 16
1.3.4 The Bitcoin Lightning Network 17
1.3.5 Address . 18

1.4 Ethereum . 21
1.4.1 Ether . 22
1.4.2 Accounts . 22
1.4.3 Transactions . 23
1.4.4 Gas . 24
1.4.5 Smart Contracts . 25
1.4.6 Ethereum Virtual Machine 26
1.4.7 Decentralized Applications 29

1.5 Data sources . 29

ix

1.5.1 Commercial API . 29
1.5.2 Clients . 31

1.5.2.1 Bitcoin Core 31
1.5.2.2 Libbitcoin . 31
1.5.2.3 Geth . 32
1.5.2.4 OpenEthereum 32

1.5.3 Public websites . 33
1.5.4 JSON-RPC . 35
1.5.5 IPC . 36

1.6 ClueMaker . 36
1.7 Similar projects and solutions 37
1.8 Comparison of databases . 40

1.8.1 Relational databases . 40
1.8.2 Key-value databases . 41
1.8.3 Document databases . 41
1.8.4 Graph databases . 41

2 Design 43
2.1 Data . 43

2.1.1 Bitcoin client API . 43
2.1.2 Geth client API . 49

2.2 Database schema . 52
2.2.1 Nodes . 53
2.2.2 Edges . 58
2.2.3 Indexes . 59
2.2.4 Relational Database schema 61

3 Implementation 65
3.1 Janusgraph . 65

3.1.1 Storage backend . 65
3.1.2 Indexing backend . 67
3.1.3 Schema . 67
3.1.4 Gremlin . 68
3.1.5 Configuration . 69

3.2 Cassandra . 70
3.3 Bitcoin Core . 71
3.4 Geth . 72
3.5 ChainAnalyzer . 72

3.5.1 BitcoinClient . 73
3.5.2 EthereumClient . 74
3.5.3 DatabaseClient . 74
3.5.4 BlockChainImporter . 78

3.6 Scrapers and data extractors 78
3.7 ClueMaker . 88

x

3.7.1 ClueMaker Application 88
3.7.2 Configurator . 95
3.7.3 Results . 98

3.8 Testing . 98
3.8.1 Unit Tests . 99
3.8.2 Test using public explorer 99

4 Optimizations and support tools 103
4.1 Index backend . 103
4.2 Address classification . 103
4.3 Fraud detection . 103

5 Attachments 105

Conclusion 125

Bibliography 127

6 Contents of SD card 133

xi

List of Figures

1.1 Bitcoin structure illustration . 11
1.2 Illustration of execution of Pay-to-PubkeyHash script 14
1.3 Process of creating P2PKH address from the public key[21] 19
1.4 Process of creating P2PKH locking script from address[21] 19
1.5 Process of creating P2SH locking script from address[21] 20
1.6 Process of creating P2SH locking script from address[21] 20
1.7 Process of creating P2WPKH address[22] 21
1.8 Infura.io dashboard[31] . 30
1.9 Ethereum client diversity chart[34] 33
1.10 Chainalysis - Reactor[44] . 38
1.11 Coinfirm - AML Platform Visualizer[46] 39
1.12 Elliptic visualizer[47] . 40

2.1 Data model response getblock . 45
2.2 Data model response eth getBlockByNumber 52
2.3 Schema of nodes for Bitcoin network 53
2.4 Schema of nodes for Ethereum network 54
2.5 Merge of the btcTransactionOutput and btcTranasctionInput . . . 56
2.6 Database schema for PostgreSQL database 62

3.1 Architecture schema . 66
3.2 Service architecture . 73
3.3 Scrapers and data extractors architecture schema 80

5.1 Etherscan.io Block #55875 . 106
5.2 Etherscan.io Block #55875 Transaction list 107
5.3 Etherscan.io Block #55875 Transaction #1 108
5.4 Etherscan.io Block #55875 Transaction #1 109
5.5 ClueMaker Ethereum Block #55875 110
5.6 ClueMaker Ethereum Block #55875 Transaction #1 111
5.7 ClueMaker Ethereum Block #55875 Transaction #1 112

xiii

5.8 ClueMaker Ethereum Block #55875 Sender 113
5.9 Explorer Bitcoin Block #89182 114
5.10 Explorer Bitcoin Block #89182 Transactions 115
5.11 Explorer Bitcoin Block #89182 Transactions detail 116
5.12 Explorer Bitcoin Block #89182 Transactions Input 117
5.13 Explorer Bitcoin Block #89182 Transaction Output 118
5.14 ClueMaker Bitcoin Block #89182 119
5.15 ClueMaker Bitcoin Block #89182 Transaction 120
5.16 ClueMaker Bitcoin Block #89182 incoming Transfer 121
5.17 ClueMaker Bitcoin Block #89182 outgoing Transfer 122
5.18 ClueMaker Configurator JanusEditorPanel 123
5.19 ClueMaker Configurator JanusQueryEditorPanel 124

xiv

List of Tables

1.1 examples of opcodes and their gas cost [23] 27

3.1 examples of opcodes and their gas cost 81

xv

Introduction

Motivation and objectives

In 2008 an anonymous writer named Satoshi Nakamoto published his white pa-
per titled ”Bitcoin: Peer-to-Peer Electronic Cash System”. This thesis started
the era of blockchains and cryptocurrencies.

However, the idea of anonymous e-cash protocols was introduced already
in the 1980s and 1990s, but they relied on a centralized intermediary. After
that, in 1998, the project b-money became the first proposal to introduce
the idea of creating money through solving computational puzzles as well
as decentralized consensus without details of implementation. In 2005, Hal
Finney introduced a concept of ”reusable proofs of work”, a system which
uses ideas from b-money together with Adam Back’s computationally difficult
Hashcash puzzles to create a concept for a cryptocurrency, but once again fell
short of the ideal by relying on trusted computing as a backend. Then Satoshi
Nakamoto came up with a combination of the ideas on managing ownership,
consensus algorithm and implementation of a trusted computing network[23].

Since then, almost everybody could hear about this kind of technology
and many companies and even states have started to consider or integrate
blockchain into their businesses. The more widespread and used technology
is, the more analytical tools and applications are needed.

Cryptocurrencies like Bitcoin and Ethereum are the most famous repre-
sentatives of blockchain technologies. Today, millions of people use them to
invest, pay for goods, or power their applications. And companies, espe-
cially in the financial sector, look for tools that would help them understand,
analyze and monitor the transactions and movement of the funds in these
blockchains. Such analysis can be used in fraud detection, user scoring, moni-
toring of criminal activity, understanding the market and finding new business
opportunities.

For software companies like Profinit, it is an excellent opportunity to create
new products that will help their partners with their needs or attract new

1

Introduction

clients. Profinit develops a product called ClueMaker that offers powerful
data analytics with relation visualization and is already being used by banks,
journalists, and fraud investigators. And many have already shown interest
in cryptocurrency-related products. Its features are ideal for the visualization
of relations and flow in cryptocurrencies.

This work aims to analyze and describe the structure of Bitcoin and
Ethereum cryptocurrencies and create an application that will be able to re-
trieve and store the blockchain data structures in the graph database. Stored
data will be then possible to visualize and analyze via ClueMaker.

2

Chapter 1
Analysis

In this part of the thesis, I will introduce the basics of blockchain technology,
Bitcoin and Ethereum, with the goal of introducing the topic and associated
fields. Then I will analyze options for data retrieval and data storing. And at
the end of the chapter, I will introduce the ClueMaker tool that I will, later
in the thesis, extend by a connector for a chosen database.

1.1 Blockchain and cryptocurrencies

In the book by Chris Dannen the blockchain is described as follows:
In the abstract, open-source blockchain networks such as Ethereum and

Bitcoin are economic systems in software, complete with account management
and a native unit of exchange to pass between accounts. People call these
native units of exchange coins, tokens, or cryptocurrencies, but they are no
different from tokens in any other system: they are a form of money (or script)
that is used only within that system.

Or as said in the book ”Blockchain Technology Applications and Challenges”[1],
Blockchain Technology is a distributed, decentralized, peer-to-peer network to
store network transactions without any third party. This solution allows the
nodes to verify and manage the network. The cryptographic hashing mecha-
nism used in blockchain lets the data in blocks be tamper-proof and secure.

• Ledger:
An open, append-only ledger is used by blockchain to record the trans-
action history. The data in this ledger cannot be modified, unlike the
traditional databases.

• Secure:
Blocks in blockchain are cryptographically linked, and that is why the
data can not be tampered with, thereby assuring the security of infor-
mation over the blockchain.

3

1. Analysis

• Shared:
The public ledger can be shared among the network users, assuring
transparency among the users.

• Distributed:
The blockchain is distributed among the network users, which makes
it robust against attacks. By increasing the number of nodes in the
network, the security of the information on the blockchain is high.

Blockchain can be permissioned or permissionless. In the permissioned
blockchain, only authorized users can create and publish new blocks. The
project can be open or closed sourced. The read and write access can be
limited. They are not necessarily using consensus methods to avoid malicious
users publishing blocks. There are no rewards for publishing new blocks.

On the other hand, permissionless blockchains allow everyone to publish
new blocks. The platform is open-source, and anyone can download it. There
is no restriction on reading or adding new transactions. Users need to adapt
the consensus mechanism. For publishing new blocks, users are rewarded [2].

The blockchain is a combination of three technologies. These three com-
ponents are Peer-to-peer networking, asymmetric cryptography and crypto-
graphic hashing.

Peer-to-peer networking means a group of computers, such as a torrent
network or blockchain network, can communicate among themselves without
relying on a single central authority and, therefore, not presenting a single
point of failure. There are also other advantages like improved network effi-
ciency, privacy, and scalability. Such communication brings many issues. For
example, slower speed in the context of the whole network (sending data from
one node to all other nodes in the network) and related to the speed is an
issue with synchronization. As the nodes in the network are scattered all over
the world, the protocol needs to ensure that the majority of the nodes will
operate with identical data.

The second technology is asymmetric cryptography. The way for the com-
puters to send a message is encrypted for specific recipients such that anyone
can verify the sender’s authenticity, but only intended recipients can read
the message contents. In Bitcoin and Ethereum, asymmetric cryptography
is used to create a set of credentials for the user’s account, to ensure that
only the owner can transfer the coins or sign the transactions. In Bitcoin and
Ethereum, the Elliptic Curve Digital Signature Algorithm (ECDSA) is used
to create public keys from the private key.

The third component of blockchain is cryptographic hashing. Hashing is
a cryptographic technique that simply converts data of any size into o unique
fixed-size output - a fingerprint. Input can be anything from text to images,
and the result is a fixed-size alphanumeric string. The hashing functions are
uni-directional, meaning it’s hard (almost impossible) to find input based on

4

1.1. Blockchain and cryptocurrencies

output. This property is called pre-image resistant. Hashing functions are
also second pre-image resistant, meaning that knowing one input for some
output does not help find different inputs that would result in the same result
as the first one. It is highly infeasible to find two inputs generating identical
hash output. As the hash is a small and unique fingerprint, it is easy to
compare large datasets and a secure way to verify that data has not been
altered. In a blockchain, hashing assures the users that transmitted data
have not changed. Most blockchain implementations use SHA (Secure Hash
Algorithm) that generates an output of size 256 bits.

Together, these three technologies can mimic a virtual machine with a
database that is decentralized and stored in the nodes of the network[1].

1.1.1 Blockchain structure

Cryptocurrencies share common structures that together create the blockchain.
Those structures are block, transaction, address, and wallet. The implemen-
tation and data structures can be different across the blockchains.

Blocks are structures that represent a collection of transactions, and when
linked, they create a ledger. Each block contains transactions and the previous
block’s hash and can’t be changed without modifying all blocks published after
it. That is why the blockchain is secure.

The Block header consists of 6 parts that are needed. Version, previous
block hash, merkle root, timestamp, difficulty target and nonce. Version repre-
sents the version number to track software or protocol upgrades. The previous
block references the hash of the previous block in the chain. Merkle root is the
hash of the root of the merkle tree consisting of transactions in the block. A
timestamp records the approximate creation time of the block. Difficulty, size
or weight is given by the Proof of Work algorithm for the block. A nonce is
the last part that is needed. Miners are trying to create the blocks by looking
for a nonce value to generate a hash that satisfies specific requirements after
hashing with all six parts[2].

In simple terms, a transaction tells the network that the coins’ owner
has authorized the transfer of some of those coins to another owner. The
new owner can now spend these coins by creating another transaction that
authorizes transfer to another owner, and so on, in a chain of ownership.

An address is a unique identifier that serves as a virtual location where the
cryptocurrency can be sent. People can send the cryptocurrency to addresses
similar to how fiat currencies can often be sent to email addresses or bank
accounts. However, the Bitcoin address is not intended to be permanent but
just a token for use in a single transaction. Unlike a digital wallet, a Bitcoin
address cannot hold a balance[3].

5

1. Analysis

1.1.2 Wallet

Wallets are vital components in blockchain and cryptocurrencies. From the
name ”Wallet”, someone could think that it is some storage where all owned
coins are stored. But it is not. Wallets are more like keychains.

Now I will describe the basics of wallets and their kinds. A blockchain
wallet is a storage (structured files, small database) containing private and
public key pairs. Private keys are the most important because they are used
to sign new transactions, and without them, users can’t operate with their
assets inside the network. The keys are mainly generated randomly. However,
it is possible to choose one, but it is not recommended and secure as it can be
guessed more easily [4].

Public keys are generated from private keys that can be used as addresses
or transformed into addresses. They are safe to be known by others. Each
blockchain has its way of creating public keys, using them and creating ad-
dresses or other objects.

Keys example:

• Private Key:
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

• Public key:
1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x

Important to note for my use case is that the wallets don’t have identifiers.
At least not public ones, and they are not recorded inside the blockchain. That
means the data about wallets can be retrieved from different sources, which
only assume the addresses or public keys are part of one wallet. In this thesis,
we will operate with wallets, and we will assume that one user has only one
wallet and all his keys are inside.

Blockchain wallets can be divided by multiple parameters. Most of the
time, crypto wallets are divided into two groups. Hot and cold wallets.

Most users use hot wallets. They are wallets connected to the internet and
generally less secure. The pairs of keys are stored in the cloud. On the other
hand, hot wallets are more user friendly and accessible and do not require a
user to own specialized equipment.

The second type of wallet is a cold wallet. Cold wallets are designed
for existing in offline mode. They are mainly used to store keys to larger
amounts of funds that won’t be moved frequently. As they are not relying on
a connection to the internet, they are mostly more secure than hot wallets.

It is possible to use both types of wallets to use their advantages. Hot
and cold wallets can be divided into several more categories, for example,
software, hardware, mobile, web, desktop, paper and more types of crypto
wallets. Wallets connected to the network usually calculate the number of

6

1.1. Blockchain and cryptocurrencies

digital assets owned by the user, provide an interface to work with the assets
and easily trade them with others [6].

1.1.3 Transaction

The basic understanding of transactions is that transactions are interactions
between two entities. They allow users to transmit their rights to information
to another user publicly over the network. In cryptocurrencies, they serve
as a mechanism to transfer funds between two users. Or simply transfer the
blockchain state from one to another.

Transaction data generally include information about the transaction in-
put, output and sender’s signature. When the transaction is published, the
signature is checked, and miners validate if the sender has the right to op-
erate with the input. Transaction in a blockchain does not have to transfer
coins, but it can transfer data. It can publish, process and store data in the
blockchain. Blockchain technology has many use cases that transactions can
implement.

Transferring rights to operate with some information using transactions
brings many problems that have to be dealt with by the blockchain. The
main problem is double-spending. The situation where the owner of some
assets tries to spend them multiple times. In Bitcoin and Ethereum, the
issue is mitigated by the mining mechanism that ensures the validity of the
transactions in the block using the Proof of Work mechanism[1].

1.1.4 Address

Addresses in blockchains are mostly short strings composed of alphanumeric
characters. They provide transaction points for the sender and receiver. They
are created from a public key using a hashing function. Each blockchain has
its parameters and requirements for the addresses and can work with addresses
differently.

Address example:

• Bitcoin:
1F1xcRt8H8Wa623KqmkEontwAAVqDSAWCV

• Ethereum:
1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x

Not all transactions have to be made from one address to another. In
Bitcoin, it is possible to create transactions for anybody who provides the
correct input data to open the transaction. In Ethereum, it is possible to
create transactions to another smart contract. So the addresses are created
for users to be able to easily describe where the transaction needs to be sent

7

1. Analysis

and with a small chance of making mistakes when entering it. And that is the
reason why the addresses are mostly short.

1.2 Mining algorithms

Mining algorithms solve two issues with distributed networks. First is the
issue of votes in the blockchain, as the network is distributed, and nodes need
to consent to the validity of the chain and newly created blocks. The second
issue is minting new coins and releasing them into the chain.

1.2.1 Proof of Work

Satoshi Nakamoto, in his white paper, introduced an algorithm called Proof-
of-Work that solves both problems. The distribution of votes is solved with
a one-CPU-one-vote system. This name can be inaccurate as the machine
running the node can have multiple CPUs and still will be counted as one
vote[11].

But the main idea is that if the majority of CPU power is controlled by
honest nodes, the chain will grow, and attackers won’t be able to modify
it for their needs. In the white paper is shown that the probability of a
slower attacker catching up diminished exponentially as subsequent blocks
were added. Also, with an increasing number of miners, the chain is more
secure as the attackers need to control over 50 % of running nodes. That is
why is attack is called The 51% attack.

To create a new block in the blockchain, the miner needs to scan for values
that, when hashed, the hash starts with a number of zero bits. In the Bitcoin
network, the miners are looking for the value of nonce, which is part of the
block. The mining process requires solving the inversion of a cryptographic
function, and that can be achieved only by brute force. Meaning that miners
try different values for the nonce attribute and hash the blocks and check
the result. If the hash value is less than the target (begins with the correct
number of zeros), the block is sent into the network, and other nodes verify if
the newly added block is correct. Right now, miners have to make on average
269 tries before a valid nonce is found[4].

The probability of the miner being successful depends on the ratio of its
own computational power and the total computational power of all miners in
the network. However, the mining process based on proof-of-work is energy
and hardware intensive. And as the cryptocurrencies using the Proof of Work
mechanism grows in popularity and the energy consumption grows, alternative
consensus mechanisms are emerging.

Proof of Work is currently used in Bitcoin, Ethereum and many more
cryptocurrencies and is the most common among the blockchains.

8

1.2. Mining algorithms

1.2.2 Proof of Stake

The Proof of Stake mechanism links block generation to the proof of ownership
of a certain amount of digital assets in the blockchain. The ”miners” are more
validators than miners. Each user who decides to stake a certain amount (or
greater) of coins will become a validator. With each new block, the validators
are randomly selected to mine or validate the newly generated block, and after
a specific number of validators verify the validity of the block, it is closed and
added to the ledger. The probability of being chosen to validate the block is
related to the amount of staked assets[4].

For example, the proposed mechanism for Ethereum will require 32 ethereum
coins to be staked by a user to become a validator. And each block will re-
quire at least 128 users to approve certain parts of the block. If a validator
approves adding a block with inaccurate information, they lose some of their
staked assets as a penalty.

The system stands on the idea that users with a large share of assets in
the network are more likely to be trustworthy. This mechanism is considered
to be more energy-efficient. The most popular representatives using Proof of
Stake are blockchains Solana, Cardano and Algorand[7].

1.2.3 Proof of storage

The most popular consensus mechanisms are Proof of Stake and Work. But
there are also different mechanisms that try to utilize different valuable com-
modities than processing power and staked assets. An example of such a
mechanism is Proof of Storage (also as proof of capacity or proof of space).
Here the resources are not CPU cycles but the amount of actual non-volatile
memory space the miner must use to compute the proof. The miners are moti-
vated to devote hard drive capacity as those who dedicate more disk space have
a proportionally higher chance to mine a new block and obtain the reward.
During mining, the dedicated space is used to solve a presented challenge.

The most popular tokens are Filecoin, Arwaeve and BitTorrent-New[9].

1.2.4 Proof of Authority

The last consensus mechanism I want to mention is Proof of Authority. It
is suitable for private networks where preselected real authorities or entities
are allowed to control the addition of new blocks to the ledger. Only those
entities hold a set of private keys that are used to sign new blocks, acting as
trusted signers.

There are more mechanisms introduced to the community, like Proof of
Burn or some combinations of previously mentioned, but they are not so used
as already mentioned [10].

9

1. Analysis

1.3 Bitcoin

Bitcoin is a collection of concepts and technologies that form the basis of
a digital money ecosystem based on blockchain. Units of currency called
bitcoins are used to store and transmit value among participants in the bitcoin
network. One bitcoin can be divided down to eight decimal places as satoshis.
One satoshi can’t be divided anymore and is the smallest currency unit in
bitcoin. Bitcoin users communicate with each other using the bitcoin protocol
primarily via the internet, although other transport networks can also be used.
The bitcoin protocol stack, available as open-source software, can be run on a
wide range of computing devices, including laptops and smartphones, making
the technology easily accessible and making it permissionless blockchain [4].

As mentioned in the motivation, bitcoin was first introduced in 2008 by
an anonymous writer under the pseudonym Satoshi Nakamoto. The cryp-
tocurrency did not hold any real value, but since then, the value of one coin
has exceeded the value of 65,000 USD in February 2021. El Salvador in 2021
became the first country to make Bitcoin legal tender, encouraging citizens
and businesses to transact in cryptocurrency. Bitcoin became an alternative
to the traditional banking system, where the transactions are processed by a
single authority[11].

Specific properties of bitcoin

Bitcoin, like other blockchains, shares a common structure. It contains blocks,
transactions and addresses. But each blockchain comes with its specifics, and
I will describe the main differences here. The data I will describe is the data
accessible from the bitcoin core storing the full ledger.

Block in the bitcoin holds the common data to store information about
the block, data to validate it and its transactions. Every block contains at
least one transaction containing the transfer of mined coins to the miner of
the block. The bigger difference between bitcoin and ethereum can be seen in
transactions[4].

1.3.1 Transaction

Each transaction consists of data and one or more inputs, and one or more
outputs. That said, the block contains at least one transaction containing the
transfer of generated coins to the miner of the block. This transaction, called
a coinbase transaction, is different from others in the block as it is always first,
does not have a hash, and does not spend any other output.

The inputs and outputs are not related to any account or identity. They
are amounts of coins locked by the owner, and the only user who knows the
secret can unlock them and use them in the next transaction. As the transfer is
done by unlocking some inputs and locking outputs, there is no wallet balance.

10

1.3. Bitcoin

There are only unspent transaction outputs scattered in the blockchain. How
the funds are transferred can be seen in the image 1.1.

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

Transaction

spent by spent by

Block Block Block

Figure 1.1: Bitcoin structure illustration

Transaction inputs, if not part of coinbase transactions, are, in simple
terms, pointers to outputs with keys to unlock them. Pointers because they
reference the transaction output, processed in previous transactions, by its
hash and index in the list of outputs. The key consists of anything that is
necessary to unlock the output locking script. It can be a public key with
the signature from the private key. Or one or more signatures. Even just
some specific value if the locking script is written to accept it. At the moment
the transaction is stored in the blockchain, the referenced output is marked
as spent and cant be used in any other transaction. There are more rules
that specify when the output can be referenced by input, like a number of
confirmations, the validity of the signing script etc.

An example of transaction input can be seen in the code example 1.1.
Transaction outputs are structures holding their hash that is unique, index

inside the transaction, the value representing the coins and locking script.
When the block containing new transactions is added to the chain, miners
or users running full node add the outputs to the set of unspent outputs.
A locking script is a program that, when presented with correct input, will
result in TRUE or any other values that are considered as failures. The script
is mostly created using the address of the user who should receive the coins.
The basics of the locking script will be described in the following chapter.

11

1. Analysis

{
"txid": "25fa27b01c23b788a67a6f704407699239...",
"vout": 0,
"scriptSig": {

"asm": "30440220462d63fc6db62da9c24312080...",
"hex": "4730440220462d63fc6db62da9c243120..."

},
"sequence": 4294967295

}

Code example 1.1: Shortened example of transaction input

As the inputs reference the outputs only with identifiers. They, do not
contain any information about their value. This means the entire value of
the output is spent. It can not be spent partially. Meaning if the user owns
the output of the transaction with ten coins and wants to send five coins to
another user and keep the rest, he needs to create a new transaction where
the input will be that owned output containing the ten coins, and outputs will
be two. One contains five coins and is locked so only the other user can open
it, and the second one for which the key will save for himself.

An example of transaction output can be seen in the code snippet 1.2.

{
"value": 100.00000000,
"n": 0,
"scriptPubKey": {

"asm": "04bc3ee049bebf27e6e29403aeb... OP_CHECKSIG",
"hex": "4104bc3ee049bebf27e6e29403aeb61a1c48ace...",
"type": "pubkey"

}
}

Code example 1.2: Shortened example of transaction output

1.3.2 Script language

Bitcoin uses its own script language created to be simple, compact and with
cryptographic operations. It has many similarities to the programming lan-
guage Forth. Just like Forth, it’s stack-based, meaning it relies on the stack
for passing parameters.

The language consists of constants, commands for flow control like ifs and
returns, commands to control and move items on the stack, binary logic opera-
tors, arithmetic functions, cryptographic functions and reserved words. Even

12

1.3. Bitcoin

with all the operators and instructions, the script language is intentionally
limited and is not Turing complete. It is not meant to be a general-purpose
language. It does not contain any loops or instructions for complex flow con-
trol. This ensures the language cannot be used to create an infinite loop, or
other forms of ”logic bomb” cant be constructed and released into the network
where each transaction is validated by every full node.

All commands are listed in bitcoin documentation, but as a demonstration,
I will show an example of such a script and how it works, and with it, I will
introduce first of standard transaction scripts.

Common script instructions:

• OP DUP - Duplicates the top item on the stack.

• OP HASH160 - Hashes twice: first using SHA-256 and then a different
hash function called RIPEMD-160

• OP EQUALVERIFY - Returns true if the inputs are equal. Returns
false and marks the transaction as invalid if they are unequal.

• OP CHECKSIG - Checks that the input signature is valid using the
input the public key for the hash of the current transaction.

Pay-to-PubkeyHash (P2PKH)

Now let’s look at how the key from the input of the transaction can unlock
the output it is referencing. In this example, I will talk about the Pay-to-
PubkeyHash (P2PKH) script, which is the most common type of output script
in Bitcoin. The output script looks like this:

OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

The input of the transaction contains a part called scriptSig containing a
string consisting of two substrings divided by space. The first is for the public
key, and the second one is for the signature.

<signature> <pubKey>

When the script is executed, the locking script is pushed on the stack and
then the scriptSig part of the input.

Then the script is executed. The state of the stack after each instruction
can be seen on the image 1.2.

The P2PKH script is just one of many used scripts. There are other scripts
commonly used in the bitcoin network.

13

1. Analysis

Instructions

Stack

<signature> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<signature> <signature> <signature> <signature> <signature> <signature>

<pubKey> <pubKey> <pubKey> <pubKey>

<pubKey> <pubKeyHash> <pubKeyHash>

<pubKeyHash>

<pubKey>

<signature>

Figure 1.2: Illustration of execution of Pay-to-PubkeyHash script

Pay-To-Public-Key (P2SH)

The Pay-To-Public-Key script is a second commonly used type of script. The
difference from the P2PKH is that it has a simpler form.

The locking script has the following form:

<Public Key> OP_CHECKSIG

And the unlock script is in form:

<Signature from Private Key>

The structure is similar to P2PKH but shorter without the OP HASH160
and OP EQUALVERIFY steps. Pay-to-Publickey is mostly used in coinbase
transactions, generated by older mining software that has not been updated
to use P2PKH[4].

Pay to Multi-Signature (P2MS)

The multi-signature script was created for use cases where it is wanted for
multiple users to sign the transaction with their keys. The locking script
creates conditions where N public keys are recorded together with a threshold
that states the minimum of signatures provided to unlock the transaction.
Such a function allows users to divide the responsibility for the possession
of bitcoins among multiple people. Also, it lowers the chance of a single
point of failure by making it substantially more difficult for the wallet to be
compromised. It can also be used as a backup where the loss of one key doesn’t
lead to the loss of the assets[12].

For example, in 2-of-3 multi-signature transaction, the locking script will
have the following form:

OP_2 <PublicKey1> <PublicKey2> <PublicKey3> OP_3 OP_CHECKMULTISIG

And the unlocking script then provides at least 2 signatures:

14

1.3. Bitcoin

OP_0 <Signature A> <Signature B>

The OP 0 is inserted due to a bug in the CHECKMULTISIG instruction
as it pops an extra item from the stack. It is there as a placeholder and is
ignored.

For all transaction scripts that I introduced till now was in a way possible
to talk about sending assets from one address to the other. But with P2MS,
it is no longer possible to derive the address from the locking or unlocking
script. That does not mean we can’t track the flow anymore. It is just not
possible to assign the address to it[13][15].

The P2MS solved a lot of issues, but it has some limitations. Due to the
length of the public keys, the locking script can get big, so it is limited to up to
3 public keys. Also, not every wallet can create a multi-signature transaction
and allows users to send assets only to address and not raw scripts. Also, the
sender of the transaction needs to know all the public keys, and it’s a burden
if it is, for example, a client paying for some service or goods[14].

Pay-To-Script-Hash (P2SH)

The multi-signature feature comes with many advantages and some disadvan-
tages, but the community came with another transaction script that replaced
the P2MS. And that is P2SH. In 2012 the P2SH was introduced as a replace-
ment for P2MS with properties that resolve its practical difficulties. The main
focus is on the simplicity of using such a script. The complex locking script
with multiple public keys is replaced with a single hash. Hash of the script
that is then provided in the unlocking script. As nicely described in the book
Master Bitcoin[4], the P2SH means ”pay to a script matching this hash, a
script that will be presented later when this output is spent.”. This takes the
burden from the sender and puts it on the receiver.

The scriptPubKey format:

OP_HASH160 <Redeem script hash> OP_EQUAL

The scriptSig format:

OP_0 <Signature A> <Signatur B>...<Signature X> <Redeem script>

The locking and unlocking script holds the redeem script in some form.
Hash or the full script. The redeem script is the locking script from the P2MS
transaction. It can look like the P2SH does not make the process less complex
and simple. But let’s look at the real value the sender of the coins must have
known when creating the transaction with 1-of-2 signatures.

With P2MS:

15

1. Analysis

OP_1 022afc20bf379bc96a2f4e9e63ffceb8652b2b6a097f63fbee6e
cec2a49a48010e03a767c7221e9f15f870f1ad9311f5ab937d79fcaee
e15bb2c722bca515581b4c0 OP_2 OP_CHECKMULTISIG

With P2SH:
OP_HASH160 748284390f9e263a4b766a75d0633c50426eb875 OP_EQUAL

Here it is obvious that for the sender of the money, it is much more com-
fortable to use P2SH. There is no need to share the entire locking script with
the clients. There is only a need to share the address that is created from the
script in a similar way to how addresses are created from public keys (more
described in the following chapter about addresses in bitcoin)learnscript.

1.3.3 SegWit

SegWit or Segregated Witness is a change in transaction format. It was in-
troduced in 2015 in soft fork under the name BIP-141 and fully deployed in
2017. The reason why I choose to mention this change in my thesis is how it
changes the locking and unlocking of the transaction.

The upgrade has multiple issues it tries to solve. The main issues are
protection against transaction malleability and solving a block size limitation
problem that reduced the bitcoin transaction speed[17].

The transaction malleability

Each transaction has three parts. The input, output and signature that verifies
that the sender is eligible to send the coins. It turns out that bitcoin’s code
allows digital signatures to be altered while a transaction is still waiting to
get confirmed. The signature alteration can be done in such a way that if it’s
checked for validity, it will be still valid according to the rules of the network.
But if it is hashed, the result is different[17]

This can be problematic for several reasons. First, if projects want to
build second layer solutions on top of the bitcoin network, like the Lightning
network, which will be discussed in the following chapter, it is important to
make sure no one can alter the first layer since the one relies on the other.

Also, if users are trying to spend or accept unconfirmed funds, the alter-
ation of transaction ids can cause issues.

Scalability

In the bitcoin network, a new block is created roughly every 10 minutes. Addi-
tionally, bitcoin’s protocol limits the capacity of a block to 1MB, which limits

16

1.3. Bitcoin

a block to around 2700 transactions on average (around four transactions per
second). This creates a problem when a lot of people are trying to send coins
simultaneously as the queue of transactions waiting to be processed gets longer
and longer.

How the SegWit works

The segregated witness is a proposed change to how blocks are structured.
Non-seqwit blocks, also known as legacy blocks, have a total of 1 MB of space
for all of the block data. Inputs, outputs, signatures and additional scripts.

The SegWit blocks are, in fact, large 4 MB blocks that consist of a base
transaction block that can have up to 1 MB in size and an extended block
with a size of up to 3 MB. Segwit blocks move signatures and other data
known as ”the witness” outside of the base transaction block to the extended
block. The witness data will still be transmitted, but it is placed inside the
extended block. This allows for more transactions to fit inside the 1 MB base
transaction block. The extended with an additional 3 MB includes all of the
witness data that isn’t mandatory in the base block[17].

Achieved goals

The new block format SegWit introduces achieves two major goals. First,
it moves the digital signature outside of the base transaction block. This
way, if someone changes the signature on the transaction, it won’t affect the
transaction id. This, in consequence, solves the transaction malleability issue.
Second, it shrinks down the base transaction data. Since the witness data
takes up to 65 % of the transaction size, moving it outside of the base block
allows more transactions to fit inside that 1 MB block.

With the SegWit change also comes in the way how the blocks are mea-
sured. While legacy blocks are measured in size, SegWit blocks are measured
in weight. This attribute is introduced in SegWit and is calculated on a per-
transaction basis. The weight is calculated by the following formula 1.1

transaction weight = Base transaction size ∗ 3 + Full transaction size (1.1)

The legacy transaction weight is always equal to 4 times the transaction
size. This motivates miners to prefer lighter SegWit transactions over legacy
transactions since they can fit more of them inside a base transaction block.
Which increases the potential miner’s fee[18].

1.3.4 The Bitcoin Lightning Network

In this work, I am working with transactions as they are recorded on the
blockchain. However, there are applications created on top of Bitcoin that

17

1. Analysis

are trying to overcome its shortcomings and create use cases that I need to
take into account. An example of such application is the Bitcoin Lightning
Network.

It is a decentralized system for instant, high-volume micropayments that
remove the risk of delegating custody of funds to a trusted third party.

Bitcoin is widely used; however, there are some drawbacks to its decentral-
ized design. Processing and confirming transactions on the network can take
up to one hour before it is irreversible. Micropayments, or payments less than
a few cents, are inconsistently confirmed, and fees render such transactions
enviable on the network today.

The Lightning Network solves these problems. It is one of the first im-
plementations of a multi-party Smart Contract (programmable money) using
bitcoin’s built-in scripting. It works by locking funds into a two-party, multi-
signature bitcoin address. The current balance is stored as the most recent
transaction signed by both parties, spending from the channel address. The
transaction between storing the actual balance onto the network takes place
off the network. To make a payment, both parties sign a new exit transaction
spending from the channel address. All old exit transactions are invalidated
by doing so.

As only the balance is current balance is recorded into the blockchain and
not all transactions between the parties, it is impossible to track them. Only
the sender and receiver can see all the necessary details[19].

1.3.5 Address

In the Bitcoin blockchain, the users are enabled to be pseudonymous, which
means the transactions are available to the public, but their identities are not.
Bitcoin addresses start with the digit 1 or 3. Like email addresses, they can be
shared with other bitcoin users who can use them to send bitcoin directly to
your wallet. Unlike email addresses, you can create new addresses as often as
you like, all of which will direct funds to your wallet. Users can increase their
privacy by using a different address for every transaction. There is practically
(it exists but is too large) no limit to the number of addresses a user can
create[4].

Bitcoin address is an invention that was intended to make it easier for
recipients to provide senders with the information needed by the sender to
construct a transaction script. Transaction data doesn’t ever actually include
an address. They contain public keys, script hashes and others, and the
address can be, in some cases, created from available data[39].

But as of now, there are several standard address types. And I want to
describe them in this section.

18

1.3. Bitcoin

Legacy Addresses (P2PKH)

Legacy addresses are addresses starting with the character ”1”. It is created
from the public key. To create such address, the wallet must:

• Create a hash160 of the public key.

• Prepend a prefix that can be different for testing networks, but for main-
net is equal to 0x00.

• Append checksum of the hash.

• Then encode the string with Base58.

The described process is nicely shown in the picture 1.3

Figure 1.3: Process of creating P2PKH address from the public key[21]

This address can be easily distributed to other users and they can create
transactions where the outputs will be sent to this address. To send the coins
to the address, the wallet will decode the address with Base58 and will insert
the hash of the public key into the lock script. Can be seen in the illustration
1.4

Figure 1.4: Process of creating P2PKH locking script from address[21]

Addresses starting with 1 are considered legacy and nowadays are used
only by old wallets because the fees are larger than for P2SH or P2WPKH
addresses.

19

1. Analysis

Pay to Script Hash Addresses (P2SH)

As described in previous sections, the P2SH address is not created from the
public key as P2PKH, but from the hash of the script. The process is very
similar to the process of creating the legacy address but with small differences.

• Create a hash160 of the locking script

• Prepend a prefix that is for mainnet 0x05

• Append checksum of the hash

• Then encode the string with Base58

The first difference is we are hashing the script with the spending condi-
tions and not the public key. And the second difference is that we use the
prefix 0x05, which will result in the character ”3” at the start of the address.
Creating and using such an address can be seen in images 1.5 and 1.6.

Figure 1.5: Process of creating P2SH locking script from address[21]

Figure 1.6: Process of creating P2SH locking script from address[21]

Pay to Script Hash Addresses are used in new transactions as they allow
users to use advantages of SegWit and save roughly 26 % on transaction fees.

20

1.4. Ethereum

Native SegWit Address (P2WPKH)

A native P2WPKH address has the prefix ”bc1q” for the Bitcoin mainnet. It
uses the same public key format as P2PKH transaction, with a very important
difference: the public key used in P2WPKH must be compressed, that is 33
bytes in size, and starting with a 0x02 or 0x03. The P2WPKH scriptPubKey
is always 22 bytes. It starts with a OP 0, followed by a canonical push of the
key hash.

On the image 1.7 can be seen how the address can be created from the
wallet using derivation paths. Users can derive keys in any way they want.
But to help with compatibility between wallets, there is a common structure
for how we derive keys for use in a hierarchical deterministic wallet.

Figure 1.7: Process of creating P2WPKH address[22]

1.4 Ethereum

The term ”Ethereum” can be used to refer to three distinct things: the
Ethereum protocol, the Ethereum network created by computers using the
protocol, and the Ethereum project funding development of the aforemen-
tioned two. On the heels of bitcoin, Ethereum has become its own macrocosm,
attracting enthusiasts and engineers from numerous industries. Many of civi-
lization’s most nagging imperfections could become the domain of blockchain’s
killer apps, and the Ethereum protocol (which was derived from Bitcoin and
extended) is widely considered to be the network where these ”distributed”
apps will spring up[1].

In contrast with Bitcoin, Ethereum offers more than transferring funds
and storing small pieces of information in the blockchain. Yes, there are
more applications on top of Bitcoin, but as the script language is not Turing
complete and thus limited, there are limitations that applications have to
accept and work with them. And some of these limitations are solved in the
Ethereum.

As for the data structure, it works almost the same way that Bitcoin works.
However, the difference in Ethereum is that it has a built-in Turing-complete
programming language

21

1. Analysis

1.4.1 Ether

Ethereum, similarly to Bitcoin, has its own currency unit. It is called ether,
in the short form ETH. One ether can be divided into 1018 units called Wei.
One Wei cannot be divided anymore. The Wei unit is important for me as
I will work with the data inside the blockchain, and the value transfers are
listed in Wei units. In some literature, we can find units like kilowei, megawei
or microether as we are used to with kilometres and other units.

1.4.2 Accounts

Before I describe transactions and the programming languages and their use
in Ethereum, I will introduce accounts. Bitcoin uses unspent transaction
outputs to represent the actual state of the network. In Ethereum, the state
consists of objects called accounts. Each account can be identified by 20-byte
address. Transactions are the direct transfer of value and information between
accounts.

The account have following parts:

• Nonce: a counter to ensure the transaction is processed only once

• Balance: account’s current ether balance

• Code: account’s contract code

• Storage: account’s storage

These accounts can be divided into two types. Externally owned accounts
and contract accounts.

Externally owned accounts (EOAs)

EExternally owned accounts are almost similar to addresses in the Bitcoin. As
for the data parts, it has no code inside and empty storage. External accounts
can send messages from an account by creating and signing a transaction. To
create such an account is free. And transactions between externally-owned
accounts can only be ETH/token transfers. Similarly to the Bitcoin address,
the user has to prove he is the owner of the account. And it can be proven
by presenting a signature created from the private key. From the two account
types, only EOAs can initiate transactions[1].

Contract accounts

Contract accounts are something new and not present in Bitcoin. They are ac-
counts inside the network containing smart contract code that can be executed
when triggered by a message or transaction. The code inside the account can

22

1.4. Ethereum

read and write into internal storage and send other messages or create con-
tracts in turn. Contracts can also send and receive ether, just like externally
owned accounts[23].

However, when a transaction destination is a contract address, it causes
that contract to run in the EVM, using the transaction, and the transaction’s
data, as its input. In addition to ether, transactions can contain data indi-
cating which specific function in the contract to run and what parameters
to pass to that function. In this way, transactions can call functions within
contracts[5].

More about the smart contracts will be discussed in the following sections.

1.4.3 Transactions

Transactions are signed messages originated by an externally owned account,
transmitted by the Ethereum network, and recorded on the Ethereum blockchain.
They are the only construct that can initiate a change of state or trigger the
execution of the contract in the EVM. Without a new transaction, the state
would not change as Ethereum does not change autonomously.

Each transaction consists of the following parts:

• Nonce, used to prevent double execution, issued by the EOA.

• Gas price, the originator is willing to pay for one unit of gas.

• Gas limit, specifying the maximum amount of gas the originator is will-
ing to spend for this transaction.

• Recipient, in form of account address.

• Value, the value of ether to send to the recipient.

• Data, in form of binary data payload.

• Signature, ECDSA digital signature of the originating EOA.

When using some software to display the data about the transaction, it
will contain more information like the sender address, block number and more,
but the software adds them to make it easy for the user.

From the execution view, the transactions are atomic, regardless of how
many contracts they call. They are always executed in their entirety or not at
all. A failed transaction is still recorded as having been attempted, and the
ether spent on gas for the execution is deducted from the originating account,
but it otherwise has no other effects on the contract or account state[5].

23

1. Analysis

1.4.4 Gas

As mentioned in the previous section, the transaction contains attributes spec-
ifying gas price and gas limit.

Gas is a fuel of Ethereum. Gas is not equal to the ether, but it is a separate
virtual currency. It cannot be sold like ether, but it can be converted.

Ethereum uses gas to control the number of resources that a transaction
can use since it will be processed on thousands of computers worldwide. As
the programming language used in Ethereum is Turing complete, the model
requires some protection against logical bombs and endless loops. In Bitcoin,
it is done by limitation of the language. In Ethereum is done by using gas. If
anyone wants his transaction to be processed by the network, he needs to pay
the miner for the computational resources. If it’s a simple transfer of money,
it is cheaper than executing a complex smart contract.

The gas price field in the transaction allows the transaction creator to set
the price he is willing to pay in exchange for the gas. Miners prefer transactions
with higher gas prices, as they will get higher rewards. Due to this fact,
transactions with higher gas prices will be processed faster. During periods of
high demand for space in a block, some transactions can be unconfirmed for
a longer period of time. On the other hand, a transaction with a gas price set
to zero can be processed when the demand is low. The price is measured in
Wei per gas unit.

To avoid mentioned logical bombs and endless loops that would harm the
network, the gas limit is introduced. Each operation has its own price in gas,
and if the gas used to process the transaction code reaches the gas limit, the
transaction ends, and execution stops. So each transaction has to stop due to
the reaching the end of the code or due to depleting all available gas.

Someone could ask why Ethereum does not use the ether when it is already
in the protocol. Gas is a separate currency from ether in order to protect the
system from the volatility that might arise along with rapid changes in the
value of ether[23].

EIP-1559

In August 2021, the London Hard Fork took place, introducing improvement
in the Ethereum (under-identification EIP-1559) and changing Ethereum’s fee
market mechanism. This mechanism tries to solve the first-price auction and
make gas fees more predictable, resulting in a more efficient transaction fee
market. And due to this auction, some transactions are not included for a
longer period of time.

Before the improvement, the transaction fee was calculated as follows:

Gas units (limit) * Gas price per unit

24

1.4. Ethereum

With EIP-1559, there is a discrete “base fee” for transactions to be included
in the next block. For users or applications that want to prioritize their
transaction, they can add a “tip,” which is called a “priority fee”, to pay a
miner for faster inclusion. The equation then has the following form:

Gas units (limit) * (Base fee + Tip)

The base fee is always burned and should have a deflationary effect. Also,
the base fee is not a set value. It is a variable value based on previous blocks.
The base fee is calculated by a formula that compares the size of the previous
block (the amount of gas used for all the transactions) with the target size.
The base fee will increase by a maximum of 12.5 % per block if the target block
size is exceeded. This exponential growth makes it economically non-viable
for block size to remain high indefinitely[24].

One of the main ways EIP-1559 accomplishes these mitigations is by allow-
ing blocks to become 200 % full, i.e. filled up to double whatever the reigning
Ethereum gas limit is. This extra flexibility will grant Ethereum better capac-
ity to support transaction demand, leading to shorter transaction wait times
and clearer gas price estimations[25].

1.4.5 Smart Contracts

I described transactions, accounts, and gas. All mentioned parts are combined
in the smart contracts. The term smart contract was introduced by Nick Szabo
in the 1990s, who defined it as ”a set of promises, specified in digital form,
including protocols within which the parties perform on the other promises.”.
In this thesis, I will use this term to refer to immutable computer programs
running deterministically in the context of EVM.

Smart contracts are usually written in high-level languages like Solidity,
Vyper, Serpent or Mutan and then compiled to low-level bytecode that runs
in the EVM. Once the program is compiled, it can be deployed on Ethereum
using a special contract creation transaction. This transaction is special as it
is sent to contract creation address 0x0.

Here is several notes for the contract:

• The address for such contract is derived from the transaction attributes.

• Unlike with EOAs, there are no keys associated with an account created
for a new smart contract.

• The execution can be initiated only by the transaction or contract that
is directly triggered by transaction or indirectly as part of a chain of
contract calls.

• The contracts cannot run in parallel.

25

1. Analysis

• The contract is atomic, meaning the changes are recorded entirely or in
case of failure rolled back.

• The code inside cannot be changed after recorded in the blockchain.

• By default, it cannot be deleted, unless programmed to listen for opcode
SELFDESTRUCT by creator.

1.4.6 Ethereum Virtual Machine

The core of the ethereum protocol is Ethereum Virtual Machine, shortly EVM.
As the name might suggest, it is similar to Java Virtual Machine. It also
interprets bytecode-compiled programming languages such as Solidity, Serpent
or Mutan.

The built-in language in Ethereum allows anyone to write smart contracts
and decentralized applications where they can create their own arbitrary rules
for ownership, transaction formats and state transition functions. Smart con-
tracts, cryptographic ”boxes” that contain value and only unlock it if certain
conditions are met, can also be built on top of the platform, with vastly more
power than that offered by Bitcoin scripting because of the added powers of
Turing-completeness, value-awareness, blockchain-awareness and state[23].

I describe EVM as Turing’s complete state machine, but some literature
labels it with the word ”quasi”. Meaning the process is limited to the finite
number of steps by the available given code. As such, the halting problem is
”solved” (all program executions will halt), and the situation where execution
might (accidentally or maliciously) run forever, thus bringing the Ethereum
platform to a halt in its entirety, is avoided.

The EVM has its own instruction set consisting of arithmetic instructions,
stack operations, flow control (richer than the bitcoin script language), logic,
block and environmental operations. As we can see, the language contains
operations with block and environment, and that is something not present in
Bitcoin. It can operate with the block data as the hash, timestamp, number,
difficulty or gas limit. From the environment information, it can access the
address, balance, caller and more[23].

In the table 1.1 are some examples of opcodes and how much gas the
execution costs.

Solidity

I introduced the EVM and its low-level opcodes, and now I want to describe
the selection of the high-level languages used for programming smart contracts.

The most popular language for programming smart contracts is Solidity.
It has vast community support, and a lot of developer tools like Remix and
Truffle. It is an object-oriented language. Strongly influenced by some ex-
isting languages like JavaScript and C++. It is a statically typed language,

26

1.4. Ethereum

Table 1.1: examples of opcodes and their gas cost [23]

Opcode Name Description Gas
0x00 STOP Stops execution 0
0x01 ADD Addition operation 3
0x08 ADDMOD Modulo addition operation 8
0x31 BALANCE Get balance of the given account 400
0x54 SLOAD Load word from storage 200
0x56 JUMP Alter the program counter 8
0xa0 LOG0 Append log record with no topics 375
0xf0 CREATE Create a new account with code 32000

meaning the developer has to define the type of value in a variable so that the
compiler knows what type of data to expect. This is essential when developing
a deterministic application[27].

pragma solidity >=0.7.0 <0.9.0;

contract Promise {
string promiseMessage;

//set function
function setPromise(string memory _promise) public{

promiseMessage=_promise;
}
//get function
function getPromise()public view returns(string memory){

return promiseMessage;
}

}

Code example 1.3: Solidity code example [26]

Vyper

Vyper is a contract-oriented programming language. It was specifically devel-
oped to address the security issues which were there in Solidity. It is strongly
influenced by the python programming language. Unlike Solidity, Vyper does
not have some object-oriented concepts like inheritance, which is popularly
referred to as contract-oriented or transactional programming. The main mo-
tive was to make contracts auditable and more secure, making less error-prone
contracts. It is a strongly typed language, which means it does not allow to

27

1. Analysis

use of one type of data type as another. Also, a big difference in Vyper is the
need to specify the length of strings. That is not needed in the Solidity[26].

@version ˆ0.2.12

promiseMessage: public(String[100])

@external
def setPromise(_promise:String[100]):
self.promiseMessage=_promise

@view
@external
def getPromise()->String[100]:
return self.promiseMessage

Code example 1.4: Solidity code example[26]

Serpent

The language, as suggested by its name, is designed to be very similar to
Python. It is intended to be maximally clean and simple, combining many of
the efficiency benefits of a low-level language with the ease of use in program-
ming style and at the same time adding special domain-specific features for
contract programming.

On the site https://eth.wiki/archive/serpent is nicely shown how the
serpent script 1.5 can be compiled to the bytecode but also to the sequence of
opcodes 1.6 I described earlier[8].

def double(x):
return(x * 2)

Code example 1.5: Serpent code example

[PUSH1, 67, DUP1, PUSH1, 11, PUSH1, 0, CODECOPY, PUSH1, 78,
JUMP, PUSH29, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, PUSH1, 0, CALLDATALOAD,
DIV, PUSH4, 238, 233, 114, 6, DUP2, EQ, ISZERO, PUSH1, 65, JUMPI,
PUSH1, 4, CALLDATALOAD, PUSH1, 64, MSTORE, PUSH1, 2, PUSH1, 64,
MLOAD, MUL, PUSH1, 96, MSTORE, PUSH1, 32, PUSH1, 96, RETURN,
JUMPDEST, POP, JUMPDEST, PUSH1, 0, RETURN]

Code example 1.6: Serpent code example represented by opcodes

28

https://eth.wiki/archive/serpent

1.5. Data sources

1.4.7 Decentralized Applications

Together with Ethereum, the term DApps became more popular. Decentral-
ized Applications, shortly DApps, are applications using smart contracts to
decentralize the controlling logic and payment functions of applications. As
for application development, almost all aspects of an application can be decen-
tralized. The backend, frontend, data storage and message communications.

Each of these can be somewhat centralized or somewhat decentralized. For
example, a frontend can be developed as a web app that runs on a centralized
server or as a mobile app that runs on the device. The backend and storage
can be on private servers and proprietary databases or a smart contract and
P2P storage.

Using decentralization for application have advantages such as availability,
transparency and censorship resistance. In the Ethereum ecosystem, as it
stands today, there are very few truly decentralized apps. Most still rely on
centralized services and servers for some part of their operation.

Here are some applications built on top of blockchain:

• Uniswap: The Uniswap Protocol is an open-source protocol for providing
liquidity and trading ERC20 tokens on Ethereum. It eliminates trusted
intermediaries and unnecessary forms of rent extraction, allowing for
safe, accessible, and efficient exchange activity. The protocol is non-
upgradable and designed to be censorship resistant[28].

• Dark Forest: Dark Forest is a universe-traversing, planet-capturing, real-
time strategy game. It is open-source, and all interactions within the
game are validated by the Gnosis blockchain[29].

• NFT: NFTs are tokens that we can use to represent ownership of unique
items. They let users tokenise things like art, collectibles, and even real
estate. They can only have one official owner at a time, and they’re
secured by the Ethereum or other blockchain – no one can modify the
record of ownership or copy/paste a new NFT into existence[30].

1.5 Data sources

For my analysis, I need to save all the information in some storage and then
perform the analysis. To do all this, I need to get the data from a source.
There are several ways.

1.5.1 Commercial API

The first way is to use service API. It has been some time since the rise of
cryptocurrencies, so there are sites that track changes in the bitcoin and allow
visitors to observe transactions and the flow of the coins. Visitors can easily

29

1. Analysis

find addresses and see where the coins come from and where they were sent af-
terwards. Sites like www.blockchain.org, www.infura.io or www.coinbase.com
provide JSON RPC API that can be used by developers for their projects. The
results are already enriched by connections, addresses and etc. Results are in
JSON that can be easily parsed.

Using APIs has advantages like no need for running some specialized pro-
gram, and we can ask only for information that we need. It is fast and easy to
use. On the other hand, using APIs also has some disadvantages. Sites that
provide their endpoints limit the number of requests per period of time, and
if the developer wants to send more requests, he would have to pay to change
the limits.

For the purposes of this thesis, I registered on infura.io as it was widely
recommended on forums regarding the ethereum data. Each user, as part of
the free tier, can send up to 100 000 requests per day.

After registering, the portal offers a dashboard where users can review
their usage in simple UI, see 1.8. The service generates an HTTPS and web
socket endpoint. The URL contains the project id and version.

Exaple: https://mainnet.infura.io/v3/25394af7a2f543039c16426d2c04c314
From the project settings, the developer can set limits on the endpoints

and choose which methods should be available and which should be restricted.
There are two ways how to secure the project, so only authorized applications
can use the endpoint. One way is to use the project secret with the project id
and send them in each request. The second way is to use JWT (JSON web
token)[31].

Figure 1.8: Infura.io dashboard[31]

30

www.blockchain.org
www.infura.io
www.coinbase.com
infura.io
https://mainnet.infura.io/v3/25394af7a2f543039c16426d2c04c314

1.5. Data sources

1.5.2 Clients

As said before, the bitcoin blockchain is public, so it means that everyone can
watch the chain and items saved inside. It means that users should not be
dependent on sites or other third parties. That is why clients exist. There can
be multiple implementations for one blockchain, but each has to follow the
protocol. The client mostly functions as wallets and blockchain nodes. Users
can use them to send and receive transactions but also for mining. The nodes
can download the full ledger of the blockchain and take part in the verification
process.

I will introduce several clients that can serve as full nodes for Bitcoin and
Ethereum networks that are popular, and I will describe their advantages and
disadvantages.

1.5.2.1 Bitcoin Core

Bitcoin Core is an official client that implements all aspects of the bitcoin
system, including wallets, a transaction verification engine with a full copy
of the entire transaction ledger (blockchain), and a full network node in the
peer-to-peer bitcoin network. The code is published publicly on github.com/
bitcoin/bitcoin under the MIT licence. It is implemented mostly in C++
and supports multiple operating systems: Linux, macOS and Windows[4].

Bitcoin core provides a graphical or command-line interface for everyone
who wants to work with the bitcoin network, but it also provides JSON RPC
API for being controlled remotely if configured.

It can be used for trading, managing wallet and mining.
Using the bitcoin core has disadvantages like the need for downloading the

whole bitcoin ledger. The download is made by retrieving data from nodes in
the bitcoin network, machines that have full node downloaded and can send
us parts of it. And they are not rewarded for sending such data. The ledger
is being validated by the bitcoin client, so the result data are correct. As of
today, the ledger has a size of 457 GB of data.

The official minimal recommended requirements for running the bitcoin
core are not very high. Apart from the disk space of around 350 GB (that I
consider not enough as the blockchain has currently around 500 GB), there
are also requirements for download and upload. Upload of 5 GB per day and
download of 500 MB per day. Described requirements are for running the core
and not mining. Mining would require more resources[32].

In this work, I will use the bitcoin core to retrieve blockchain data.

1.5.2.2 Libbitcoin

Libbitcoin is an alternative to the Bitcoin Core. It is a set of C++ libraries
for building bitcoin applications. It contains parts of the blockchain divided
into libraries that can be installed separately. Such libraries are:

31

github.com/bitcoin/bitcoin
github.com/bitcoin/bitcoin

1. Analysis

• libbitcoin-system

• libbitcoin-blockchain

• libbitcoin-build

• libbitcoin-client

• libbitcoin-consensus

• libbitcoin-database

• libbitcoin-explorer

• libbitcoin-network

• libbitcoin-node

• libbitcoin-protocol

• libbitcoin-server

Some are dependent on others. It supports operating systems like Linux,
macOS and Windows[33].

1.5.2.3 Geth

Geth is the Go language implementation that is actively developed by the
Ethereum Foundation, so it is considered the “official” implementation of the
Ethereum client. Typically, every Ethereum-based blockchain will have its
own Geth implementation[5].

It provides a JSON RPC endpoint that can be used via HTTP, WebSocket
or IPC socket. Similarly to Bitcoin Core, it can be used as a wallet, transaction
manager and mining software.

The advantage is its wide support as it is the most popular Ethereum
client. There is a smaller chance of encountering bugs, and if there are some,
the patch will come quickly. Base on the data reported by ethereum.org,
about 83 % of currently running nodes are using Geth, see chart 1.9.

1.5.2.4 OpenEthereum

OpenEthereum is an implementation of a full-node Ethereum client and DApp
browser. It was written “from the ground up” in Rust, a systems programming
language, with the aim of building a modular, secure, and scalable Ethereum
client. OpenEthereum was developed by Parity Tech, a UK company, and is
released under the GPLv3 free software license. It started under the name
Parity but was renamed.

32

ethereum.org

1.5. Data sources

Figure 1.9: Ethereum client diversity chart[34]

Some users are reporting a smaller database footprint, but they face issues
more often than Geth users.

From the chart 1.9 can be seen, that around 8 % of running nodes are
using OpenEthereum[5].

1.5.3 Public websites

The data that can be retrieved from the clients like Bitcoin Core and Geth
is limited to what the clients are storing inside and what they are able to
send. But some data are not provided directly but can be derived from it. Or
it is not stored in the blockchain ledger at all, and it can be retrieved from
the users only. For such reasons, many projects have been created that focus
on the data collection of some type and enable the wide public to see that
information and use it in their favour.

There are several projects developed by single developers or companies
that provide information about addresses, wallets, miners and frauds in the
blockchain world. Those sources can be used to extract the data and enrich
the already known information from the blockchain clients.

WalletExplorer

A site called WalletExplorer is a place containing Bitcoin wallets and addresses
which belong to the wallet. In addition, it also contains the name of the
company for some cases. Some are even sorted into categories.

The welcome page divides known wallets into categories: exchange offices,
pools, services/others, hazard, old/deprecated. Each section contains a list of
wallets with their names. Each wallet has its site with additional information
like transactions, amounts, a list of addresses and a link to the service.

33

1. Analysis

Wallet Explorer uses an algorithm based on co-spending. Addresses are
merged together if they are co-spent in one transaction. Names of the services
were discovered by the developer who registered to known service, made a
transaction and saw which wallet bitcoins were merged with or from which
wallet it was withdrawn.

The developer also notes that data are updated once per 2 days, but newer
names of services are not added since he joined the team at Chain analysis
and extended their database.

From the data extraction point of view, the site offers JSON API after
contacting the developer. The API is limited and is made to show data on
the site. After analyzing the website, it offers CSV data on URL following
an easily understandable format. Using this, I am able to construct a web
scraping script that accesses the data using CSV files[35].

Bitcoinabuse.com

BitcoinAbuse.com is a public database of bitcoin addresses used by scammers,
hackers, and criminals. Anyone can file a report. It is a popular website where
anyone can look up a bitcoin address, report a scam address, and monitor
addresses reported by others.

The service provides an endpoint where reports can be downloaded in
CSV format. As of now, the full report contains almost 400 000 reports. To
download the full report, a developer needs to create an account, but the usage
of the API is not limited by a pricing plan only to the number of requests per
second[36].

OFAC

The Office of Foreign Assets Control (”OFAC”) of the US Department of the
Treasury administers and enforces economic and trade sanctions based on US
foreign policy and national security goals against targeted foreign countries
and regimes, terrorists, international narcotics traffickers, those engaged in
activities related to the proliferation of weapons of mass destruction, and
other threats to the national security, foreign policy or economy of the United
States.

OFAC publishes lists of individuals and companies owned or controlled
by or acting for or on behalf of targeted countries. It also lists individuals,
groups, and entities, such as terrorists and narcotics traffickers designated
under programs that are not country-specific[37].

The published list also contains information about the addresses used in
several cryptocurrencies like Bitcoin, Ethereum, Lite Coin and others. For
this reason, I have decided to extract data from this resource in later parts of
this thesis.

34

1.5. Data sources

1.5.4 JSON-RPC

Both blockchains, Bitcoin Core and Geth, which I work on within this thesis,
provide JSON RPC endpoint, so it is suitable to describe it. JSON stands
for ”JavaScript Object Notation” and is a text-based data exchange format
for transferring objects across the network in human-readable form[38]. And
RPC is short for ”remote procedure call”. It is used for building distributed
systems as it allows a program on one machine to call a subroutine on another
machine without knowing that it is remote. It is similar to calling a function
in JavaScript or Python by specifying the function name and its arguments.
The JSON-RPC is a combination of the two technologies. It uses the JSON
data-interchange format, which is easy for humans to read and write. It is
also easy for machines to parse and generate. It is based on a subset of the
JavaScript Programming Language[39].

The JSON-RPC works by sending a request to the application on the
server that has implemented this protocol. The body of the request, serialized
as JSON, contains typically three attributes:

• jsonrpc: a string specifying the version of the JSON-RPC protocol

• method: a string containing the name of the method to be invoked

• params: a structured value that holds the parameter values to be used
during the invocation of the method

• id: an identifier for the call chosen by the client

The response is JSON object contain four attributes:

• jsonrpc: a string specifying the version of the JSON-RPC protocol

• result: value or object, if call succeded and method returns value

• error: contains object with information about error if issue occurs during
the call

• id: same identifier as the value of the id attribute in the request object

As can be seen in code example 1.7 where, using http POST call on ad-
dress where bitcoin core client is listening, is called method getblock with two
parameters.

That is difference from the REST, where instead of method there would
be name of the resource and it would be in the URL.

Disadvantage is that it is necessary for the user to know the names of the
methods.

35

1. Analysis

POST http://127.0.0.1:8332/
Authorization: Basic user pass
Content-Type: text/plain;

{"jsonrpc": "1.0", "id": "curltest", "method": "getblock",
"params":

["00000000a04a30baed00999ad971f807b5e742f602e013519f89eb7248c7ddf5", 2]
}

Code example 1.7: Example of JSON RPC call on bitcoind client

1.5.5 IPC

Some blockchain clients allow communication with other applications via the
IPC endpoint. IPC, short for Inter-Process Communication, allows threads
to communicate and synchronize when they do not share memory. The IPC
services allow threads to exchange messages in either asynchronous mode or
in Remote Procedure Call (RPC) mode (demand/response mode).

UNIX domain sockets (also IPC sockets) enable efficient communication
between processes that are running on the same host/node. UNIX domain
sockets support both stream-oriented TCP and datagram-oriented UDP pro-
tocols. Unlike internet sockets in the domain where the socket is bound to a
unique IP address and port number, a UNIX domain socket is bound to a file
path[40].

For example, Ethereum client Geth allows communication via an IPC
socket. When Geth starts and configures to use the IPC endpoint, it will
create a file with the name geth.IPC. Other processes on the same computer
can then use the IPC file to create bi-directional communications with Geth.
The IPC is better than RPC in terms of security. If we need only applications
on the machine where the Geth is running to communicate with the client, we
can use IPC and mitigate the chance of being hacked. There were some cases
of users being hacked using the RPC node, as the hacker sent requests to the
endpoint that was opened for a short period of time[41].

1.6 ClueMaker

ClueMaker is a visual analytic tool for the visualization of relations, links and
flows between subjects. ClueMaker helps enterprises like insurance companies,
banks or private companies to combine data from multiple sources and find
and investigate ongoing fraud, find connections between entities and detect
known patterns.

36

1.7. Similar projects and solutions

ClueMaker supports a wide range of data sources like Excel Sheets, Post-
greSQL, Oracle Database, MSSQL, Teradata, Apache Hive and more.

ClueMaker is being developed by the company Profinit. Profinit focuses on
consulting, software services, product development and outsourcing business.
The development started in 2013 and continues till now[42] [43].

The main objective of this work is to extend ClueMaker of tools that would
allow users to visualize and analyze cryptocurrencies. The data have to be
stored in database storage, transformed and analyzed and connected to the
ClueMaker. To provide more than just visualization of the blockchains, part
of the analysis is also enrichment of the chain by information that can be
helpful with detecting fraud or illegal actions or entities.

The ClueMaker consists of two applications: The ClueMaker and Clue-
Maker Configurator.

Configurator serves for definition of the workspace that will be used in the
ClueMaker app. Here are defined data sources and definitions of entities and
relations. The tool also offers to include saved searches and reports.

This tool is meant for administrators who have the information about the
data sources and needed access rights. Knowledge of the data structure and
schema is also needed, together with knowledge of query language.

ClueMaker Application uses workspaces defined in the Configurator and
connects to the data source. Using tools inside, the user can visualize entities
and relations. ClueMaker can execute stored reports that will show informa-
tion in a table or as a diagram.

1.7 Similar projects and solutions

In this section, I introduce products of companies that specialize in crypto
markets, and their products can visualize the flows in the blockchains. I will
not mention products on sites blockchain.com/explorer or etherscan.io,
as they do not visualize the data and the flows in the graph.

Following products can be found on the web, but the details about the
visualizers are not easy to find. The demos are not public, and someone
interested in the demo has to contact the company employees and schedule
the call.

Chainalysis - Reactor

As part of the analysis, I contacted the person responsible for contact with
potential clients at Chainalysis, and I requested a demo. My supervisor for
this thesis, who is also from Profinit, and I attended a meeting with Associate
Account Executive, who showed us their products Reactor and KYT (Know
Your Transaction). The tools they offer are focused on the selection of several
blockchains that have the full support and other blockchains that have sup-
port only partial. The main advantage of Chainalysis is the gathering of the

37

blockchain.com/explorer
etherscan.io

1. Analysis

resources where the company employs over 100 employees who search the web
manually and gather information about wallets, addresses and frauds. The
searches are also done on the dark web. Another significant source of data is
the company’s partners who use the products from Chainalysis and, in return,
share their data about blockchain entities. The main clients of Chainalysis are
governments, financial institutions, law enforcement and financial regulators.

The Reactor is developed with the focus on investigation and exploring
flows in blockchains. It is very similar to what should the result of this thesis
be. Users can explore data in the selected blockchain and expand the nodes
in the graph. The nodes are enriched for names of services, business segments
and ties to known entities. An example can be seen in the image 1.10.

Figure 1.10: Chainalysis - Reactor[44]

Chainalysis offers four more products that I will describe shortly.

Chainalysis Business Data

Product with name Chainalysis Business Data offers clients aggregated
and visualized data from blockchains so businesses can make decisions based
on the data.

KYT

KYT, which stands for Know Your Transaction, enables users to register trans-
actions that will be analyzed in real-time and flagged with tags and security
warnings if some issues with senders or receivers are discovered. The user will
receive an alert if the risk occurs.

38

1.7. Similar projects and solutions

Kryptos

Kryptos is a tool that helps users to navigate the cryptocurrency landscape
and find new opportunities by in-depth metrics of data from cryptocurrencies.
Users can see trends in the data and understand the behaviour of the industry.

Maket Intel

The last currently offered product is Market Intel, where users can get data
and information needed for crypto investments. Daily metrics, activity and
real-world applications can help clients to decide and monitor the market.

Chainalysis offers multiple types of licences. Each differs in product and
limits. From the call, we learned that the cost of one licence/user/year for
Reactor costs in tens of thousands USD[45]. This shows that the analysis of
blockchain offers a lot of opportunities.

Coinfirm - AML Platform Vizualizer

Coinfirm was founded in 2016. From the start, it focused on financial ser-
vices connected to the crypto industry. Offering blockchain analytics and
regulatory technology solutions. The company specializes in blockchain AML
(’Anti-Money laundering’) services and fraud investigations and offers broad
blockchain coverage. Coinfirm’s solutions are used by many clients, ranging
from crypto exchanges such as Binance, and protocols like XRP, to financial
institutions and governments[46].

The ALM Platform contains a visualizer that is similar to what I want to
achieve in the ClueMaker. See image 1.11.

Figure 1.11: Coinfirm - AML Platform Visualizer[46]

39

1. Analysis

Elliptic

Similarly to the Coinfirm, the Elliptic focuses on financial services, provid-
ing blockchain analytics for customers from different markets, such as crypto
businesses, financial institutions and governments.

An example of Elliptic’s visualizer can be seen on image 1.12, which is
visualized part of a Twitter scam from 2020.

Figure 1.12: Elliptic visualizer[47]

1.8 Comparison of databases

For this thesis, I want to work with blockchain and make an analysis of the
data, so I need to store the information about it and its structure. We will
be working with blockchains that, at this time, have between 500 GB and 1.2
TB of data in binary form. After saving them, I will enrich them with more
information from different sources that I need for the analysis, and the final
size will be greater. That leads us to databases.

There are several types of databases. Relational, key-value, wide column
or graph databases. Each of them has its use case for which it is developed
and optimized.

1.8.1 Relational databases

Relational databases are almost universal as most use cases will work with this
type of database. It can store large amounts of data, and it can create relations
and then query them. As we will probably need to distribute databases across

40

1.8. Comparison of databases

multiple machines, and there are some that can scale horizontally. But it is
not one of the strong sides of these machines.

1.8.2 Key-value databases

Key-value databases are made for one purpose, and that is storing data under
one key and then retrieving those data with the mentioned key. It is possible
to create links, but the databases are not optimized for them.

The Riak is a key-value store that allows each of its stored values to be
augmented with link metadata. Each link is one-way, pointing from one stored
value to another. Riak allows any number of these links to be walked (in
Riak terminology), making the model somewhat connected. However, this
link walking is powered by map-reduce, which is relatively latent. Unlike
a graph database, this linking is suitable only for simple graph-structured
programming rather than general graph algorithms[48].

1.8.3 Document databases

Stores data in a uniquely keyed document that can have varying schema
and that can contain nested data. Examples include MongoDB and Apache
CouchDB.

1.8.4 Graph databases

Graph database management systems (henceforth, a graph database) are on-
line database management systems with Create, Read, Update, and Delete
(CRUD) methods that expose a graph data model. Graph databases are gen-
erally built for use with transactional (OLTP) systems. Accordingly, they are
normally optimized for transactional performance and engineered with trans-
actional integrity and operational availability in mind[48].

JanusGraph

One of the graph databases is Janusgraph. Janusgraph database is an open-
source, scalable graph database optimized for storing graph structures that
contains billions of nodes and edges and making queries on them. It is also
transactional, so a set of operations is part of the transaction, and multiple
transactions can be active at the same time.

Janusgraph project was created from the Titan project. The development
of the Titan project was stopped in 2015. Janusgraph is developed under Linux
Foundation and multiple developers from companies like Expero, Google, IBM
and Amazon[48].

41

1. Analysis

MATCH (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
WHERE a.name = 'Jim'
RETURN b, c

Code example 1.8: Example of query in Cypher language[48]

Neo4J

Another graph database management system worth mentioning is Neo4J.
Neo4j is the most popular among the graph databases. It uses its own storage
backend and processing engine. Version for non-commercial use is free to use,
but once we want o use it for commercial purposes, the licence is paid. Neo4j
uses Cypher language for querying. This language is similar to SQL, and that
is why it is so popular. The basic syntax looks like this 2.1.

Thanks to its popularity, there are lots of resources from which developers
can draw. For this project, the main obstacle is the licence because I am
extending ClueMaker and its commercial product. And for example, clustering
is only in the enterprise version. Another difference is consistency, as the Neo4j
aims to be strongly consistent when Janusgraph can choose consistency with
the chosen storage backend. For example, with HBase, it will be strongly
consistent, and with Cassandra, it will be eventually consistent[49].

In the field of graph databases, we can find more projects similar to Janus-
graph or Neo4j. Big companies like Amazon and Microsoft have their own
solutions for storing graph data.

Azure CosmosDB

Microsoft is offering Azure CosmosDB is multi-model database supporting not
only documents, key-value, and column-family data models but also graphs.
The storage is horizontally scalable. For communication is used gremlin query
language. The engine closely follows Apache TinkerPop specifications but
some features supported by Apache TinkerPop are not available. Consistency
can be configured on request level[50].

AWS Neputne

Another graph database is AWS Neptune, created and offered by Amazon.
Neptune is purely a graph database. Supports gremlin query language and also
SPARQL. The storage is immediately consistent. Similarly to the CosmosDB,
it is hosted on the cloud, and users do not have to worry about operational
overhead[51].

Worth mentioning are also OrintDB, Chronos, IBM Graph or Sqlg.

42

Chapter 2
Design

In the analytical part of this thesis, I introduced basic concepts of blockchain
technology and introduced data sources and databases that could be suitable
for this work. In this chapter dedicated to the design, I will use gathered
knowledge and describe the architecture of the final product.

2.1 Data

Both clients, Bitcoin Core and Geth, provide data about the block and trans-
actions, but not all information needs to be stored in the database. As the
main goal of this thesis is to visualize the relations and movements inside the
blockchain, I need to store only a subset of data provided via the client API.
For example, information for validation of the block or raw hexadecimal val-
ues where decoded equivalent values are available. Those are values I have
decided not to store to save the space that is precious resources. And that is
why I describe available attributes and if it is going to be stored or not.

2.1.1 Bitcoin client API

Bitcoin client provides REST API endpoint with information about blockchain
data as blocks, transactions, and mempool. There are also endpoints for
validating the chain, creating blocks or transactions, mining, controlling the
client or managing the wallet.

To limit the traffic, I decided to turn off the transaction relay by using
parameter blocksonly when starting the bitcoin node. Forwarding transactions
to peers increase peer-to-peer traffic.

This setting has following effects[52]:

• Fee estimation will no longer work.

43

2. Design

POST http://127.0.0.1:8332/
Authorization: Basic user pass
Content-Type: text/plain;

{"jsonrpc": "1.0", "id": "curltest", "method": "getblock",
"params":

["00000000a04a30baed00999ad971f807b5e74
2f602e013519f89eb7248c7ddf5", 2]

}

Code example 2.1: Example of POST request with method getblock

• It sets the flag ”-walletbroadcast” to be ”0”, only if it is currently unset.
Doing so disables the automatic broadcasting of transactions from the
wallet.

• Not relaying other’s transactions could hurt your privacy if used while
a wallet is loaded or if you use the node to broadcast transactions.

• If a peer has the force relay permission, we will still receive and relay
their transactions.

• It makes block propagation slower because compact block relay can only
be used when transaction relay is enabled.

By default, the bitcoin client listens on localhost on port 8332. The end-
point listens for a POST request with a body that contains information about
the request JSON-RPC version, id, a method that we want to invoke and
parameters.

In this thesis, I need to get data inside the blocks and iteratively create
an entire chain. For this purpose, I will start with the method for returning
information about the block. The method is called ”getblock”.

getblock

This method can be called using following POST request:
The method accepts two parameters. First required parameter is string

representing the hash of the block and second optional parameter is verbosity.
Verbosity allows developers to choose how much information they want to
receive. There are 3 values:

• 0: for hex-encoded data

• 1: for JSON object containing data about the block and transaction
identifiers.

44

2.1. Data

• 2: for JSON object containing information about the transactions

Data model of response on request with verbosity set to 2 can be seen on
figure 2.1.

Block

confirmations long

hash string

weight long

height long

version long

versionHex string

merkleroot string

tx List

time long

mediantime long

nonce long

bits string

difficulty long

chainwork string

nTx long

previousblockh
ash string

nextblockhash string

size long

strippedsize long null

Transaction

hash varchar(50)

txid varchar(50)

size varchar(250)

vsize varchar(250)

weight varchar(250)

locktime varchar(250)

vin varchar(250)

vout varchar(250)

hex varchar(250)

size varchar(250)

version char(5) null

TransactionInput

coinbase string

txid long

scriptSig object

sequence long null

TransactionOutput

n long

value double

scriptPubKey object null

scriptSig

hex string

asm string

scriptPubKey

hex string

regSigs long

type string

addresses list<string>

asm string

Figure 2.1: Data model response getblock

Response of this call contains all the information that we need to create
the blockchain. But some attributes are not so important for us so we need
to select which we want to store in the graph.

In this part I want to describe each part of the response and decide if we
want to store it.

Root object is containing following attributes:

• hash: Hash of the block. Hash serves us as the unique identifier of the
block and is used as a pointer from other blocks in attributes nextblock-
hash and previousblockhash. Hash will be used to create the spine of the
blockchain that the ledger of connected blocks.

• confirmations: Confirmations represent a number of nodes in the blockchain
that confirm the validity of this block. If the returned value is equal to
-1, the block is not on the main chain. As we are not verifying the va-
lidity of the chain, this information can be used to filter blocks on the
main chain, but it is not necessary to store it.

• size: This attribute tells the size of the block in bytes. This information
is redundant as there is no need to know the size when we process plain
text responses.

45

2. Design

• strippedsize: Size in bytes without the witness data that are added after
publishing the block. Similarly to the size attribute, this information
has no use for us. weight

• weight: Block weight is a measure of the size of a block, measured in
weight units. The Bitcoin protocol limits blocks to 4 million weight
units, restricting the number of transactions a miner can include in a
block.

• height: Block height gives us an index of the block. Starting with the
0 representing the genesis block. This information can be helpful when
we want to make sure we process all the data or, for some reason, skip
a specific block and continue without knowing the next block hash. AS
of now, the bitcoin blockchain consists of more the 720 000 blocks.

• version: Right know there are 4 versions of blocks. With accepting BIP
(Bitcoin Improvement Proposal) that is not backward compatible. Ver-
sion 1 was the version of the genesis block Version with number 2 came
in September 2012 and added the height number into the block and
changed rules for rejecting the blocks.. Third version came in February
2015 when the bitcoin required strict DER encoding of all ECDSA sig-
natures in new blocks. Last version with number 4 added support for
new opcode OP CHECKLOCKTIMEVERIFY in the script.
For this attribute I cant find usage in our current architecture as the
changed across the versions does not changed the relations or shape of
the data. Using the technologies chosen for this thesis, we can add the
version number in the future if needed.

• versionHex: Representing the version number in hexadecimal format.
This attribute wont be needed as its copy of the previous attribute just
in different format.

• merkleroot: Merkleroot is used for creation of the block header and for
our analysis is not important. That is why we wont be storing this
attribute.

• time: Time of creation of the block in seconds since epoch (Jan 1 1970
GMT). The block time is chosen by miners and have to obey rules but it
is possible to have block that is higher but has lower timestamp. For the
purpose of connecting the transactions inside the block with real world
events, the mediantime attribute is more suitable.

• mediantime: Mediantime is the median time of the past 11 block times-
tamps, and a block must have a timestamp greater than that median
time, so the mediantime attribute always increases within blocks. That
is why I choose this timestamp to be stored.

46

2.1. Data

• nonce: Nonce is used purely for mining process and has no purpose for
us right now.

• bits: The genesis block’s target difficulty equal to ”1d00ffff”. This pa-
rameter is used when mining new block and for our analysis has no
purpose.

• difficulty: Difficulty is variable that assures that mining of new blocks
will take around 10 minutes even with increasing number of miners and
computational power. For our analysis is not important.

• chainwork: Expected number of hashes required to produce the chain up
to this block in hexadecimal form. For our analysis, it is unimportant.

• nTx: Number of transactions inside the block. It can be used in the
process of transforming and storing the data. It might be useful to
make some queries faster as we won’t need to recount the transactions
from number of relations. I choose to store this information.

• previousblockhash: Hash of the previous block. It’s important for cre-
ating the relations between blocks.

• nextblockhash: Hash of the next block. In theory, we need nextblock-
hash or previousblockhash attribute to create the chain. Using the iter-
ating strategy for constructing the chain, I choose to store the hash of
the previous block, but a hash of the next block can be used for looking
up the next blocks.

• tx: List of transaction objects. Detailed description in next section.

Transaction objects consist of the following attributes:

• txid: Transaction identifier equal to hash of the transaction. This at-
tribute is important and will be stored.

• hash: Hash of the transaction that can differ from txid for segwit trans-
actions. The difference is when the transaction is a segwit transaction,
the calculation of hash does not include the witness data, whereas the
txid does.

• version: Similarly to the block version, transactions have their own ver-
sion specifying the rules they follow.

• size: Size of the transaction in bytes.

• vsize: Virtual transaction size is defined as Transaction weight / 4
(rounded up to the next integer). Not important for the purpose of
this thesis.

47

2. Design

• weight: Similar to block weight is not useful.

• locktime: Time in seconds when the inputs are locked, and cant be used
in future transactions.

• hex: The serialized, hex-encoded data for ’txid’.

• vin: Transaction inputs.

• vout: Transaction outputs.

Transaction inputs and outputs are important and are worth describing in
a separate section. They are both important parts for observing the flow of
funds between addresses and wallets.

Transaction Input, in response called vin, consists of following attributes.

• txid: Reference to the other transaction, using the transaction identifier.
Will be stored.

• vout: Numeric value used to specify transaction output index, that is
being unlocked by this input. Will be stored.

• sequence: The script sequence number. For this thesis it is not impor-
tant.

• txinwitness: Array of hex-encoded witness data. The data is present for
segwit transactions and will be stored.

• scriptSig: JSON object with two attributes, asm and hex, that is used
for unlocking the referenced output. Value in attribute asm is decoded
value of the second attribute hex. Contains the unlocking script, and
that is why it will be stored, but only the asm value, as it is in human-
readable form.

Transaction Output, in response called vout, contains the value that is
locked and the script that can be unlocked by other transactions with the
correct unlocking script.

• value: The value representing a number of coins locked in this output.
Will be stored.

• n: Index of the output inside the transaction. It is used to be able to be
referenced by other transaction input.

• scriptPubKey: Object with locking script and related information. This
object contains five more attributes:

– asm: Contains decoded value of attribute hex. This value will be
stored.

48

2.1. Data

– hex: Hexadecimal value of the locking script. It will not be stored.
– reqSigs: Number of required signatures. This value is not needed.
– type: Type of the locking script is one of the standard types. Will

be stored.
– addresses: List of addresses if known. Will be stored.

This is the main resource of information for the Bitcoin blockchain.
But there are other methods that can be called on the bitcoin client and

retrieve new information or subset of information. I will introduce other meth-
ods, but I will not go into such detail as in the getblock method.

getblockchaininfo

This method return information about the state of the client. The response
contains information about the current network name (main, test, regtest),
number of fully validated blocks, pruning information, status of the soft forks
and possible warnings. It can be used to monitor the client.

getblockhash

Returns hash of a block at provided height. The method getblockhash takes
as a parameter hash of the block, and if only a height is known, this method
can be used to look up the hash.

getrawtransaction

This method return detailed information about the transaction specified by
the txid attribute. To make this method work, the client has to be set up in
a specific way. If it isn’t, it will work for transactions in the memory pool.

This method accepts three attributes: txid, verbose and blockhash. The
parameter txid takes transaction identifier of wanted transaction. Verbose is a
boolean values which sets the level of detail returned in the transaction. The
blockhash refers to the block in which to look for the transaction.

This method can be used for the retrieval of transaction information with-
out the need to request data in the block in which the transaction is included.

2.1.2 Geth client API

Geth client that I will be using in this work offers JSON RPC endpoint with
methods that can be called. The methods are divided into five categories:
web3, net, eth, db and shh.

For this thesis, I will use only methods from the eth category that serves
for retrieving data about the Ethereum blockchain.

49

2. Design

eth getBlockByNumber

This method returns information about the block with a specified block num-
ber. The method takes two parameters: block number and verbosity. The
block number is an integer representing the height of the block that should be
returned. The verbosity is a boolean value that, if equal to true, the transac-
tion objects will be included in the response. Compared to the Bitcoin block
structure, Ethereum Block has a simpler structure.

The response object contains the following attributes (with enabled ver-
bosity):

• number: The height of the block. Will be stored.

• hash: The 32 byte hash of the block. Will be stored.

• parentHash: Hash of the previous block. Will be stored.

• nonce: 8 byte value used for the proof-of-work. Is used for verification
and will not be stored.

• sha3Uncles: Hash of the uncle block data. Uncle blocks does not change
the state of the blockchain. Will not be stored.

• logsBloom: The 256 byte value used for filtering hashes of objects. Will
not be stored.

• transactionRoot: The root of the transaction trie of the block. Will not
be stored.

• stateRoot: The root of the final state trie of the block. Will not be
stored.

• receiptsRoot: The root of the receipts trie of the block. Will not be
stored.

• miner: Address of the miner. Will be stored.

• difficulty: Integer value representing the difficulty for this block. Will
not be stored.

• totalDifficulty: The total difficulty is the accumulated sum of all blocks
difficulty until the this block. Will not be stored.

• extraData: Extra data added by the miner. Will be stored as it can be
analyzed in the future.

• size: The size of this block in bytes. Will not be stored.

• gasLimit: The maximum gas allowed in this block. As it does not have
effect on the final fee, will not be stored.

50

2.1. Data

• gasUsed: The sum of used gas by all transactions in this block.

• timestamp: The unix timestamp for when the block was collated. Will
be stored.

• transactions: Array of transaction objects.

• uncles: Array of uncle block hashes. Will not be stored.

• baseFeePerGas: Base fee per unit of gas, which is added with EIP-1559.

The transactions attribute contain list of transaction objects. The object
has following attributes.

• blockHash: The hash of the block where this transaction was included.
Will be stored.

• blockNumber: The block number where this transaction was included.
Will not be stored.

• from: Address of the sender. Will be stored.

• to: Address of the receiver. Will be stored.

• gas: Amount of gas provided by the sender. Will be stored.

• gasPrice: Gas price specified by the sender in wei. Will be stored.

• hash: Hash of the transaction. Will be stored.

• input: The data send along with the transaction. Will be stored.

• nonce: The number of transactions made by the sender prior to this one.
Will not be stored.

• chainId: An identifier of the chain that serves as protection against
replaying of the transaction between chains. Will not be stored.

• transactionIndex: The index of the transactions position in the block.
In Ethereum it is not used for referencing the input or output. Will not
be stored.

• value: Value transferred in wei. Will be stored.

• v: ECDSA recovery id. Will not be stored.

• r: ECDSA signature r. Will not be stored.

• s: ECDSA signature s. Will not be stored.

51

2. Design

• maxFeePerGas: Sum of baseFeePerGas + maxPriorityFeePerGas. Will
be stored.

• maxPriorityFeePerGas: Serve as a tip to the miner. Will be stored.

• accessList: List of addresses and storage keys that the transaction plans
to access. Will not be stored.

Data model of response with verbosity set to true can be seen on figure
2.2.

Block

difficulty number (hex)

baseFeePerGas number (hex)

gasUsed number (hex)

hash string (hex)

logsBloom string (hex)

miner string (hex)

mixHash string (hex)

nonce number (hex)

number number (hex)

parentHash string (hex)

receiptsRoot string (hex)

sha3Uncles string (hex)

size number (hex)

stateRoot string (hex)

timestamp timestamp (hex)

totalDifficulty number (hex)

transactionsRoot number (hex)

uncles list of strings

transactions list

gasLimit number (hex)

extraData string (hex)

Transaction

blockNumber number (hex)

blockHash string

gas string

gasPrice string

hash string

input string

maxFeePerGas string

maxPriorityFeePerGas string

nonce string

nonce string

r string

s string

to string

transactionIndex string

type string

v string

value string

from string

chainId string null

Figure 2.2: Data model response eth getBlockByNumber

2.2 Database schema

In the previous section, I have selected attributes that will be stored. The
structure in which they are returned from the API is not necessarily the most

52

2.2. Database schema

suitable for storing. The goal is to keep the model simple and compact. For
this reason, I will have created a schema that can be seen on the image 2.3
for Bitcoin data and image 2.4 for Ethereum data. In the following sections,
I will describe each node and the relation between them.

For the blockchain data, I will be using the graph database JanusGraph,
and that is why, when describing the model, I will be talking about the nodes
and edges. The labels of the nodes follow the name convention where the
first three characters represent the blockchain and then follow the name of the
object.

2.2.1 Nodes

Nodes in the graph database represent the data structures of the blockchain.
They contain most data from the blockchain. Some attributes do not hold
information for possible investigation but have structural importance, or they
are used for better performance. For each node, I will describe attributes that
are specific or there are some changes from the data clients provide which were
discussed in the previous section.

Each node in the schema has a label equal to its name. Schema for the
nodes for Bitcoin or Ethereum network can be seen on images 2.3 and 2.4

previous

btcBlock

hash string

type string

median_time long

height long

next_hash string

num_of_tx long

prev_block_linked boolean

time long

prev_hash string

btcTransaction

hash string

type string

version string

block_linked boolean

tx_id string

block_hash stringpart_of

btcTransactionIn

coinbase boolean

type string

output string

asm string

parent string

transaction_linked boolean

hash string

in

btcTransactionOut

hash string

type string

asm string

value string

script_type string

address_linked boolean

transaction_linked boolean

parent string

address string

out

btcAddress

hash string

wallet_hash string

tag string

type string

to_address

btcTransfer

type string

in_asm string

out_hash string

hash string

value long

out_asm string

out_script_type string

out_parent string

address string

in_parent string

in_hash string

out

to_address

in

Figure 2.3: Schema of nodes for Bitcoin network

btcBlock

Node with label btcBlock represents the Bitcoin block structure. It serves as
a structure that will be used for marking imported blocks. If the block exists

53

2. Design

ethBlock

hash string

type string

num_of_tx long

miner string

tx_fee string

height long

prev_block_linked boolean

miner_linked boolean

timestamp long

prev_hash string

ethTransaction

hash string

type string

to string

input_data string

fee string

value string

in_address_linked boolean

out_address_linked boolean

block_linked boolean

from string

block_hash string

part_of ethAddress

hash string

wallet_hash string

tag string

type string

mined_by

to

from

Figure 2.4: Schema of nodes for Ethereum network

in the database, the transactions and their inputs and outputs are also saved
in the database. In case of need to start the import process, where only part
of the chain is imported from the stored blocks, the application will recognize
where it left off and where it should start.

• type: The attribute that has the same value as the label: btcBlock. Is
used for indexing.

• hash, prev hash, next hash: The hashes used for identifying the blocks.

• time, median time: Time values are represented as a numeric values.

• num of tx: Number of transactions in the block. It can be used for
validation.

• prev block linked: Boolean value used for better performance when cre-
ating edges between blocks. Nodes with the value true have a link to
the previous block.

btcTransaction

Node with label btcTransaction represents the transaction object. The trans-
action belongs to one block and has one or more inputs and one or more
outputs. The transactions are essential in the schema as they cant be omit-
ted.

• type: The attribute type has the same value as the label: btcTransaction.
Is used for indexing.

• hash, txid, block hash, version: Data to identify the transaction, the
block it belongs to and transaction version.

54

2.2. Database schema

• block linked: Boolean value used for better query performance.

btcTransactionIn

Node to represent transaction input. Has label with value btcTransactionIn. It
belongs to one transaction and can reference one or zero transaction outputs.

• type: Type of the node with value btcTransactionIn is used for Indexing.

• coinbase: The boolean value marking the transaction input created by
the miner. If the transaction input has coinbase attribute to true, it
does not contain attributes like output or asm.

• hash: The transaction input object does not have hash on its own, but I
construct it to be used as unique identifier. It is constructed from prefix
”in ”, then the tx id attribute of parent transaction and the index of the
input inside the transaction.

• output: Attribute constructed from the attributes vout and txid of the
transaction input object. It reference the transaction output the input
is unlocking, as it is equal to the output hash attribute. Is created from
prefix ”out ” with concatenated txid and vout attributes.

• asm: Corresponds to the asm attribute of transaction object.

• parent: The tx id of the parent transaction.

• transaction linked: Mark if the edge to the transaction node have al-
ready been created. Used for faster queries.

btcTransactionOut

Node with label btcTransactionOut represents the transaction output. It be-
long to one transaction, can reference the address and on its own does not
reference any inputs. But can be referenced by an input.

• type: Equal to string with value btcTransactionOut.

• hash: The hash is constructed from the ”out ” prefix followed by the
tx id of parent transaction and the n attribute of transaction output
object. Is referenced then by this attribute by the input.

• parent: The tx id attribute of the transaction node it belongs to.

• asm, script type and address: Corresponds to the object attributes.

• value: Value in satoshi units represented as string.

• address linked, transaction linked: Boolean values used for better per-
formance.

55

2. Design

btcTransfer

The node with label btcTransfer does not represent any structure retrieved
from the Bitcoin client, but I have created it to represent output and input
that is spending it. Without this node, the model would contain a lot of inputs
and outputs and traversals from one transaction to other would go through 2
node using 3 edges. Therefore I designed a node that is combination of both
nodes. It does reference the parent transaction of the input and output, and
also references the address.

• type: String value equal to btcTransfer for every transfer node.

• hash: Hash of the transfer node is created from the output hash value,
only the prefix ”out ” is replaced for ”tr ”.

• out hash, out parent, out asm, out script type, value, address: These
attributes correspond to the attributes in transaction output node. As
the attributes address and value are essential in in exploring the network,
I used names without the prefix.

• in hash, in asm, in parent: Values from the input node.

The merging of the input and output is depicted on image 2.5.

btcTransfer

type string

in_asm string

out_hash string

hash string

value long

out_asm string

out_script_type string

out_parent string

address string

in_parent string

in_hash string

btcTransactionOut

hash string

type string

asm string

script_type string

value string

address_linked boolean

transaction_linked boolean

parent string

address string

btcTransactionIn

coinbase boolean

type string

output string

asm string

parent string

transaction_linked boolean

hash string

Figure 2.5: Merge of the btcTransactionOutput and btcTranasctionInput

btcAddress

Node with the label btcAddress serves as representation of the address. The
combination of attributes hash and type are unique.

• type: String that is for all address nodes equal to btcAddress.

• hash: Hash of the address.

56

2.2. Database schema

• wallet hash: Hash of the wallet, it belongs to.

• tag: String containing information about the address.

ethBlock

The ethereum has only three nodes and first one is the node with label eth-
Block. It serves as the maker for synchronization. If the node exists, the
transactions inside should be imported also and there is no need to add them.

• type: String value equal to ethBlock.

• prev hash, height, hash: These attributes correspond to ethereum block
object attributes.

• timestamp: Timestamp of block creation represented as the numeric
value.

• num of tx: Number of transactions included into this block. Used for
validation.

• miner: Address of the miner. References btcAddress node.

• tx fee: Sum of fees from transaction that is used as reward for the miner.

• prev block linked, miner linked: Boolean values used for better query
performance.

• wallet hash: Hash of the wallet, it belongs to.

• tag: String containing information about the address.

ethTransaction

Node with label ethTransaction representing the transaction in Ethereum net-
work.

• type: String equal to ethTransaction.

• hash: Hash of the transaction. Used for as an identifier.

• block hash: Block hash referencing the btcBlock.

• from, to: Addresses referencing the btcAddress nodes.

• input data: Input data as a string.

• fee: Fee calculated from the gas price and used gas. Represented as
string.

57

2. Design

• value: The value of transferred coins in wei units represented as string.

• prev block linked, miner linked: Boolean values used for better query
performance.

ethAddress

Node representing the address in Ethereum network. Each node has label
ethAddress. It it separated from the btcAddress as in Ethereum the addresses
can be divided into two types and in future it would be necessary to split
them.

• type: Each to nodes label ethAddress. Used for better performance.

• hash: Hash of the address. Is used a unique identifier.

• wallet hash: Hash of the wallet, it belongs to.

• tag: String containing information about the address.

wallet

Nodes with label wallet represent collection of addresses belonging to one
owner.

• type: String value equal to wallet

• hash: Hash of the wallet, create from the name by hashing with SHA256.

• name: Name of the owner of the wallet. Can be name of an individual
or the company.

• segment: Segment of the market in which the owner of the wallet is
doing business.

• source: Name of the source from which it was retrieved.

Wallets are not specific for the blockchain and that is why the name does
not have prefix ”btc” or ”eth”.

2.2.2 Edges

Edges are one of the unique properties of the graph database and allow users
to traverse the nodes in the graph through the edges. The edges in schema for
this thesis represent references from the one node to the other. In following
part I will describe edges between nodes and their properties.

58

2.2. Database schema

• previous: The edge with label previous is created between two btcBlock
or ethBlock nodes. It is created based on the prev hash and hash at-
tributes. It is directed edge and each block node can have two such
edges connected to it. One incoming and one outgoing. Except for the
last blocks, all other should be connected into the chain.

• part of: The edge with the label part of is created between blocks
and transactions. In Bitcoin between btcBlock and btcTransaction. In
Ethereum between ethBlock and ethTransaction. Always directed from
the transaction to the block. Each transaction can have only one out-
going edge. Each block can have one or more incoming edges with this
label.

• in: The edges with label in serves in each blockchain as connection
between different structures. In schema for Bitcoin node it serves as
relation from btcTransactionIn or btcTransfer to the btcTransaction. In
the schema for Ethereum nodes it from ethAddress node to the ethTrans-
action node. The edge is directed.

• out: The edge with the label out is used for two reasons. Fist is to con-
nect btcTransaction nodes with their outputs nodes with label btcTrans-
actionOut or already merged btcTransfer nodes. Transactions should
have at least one outgoing edge and btcTransactionOut and btcTransfer
should have exactly one incoming edge.

• to address: Edge that connects btcTransactionOut and btcTransfer nodes
with the btcAddress nodes has label to address. One address node can
have multiple incoming edges of this label and transaction output and
transfer nodes can have one or none outgoing edges.

• mined by: The edge leading from the ethBlock to the ethAddress, repre-
senting the relation between the address of the miner and the block.

• belongs to: Nodes representing addresses can belong into the wallet.
This edge is leading from the btcAddress or ethAddress into the wallet
node.

2.2.3 Indexes

As the database will contain billions of nodes, the queries need to be as fast
as possible. This can be done partially by the use of the indexes. In the
application, I use queries that filter based on an attribute and these indexes
should ensure that the database system does not have to iterate over all nodes
in the database to find the wanted result.

• byTypeAndHashUnique: This is the most used index by the queries in
this thesis. As the Janusgraph database system can not create indexes

59

2. Design

on the label of the node, I have added attribute type with the same value,
which can be used in the indexes. Also, the hashes of the object in the
Ethereum and Bitcoin serve as the identifiers and when searching for
one specific node, the most queries will filter the results based on the
type and hash attributes. The index is marked as unique, which also
ensures their wont be any duplicate values. All nodes are indexed, and
this is a composite index.

• byType: Some queries are not looking for one specific node but for nodes
with a specific type. For such queries, I have created this composite
index.

• btcBlockHeight: The application I will describe in the implementation
part of this thesis is made to be able to start once again after the ter-
mination. This is done by being able to find the last block created. For
such queries I have added this composite index on the attributes type
and height where only the btcBlock nodes are indexed. The index is
unique, as only one block in the network can have a specific height.

• ethBlockHeight: Similar index, as for the btcBlock, was created for the
Ethereum blocks. As Ethereum creates blocks faster than the Bitcoin
network, this index is even more important. The index and is build on
attributes type and height where only the ethBlock nodes are indexed.

• btcTransactionOutAddressLinked: The following indexes are created
specifically for queries that are used when creating the edges between
the nodes. In this type of query, the application is searching for nodes
that have not been connected by a specific edge. As I encountered an
issue with traversals filtering the nodes based on the existence of the
specific edge, I created for each node attribute that do exactly this. Us-
ing the index on this attribute allows me to construct traversals that will
return nodes with specific type and with or without the edge faster. For
this specific index it is type with value btcTransactionOut and attribute
address linked.

• btcTransactionInTransactionLinked: Composite index for better perfor-
mance of traversals searching for transaction inputs that have not been
connected by the edge to the transaction. This index is build on the
attributes type and transaction linked where only the btcTransactionIn
nodes are indexed.

• btcTransactionBlockLinked: Composite index for better performance of
traversals on btcTransaction nodes with use of the attribute block linked.
This index is build on the attributes type and block linked where only
the btcTransaction nodes are indexed.

60

2.2. Database schema

• ethTransactionInAddressLinked: Similar issues, as with the performance
of traversals on nodes for the Bitcoin, have occurred for the Ethereum
nodes. Therefore I created three indexes for traversals used frequently in
the application. This composite index is build on type and in address linked
attributes of the ethTransaction vertexes.

• ethTransactionOutAddressLinked: Similarly to previously described in-
dexes this composite index is used for better performance of traversals
making use of type and out address linked on ethTransaction nodes.

• ethBlockMinerLinked: Last index I use in the Janusgraph database is
build on attributes type and miner linked with only the ethBlock nodes
being indexed.

In this thesis, I do not use indexing backends like Elasticsearch, Apache
Solr and Apache Lucene. In future, it would be suitable to configure such
backend and use it for faster traversals. Plus, it allows the use of mixed
indexes that can provide support for geo, numeric range, and full-text search.

2.2.4 Relational Database schema

The main application is responsible for the import of data from the Ethereum
network and Bitcoin network into the Janus graph database. As described in
the analytical part of this thesis, there are other sources of information that
can be used to retrieve additional information that can be used for future
analysis. For storing the extracted data, I have decided to use the PostgreSQL
database, and in this part of the thesis, I will describe the schema and use of
the items in the tables on image 2.6.

data source

Table with name data source contains records of data sources for which the
process of extraction has begun or has been finished. Also, serves as the record
for finding out why some addresses have been tagged. The table contains rows
for basic identification.

• data source id: The primary key for this table, represented by auto
incremented integer.

• name: Varchar representing the name of the resource.

• date updated: Date, when the resource was updated for the last time.

• url: Url of the the resource. Should not be the url to the file of API,
but the index page where more information about the resource can be
found.

61

2. Design

data_source

name string

url long

data_updated string

data_source_id integer

wallet

name integer

hash varchar

date_updated date

loaded boolean

tag varchar

source varchar

wallet_id integer

data_source_id integer

data_source_id

address

hash varchar

date_updated date

blockchain varchar

tag varchar

source varchar

wallet_id integer

data_source_id integer

address_id integer

data_source_id

crawled_resource

url varchar

date_crawled date

wallet_id

1 0..*

1

0..*

0..*

1

Figure 2.6: Database schema for PostgreSQL database

crawled resource

The second table in the database is crawled resource. This table has only two
columns with name url that is also primary key and date crewled with data it
was crawled last time. This table serves to record specific crawled resources.
This is specifically for the resources that serves the results in multiple files or
on multiple pages, where the url is different from others just in few parameters.

For example the pages below differs only in the page parameter in the url.
Contents are then used, when starting to extract new resource, to check if it
has been already crawled.

• walletexplorer.com/wallet/Huobi.com/addresses?page=1

• walletexplorer.com/wallet/Huobi.com/addresses?page=2

62

walletexplorer.com/wallet/Huobi.com/addresses?page=1
walletexplorer.com/wallet/Huobi.com/addresses?page=2

2.2. Database schema

wallet

Table with name wallet serves for the purpose of saving information about the
potential wallet from the crawled resources. The software or hardware wallet
can’t be identified, but in this work I use the term wallet for describing the
owner. So addresses owned by one institution or person are grouped together
into one wallet. The columns are following.

• wallet id: The primary key of the table represented as auto incremented
integer.

• hash: The wallets does have hash on its own, but for us in the Janusgraph
database where I build on nodes with hash attribute, it is handy to
create hash for the wallets also. The hash is created from the wallet
name attribute by hashing it with SHA256 algorithm.

• name: The name of the wallet. Can be any identification of the owner,
for example name of the company as Huobi.com or name ”Matej Adamec”.

• source: Name of the source. This violates the Third Normal Form in the
relational databases but allows for faster retrieval of information about
the wallet.

• segment: The segment should describe the part of the market in which
the owner operates. This attribute can also indicate if the wallet is
stolen, used for criminal activity or is on the sanction list.

• data source id: The foreign key of the data source in which the wallet
was found first.

• date updated: The date the record was last updated.

address

• address id: The primary key of the address record. It is auto incre-
mented integer.

• wallet id: Foreign key of the wallet record it belongs to.

• tags: Tags used for quick and short marking of the address. Can be
used for marking as stolen, theft, sanction. The values are separated by
the semicolon.

• data source id: The foreign key of the data source record as addressed
in one wallet can come from multiple data sources.

• hash: Hash of the address.

• date updated: The date the record was last updated.

63

Huobi.com

2. Design

• blockchain: The short name of the blockchain the address belongs to. As
I am working with Bitcoin and Ethereum, the actual options are BTC
or ETH.

64

Chapter 3
Implementation

In this chapter I will describe the implementation of the solution. I will go
through the architecture I have chosen and the configuration of each compo-
nent. I will describe how the process of importing data into database works.
Also, I will go through the implementation of the connector for the ClueMaker
and how the data can be displayed and explored.

The final implementation consists of several systems as can be seen on the
image 3.1. Each part in this architecture has its role and communicate with
other applications.

3.1 Janusgraph

I described the JanusGraph database shortly in the analytical part of the
thesis 1.8.4. Here I want to go into bigger detail and describe features that
are different from standard relational debases. Janusgraph is constructed to
support the processing of large graphs that require storage and computational
capacities beyond what a single machine can provide. The developers state
that the system is built with scalability in mind. Scaling graph data processing
for real-time traversals and analytical queries is JanusGraph’s foundational
benefit. The power of the database to process a large number of concurrent
transactions scales with the number of machines in the cluster.

3.1.1 Storage backend

One of the features I did not encounter in traditional databases is a pluggable
data storage layer. The storage backend is software components that tell
JanusGraph how to talk to its data store. The database does contain the
ability to store the data in the in-memory storage backend, but it is not
suitable for a larger amount of data. However, this allows the architect to
choose a set of features (performance, scalability, ease of maintenance, cost)
that the backend provides.

65

3. Implementation

ChainAnalyzerChainAnalyzer

Crawler

Figure 3.1: Architecture schema

The official documentation mentions the following storage backend that is
supported by the JanusGraph[53].

• Apache Cassandra: The most popular choice based on a number of
sources and discussions on the internet. It provides great performance,
scalability, eventual consistency, fault-tolerant and high availability with-
out compromising the performance[53].

• Apache HBase: It is an open-source, distributed, versioned, non-relational
database modelled after Google’s Bigtable leveraging the distributed
data storage of Hadoop and HDFS[53].

• Google Cloud Bigtable: It is Google’s NoSQL Big Data database service
offering consistent low latency and high throughput. It is strongly consis-
tent, and the transfer of data is done through the internet connection[53].

• Oracle BerkeleyDB: Is an open-source, embeddable, transactional stor-
age engine written entirely in Java. Supports very high performance and

66

3.1. Janusgraph

concurrency for both read-intensive and write-intensive workloads. The
licence is paid for commercial use[53].

• ScyllaDB: It is not officially supported by the JanusGraph as it is not
included in the documentation, but from the ScyllaDB documentation
is evident, that it can be used with JanusGraph. The project comes
from Apache Cassandra. The database is NoSQL and provides high
availability with great performance[53].

3.1.2 Indexing backend

Another feature of the JanusGraph database is a pluggable indexing backend.
There are two types of indexes. Composite and mixed indexes. The com-
posite indexes are supported natively through the primary storage backend.
However, the mixed indexes that are more powerful require the configuration
of the indexing backend.

Again, it is up to the architect to choose the backend based on the features
that are supported, as well as the performance and scalability of the index.
Currently, JanusGraph supports the following index backends[54].

• Elasticsearch: Elasticsearch is a distributed, RESTful search and ana-
lytics engine. It has good support for JanusGraph distributed across
multiple machines.

• Apache Solr: Solr is highly reliable, scalable and fault-tolerant. Pro-
viding support for distributed indexing, replication and load-balanced
querying.

• Apache Lucene: Performs better in small scale, single-machine applica-
tions. Suitable for unit tests.

In this work, I do not use the indexing backend, but I consider it as one
of the main ways how to improve the final solution.

3.1.3 Schema

The JanusGraph’s graph is comprised of vertexes and edges between them.
Both can have labels and property keys. By defualt, the schema is implicit
and created with the insertion of new data. It can also be explicit by definition
of the schema in graph management.

The vertexes or nodes as I refer to them in this thesis, are representation
of objects or records. They have properties with values. JanusGraph natively
supports common types like String, Character, Boolean, Integer and more.
The properties can have multiple types of value cardinality associated with
the key on any given vertex. Supported are SINGLE, which is a default, LIST
and SET.

67

3. Implementation

They can be connected by the edges. Similarly to the relation in relational
databases, the edge can have multiplicity. The multiplicity of an edge with
specific label defines a multiplicity constraint on all edges of this label, that
is, a maximum number of edges between pairs of vertices. Janusgraph distin-
guishes between several types of edge multiplicity: MULTI, which is a default,
SIMPLE, MANY2ONE, ONE2MANY, ONE2ONE.

The schema can also contain definition of the indexes. As mentioned before
in the description of indexing backends, the JanusGraph supports two types
of indexes.

Composite indexes are stored in the storage backend. Composite indexes
retrieve vertices or edges by one or a (fixed) composition of multiple keys.
That composite graph indexes can only be used for equality constraints and
do not allow full-text searches or indexes on numeric ranges. The composite
indexes allow adding constraints on the uniqueness of the value in the graph.

Mixed indexes are the second type and enable the database to retrieve ver-
tices or edges by any combination of previously added property keys. They
provide more flexibility than composite indexes and support additional condi-
tion predicates beyond equality. On the other hand, mixed indexes are slower
for most equality queries than composite indexes[54].

3.1.4 Gremlin

The gremlin query language is used for executing traversal and modifications
in the graph databases. It is developed as part of the Apache TinkerPop
project and is path oriented functional language which allows the construction
of paths by concatenation of the operators for traversal. Gremlin is not depen-
dent on the JanusGraph database as it is used by other graph databases. It
offers abstraction above the graph databases and allows to easily switch to dif-
ferent graph database system without big changes in the implementation[55].

In the code example 3.1 can be seen how the traversal can be constructed.

g.V().has('name', 'hercules').out('father')
.out('father').values('name')

Code example 3.1: Gremlin traversal example

The character g at the start of the query represents current graph traversal.
The function .V() selects all vertexes. By the function .has('name', 'hercules')is
the selection limited on vertexes with property name equal to hercules.

From selected nodes is then sent gremlin, that traverse two times outgo-
ing edges with label father. And from the vertexes where the gremlins are
currently positioned is selected property with the key name.

More function and operators will be described later in through the imple-
mentation.

68

3.1. Janusgraph

3.1.5 Configuration

In this thesis I use the version 0.6.0 that is compatible with chosen Apache
Cassandra release.

When the Janusgraph is started, it starts also the gremlin server, that is
listening for the traversals and communicate with the Janusgraph database.
In its configurations is several properties that needs to be changed for correct
behaviour.

Apart of basic configuration of the host and port where the gremlin server
will be listening, the configuration also contains following properties I have
chosen to change.

• evaluationTimeout: The amount of time in milliseconds before a request
evaluation and iteration of result times out. By default set to 30 seconds
but for our queries is, the default problematic. Therefore I have decided
to set it on a value of 30000, which is equal to 5 minutes. Even as I
do several steps to make queries faster, some traversals have to travel
across millions of nodes.

• serializers: A List of Map settings, where each Map represents a Mes-
sageSerializer implementation to use along with its configuration. This
defines the message format in which the gremlin server will commu-
nicate with other applications. For the purposes of this thesis, I al-
low the use of GraphBinaryMessageSerializerV1, GryoMessageSerializ-
erV3d0 and GraphSONMessageSerializerV3d0 serializers.

• storage.batch-loading: Enabling the storage.batch-loading configuration
option will have the biggest positive impact on bulk loading times for
the applications. Enabling batch loading disables JanusGraph internal
consistency checks in a number of places. Most importantly, it disables
locking. In other words, JanusGraph assumes that the data to be loaded
into JanusGraph is consistent with the graph and hence disables its own
checks in the interest of performance.

• schema.default: If set to none, the automatic type creation is disabled
and only the types and attributes inside the schema are allowed. This
is important due to the batch loading.

• ids.block-size: Each newly added vertex or edge is assigned a unique
id. JanusGraph’s id pool manager acquires ids in blocks for a particu-
lar JanusGraph instance. The id block acquisition process is expensive
because it needs to guarantee a globally unique assignment of blocks.
Increasing ids.block-size reduces the number of acquisitions but poten-
tially leaves many ids unassigned and hence wasted. Therefore I set the
value to 1000000.

69

3. Implementation

• storage.buffer-size: JanusGraph buffers write and executed in small batches
to reduce the number of requests against the storage backend. The size
of these batches is controlled by storage.buffer-size. When executing a
lot of writes in a short period of time, it is possible that the storage
backend can become overloaded with write requests. In that case, in-
creasing storage.buffer-size can avoid failure by increasing the number of
writes per request and thereby lowering the number of requests. Based
on the experiments I set the value to 2048.

• ids.authority.wait-time: This property configures the time in millisec-
onds the id pool manager waits for an id block application to be ac-
knowledged by the storage backend. The shorter this time, the more
likely it is that an application will fail on a congested storage cluster.
Therefore I set the value to 1000.

After proper configuration, the schema described in the chapter dedicated
to the design can be imported and the application can start to work with the
database[56].

3.2 Cassandra

Chosen storage backend for the Janusgraph database is Cassandra. It is in-
stalled on the same server as Janusgraph but can be extended and used as a
distributed cluster. The Cassandra database works correctly when it is started
and no special configuration is needed to make it work. The data inside are
fully managed by the Janusgraph database.

However, during the implementation, I encountered several issues caused
by the tombstone creation. Cassandra uses a log-structured storage engine.
Because of this, deletes do not remove the rows and columns immediately
and in-place. Instead, Cassandra writes a special marker, called a tombstone,
indicating that a row, column, or range of columns was deleted. These tomb-
stones are kept for at least the period of time defined by the gc grace seconds
per-table setting. Only then a tombstone can be permanently discarded by
compaction.

This scheme allows for very fast deletes (and writes in general), but it’s not
free: aside from the obvious RAM/disk overhead of tombstones, developers
might have to pay a certain price when reading data back if they haven’t
modelled their data well.

Specifically, tombstones will cause issues if a lot of deletes (especially
column-level deletes) is performed and later perform slice queries on rows
with a lot of tombstones.

The default value or gc grace seconds is 864000 seconds (10 days). In a
single-node cluster, it can safely be set to zero. This can be done by the cqlsh
tool that is packed together with the Cassandra release. When the cluster is

70

3.3. Bitcoin Core

extended for more nodes, the setting should be edited for correct behaviour
and good performance.

In this thesis, I use Cassandra version 3.11.10, that is compatible with
used Janusgraph database.

3.3 Bitcoin Core

The Bitcoin Core is the application for downloading the Bitcoin blockchain
and is used as the source of most information about Bitcoin transactions.

The Bitcoin Core comes as an application with graphical, console and
JSON RPC interfaces. In this thesis, I will use only the console and JSON
RPC interfaces. To run the Bitcoin Core in server mode, the client needs to
be properly configured.

Following settings need to be set in the configuration file.

• server: Enables the bitcoin daemon to listen for the JSON-RPC com-
mands if set to 1.

• rpcuse and rpcpassword: Configuration of authentication credentials
that needs to be provided in the JSON-RPC calls.

• rpcallowip: By default, only RPC connections from localhost are al-
lowed. This property specifies address to be allowed to connect with
other hosts.

• rpcbind: Binds the server to given address to listen for JSON-RPC
connections.

• rpcport: Port on which the server will listen for requests.

• rpcthreads: The rpcthreads parameter is the number of independent
API requests that can be processed in parallel.

• txindex: By default, Bitcoin Core builds a database containing only
the transactions related to the user’s wallet. To be able to access any
transaction with commands like gettransaction. If the txindex property
is set to 1, the Bitcoin Core will build a complete transaction index that
will be used for such searches.

After configuring mentioned properties, the Bitcoin Core can be started
and it will start synchronizing the blockchain and listening for the requests[4].

71

3. Implementation

3.4 Geth

The Geth is the implementation of the Ethereum client which will be used
in this for downloading the Ethereum blockchain and retrieving the details
about the transactions.

The configuration of the Geth node is done by the parameters when exe-
cuting the application. The parameters I use are the following.

• syncmode: Geth has three different syncmode options that determine
the network that will be used and synchronized with. The default option
is ”snap”, but for this thesis, I use the ”full” mode that downloads all
blocks (including headers, transactions, and receipts) and generates the
state of the blockchain incrementally by executing every block. This
allows importing data before the node is fully synchronized. The ”snap”
mode downloads the current state and then the blocks but does not
allow to query the transaction from the start. There is also ”light”
mode, which relies on other nodes to provide the data, but as there is
not enough of nodes that would allow other nodes to connect.

• cache: Megabytes of memory allocated to internal caching. In this thesis
I use value 2048.

• maxpeers: Maximum number of network peers. If the value is low, I can
cause issued with synchronization. I have chosen the value 50.

• blocksonly: This setting was described in the section where I described
the data retrieved from the JSON RPC endpoint. The most important
effect these settings have is downloading only the confirmed blocks and
lowering the bandwidth.

When the Geth Client is executed, it starts to listen for HTTP requests
and creates the geth.ipc file for IPC communication.

Together with the Bitcoin Core client are the main sources of information
prepared. However, the clients need to be at least partially synchronized to be
able to serve the data. The amount of time it takes clients to fully synchronize
is significant[5].

3.5 ChainAnalyzer

The ChainAnalyzer is the main application for extracting the data from
blockchain clients and importing them into the graph database Janusgraph.

The application is composed of several Spring services.

• BitcoinClient

• EthereumClient

72

3.5. ChainAnalyzer

• DatabaseClient

• BlockChainImporter

Simple schema of the service communication can be seen on 3.2/

BlockChain

Importer

EthereumClient

DatabaseClient

BitcoinClient

Figure 3.2: Service architecture

In following sections I will describe each service, it’s purpose and functions.

3.5.1 BitcoinClient

The BitcoinClient service is responsible for retrieving information from the
Bitcoin Client. As it is using the JSON-RPC, it is not dependent specifically
on the Bitcoin Core client but other data sources, that will use the same
interface, can be used.

During the early implementation I considered using a java library created
for communication with Bitcoin Clients. An example of such a library is
bitcoinj. It is a library for working with the Bitcoin protocol. It can maintain
a wallet, send/receive transactions without needing a local copy of Bitcoin
Core and has many other advanced features. However the library and classes
it is using to represent the historical data from the blockchain do not allow to
retrieve all information that can be extracted using the JSON-RPC endpoint.
Example of such information is address of the transaction output[58].

For communication via the JSON-RPC endpoint, the body of the HTTP
POST requests needs to be JSON with valid format. For that I created have
created a data transfer class BtcRequestDTO that can be serialized into JSON
using the jackson library.

For retrieving the data from the response, I have created several DTO
classes that are used for deserializing the response upon arrival.

73

3. Implementation

The majority of the DTO classes represent some parts of the response of
getblock method called on Bitcoin Core client. The classes contains only the
attributes that I want to store or use during the import. Other attributes are
ignored.

For retrieval of configuration and creating the bean with BitcoinClient,
I have implemented the BitcoinClientDefaultConfiguration class. This class
loads the configuration from the application-btc.properties file and cre-
ates the BitcoinClient object with correct credentials and url.

3.5.2 EthereumClient

The EthereumClient, similarly to the BitcoinClient, is responsible for commu-
nication with the Ethereum node client, in this case Geth.

Web3j

For the communication with the client, I have decided to use the web3j li-
brary. The web3j is a lightweight, highly modular, reactive, type-safe Java
and Android library for working with Smart Contracts and integrating with
clients (nodes) on the Ethereum network. It has complete implementation
of Ethereum’s JSON-RPC client API over HTTP and IPC. It also supports
a connection to Infura, so it is easy to switch the clients. This allows you
to work with the Ethereum blockchain, without the additional overhead of
having to write my own integration code for the platform.

EthereumClientImpl

The EthereumClient implementation use the web3j contains functions to re-
trieve the block by its height. Actual implementation does not rely on other
methods, but in future, other functions can be easily added.

EthereumClientDefaultConfiguration

The class EthereumClientDefaultConfiguration creates Web3j bean with con-
figuration loaded from the configuration file. It is prepared be able to use IPC
or REST for communication with the client. The selection is made by setting
the property ethereum.method on ”ipc” or ”rest”.

3.5.3 DatabaseClient

DatabaseClient class is responsible for communication with the database. Its
implementation offers functions to add nodes into the database or execute
traversals or start processes for creating the edges.

74

application-btc.properties

3.5. ChainAnalyzer

Apache Tinkerpop

For working with the Janusgraph database, I have decided to use Apache
Tinkerpop library. Apache TinkerPop is an open source Graph Computing
Framework. Within itself, TinkerPop represents a large collection of capabil-
ities and technologies and, in its wider ecosystem, an additionally extended
world of third-party contributed graph libraries and systems. The library has
several implementation for different languages, so it can be used by applica-
tions written in Java, C# or Python[55].

The Tinkerpop provide interface for constructing the traversals and then
executing them by sending the traversals to the listening gremlin server which
will evaluate them and return the results.

DatabaseClientDefaultConfig

The class DatabaseClientDefaultConfig serves as a configuration class and
create bean with the GraphTraversalSource which is then used in the imple-
mentation of DatabaseClient. After creating the connection to the remote
gremlin server, it execute a control check on the connection.

DatabaseClientImpl

The implementation is not in many ways straightforward as it could seem. In
the process of development I have encountered several issues I had to work
with or around.

The main issue I have faced is the request timeout. As the database after
some time contains millions or even billions of nodes, the queries that retrieve
nodes or edges from the database get slower. Also, as there are more nodes of
some type, some traversal needs to visit majority or even all nodes or edges
in the database. This is partially mitigated by the use of indexes but not
entirely.

For this reason I construct the traversals with following rules in mind:

• If we know number of the vertexes that should be returned, the traversal
should be limited by the .limit(x) function.

• Traversals that create edges or nodes and can be divided into smaller
segments should be divided and the segments should be executed sepa-
rately.

• If it is possible to search the node using its internal id (generated by the
Janusgraph) it faster then searching by other identifiers, for example
hashes.

Those three rules change for example process of deleting all nodes in the
database. Instead of calling drop function on all nodes, it is more reliable

75

3. Implementation

to iterate over small portion of vertexes and dropping them first. After the
deletion is finished, iterate over next portion of vertexes. This way the gremlin
server will not timeout and the the chance or issues is mitigated.

The database client offers 4 types of functions.

• Function for inserting data into database

• Function for creating edges between nodes

• Function for operations over the data in the database

• Support functions

In this part I will describe each type of the function with examples.
Function for inserting data into database has purpose of creating

traversal that will insert provided object into the database and executing it
over the database. For each node is created corresponding function. For
example for the BtcBlockNode exists function called insertBtcBlockNode
that takes one argument of type BtcBlockNode.

The code of the function, where the logging is removed, is in the code
example 3.2.

@Override
public Vertex insertBtcBlockNode(BtcBlockNode node)

throws IllegalArgumentException {
if(node == null){

throw new IllegalArgumentException("Block cant be null");
}
Vertex v = g.addV(BTC_BLOCK)

.property(Att.TYPE, node.getType())

.property(Att.HASH, node.getHash())

.property(Att.PREV_HASH, node.getPreviousBlockHash())

.property(Att.TIME, node.getTime())

.property(Att.MEDIAN_TIME, node.getMedianTime())

.property(Att.HEIGHT, node.getHeight())

.property(Att.NEXT_HASH, node.getNextBlockHash())

.property(Att.NUM_OF_TX, node.getNumOfTx())

.property(Att.VERSION, node.getVersion())

.property(Att.PREV_BLOCK_LINKED,
node.getPreviousBlockLinked()).next();

return v;
}

Code example 3.2: example of insertBtcBlockNode function without the log-
ging

76

3.5. ChainAnalyzer

The function first checks if the value is not null and in case it is null it
will throw IllegalArgumentException. After the check the function pro-
ceeds to creating the traversal by calling the g.addV(...) which will cre-
ate the vertex in the database with specified label. Then by calling the
.property(key, value) it adds properties to the node. Each attribute of the
block is copied. After constructing the traversal, the function for executing
.next() is called and the Janusgraph database return the vertex containing
id and label of created vertex. And that is returned by the function.

Function for creating edges between nodes works on the principle
of identifying the nodes that don’t have specific edge, then creating the edge
between node based on the equality of one or combination of parameters.

Example of such method can be createBlockBlockLinkBtc. In this func-
tion can be seen application of third rule I mentioned before. The whole body
of the function is inside while loop which repeats until stopped from the inside,
when there are no more nodes that meet the criteria. The example 3.3 show
how the search traversal can look like and how the look is interrupted if there
are no results returned. In this example can be also seen the limitation of the
number of results.

Then the function continues by iterating over the returned results and
executing the traversal which finds both nodes and creates the edge between
them. Before executing the traversal, the property, that indicates the node
has the edge connected, is changed to true and therefore will not show in the
next iteration.

GraphTraversal<Vertex, Map<Object, Object>> traversal = g.V()
.has(Att.TYPE, BTC_BLOCK)
.has(Att.PREV_BLOCK_LINKED, false)
.limit(iterationSize).valueMap().with(WithOptions.tokens);

if(!traversal.hasNext()){
break;

}
while(traversal.hasNext()){

Map<Object, Object> blockMap = traversal.next();
BtcBlockNode block = convertVertexValuesToBlockBtc(blockMap);
g.V(block.getId()).as("b")

.V().has(Att.TYPE, BTC_BLOCK)

.has(Att.HASH, block.getPreviousBlockHash())

.as("p").addE(PREVIOUS).from("b").to("p").select("b")

.property(Att.PREV_BLOCK_LINKED, true).iterate();
}

Code example 3.3: Simplified body of createBlockBlockLinkBtc function

Function for operations over the data in the database is the third

77

3. Implementation

type of function in the DatabaseClient and example of such function is
mergeInputAndOutputsBtc. This function starts similarly to previous type of
function as it creates loop that iterates over the returned vertexes and when
none are returned, the loop ends.

However the difference is in the body of the loop. This function retrieves
two vertexes representing the the input and output of transaction. Merges
them together and creates the btcTransferNode. This node is inserted into
the database. The edges to the transactions and address are also created.
And the input and output is deleted.

Support function is the last type I want to describe. As support function
I consider functions for committing or roll backing the transaction or retrieving
the block with the highest value in height attribute.

3.5.4 BlockChainImporter

The core service in the ChainAnalyzer application is the BlockChainImporter.
This is a spring service that contains run() function that is executed upon the
start of the application. Based on the configuration it start to import chosen
blockchain.

The import of the each blockchain is executed in iterations. Each iterations
consists of importing nodes from the data source and creating connections
between imported data. Both parts can be disabled by the configuration and
only one of can be executed. This can be useful if the main goal is to import
data and the edges will be created afterwards.

Importing of the nodes consists of finding the last block that was imported
into the database and retrieving the next one from the blockchain. Then
follows the loop in which following steps are executed until the there are
blocks to import. Import actual block into the database together with the
structures inside. Based on the parameters inside actual block, retrieve from
the blockchain client next block. If the block exists, set it as actual block and
if it does not exists stop the loop. By this mechanism it is guaranteed the
loop will end when the application reached the top of the blockchain ledger.

Importing of edges is in structure much more simple. It consists of calling
a functions for creating the edges on the DatabaseClient. After one func-
tion finishes, next one is called until all functions are called and all edges or
transformations are finished. The functions and their count differs with the
blockchain.

3.6 Scrapers and data extractors

As described in the analysis, there are several projects that contains valu-
able information and can be extracted and used to enrich the data from the
blockchain client for use in the network analysis. To retrieve the data I have
decided to implement set of web scrapers and data extractor that will retrieve

78

3.6. Scrapers and data extractors

private void importEthereumNodes(){
EthBlock.Block actualBlock = null;
Long height = databaseClient.getBtcBlockMaxHeight();
if(height == null){

actualBlock = ethereumClient.getFirstBlock();
} else {

actualBlock = ethereumClient.getBlock(height+1);
}
while(actualBlock != null){

//insert block and included structures into database
importBlockEth(actualBlock);
//set actualBlock on next one
EthBlock.Block nextBlock = ethereumClient.getBlock(

actualBlock.getNumber().longValue()+1);
if(nextBlock!= null){

actualBlock = nextBlock;
} else {

actualBlock = null;
}

}
}

Code example 3.4: Simplified body of importEthereumNodes function

the data and store it inside the relational database. After the data are re-
trieved, another application will insert them into the database and they can
be viewed by other tools or applications like ClueMaker.

In this section I will describe the resources and implemented content scrap-
pers and data extractors, together with the scripts that are used. The re-
sources are following.

• WalletExplorer

• BitcoinAbuse

• OFAC

For each source is created separate python script that extracts the data
and insert them to the database. For communication with the databases are
created clients.

• PostresClient

• JanusClient

The schema showing the architecture can be seen on image 3.3.

79

3. Implementation

WalletExplorer

Scraper

BitcoinAbuse

Scraper

PostgresClient

JanusClient

Janus

Importer

OfacSdn

Scraper

Figure 3.3: Scrapers and data extractors architecture schema

WalletExplorer

The first resource is WalletExplorer. The page does not provide one endpoint
that would provide the data. For each wallet, it does provide endpoint with
the CSV file containing data about the addresses belonging to the wallet, but
to be able to construct the address of the site, one needs to know the name
of the wallet. Therefore I have decided to create python script that will crawl
the website and gather wanted resources.

Before I started the implementations I checked if the website had the
robots.txt file. This file gives instructions to web crawlers, bots and robots
about the way they can use and move around on the website. It can’t be
enforced but can help the bots that do not want to harm the server or violate
the wishes of the owner. As this file does not exist on the page, I assume the
owner is not against my intentions.

80

3.6. Scrapers and data extractors

On this site I am interested especially in the wallets, their names and
addresses that belong to the wallet. Most of the wallets on the site are listed
on the main page of the WalletExplorer web.

The main page consists of three parts from the HTML point of view.
Topbar, main and foot. Topbar and foot do not contain any useful information.
The main part is composed of forms for searching on the web using transaction
identifier, address hash or internal wallet identifier. Under the form is table
with five columns where each row contains the name of known wallet. Each
column has its type of service and can be used as tag for the wallet and
addresses. Some rows have more than one wallet inside them. Services with
more than one wallet contain links on other wallets with one-word descriptions
(old, old2, cold, incoming).

On this page I construct wallet objects for each row in the column. This
wallet object contains the name from the row, tag from the name of the column
and a link on the site with the detail. If additional wallets are in the row,
they are also added. After all columns and rows are collected, the application
holds list of wallet objects and can continue to retrieval of addresses.

The application iterates over the wallet objects and for each wallet create
the record in the database and then it constructs the URL where the CSV file
is located. The pattern of the URL is following:

• /wallet/{name}/addresses?page={page}&format=csv

By replacing the name and page for valid values the application construct
the url. Using this url the application retrieve the file and extracts its contents.
The file contains four columns with address, balance, number of incoming
transactions and the height of the last block the address appeared in. The
example of the contents can be seen in table 3.1. The names of the columns
are replaced with shorter names.

Table 3.1: examples of opcodes and their gas cost

address balance in last
13Q8Us3TDi9ofhSZEJoz9qT7FrH52crvtc 0 1 263880
19cYwZ6bNZN2Xx49jWkYyGFc4hKPcBwPH 0 1 263880
1JExdShGRMRExUMZT7qavdz3NoLNTUdcmt 0 1 263878
12PqYY9Cg388iNcz9keAm159zdRGNr5j8L 0 1 263860
1MU48NGCoe6mS9p5BV4CkaszinmHLw4CyC 0 1 263850
1FMJ7mFFX5eStuRJCTc7MSKGRxSGRJSRC 0 1 263777
1KQqEKtb1wgA9HrwDZpDhDKpEZXahMon92 0 1 263752

For my use case I extract only the address. The application parses the
file using the Pandas python library and extracts first column. Then iterates
over the addresses and inserts them into the database together with reference

81

/wallet/{name}/addresses?page={page}&format=csv

3. Implementation

to the wallet it belongs, tag and information about the source so it can be
backtracked.

Bitcoinabuse

The Bitcoinabuse site is second web resource I have decided to use in this
thesis. The site provides several endpoints that can be used.

First API allows developers to look up the abuse type id for use with the
report address API. The response is a JSON with the id and name of each
type. Right now the Bitcoinabuse distinguish between five type and one for
unspecified.

• ransomware: Ransomware is a form of malware designed to encrypt files
on a device, rendering any files and the systems that rely on them unus-
able. Malicious actors then demand ransom in exchange for decryption.
Nowadays, it is common to demand the use of cryptocurrencies for the
transaction[36].

• darknet market: The darknet is the vast portion of the Internet which
can only be accessed using specialized software. Criminals misuse cryp-
tocurrencies for it pseudo-anonymity as it can be used for sale of drugs,
firearms, explosives and many more can all be facilitated by these tech-
nologies.

• bitcoin tumbler: Also called ”mixers” are systems which randomly criss-
cross coin with other user’s bitcoins so that at the end is created a clean
address that the blockchain cannot connect with any of the addresses
from which the coins were stolen[36].

• blackmail scam: This is a practice when strangers threaten someone in
exchange for cryptocurrencies as a means of extortion. They can claim
they hacked the computer of the victim and will release the passwords
of files[36].

• sextortion: The sextortion is a form of blackmail scam where the sender
of and message claims they have video of the receiver from their webcam
performing sexual acts in private, and ask them to pay the amount in
cryptocurrencies to keep the video (which does not exist) private[36].

• other: Option for reports that do not qualify for previous types.

The URL has following form.

• https://www.bitcoinabuse.com/api/abuse-types

82

https://www.bitcoinabuse.com/api/abuse-types

3.6. Scrapers and data extractors

To this URL needs to be appended URL parameter with token to call the
API.

The second API endpoint is used for retrieving the distinct reports. The
endpoint accepts three URL parameters: api token to authorize the call, page
number as only hundred records is returned and reverse to retrieve oldest
reports first. This report is cached and only updates once per hour.

The endpoint listens for GET requests and has following form:

• https://www.bitcoinabuse.com/api/reports/distinct

The response is structured as a main JSON object containing properties
with information about the response like number of results per page, from
and to index of returned records, and others. In the data attribute is a list of
objects containing three attributes. Address, count and last reported at.

{
"current_page": 1,
"data": [

{
"address": "bc1q4z4wwlrx4c2qjkkp0u9dz0cjeqvvt5a9z2z7z5",
"count": 1,
"last_reported_at": "2022-05-03 11:52:02"

},
...

],
"first_page_url": "http:\/\/www.bitcoinabuse.com\/

api\/reports\/distinct?page=1",
"from": 1,
"next_page_url": "http:\/\/www.bitcoinabuse.com\/

api\/reports\/distinct?page=2",
"path": "http:\/\/www.bitcoinabuse.com\/api\/reports\/distinct",
"per_page": 100,
"prev_page_url": null,
"to": 100

}

Code example 3.5: JSON response for distinct reports on Bitcoinabuse

This endpoint could be used to retrieve the addresses but I would not be
able to use the type of the abuse to tag the address.

Next endpoint is for checking concrete address. The endpoint is listening
for GET request on following URL:

• https://www.bitcoinabuse.com/api/reports/check

83

https://www.bitcoinabuse.com/api/reports/distinct
https://www.bitcoinabuse.com/api/reports/check

3. Implementation

The endpoint accepts two URL parameters. First is api token a second is
address.

The example of response can be seen on 3.6. It returns the address and
data about the reports where the address was included.

{
"address": "12LwjZ6yTBMn3RL7CURwmeDrsNmKtLKAeD",
"count": 1,
"first_seen": "2022-05-03 11:06:27",
"last_seen": "2022-05-03 11:06:27",
"recent": [

{
"abuse_type_id": 4,
"abuse_type_other": "Relationship scam",
"description": "Relationship scam",
"created_at": "2022-05-03T11:06:27.000000Z"

}
]

}

Code example 3.6: JSON response for address check on Bitcoinabuse

The last endpoint is to download reports for period of time. The re-
sponse is a CSV file that with following columns. Id, address, abuse type id,
abuse type other, abuser, description, from country, from country code, cre-
ated at.

The endpoint requires the parameters where the first one is api token and
second one is the time period. Allowed options are 1d, 30d, or forever.

The endpoint URL for downloading the report for last 30 days is following:

• https://www.bitcoinabuse.com/api/download/30d

This is the endpoint I have decided to use for this thesis. For extracting
data from this file I have created the python script that access the file as a
stream and iterates over the rows in the file and extract the address and abuse
type. Other columns contain values that does not have specific form and can
include unstructured text for the most parts.

During the development I have tested use of function read_csv from Pan-
das library, but the CSV file have non standard format. Even with spe-
cific configuration of the function I was not able to parse it into a Pandas
Dataframe. The file uses the comma as a delimiter and values that contain
quotes, the comma or new line are enclosed in the double quotes. For this
reason and other anomalies it is hard to define the rule for parsing. Example
of the record can be seen on code example 3.7.

84

https://www.bitcoinabuse.com/api/download/30d

3.6. Scrapers and data extractors

96,1HCDAr5zTuBqkNBS4KsqNaDZu73DhWcnH3,1,,951@283.152,
"Ransom: ""Well, I believe, $300 is a fair price for our
little secret. You'll make the payment via Bitcoin to the
below address (if you don't know this, search
""how to buy bitcoin"" in Google).

BTC Address: 1HCDAr5zTuBqkNBS4KsqNaDZu73DhWcnH3
(It is cAsE sensitive, so copy and paste it)"""
,,,2018-07-08T16:37:18.000000Z

Code example 3.7: Record from the CSV report from Bitcoinabuse

As the format is not easy to parse, I have implemented the script that
reads data from the file and iterates over the lines and extract data from the
start of the line. As shown in the example 3.7, it is not true that each line is
new record. Some record are in spread across multiple lines.

However the records have at least some structure and rules that can be
used for the extraction.

• Each record start at new line.

• The first column values are increasing integers starting from 1.

• Bitcoin addresses have length between 26 and 35 characters.

• Address contains only alphanumeric characters.

• The columns are divided by the comma.

• Type of abuse is represented by integer.

Using these rules I constructed regular expression that can be used to
check if line of the document is the start of new record.

The regex can be defined in python with following line of code 3.8

regex = re.compile("ˆ\d+,\w{20,45},\d+,")

Code example 3.8: Record from the CSV report from Bitcoinabuse

Using this expression I check each line and those that match the regular
expression and split then by with the comma character to get list of columns.
First three columns I am interested in does not contain the comma character,
so I can be sure to retrieve valid values. The second and third columns contain
the data that are used for creating the address record in the PostgreSQL
database together with the source and type of the cryptocurrency.

85

3. Implementation

OFAC

The OFAC shares the Specially Designated Nationals and Blocked Persons
list, also called SDN, that contains companies or institutions that are under
the sanctions from the US government. This list is published on the website
and also on the following address.

• https://www.treasury.gov/ofac/downloads/sdn.csv

The file is in the CSV format and does not have header with name of
columns. But they can be extracted from other file formats and they are
following: sdn id, sdn name, sdn type, program, title, call sign, vessel type,
tonnage, gross tonnage, vessel flag, vessel owner, remarks. The file is using
the comma as a delimiter and double quotes for strings.

For purposes of this thesis I focus on the sdn name which contains name
of the company or individual. This will be used to represent the wallet. Other
columns does not contain information I want to use except the last column
with remarks.
29584,"POTEKHIN, Danil","individual","CYBER2",-0- ,-0- ,-0- ,-0-
,-0- ,-0- ,-0- ,"DOB 14 Sep 1995; alt. DOB 14 Sep 1990;
alt. DOB 08 Aug 1990; Email Address potekhinl4@bk.ru; Gender Male;
Digital Currency Address - XBT 1Q9UAQbcDezmyouFrzt94t4dSMxgsUfW1X;
alt. Digital Currency Address - XBT
1Kys8fqDen8NGFUJ6AFcXfFW5qquuTH4eh; Digital Currency Address - ETH
0x7F367cC41522cE07553e823bf3be79A889DEbe1B; a.k.a. 'cronuswar';
a.k.a. 'SERGEY, Kireev Valerievich'."

Code example 3.9: Record from the SDN list

As can be seen from the example 3.9 the last column contains several parts
of information, delimited by the semicolon. In this example it contains dates,
email address, gender, addresses of owned addresses in specified blockchain
and other names under which the individual is know.

I am concerned about the addresses. Remarks with the addresses contains
one main address and then alternative addresses mark with the word alt.
Before each address is a shortcut representing the blockchain, for example
XBT for Bitcoin, ETH for Ethereum, LTC for Lite Coin , ZEC for the Zcash
and more. I want to extract only the XBT and ETH addresses.

The implementation uses the Pandas library and its function read_csv
to load the file and transform it into the data frame. Before extracting data
it checks, it the last column contains string ”Digital Currency Address” that
is in the records with addresses.

From records with mentioned string is extracted name of the individual
and new wallet is inserted into the PostgreSQL database. The the last column

86

https://www.treasury.gov/ofac/downloads/sdn.csv

3.6. Scrapers and data extractors

is divided into separate parts of information by the splitting the string with the
semicolon as delimiter. This string is then cleared of redundant information
and only the type of the currency and hash of the address is stored.

After extraction of wanted data, the address is inserted into the database
together with link to the data source, wallet, tag, marking the address as
under the sanctions, and blockchain.

PostgresClient

After the data are extracted from the data sources by mentioned python
scripts, they are stored in the PostgreSQL database. For communication
with the database is created separate class PostgresClient which serves for
communication with the database.

The client implements following functions.

• connect: Creates the connection to the database.

• close: Serves to close the connection to the database.

• insertDatasource: Inserts the data source record into the database if it
does not exists.

• insertAddress: Inserts the address record into the database if it does not
exists.

• insertCrawledResource: Inserts the crawled resource record into the
database if it does not exists.

• insertWallet: Inserts the wallet record into the database if it does not
exists.

• getCrawledResource: Retrieves the crawled resource from the database
based on the provided url.

• rollback: Rollbacks current transaction.

• commit: Commits the changes.

• getWalletAddressIterator: Retrieves data about the addresses and wallet
they belong to. Returns iterator, which is used to stream the data from
the database.

JanusClient

Second database client is JanusClient. Similarly to the PostgresClient pro-
vides interface for communication with the JanusGraph database. For pur-
pose of inserting wallet and address is not necessary to implement all CRUD
operations and only a small subset is implemented.

It implements following functions.

87

3. Implementation

• connect: Creates the connection to the database and prepares the traver-
sal.

• close: Closes the connection to the database.

• insertWallet: Inserts the wallet into the JanusGraph database if it does
not already exists.

• insertAddress: Inserts the wallet into the JanusGraph database if it does
not already exists. If it does, it updates the tag and wallet.

JanusImporter

The final orchestration of the data transfer from the PostreSQL database to
JanusGraph is done by the JanusClient. It uses the JanusClient and Post-
gresClient to retrieve data from one and insert them into the other.

The PostgresClient provides the iterator that is used to gradually retrieve
the wallets and addresses and if the data are in correct form, they are in-
serted into the database. If the address or wallet already exists, the missing
information is added.

3.7 ClueMaker

One of the main goals of this thesis is to extend ClueMaker applications for
connector to the selected graph database. As I have chosen the Janusgraph,
the connector will be implemented for this database system. The ClueMaker
consists of two parts that have separate projects. ClueMaker and ClueMaker
Configurator. I will describe changes in each application separately.

3.7.1 ClueMaker Application

Technologies

Both ClueMaker and ClueMaker Configurator are developed in the Java pro-
gramming language. For management of the dependencies is used Apache
Maven. For the development is used the NetBeans Platform which is generic
framework primarily for Java desktop applications. It offers development of
applications with pluggable components and also provide tools for building a
graphical interface.

JanusConfiguration

The JanusConfiguration is class that implements DatasourceConfiguration
and serves as a class to represent the basic configuration of the data source
in form of location of the database and credentials needed for establishing the

88

3.7. ClueMaker

connection. The object with the values is created in the Configurator with
the data the user entered and then imported into the ClueMaker Application.

The connection to Janusgraph database can be established by the host
address and port on which the gremlin server is listening. The credentials
in form of username and password are not required in default configura-
tions, but can be defined in the Janusgraph configuration. For this reason
the JanusConfiguration contains the host, port, username and password. I
also prepared the

JanusCypherDialect

The JanusGremlinDialect is the builder of the traversals that are executed
over the database and thanks to which the data are retrieved. This class
allow the ClueMaker to translate user defined criteria and relations between
the attributes into the gremlin query. User s the builder of the traversals that
are executed over the database and thanks to which the data are retrieved.
This class allow the ClueMaker to translate user defined criteria and relations
between the attributes into the gremlin query. User can use the interface of
the ClueMaker application to define tables, entities, attributes and relations.
When the definition is finished and user wants visualize and interact with the
data source, ClueMaker needs to make sure the the defined configuration can
be translated into a query that can be send to the target system and it will be
able to understand the the query and return desired results. For this purpose
each importer implements class that can do such translation.

The class JanusCypherDialect extends AbstractDialect and overrides the
implementation of visit methods. Visit methods are creating the the gremlin
queries based on the criteria passed as the parameter. Criteria can be of
several types. Before I start to describe parts I implemented, I would like to
describe key components I will be working with.

ComposableCriteria: ComposableCriteria are structures that represent
nodes in abstract syntax tree, also known as AST. One criteria contains more
operators inside and this way creates the hierarchical structure typical for
the AST. Criteria that directly extends the ComposableCriteria class and can
behave as a nodes in the tree are right now following:

• And: And is a criteria that connects it’s children with the logic operator
AND.

• Or: This criteria logically joins one or more children using the logical
operators OR

• Not: The negation of whole criteria sub tree.

AttributeCriteria: The criteria that usually works with the mapped at-
tribute. Typically don’t have any children criteria and only express condition

89

3. Implementation

on the attribute, behaving as a leaf in the AST. It can contain multiple values.
Classes that extends directly the AttributeCriteria are following:

• Equals: Represent equality relation between the attribute and the value.

• Contains: Criteria that indicates if specified value is part of the attribute
value.

• GreaterThan: Express the relation ”greater then” between the attribute
and provided value. It’s possible to set the criteria to be inclusive.

• In: Criteria that indicates if the attribute’s value is part of the provided
set of values.

• NotIn: Indicates if the attribute is not equal to any of the values in
provided set of values.

• SmallerThan: Express the relation ”greater then” between the attribute
and provided value. Criteria that indicates if specified value is part of
the attribute value.

The AttributeCriteria classes accept value that can be represented as a
number, string, date or list. Most query languages treat each type differently
and therefore the builder of the query needs to know what it is working with.
For such cases, the ClueMaker implementation has defined value types that
implement the interface called Value. Such classes are StringValue, Number-
Value, DateTimeValue, ListValue and BooleanValue.

Now when the basic components used in the JanusCypherDialect are in-
troduced, I can describe the implementation. I will describe first example into
bigger detail then then the others.

And is a first CompositeCriteria that can be passed to the visit method.
It can contain zero, one or more children criteria. It serves for composing
criteria where all children needs to be true.

The operator is in gremlin expressed by .and(... , ... , ...) oper-
ation. It accepts one or more conditions or boolean values divided by the
comma. Example where is used the and operator in the gremlin query can be
seen in 3.10

g.V().and(has('code','AUS'),has('icao','KAUS'))

Code example 3.10: example of insertBtcBlockNode function without the log-
ging

By this logic, the transaction can be composed from following steps.

• start the query with ”.and(”

90

3.7. ClueMaker

• translate each child criteria

• append them to the query and insert comma between them

• end the query with closing bracket

Described steps are close to the final implementation. There are few cases
that needs to be taken into the account.

• What if the there are two And operators inside, for example the expres-
sion AND(AND(expr)). This would create .and(.and(expr)). The dot
can be only before the first operator. For this reason there is a need for
implementing mechanism that will track number of opened operators
and only before the first one will be added the starting dot.

• What if the the And criteria is empty. This would in mentioned case
result in .and(and()) and JanusGraph does not allow empty operator.
This can be mitigated by conditioning the creation of the operator if
there are child criteria inside.

The final implementations of the visit and support methods is in code
example 3.11.

analogically to the And CompositeCriteria are implemented others with
the change in the gremlin operator.

The AttributeCriteria can be implemented with similar way, just without
the iteration across children. They are predicates, related to the property,
that are true or false. Basic predicates are constructed with following query
.has("key", ...). However there are special properties where the syntax
differs.

• label: For the label property the syntac of the predicate has following
form: .has(label,). The difference is that name of the property is
not enclosed in double quotes.

• inV and outV: Those attributes represent id of the the vertex from or
to which the edge is connected. The query with the predicate on inV
or outV properties needs to have following form, plus they need to be
closed with two brackets instead of one:

– where(__.inV().has(id, ...))
– where(__.outV().has(id, ...))

As an example of implementation can be used the implementation of the
visit method for GreaterThan criteria, seen in 3.12.

The startPredicate method does the decision on which form of predicate
form choose based on the property name.

91

3. Implementation

@Override
public void visit(And and) {

if(and.isEmpty()) {
return;

}
startLogicalConnective("and");
for (Criteria child : and.getChildren()) {

if (!child.isEmpty()) {
child.accept(this);
this.builder.append(",");

}
}
endLogicalConnective();

}

private void startLogicalConnective(String logicalConnective) {
if (openLogicalConnective == 0) {

this.builder.append(".");
}
this.builder.append(logicalConnective).append("(");
openLogicalConnective++;

}

private void endLogicalConnective() {
openLogicalConnective--;
this.builder.append(")");

}

Code example 3.11: visit(And and) method implementation

In the example 3.12 can be seen the value is also translated in a some way
and then inserted into the gt() predicate. This is due to different behaviour
for different types of values. The distinction is done by the visit method that
takes the type as a parameter.

This distinction can be seen in example 3.13, where the numeric value is
appended without structures around, but the StringValue class is enclosed by
the double quotes.

By defining the visit methods, and correctly translating the hierarchical
structure of operators and predicates, the ClueMaker application is able to
communicate with the database with already defined mechanisms to transform
users commands.

92

3.7. ClueMaker

@Override
public void visit(GreaterThan greaterThan) {

startPredicate(greaterThan.getName());
this.builder.append("gt(");
greaterThan.getValue().accept(this);
this.builder.append(")");
endPredicate();

}

Code example 3.12: visit(GreaterThan greaterThan) method implementation

public void visit(NumberValue value) {
this.builder.append(value.getValue().longValue());

}

@Override
public void visit(StringValue value) {

this.builder
.append("\"")
.append(value.getValue())
.append("\"");

}

Code example 3.13: visit(NumberValue value) and visit(StringValue value)
method implementation

JanusDatasouceType

The JanusDatasouceType defines the type of the data source and the importer
that can be used to communicate with it. Without this class the Configurator
would not know the details about the datasource and what implementations
are compatible.

It also serves for creation of empty configuration, that is filled in the Con-
figurator.

JanusGetMetaDataTask

When the ClueMaker application retrieves the data from the data source and
displays them, it is done in form of task. The task for the interaction with
JanusGraph database consists of following attributes.

• token: Token is representing the current state of the task.

• metadata: Metadata represent the result returned from the data source.
Janusgraph returns the attributes in Map collection. where the the keys

93

3. Implementation

are names of the properties.

• message: Message shown to the user about the state of the task.

• importer: Importer that is used for communication with the database.

• userQuery: The gremlin query that will be executed by the importer on
the database.

• exception: Storage of exceptions, if some are thrown.

• canceled: The flag used to indicate, if the task have been closed by the
user in the middle of process.

JanusImporter

The JanusImporter class is the main connection between the database and the
ClueMaker. It extends AbstractImporter and implements ReportImporter.

The JanusImporter is used for following goals.

• Initialize connection to the database.

• Stores the connection in the GraphTraversalSource object, that is then
used later for communication.

• Executes the traversals provided by the tasks and retrieves the response.

• Maps properties of returned vertexes and edges to properties defined in
the mapping together with their type.

In early stages of development, I used for the creation of the connection
basic approach used in the ChainAnalysis application. The approach can be
seen on the code example 3.14.

GraphTraversalSource g = traversal().withRemote(
DriverRemoteConnection.using(host, port));

g.V().limit();

Code example 3.14: Basic approach for connection to the JanusGraph
database

This approch creates the GraphTraversalSource and by calling functions
on this object, the traversal is created. Then by the .next() is executed
upon the database. However this approach is no possible to use in this case.
Instead of calling functions on the traversal object, it is needed to execute
query provided in the text form.

94

3.7. ClueMaker

For this reason, I have decided to use GremlinGroovyScriptEngine. This
engine provides methods to compile and evaluate Gremlin scripts in the text
form. Before executing the queries, it needs to be configured with the binding
to the graph in the database and the GraphTraversalSource.

JanusMappingConfiguration

The configurations holding the gremlin query specified by the used in the
configuration.

JanusUtils

The JanusUtils class serves as a collection of static functions used in the
importer and the dialect. For example traslation of the Java data type to the
Attribute Type. Or function for resolving the type of the identifies provided
by the JanusGraph.

SpecialElementProperties

Serves as an Enum class for storing names of special properties that have
different behaviour then

3.7.2 Configurator

After implementing mentioned parts, the ClueMaker application is able to
connect to database and execute generated queries. But before the users can
use the application, they need to define the data source. As the JanusGraph
connector is newly defined importer and thus a new form in the Configurator
needs to be created.

During the development, I have identified two parts of GUI, where the al-
ready existing implementation can not be used. The definition of the data
source and mapping of entities in the ClueMaker on nodes and edges in
the JanusGraph database. For this reason the JanusQueryEditorPanel form
and JanusEditorPanel form will be implemented. To support the function-
ality they should provide, I have created classes JanusEditorFactory, Janus-
QueryEditorPresenter and JanusQueryEditorPresenter.

JanusEditorFactory

This class implements a DatasourceEditorFactory which servers as a creator
of objects, which are parts of data source configuration.

The factory implements three functions that are required from the Data-
sourceEditorFactory.

First is getDatasourceEditor function that creates the editor for the con-
nection to the database. In this function is the JanusEditorPresenter is ini-
tialised for the provided data source type. When the presenter is constructed,

95

3. Implementation

the JanusEditorPanel that is the view of the editor is created and passed to
the presenter, so it has access to its components.

Second function is getQueryEditor which is the text field for constructing
the queries in the mapping configuration. It initialise the JanusQueryEditorPanel
which is the view of the query editor and is passed back to the presenter.

Third function is isSuitableFor and it only checks if the passed data
source type is instance of correct data source. In this case the JanusDatasourceType.

JanusQueryEditorPresenter

The JanusQueryEditorPresenter is the component for executing logic re-
lated to the test of the connection to the database. Aside from the con-
structor and setters for the panel with the connection details, it also imple-
ments test of the connection to the database. This is done by creation of
the TestJanusConnectionTask and then executing it. After the connection
check, it pass the information to the panel, so the user is informed about the
result.

TestJanusConnectionTask

The TestJanusConnectionTask extends TestConnectionTask and is meant for
testing the ability of ClueMaker Configurator application to create a connec-
tion to the data source defined by the configuration.

With the TinkerPop library it is possible to create a traversal on remote
database. When the traversal is created, the connection is not established as it
is created when the first query is executed. So for the purpose of checking the
connection, I constructed the traversal, that should be as minimal as possible,
as seen on the code example3.15. The traversal consists of retrieving at most
one random vertex. The limitation ensures the query does not need index or
walk over larger amount of node.

JanusQueryEditorPanel

JanusQueryEditorPanel represents form for creating the gremlin queries for
mappings defined in the configuration. It serves for loading attributes of
entities in the database so the user does not have to list each attribute and
its type.

It consists of two parts. The java implementation and the GUI form def-
inition. Together they create the component that can be inserted into the
Configurator and displayed to the user.

The GUI definition is a file with the .form file extension is XML document
with the definition of the field, types of the components included and layout.
It can be defined or edited in the NetBeans IDE or by direct changes in the
text of XML file.

96

3.7. ClueMaker

private void testConnection() throws Exception {
GraphTraversalSource g = traversal().withRemote(

DriverRemoteConnection.using(
configuration.getHost(), configuration.getPort()));

GremlinGroovyScriptEngine engine =
new GremlinGroovyScriptEngine();

Bindings bindings = engine.createBindings();
bindings.put("g", g);
try {

DefaultGraphTraversal eval = (DefaultGraphTraversal)
engine.eval("g.V().limit(1)", bindings);

if (!eval.hasNext()) {
throw new IllegalStateException(

"Could not find any verticies configured graph.");
}

}catch(ScriptException ex) {
throw ex;

} finally {
g.close();

}
}

Code example 3.15: Implementation of the connection test

The JanusQueryEditorPanel implementation controls the form behaviour
and the components inside. It initializes the components, sets their properties,
access or edit its values and add listeners for events on the form. Part of the
source code is generated by the NetBeans IDE and should not be tempered
with. This specific form has simple layout with following components.

• Label marking the query text field

• TextArea where the gremlin traversal can be entered.

• The status label, where the possible warnings are displayed.

• Button that starts the execution of the traversal when clicked.

The result can be seen on the image 5.19.

JanusEditorPanel

JanusEditorPanel is also consisting of two parts. The form layout is composed
of following components.

97

3. Implementation

• Row with the label and select box for selection of the protocol. Right
now is implemented only one protocol but the TinkerPop supports the
HTTP and web socket connection, so it can be extended in the future.

• Row with the label and text field for entering the host address.

• Row with the label and text field for entering the port on which the
server listens.

• Row with the label and text field for entering username.

• Row with the label and text field for entering password.

• Label for the state of the connection.

• Button to execute the test of the connection.

The name and password are not required. The JanusGraph database with
default configuration does not validate the access rights to the database, but
it can be configured.

The result can be seen on the image 5.19.

3.7.3 Results

By implementing described components of the JanusGraph connector and
correctly integrating them into the project modules, the connection to the
database can be established, nodes and relations can be defined and mapped.
The ClueMaker application is the able to use defined configuration to retrieve
data from the database and use the application visualising and analytical
capabilities to inspect them.

3.8 Testing

In this work I have implemented application to import transaction data, from
the Bitcoin Core and Geth clients, into the JanusGraph database. To view
and inspect stored data I added a connector for the JanusGraph into the
ClueMaker application.

To test the implementation I have included the Unit test in the ChainAn-
alyzer application which will be described in the following section 3.8.1.

To test the functionality of the connector in the ClueMaker application, I
have decided to do a test, where I will use reliable sources as blockchain.com/
explorer and etherscan.io to check selected transactions in the ClueMaker
for validity of the data and if the connections were created properly. This will
be done in the section 3.8.2.

98

blockchain.com/explorer
blockchain.com/explorer
etherscan.io

3.8. Testing

3.8.1 Unit Tests

For testing the ChainAnalyzer Application I use unit tests that check the
functionality of separated parts of the code. Except unit test on transforma-
tions of the data from DTO object to the Map of values, returned from the
database, I use also use testing JanusGraph database to test the interactions
and edge creations.

The DatabaseClient implementation is tested using the testing configu-
ration bean calles DatabaseClientTestConfig. This configurations creates
GraphTraversalSource by using Tinkerpop JanusGraphFactory which can
be used to create connection to remote database but in this case is used for
creating in-memory database. This database is kept in memory so it should
not be used for large import of data but for the unit testing is very use-
ful. Together with the storage backend is set property for schema creation so
the database does not create the types automatically and uses only defined
schema. After initialising the in-memory database, the management manager
is opened and the schema is imported. If during the tests is inserted node or
edge with unknown label, the test will not pass and developers can investigate
more.

This in-memory database is used then to check functionality of the func-
tions or operations. Before each test the database is cleared by dropping all
inserted nodes and edges. For testing of insertion of nodes or edges are used
real data extracted from the Bitcoin or Ethereum client. The real data are
then used for testing the creation of edges and transformation.

3.8.2 Test using public explorer

The Unit tests validate the separate small parts of code are working properly.
To test the application as a whole, I have chosen to do a test of the data against
the public explorers blockchain.com/explorer and etherscan.io. For each
blockchain analyzed in this thesis I select one block with transactions and
inspect, if the values in the JanusGraph databases retrieved by the ClueMaker
are identical.

Bitcoin

First blockchain I will test is the Bitcoin. For purpose of this testing I have
found block with 4 transactions inside. It is a block number 89182 and the
transactions have from one up to three inputs and one output each. The data
displayed in the web tool can be seen on image 5.9.

• Hash: 000000000013c2e9b07ef258efdabf7c7c8
2e8ca8c307cc73e0353f1f69c06b8

• Height: 89182

99

blockchain.com/explorer
etherscan.io

3. Implementation

• Timestamp: 2010-11-02 16:10

From the image 5.14 is seen the hash and heigh are identical, only the
timestamp is different. The timestamp stored in the JanusGraph is in numeric
representation. If the value is converted into the unix timestamp, we receive
same results, which I tested by using the online tool on the epochconverter.com
where the numeric value can be easily converted.

The block contains 4 transaction. Will choose one with most inputs and
that is the second in the block and second on the image 5.10. The transaction
on the image 5.11 has following attributes that are also being stored in the
JanusGraph database. Other attributes are derived or now useful for future
analysis.

• Hash: 4a04bc650f9ee7ce4723d7fbe9ec7c5e895a
eec20ae4ec53fd3887e32db307c2

• Received Time: 2010-11-02 16:10

As can be seen in 5.15 the node in the ClueMaker contains some data that
are not displayed by the blockchain.com/explorer.

The transaction has 3 inputs and 1 output. I will compare the second
input with the transfer node incoming into the transaction. The transfer
node as mentioned before is merged input and output so it will contain also
information about the output, that is unlocked by the input on the image 5.12.
The attribute most people will be interested in is the value. If we compare
the images 5.12 and 5.16, the value is correct and the address also.

Now I move the attention to the transaction output on images 5.13 and
5.17 where the values are also the same. The same value is spent and the
address is also correct.

By this test I have confirmed that almost randomly selected Bitcoin trans-
action is correctly stored in the database and can be explored within the
ClueMaker application.

Ethereum

For retrieving single information about the Ethereum blockchain is suitable
website called etherscan.io. It is one of the most popular explorers as it
contains a lot of additional data, but it does not visualize the data in a graph
but in a table. But to test the application this will be sufficient.

For the testing I have chosen block with the number 55875 as it has 17
transaction. Testing with more transactions inside a block it would be to
spread in the space and there would be a lot of items on the screen.

On the image 5.1 can be seen the summary of information about the block.
The etherscan.io does store all the data about the block, but I will list the
attributes and values that stored in the JanusGraph.

100

epochconverter.com
blockchain.com/explorer
etherscan.io
etherscan.io

3.8. Testing

• Block Height: 55875

• Timestamp: Aug-09-2015 12:01:13 AM +UTC

• Number of transactions: 17

• Mined by: 0x9746c7e1ef2bd21ff3997fa467593a89cb852bd0

• Block Reward: 5.021232251018888 Ether

• Extra Data: Geth/v1.0.1/windows/go1.4.2
(Hex:0x476574682f76312e302e312f77696e646f77732f676f312e342e32)

On the image 5.5 can be seen visualization of the block and its transactions.
On the left side inside the panel, there are data stored in the block node. In
the list below are the values from the node, with the labels translated into the
form used for the previous list of values.

• Block Height: 55875

• Timestamp: 1439078473

• Number of transactions: 17

• Mined by: 0x9746c7e1ef2bd21ff3997fa467593a89cb852bd0

• Block Reward: 5021232251018888000

• Extra Data: 0x476574682f76312e302e312f77696e646f77732f676f312e342e32

If we compare the values, the block height, number of transaction, miner,
are exactly the same. Other attributes differs but only in the representation.
The block reward differs in the decimal places as the value in the database
is stored in wei units and etherscan shows the value in Ether units. The last
attribute is containing extra data and the online explorer shows the value
already decoded.

The website is able to list the transaction in table, seen in 5.2. For the
test I will compare first and second transaction against the ClueMaker.

The first transaction is can be seen on the image 5.3, where it is displayed
by the etherscan explorer. The stored values are following.

• Transaction Hash: 0xaf5e314c62c84adb7767c051cd11d4f
5a930e5bd13ab8dd3331372355c02c8f9

• From: 0xe6a7a1d47ff21b6321162aea7c6cb457d5476bca

• To: 0x3b7ce4d16316f594a3c5ebb7ccc4c022fc2858c6

101

3. Implementation

• Value: 3.716433643197706 Ether

• Fee: 0.001315380928488 Ether

• Input data: 0x

On the image 5.6 can be seen the transaction in the ClueMaker. The
values are the same, except the representation of the value and transaction
fee.

And the second transaction in this block is shown on the image 5.4. The
values are following.

• Transaction Hash: 0x34049218c868a1df994e734020f8eca1
7d1473af756b209d3bcd3f3a755771c4

• From: 0xe6a7a1d47ff21b6321162aea7c6cb457d5476bca

• To: 0xe53fe5b196a315de96297181e99f6c22a9313fd3

• Value: 3.682035800243123 Ether

• Fee: 0.001255590886284 Ether

• Input data: 0x

And as it was in the first case, the values in the ClueMaker application,
on image 5.7, the values are the same as in the etherscan tool.

From the image 5.2 is seen, the there is one sender who send all the trans-
action in the block. I expanded the transactions for addresses from which
were the funds sent and to which address. On the image 5.8 can be seen how
the transactions between addresses can be nicely visualized in the ClueMaker.

102

Chapter 4
Optimizations and support tools

4.1 Index backend

4.2 Address classification

4.3 Fraud detection

103

Chapter 5
Attachments

105

5. Attachments

Figure 5.1: Etherscan.io Block #55875

106

Figure 5.2: Etherscan.io Block #55875 Transaction list

107

5. Attachments

Figure 5.3: Etherscan.io Block #55875 Transaction #1
108

Figure 5.4: Etherscan.io Block #55875 Transaction #1

109

5. Attachments

Figure 5.5: ClueMaker Ethereum Block #55875

110

Figure 5.6: ClueMaker Ethereum Block #55875 Transaction #1

111

5. Attachments

Figure 5.7: ClueMaker Ethereum Block #55875 Transaction #1

112

Figure 5.8: ClueMaker Ethereum Block #55875 Sender
113

5. Attachments

Figure 5.9: Explorer Bitcoin Block #89182114

Figure 5.10: Explorer Bitcoin Block #89182 Transactions
115

5. Attachments

Figure 5.11: Explorer Bitcoin Block #89182 Transactions detail
116

Figure 5.12: Explorer Bitcoin Block #89182 Transactions Input
117

5. Attachments

Figure 5.13: Explorer Bitcoin Block #89182 Transaction Output
118

Figure 5.14: ClueMaker Bitcoin Block #89182
119

5. Attachments

Figure 5.15: ClueMaker Bitcoin Block #89182 Transaction
120

Figure 5.16: ClueMaker Bitcoin Block #89182 incoming Transfer
121

5. Attachments

Figure 5.17: ClueMaker Bitcoin Block #89182 outgoing Transfer
122

Figure 5.18: ClueMaker Configurator JanusEditorPanel

123

5. Attachments

Figure 5.19: ClueMaker Configurator JanusQueryEditorPanel

124

Conclusion

In this thesis I have described the blockchain technologies together with con-
crete representatives as Bitcoin and Ethereum. I have analyzed how they
function, how they can be retrieved and what data are stored in the clients. I
have describe the structures and attributes that are provided by the Bitcoin
Client for the Bitcoin Blockchain and Geth for the Ethereum. As part of the
analysis, I have contacted developers of similar tool and discussed the abilities
of their tool in the fraud investigation for comparison and inspiration.

After collection of all necessary details, I have designed and implemented a
application that extracts the data from the blockchain clients, transform them
into a structures I have designed and store them in the JanusGraph database
together with the relations between the entities in form of edges between the
nodes.

Additionally to the blockchain clients, I have searched for additional data
sources on public websites and described three of them. The Bitcoinbuse
website, Walletexplorer and the SDN list that is published by Office of Foreign
Assets Control of the US Department of the Treasury. For these data sources
I have implemented data extractors and designed a system of transferring the
date from the PostreSQL database to the JanusGraph database.

To explore the data in the graph database, I have implemented a connector
to the JanusGraph for the ClueMaker application from the company Profinit
EU. In the last part of the thesis, I have tested the final work by comparing
the values to public web explorers of the blockchain data and pointed out the
advantages of using the ClueMaker tools for visualising the movements on the
network.

There are many opportunities for future development of the thesis as the
amount of the data can’t be stored on one machine and should be distributed
to improve the power and speed. Also the stored data hold more information
that can be seen at the first sight.

125

Bibliography

[1] DANNEN, Chris. Introducing Ethereum and Solidity [online]. Berkeley,
CA: Apress, 2017 [cit. 2022-05-01]. ISBN 978-1-4842-2534-9. Accessible
from: doi:10.1007/978-1-4842-2535-6

[2] Panda, Sandeep & Jena, Ajay & Swain, Santosh & Satapathy,
Suresh. 2021. Blockchain Technology: Applications and Challenges. ISBN
10.1007/978-3-030-69395-4.

[3] Bitcoin address. WhatIs.com [online]. [cit. 2022-05-01]. Accessible from:
https://www.techtarget.com/whatis/definition/Bitcoin-address

[4] ANTONOPOULOS, A. M. (2015). Mastering Bitcoin: Unlocking digital
crypto-currencies. (Online access: O’Reilly Media, Inc. O’Reilly Online
Learning Platform: Academic edition (EZproxy Access).)

[5] ANTONOPOULOS, A. M. Gavin Wood (2015). Mastering Ethereum
Building Smart Contracts and DApps (Online access: O’Reilly Media,
Inc. O’Reilly Online Learning Platform: Academic edition (EZproxy Ac-
cess).)

[6] Different Types of Crypto Wallets – Explained. 101 blockchain [on-
line]. [cit. 2022-05-01]. Accessible from: https://101blockchains.com/
types-of-crypto-wallets/

[7] Top PoS Tokens by Market Capitalization. CoinMarketCap [online]. [cit.
2022-05-01]. Accessible from: https://coinmarketcap.com/view/pos/

[8] Serpent language. Serpent [online]. [cit. 2022-05-01]. Accessible from:
https://eth.wiki/archive/serpent

[9] Top Storage Tokens by Market Capitalization. CoinMarketCap [online].
[cit. 2022-05-01]. Accessible from: https://coinmarketcap.com/view/
storage/

127

https://www.techtarget.com/whatis/definition/Bitcoin-address
https://101blockchains.com/types-of-crypto-wallets/
https://101blockchains.com/types-of-crypto-wallets/
https://coinmarketcap.com/view/pos/
https://eth.wiki/archive/serpent
https://coinmarketcap.com/view/storage/
https://coinmarketcap.com/view/storage/

Bibliography

[10] Tasca, P., & Tessone, C. J. (2019). A Taxonomy of Blockchain Tech-
nologies: Principles of Identification and Classification. Ledger, Vol 4.
https://doi.org/10.5195/ledger.2019.140

[11] NAKAMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system
[online]. 2009. Accessible from: http://www.bitcoin.org/bitcoin.pdf

[12] Transactions. BitcoinDeveloper [online]. [cit. 2022-05-01]. Ac-
cessible from: https://developer.bitcoin.org/reference/
transactions.html

[13] Transaction. blockchain.com [online]. [cit. 2022-05-01]. Ac-
cessible from: https://www.blockchain.com/btc/tx/
581d30e2a73a2db683ac2f15d53590bd0cd72de52555c2722d9d6a78e9fea510

[14] P2MS learn me a bitcoin [online]. [cit. 2022-05-01]. Accessible from:
https://learnmeabitcoin.com/technical/p2ms

[15] Multi-signature. Bitcoin Wiki [online]. [cit. 2022-05-01]. Accessible from:
https://en.bitcoin.it/wiki/Multi-signature

[16] Script. learn me a bitcoin [online]. [cit. 2022-05-01]. Accessible from:
https://learnmeabitcoin.com/technical/script

[17] What is Segregated Witness? learn me a bitcoin [online]. [cit. 2022-05-
01]. Accessible from: https://learnmeabitcoin.com/faq/segregated-
witness

[18] BIP: 141. GitHub [online]. [San Francisco]: GitHub, c2020 [cit. 3.
5. 2020]. Accessible from: https://github.com/bitcoin/bips/blob/
master/bip-0141.mediawiki

[19] The Bitcoin Lightning Network. The Lightning Network [online]. [cit.
2022-05-01]. Accessible from: https://lightning.network/lightning-
network-summary.pdf

[20] Why in old blocks I can’t see the miner address using RPC API
calls? StackExchange [online]. [cit. 2022-05-01]. Accessible from:
https://bitcoin.stackexchange.com/questions/110151/why-in-
old-blocks-i-cant-see-the-miner-address-using-rpc-api-calls

[21] Address. learn me a bitcoin [online]. [cit. 2022-05-01]. Accessible from:
https://learnmeabitcoin.com/technical/address

[22] Derivation paths. learn me a bitcoin [online]. [cit. 2022-05-01]. Accessible
from: https://learnmeabitcoin.com/technical/derivation-paths

[23] Documentation. Ethereum. [online]. [cit. 2022-05-01]. Accessible from:
https://ethereum.org/en/whitepaper/

128

https://doi.org/10.5195/ledger.2019.140
http://www.bitcoin.org/bitcoin.pdf
https://developer.bitcoin.org/reference/transactions.html
https://developer.bitcoin.org/reference/transactions.html
https://www.blockchain.com/btc/tx/581d30e2a73a2db683ac2f15d53590bd0cd72de52555c2722d9d6a78e9fea510
https://www.blockchain.com/btc/tx/581d30e2a73a2db683ac2f15d53590bd0cd72de52555c2722d9d6a78e9fea510
https://learnmeabitcoin.com/technical/p2ms
https://en.bitcoin.it/wiki/Multi-signature
https://learnmeabitcoin.com/technical/script
https://learnmeabitcoin.com/faq/segregated-witness
https://learnmeabitcoin.com/faq/segregated-witness
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://lightning.network/lightning-network-summary.pdf
https://lightning.network/lightning-network-summary.pdf
https://bitcoin.stackexchange.com/questions/110151/why-in-old-blocks-i-cant-see-the-miner-address-using-rpc-api-calls
https://bitcoin.stackexchange.com/questions/110151/why-in-old-blocks-i-cant-see-the-miner-address-using-rpc-api-calls
https://learnmeabitcoin.com/technical/address
https://learnmeabitcoin.com/technical/derivation-paths
https://ethereum.org/en/whitepaper/

Bibliography

[24] EIP-1559. Ethereum. [online]. [cit. 2022-05-01]. Accessible from: https:
//ethereum.org/en/developers/docs/gas/#eip-1559

[25] All You Need to Know About EIP-1559. ETH Gas Station. [online]. [cit.
2022-05-01]. Accessible from: https://ethereum.org/en/developers/
docs/gas/#eip-1559

[26] Solidity vs Vyper. Quicknode. [online]. [cit. 2022-05-01]. Accessible from:
https://www.quicknode.com/guides/vyper/solidity-vs-vyper

[27] Solidity Documentation. Ethereum. [online]. [cit. 2022-05-01]. Accessible
from: https://docs.soliditylang.org/en/v0.8.13/

[28] Frequently Asked Questions. Uniswap Labs. [online]. [cit. 2022-05-01].
Accessible from: https://uniswap.org/faq

[29] Dark Forest zkSNARK space warfare. Dark Forest. [online]. [cit. 2022-05-
01]. Accessible from: https://zkga.me/

[30] NFT. Ethereum. [online]. [cit. 2022-05-01]. Accessible from: https://
ethereum.org/en/nft/

[31] Infura API. Infura Inc. [online]. [cit. 2022-05-01]. Accessible from: https:
//infura.io/

[32] Requirements. Bitcoin Project. [online]. [cit. 2022-05-01]. Accessible from:
https://bitcoin.org/en/bitcoin-core/features/requirements

[33] Libbitcoin, A C++ Bitcoin toolkit library for asynchronous apps. Lib-
bitcoin Project. [online]. [cit. 2022-05-01]. Accessible from: https://
libbitcoin.info/

[34] Client diversity. Ethereum. [online]. [cit. 2022-05-01]. Accessible from:
https://ethereum.org/en/developers/docs/nodes-and-clients/
client-diversity/

[35] Bitcoinový block explorer se sekupováńım adres a tagovanými
peněženkami. Walletexplorer. [online]. [cit. 2022-05-01]. Accessible from:
https://www.walletexplorer.com/

[36] Bitcoin Abuse Database. Bitcoinabuse. [online]. [cit. 2022-05-01]. Acces-
sible from: https://www.bitcoinabuse.com/

[37] Office of Foreign Assets Control - Sanctions Programs and Informa-
tion. US Department of the Treasury. [online]. [cit. 2022-05-01]. Acces-
sible from: https://home.treasury.gov/policy-issues/office-of-
foreign-assets-control-sanctions-programs-and-information

129

https://ethereum.org/en/developers/docs/gas/#eip-1559
https://ethereum.org/en/developers/docs/gas/#eip-1559
https://ethereum.org/en/developers/docs/gas/#eip-1559
https://ethereum.org/en/developers/docs/gas/#eip-1559
https://www.quicknode.com/guides/vyper/solidity-vs-vyper
https://docs.soliditylang.org/en/v0.8.13/
https://uniswap.org/faq
https://zkga.me/
https://ethereum.org/en/nft/
https://ethereum.org/en/nft/
https://infura.io/
https://infura.io/
https://bitcoin.org/en/bitcoin-core/features/requirements
https://libbitcoin.info/
https://libbitcoin.info/
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://ethereum.org/en/developers/docs/nodes-and-clients/client-diversity/
https://www.walletexplorer.com/
https://www.bitcoinabuse.com/
https://home.treasury.gov/policy-issues/office-of-foreign-assets-control-sanctions-programs-and-information
https://home.treasury.gov/policy-issues/office-of-foreign-assets-control-sanctions-programs-and-information

Bibliography

[38] JSON for Beginners – JavaScript Object Notation Explained in
Plain English. Free Code Camp. [online]. [cit. 2022-05-01]. Accessible
from: https://www.freecodecamp.org/news/what-is-json-a-json-
file-example/

[39] Remote Procedure Call RPC. Techtarget. [online]. [cit. 2022-05-01]. Ac-
cessible from: https://www.techtarget.com/searchapparchitecture/
definition/Remote-Procedure-Call-RPC

[40] UNIX domain sockets. IBM Corporation. [online]. [cit. 2022-05-01].
Accessible from: https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=
considerations-unix-domain-sockets

[41] How to reduce the chances of your Ethereum wallet getting hacked?.
Ethereum StackExchange. [online]. [cit. 2022-05-01]. Accessible
from: https://ethereum.stackexchange.com/questions/3887/
how-to-reduce-the-chances-of-your-ethereum-wallet-getting-
hacked?utm_medium=organic&utm_source=google_rich_qa&utm_
campaign=google_rich_qa

[42] Installation and User Guide. Profinit EU s.r.o.. [online]. [cit. 2022-
05-01]. Accessible from: https://docs.cluemaker.com/latest/en/
manual/index.html

[43] About ClueMaker. Profinit EU s.r.o.. [online]. [cit. 2022-05-01]. Accessi-
ble from: https://cluemaker.com/

[44] Chainalysis Inc.: Reactor image. [online]. [cit. 2022-05-01]. Accessible
from: https://www.chainalysis.com/wp-content/uploads/2020/03/
reactor-page2x-3000x1595.png

[45] About. Chainalysis Inc. [online]. [cit. 2022-05-01]. Accessible from:
https://www.chainalysis.com

[46] AML Platform. Coinfirm Limited [online]. [cit. 2022-05-01]. Accessible
from: https://www.coinfirm.com/products/aml-platform/

[47] Insights from Elliptic: The Twitterhack and Bitcoin Money
Laundering Elliptic [online]. [cit. 2022-05-01]. Accessible from:
https://www.elliptic.co/blog/insights-from-elliptic-
twitterhack-and-bitcoin-money-laundering

[48] ROBINSON, Ian, James WEBBER a Emil EIFREM. Graph databases.
Second edition. Beijing: O’Reilly, [2015]. ISBN 9781491930892.

[49] What is difference between Titan and Neo4j graph database?
StackOverflow [online]. [cit. 2022-05-01]. Accessible from: https:

130

https://www.freecodecamp.org/news/what-is-json-a-json-file-example/
https://www.freecodecamp.org/news/what-is-json-a-json-file-example/
https://www.techtarget.com/searchapparchitecture/definition/Remote-Procedure-Call-RPC
https://www.techtarget.com/searchapparchitecture/definition/Remote-Procedure-Call-RPC
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=considerations-unix-domain-sockets
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=considerations-unix-domain-sockets
https://ethereum.stackexchange.com/questions/3887/how-to-reduce-the-chances-of-your-ethereum-wallet-getting-hacked?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://ethereum.stackexchange.com/questions/3887/how-to-reduce-the-chances-of-your-ethereum-wallet-getting-hacked?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://ethereum.stackexchange.com/questions/3887/how-to-reduce-the-chances-of-your-ethereum-wallet-getting-hacked?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://ethereum.stackexchange.com/questions/3887/how-to-reduce-the-chances-of-your-ethereum-wallet-getting-hacked?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://docs.cluemaker.com/latest/en/manual/index.html
https://docs.cluemaker.com/latest/en/manual/index.html
https://cluemaker.com/
https://www.chainalysis.com/wp-content/uploads/2020/03/reactor-page2x-3000x1595.png
https://www.chainalysis.com/wp-content/uploads/2020/03/reactor-page2x-3000x1595.png
https://www.chainalysis.com
https://www.coinfirm.com/products/aml-platform/
https://www.elliptic.co/blog/insights-from-elliptic-twitterhack-and-bitcoin-money-laundering
https://www.elliptic.co/blog/insights-from-elliptic-twitterhack-and-bitcoin-money-laundering
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database

Bibliography

//stackoverflow.com/questions/45347593/what-is-difference-
between-titan-and-neo4j-graph-database

[50] Introduction to Gremlin API in Azure Cosmos DB. Microsoft , 2022 [on-
line]. [cit. 2022-05-01]. Accessible from: https://docs.microsoft.com/
en-us/azure/cosmos-db/graph/graph-introduction

[51] What Is Amazon Neptune?. Amazon Web Services, Inc. [online]. [cit.
2022-05-01]. Accessible from: https://docs.aws.amazon.com/neptune/
latest/userguide/intro.html

[52] Reduce Traffic. GITHUB [online]. [cit. 2022-05-01]. Accessible from:
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-
traffic.md

[53] Storage backend. JanusGraph Authors [online]. [cit. 2022-05-01]. Accessi-
ble from: https://docs.janusgraph.org/storage-backend

[54] Index backend. JanusGraph Authors [online]. [cit. 2022-05-01]. Accessible
from: https://docs.janusgraph.org/index-backend/

[55] TinkerPop Documentation. The Apache Software Foundation [online].
[cit. 2022-05-01]. Accessible from: https://tinkerpop.apache.org/
docs/current/reference/

[56] Bulk loading. JanusGraph Authors [online]. [cit. 2022-05-01]. Accessible
from: https://docs.janusgraph.org/operations/bulk-loading/

[57] Cassandra Documentation. The Apache Software Foundation [online].
[cit. 2022-05-01]. Accessible from: https://cassandra.apache.org/doc/
latest/

[58] What is bitcoinj? Bitcoinj [online]. [cit. 2022-05-01]. Accessible from:
https://bitcoinj.org/

131

https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://stackoverflow.com/questions/45347593/what-is-difference-between-titan-and-neo4j-graph-database
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://docs.janusgraph.org/storage-backend
https://docs.janusgraph.org/index-backend/
https://tinkerpop.apache.org/docs/current/reference/
https://tinkerpop.apache.org/docs/current/reference/
https://docs.janusgraph.org/operations/bulk-loading/
https://cassandra.apache.org/doc/latest/
https://cassandra.apache.org/doc/latest/
ttps://bitcoinj.org/

Chapter 6
Contents of SD card

exe .. Directory the executables
src.....................................Directory with the source code

ChainAnalyzer...........................The ChainAnalyer project
ChainanalyzerCrawler...................The data extractor scripts
janusgraph-importer.............The ClueMaker connector module
janusgraph....................The ClueMaker Configurator module

text Folder with the thesis in PDF format

133

	Introduction
	Motivation and objectives

	Analysis
	Blockchain and cryptocurrencies
	Blockchain structure
	Wallet
	Transaction
	Address

	Mining algorithms
	Proof of Work
	Proof of Stake
	Proof of storage
	Proof of Authority

	Bitcoin
	Transaction
	Script language
	SegWit
	The Bitcoin Lightning Network
	Address

	Ethereum
	Ether
	Accounts
	Transactions
	Gas
	Smart Contracts
	Ethereum Virtual Machine
	Decentralized Applications

	Data sources
	Commercial API
	Clients
	Bitcoin Core
	Libbitcoin
	Geth
	OpenEthereum

	Public websites
	JSON-RPC
	IPC

	ClueMaker
	Similar projects and solutions
	Comparison of databases
	Relational databases
	Key-value databases
	Document databases
	Graph databases

	Design
	Data
	Bitcoin client API
	Geth client API

	Database schema
	Nodes
	Edges
	Indexes
	Relational Database schema

	Implementation
	Janusgraph
	Storage backend
	Indexing backend
	Schema
	Gremlin
	Configuration

	Cassandra
	Bitcoin Core
	Geth
	ChainAnalyzer
	BitcoinClient
	EthereumClient
	DatabaseClient
	BlockChainImporter

	Scrapers and data extractors
	ClueMaker
	ClueMaker Application
	Configurator
	Results

	Testing
	Unit Tests
	Test using public explorer

	Optimizations and support tools
	Index backend
	Address classification
	Fraud detection

	Attachments
	Conclusion
	Bibliography
	Contents of SD card

