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Abstrakt / Abstract

Transformer architektura a modely,
založené na této architektuře, předtré-
nované na rozsáhlých korpusech textu
v posledních letech prokázaly značný
úspěch v řešení různých úloh z oblasti
Natural Language Processing. Tento
koncept rovněž zahrnuje a usnadňuje
úlohu sumarizace jak pro rozšířené ja-
zyky jako Angličtina nebo Čínština, tak
ale i pro menší jazyky jako je právě
Čeština, kterou se tato práce zabývá.
Úloha sumarizace spočívá v krátkém
shrnutí delšího textu se zachováním
všech důležitých informací. V této
práci, je představen přístup použití
předtrénovaného Transformer modelu
mBART k vytváření českých abstrakt-
ních sumarizací. Tři české zpravodajské
datasety, SumeCzech, privátní CNC,
a jeden velký, vytvořený z předcho-
zích dvou, jsou použity pro trénování
modelů. Práce rovněž rozebírá vliv
parametrů inferenčních metod na gene-
rování českých sumarizací. Provedené
experimenty ukazují, že všechny nau-
čené modely překonaly doposud nejlepší
výsledky na všech úlohách datasetu Su-
meCzech, a rovněž dokazují, že model
naučený na obou datasetech funguje
nejlépe.

Klíčová slova: NLP; NLG; čeština;
abstraktní sumarizace; SumeCzech;
CNC; Transformer; mBART; Hugging-
Face Transformers.

Překlad titulu: Metody sumarizace
textu v češtině

The Transformer architecture and
models derived from this architecture,
pre-trained on large corpora of text,
have shown considerable success in
solving a wide range of Natural Lan-
guage Processing tasks in recent years.
This approach also incorporates and
facilitates the task of summarization
for widespread languages like English
or Chinese, but also for less covered
languages such as Czech, which is the
focus of this work. The summariza-
tion task consists in forming a short
summary from a long text while pre-
serving all relevant information. This
thesis presents an approach of applying
the pre-trained Transformer model,
mBART, to produce Czech abstractive
summaries. Three Czech news datasets,
SumeCzech, private CNC, and a large
one developed from the previous two,
are utilized for training the models.
The thesis also studies the impact of
parameters of the inference methods
on generating Czech summaries. The
experiments conducted demonstrate
that all learned models achieved state-
of-the-art results on all tasks of the
SumeCzech dataset and prove that
the model learned on both datasets
performed the best.

Keywords: NLP; NLG; Czech; ab-
stractive summarization; SumeCzech;
CNC; Transformer; mBART; Hugging-
Face Transformers.
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Chapter 1
Introduction

Recent research on the Attention mechanisms[1] has driven a substantial expansion of
the Transformer architecture, which has become dominant across the field of Natural
Language Processing (NLP) for both Natural Language Understanding (NLU) and Nat-
ural Language Generation (NLG). Similarly, pre-trained Transformers on large corpora
of texts have demonstrated remarkable achievement in fine-tuning on downstream NLP
tasks.

Natural language processing is a field of artificial intelligence that allows computers
to understand human language and work with it. Overall, NLP encompasses many
sub-tasks, but we are dealing with Natural Language Generation. Natural Language
Generation refers to any environment in which we generate new text. This could be
Language modeling in which the next word is predicted based on words given so far,
or it could be conditioned on previous inputs and is therefore named Conditional lan-
guage modeling. In Conditional language modeling, a new word is predicted after
reading all previous words 𝑦𝑡−1, . . . , 𝑦1 and also some input 𝑥. This can be expressed
as 𝑃(𝑦𝑡|𝑦𝑡−1, . . . , 𝑦1, 𝑥), where 𝑃 is the probability of the new word 𝑦𝑡. This task is
used, for example, by machine translation but also by summarization. Summarization
is a task in which we produce a shorter text 𝑦 from the input text 𝑥, denoted as a
summary, containing important information from 𝑥. We usually distinguish two types
of summarization strategies, extractive and abstractive. Extractive summarization is a
technique that selects or highlights parts (typically sentences) of the input document
to form a summary. Whereas abstractive summarization, which we are concerned with
within this thesis, is the generation of new text using neural language generation tech-
niques. For this neural technique, in this work, we use the state-of-the-art Transformer
architecture[1]. To quickly understand how this works, the Transformer architecture
model is first unsupervisedly trained on a large text corpus to build textual informa-
tion. This learned model is subsequently fine-tuned on the downstream task, such as
summarization. The final model is then capable of generating summaries.

In this thesis, we present an approach of employing a pre-trained multilingual Trans-
former model, mBART[2], to summarize Czech news datasets. We trained a total of
six models on three datasets for two summarization tasks, with which we achieved
state-of-the-art performance on all tasks of the SumeCzech[3] dataset. Respectively,
we used only two datasets, the publicly available SumeCzech dataset and a non-public
CNC dataset provided by the supervisor; however, the third dataset was constructed
by concatenating the previous two. Since we are dealing with a Czech summarization,
there is almost no representation of research conducted or datasets for this language,
in contrast to languages such as English or Chinese. Therefore, we would like to con-
tribute to the research of Czech summarization by this work. Furthermore, we would
be happy if these models would serve even to summarize texts in everyday life because
there are more and more long but interesting articles on the internet. However, nobody
wants to or is able to read such amounts of texts, and thus, our models would make it

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
easier. In addition, we hope that our work might facilitate journalists’ work or at least
inspire them by writing headlines and abstracts for them from the text they write.

The following lines briefly describe the structure of this work. This section also in-
troduces the summarization tasks addressed in this thesis. In the next chapter, we
introduce state-of-the-art models based on the Transformer architecture, followed by
inference methods for generating summarizations and metrics that measure the result-
ing summarizations. The Datasets chapter details the information and partitioning
of the Czech summarization datasets that we use to train our models and presents
modifications made to the CNC dataset. The Implementation chapter describes the
summarization pipeline and our implementation. The Experiments chapter describes
the process of training our models, followed by testing various inference methods. It
concludes with examples of summarizations as well as with results on our tasks and the
SumeCzech tasks. At the end, the last chapter summarizes our work.

1.1 Summarization Tasks
Several types of summarization tasks can be considered depending on the structure
of our news datasets, whose documents consist of a headline, abstract and full text.
An example of the news document is shown in the figure 1.1. More about datasets is
discussed in the chapter 3.

Figure 1.1. An example of a document from Czech news datasets (SumeCzech document).

Therefore, the authors of the paper SumeCzech[3] propose three possible tasks.. Abstract to headline (A2H): generating a one- or two-sentence summary based on
sentences from the abstract.. Full text to headline (T2H): generating a one- or two-sentence summary based on
sentences from the full text.. Full text to abstract (T2A): generating a multi-sentence summary based on sentences
from the full text.
The concept of the proposed tasks was considered with minor modifications. In

agreement with the supervisor and the CNC data provider1, we decided to combine all
the remaining sections listed in the document, resulting in the generation of summaries
from the texts while keeping all available information. The thesis, therefore, deals with
the following summarization tasks:
1 The Czech News Center (CNC) is one of the largest media houses in Central Europe and provides its

readers with a wide range of magazines, news articles, journals, and much more.[4]

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Summarization Tasks

. Abstract + full text to headline (AT2H): generating a one- or two-sentence summary
based on sentences from a combination of the abstract and full text.. Headline + full text to abstract (HT2A): generating a multi-sentence summary based
on sentences from a combination of the headline and full text.

With three datasets and two types of summarization tasks, six models need to be
trained. Depending on the model applied, all tasks are considered as abstractive sum-
marization. At the end of this work, we also evaluate the tasks proposed by the authors
of SumeCzech but using the models learned on our two tasks.

The assumption that the abstract is a summary of the full text can be somewhat
misleading, as the abstract in news articles is intended to attract the reader’s attention,
not to summarize the text purely, and therefore may contain information not occurring
in the full text. This problem could be solved by human-generated reference summaries
that would preserve the relevance of the text. However, this solution is time-consuming
as well as beyond human capabilities, so this assumption is the only available way for
generating summaries for large datasets in the Czech so far.

3





Chapter 2
State-of-the-art Methods

This chapter discusses the Transformers architecture we use and presents state-of-the-
art abstractive summarization methods based on this architecture. This chapter con-
cludes by presenting generation methods and metrics measuring the summarizations.
For a better understanding, the representation of the models discussed below is provided
here.

Encoder-based models can produce a high-dimensional representation from an input
sequence, usually using bi-directionality, which is the concept of the model being trained
to understand text information from both left-to-right and right-to-left contexts. This is
accomplished by pre-training the model by corrupting the input text and reconstructing
the original text. Text corrupting varies from model to model, but usually, token
masking is applied. Our representatives are BERT and RoBERTa.

Decoder-based models (auto-regressive) can predict the next new tokens conditioned
on previous already generated tokens. Hence, the model is pre-trained by employing
language modeling, where the model is trained based on its generated predictions and
the expected target outputs. Our representative is GPT.

Encoder-Decoder-based models (sequence-to-sequence) are a combination of encoder
and decoder, where the learned encoder produces a representation of the input sequence,
which is then passed to the decoder output. The decoder then regressively generates the
output sequence. These models are usually fine-tuned for many downstream tasks such
as summarization, translation, etc. Our representatives are, i.e., BART and others.

2.1 Attention is all you need
Recurrent neural networks[5] (RNN) have performed excellently in language modeling
and machine translation in terms of the state-of-the-art results so far. However, unfor-
tunately, they have faced a few shortcomings. Their sequential text processing could
not be parallelized and often lost text information when processing long sequences. In
2017, these ailments motivated Vaswani et al. to introduce a new network architecture,
the Transformer, in the paper Attention Is All You Need[1]. The Transformer archi-
tecture showed admirable results, beating the best at the time, and since then, this
architecture has become very popular and the most used in the field of NLP.

The Attention mechanism was first invented to solve the bottleneck problem in
RNNs[6–7], which is the point between the encoder and decoder where the informa-
tion of the entire sequence is passed. The idea behind this technique is that it uses a
direct connection to the encoder at each step of the decoder and focuses on a specific
part of the source sequence.

However, Vaswani et al. wondered why not just use Attention without a recurrent
unit, and thus they present a new Multi-Head Attention and definition of the Scaled
Dot-Product Attention mechanism in a slightly different way. Attention can be de-
scribed by performing a mapping of query and a set of key-value pairs to a space of the
same dimension, where query, key, and value are vectors representing just word vectors

5



2. State-of-the-art Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
with positional encoding. Thus, a weighted sum of values is calculated, where each
value has its weight computed from the query and the corresponding key. Both Scaled
Dot-Product Attention and Multi-Head Attention are shown in the figure 2.1

Figure 2.1. The Scaled Dot-Product Attention and Multi-Head Attention, copied from [1].

The authors use Scaled Dot-Product attention computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

Where 𝑄, 𝐾, and 𝑉 are the matrices corresponding to queries, keys, and values, and
√𝑑𝑘 is the scaling factor of the size of the key vector dimension to preserve unit variance.

Next, they present Multi-Head Attention, which looks for different dependencies from
different perspectives and solves a way for either distant or closer words to interact with
each other. So here, Attention is computed multiple times in parallel, and the result is
then concatenated and transformed into the desired dimension of the model. Multi-head
attention is derived as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 )

They also found it beneficial to linearly project the queries, keys and values ℎ times
with different, learned linear projections 𝑊 𝑄

𝑖 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 , 𝑊 𝐾
𝑖 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑘 and 𝑊 𝑉

𝑖 ∈
𝑅𝑑𝑚𝑜𝑑𝑒𝑙∗𝑑𝑣 to 𝑑𝑘, 𝑑𝑘 and 𝑑𝑣 dimensions, respectively. And they use ℎ = 8.

Now we can define the Transformer architecture, which follows an encoder-decoder
structure using Attention mechanisms and point-wise fully connected layers, as shown
in the figure 2.2.

A transformer block is composed of two sub-layers, where the first is Multi-Head
Self-Attention1 and the second is a feed-forward network with ReLu, which allows us
to parallelize the computation at each depth.

. The encoder part consists of these six transformer blocks with residual connections[8]
around each, followed by a normalization layer[9], which changes input features to
have zero mean and unit variance.

1 Self-Attention is essentially attention, which in particular takes the input (a word vector in 𝑄, 𝐾, 𝑉)
and computes a weighted representation of the neighbors on top of it, thus figuring out how they interact
with each other and whom to pay more or less attention to.

6
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Figure 2.2. The Transformer architecture, copied from [1].

. The decoder is also made of these six transformer blocks with residual connections
and normalization layers, but each block has a Multi-Head Attention between its
two sub-layers to allow the decoder to access the encoder output, which is crucial in
sequence to sequence tasks. The first layer is also altered Multi-Head Attention that
focuses only on previously generated outputs to prevent the decoder from attending
to future outputs, thus preserving decoder auto-regressive.

Before the encoder and decoder parts, learned input embeddings and positional encod-
ings are performed, which converts each token into a vector representation of dimension
𝑑𝑚𝑜𝑑𝑒𝑙 and adds positional information primarily based on cosine and sine functions of
different frequencies (exact words at the different position have different overall rep-
resentations). The importance of residual connections is that they carry positional
information to higher layers, among other information. Moreover, a linear layer and
softmax function is also added on top of the decoder to convert the decoder output to
the probability distribution of the next token, where the standard cross-entropy loss
could be used.

2.2 BERT
Bidirectional Encoder Representations from Transformers (BERT), one of the first de-
veloped pre-trained encoders based on the encoder Transformer architecture[1] with
altered input positional embeddings, introduced in the paper BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding[10] by Jacob Devlin et
al. is designed to learn bidirectional representations from an unlabeled text along with
left and right context in all layers. The BERT model incorporates 12 layers of en-
coder Transformer and is fed with the tokenized data using WordPiece. Overall, the
BERT model was pre-trained with two unsupervised learning methods. First, masked

7



2. State-of-the-art Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
language modeling (MLM), where the model predicts randomly selected masked input
tokens (15% of the input), and second, next sentence prediction (NSP), where the model
predicts if the next sentence enriches the previous or not. In particular, BERT learns a
high-dimensional representation of the input sequences. The authors fine-tuned the pre-
trained BERT model with just one additional output layer and achieved state-of-the-art
results for a wide variety of downstream tasks.

The strength of the BERT model accounts for its widespread use in a plethora of
NLP tasks, and, according to the paper[11], a substantial amount of models are derived
from this BERT model. Further research on text summarization presented by Liu
et al.[12] describes the application of the BERT model specifically for summarization
using a document-level encoder and their new proposed learning techniques. Their
results showed that the model with the pre-trained encoder relies less on individual
features and learns a deeper representation of the document.

2.3 RoBERTa
RoBERTa released in RoBERTa: A Robustly Optimized BERT Pretraining Approach[13]
by Lie et al. follows the BERT[10] architecture with different pre-training objectives and
a modification of embeddings, since they utilized byte-pair encoding[14]. The authors
found that hyperparameter choices have a significant impact on the final results, and
as a consequence, the BERT model was substantially undertrained. In contrast to the
BERT, RoBERTa is trained with dynamic masking consisting in a generation of masking
patterns whenever the sequence is fed to the model and full-sentences without NSP loss,
which samples sentences contiguously from one or more documents as an input. During
training, the authors also used much bigger batches, learning rate, as well as more data
based on their study of the BERT pre-training. In addition, the authors fine-tuned the
RoBERTa on some downstream tasks, resulting in state-of-the-art performance.

2.4 GPT
GPT, the first auto-regressive model derived from a slightly different variant of Trans-
former decoder architecture[1], was introduced in the paper Improving Language Un-
derstanding by Generative Pre-Training[15] by Radford et al. The authors trained the
decoder-only model using language modeling objective for pre-training on English-based
dataset, followed by discriminative supervised fine-tuning on specific tasks. Despite the
single decoder model, this approach achieved strong natural language understanding
and improved the state-of-the-art results in many NLP tasks.

2.5 T5
T5 stands for Text-to-Text Transfer Transformer, and it is an encoder-decoder Trans-
former model[1] with altered positional encodings, which was introduced in the paper
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer [16]
by Raffel et al. The authors provide a T5 framework, in which the model is capable of
solving a wide range of NLP tasks, just by specifying a prefix in the input corresponding
to the task, and then the model converts the input into a text-to-text format to under-
stand it. The model is pre-trained using corrupted text, especially the model is trained
to predict missing tokens (15% of the input), where the authors used a sizeable English
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dataset. In addition, the authors fine-tuned the model with the use of the conversion of
text-to-text format on downstream tasks, covering summarization, and more, in which
they achieved state-of-the-art results.

2.6 PEGASUS
Authors of a paper PEGASUS: Pre-training with Extracted Gap-sentences for Ab-
stract Summarization[17] introduce PEGASUS, a sequence-to-sequence model with
gap-sentences generation as a pre-training objective tailored for abstractive text sum-
marization, by which they achieved state-of-the-art performance on 12 downstream
summarization tasks of English-based datasets. The model architecture is derived from
the encoder-decoder Transformer[1] and is inspired by BART[18] and T5[16] models.
Their pre-training consists in predicting randomly masked tokens (15% from each docu-
ment) and in masking and removing a few important sentences from an input document,
and subsequently generating these gap-sentences from the rest of the document as a
pre-training objective. In contrast to other models, this approach proved to be suitable
for abstractive summarization as it appears relatively similar to the downstream task.

2.7 ProphetNet
Another sequence-to-sequence pre-training model proposed in ProphetNet: Predict-
ing Future N-gram for Sequence-to-Sequence Pre-training[19] by Weizhen Qi et al. is
again based on the encoder-decoder Transformer architecture[1] with modified posi-
tional encoding in the decoder. The authors use a newly proposed technique of the
self-supervised objective, future n-gram prediction, where at each step of the decoder,
the decoder predicts 𝑛 future tokens simultaneously. For this, they also use n-stream
self-attention in the decoder, which allows them to predict 𝑛 future continuous tokens
respectively. During pre-training, they utilized the denoising task, where they masked
15% of the input tokens and trained ProphetNet to recover the next 𝑛 future tokens
within each masked token span. In addition, they fine-tuned the model with the dis-
abled predicting stream, which acts as a standard Transformer decoder, on English
summarization datasets and achieved state-of-the-art results.

According to the paper[20], where the authors investigated recent abstract sum-
marization techniques and compared the T5, PEGASUS, and ProphetNet models for
summarizing English and Indonesian Wikipedia texts. They found that although the
first two models performed the best, the ProphetNet model could perform particularly
well for languages other than English.

2.8 BART
BART, a denoising autoencoder for pre-training sequence-to-sequence models, was in-
troduced in BART: Denoising Sequence-to-Sequence Pretraining for Natural Language
Generation, Translation, and Comprehension[18] by Lewis et al. and achieved new
state-of-the-art results for the text generation tasks, including abstractive text summa-
rization, where the model outperformed all existing work. As we continue to use this
model in our work, it is more fully elaborated here. The BART architecture uses a
sequence-to-sequence Transformer architecture [1] with a modification of ReLU activa-
tion functions to GeLUs[21]. The authors used six layers for the base and twelve layers
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Figure 2.3. The BART model, copied from [18]. The encoder learns vector representation
with bi-directional information from randomly masked input sequences, and the decoder

auto-regressively predicts the output tokens from these vectors passed by the encoder.

for the large model in both encoder and decoder transformer blocks[1]. The model can
be perceived as a generalization of the BERT[10] model for the bidirectional encoder
and the GPT[15] model for the auto-regressive decoder, in that the encoder is attached
to the decoder, shown in the figure 2.3.

Unlike BERT, which was trained using a simple token masking technique, BART
utilizes complex types of masking algorithms in its pre-training, including two noising
techniques, text infilling and sentence permutation, which the authors found to be the
best according to their study of pre-training objectives. In the text infilling method,
a few contiguous tokens are randomly masked (they chose 30% of the document), and
the model learns to predict the missing tokens. In contrast, the sentence permutation
technique consists in randomly mixing sentences where the model learns the logical
consequences of the sentences. So the authors tokenized documents using the same
byte-pair encoding as GPT-2[22] and trained BART by corrupting documents and then
backpropagating the cross-entropy loss between the decoder’s output and the original
document.

In contrast to the BART model, the BERT model predicts masked tokens indepen-
dently and is, therefore, more complicated to use in generation tasks than BART.

2.9 mBART
While BART has been pre-trained only for English, researchers at Facebook AI in-
vestigated the effect of pre-training on different languages and came up with a new
model, mBART, which they present in the paper Multilingual Denoising Pre-training
for Neural Machine Translation[2]. According to the abstract, this is the first method
for pre-training a complete sequence-to-sequence model by denoising full texts in mul-
tiple languages, leading to a multilingual model. The mBART model is trained in
the same way as the BART[18] model but on a multilingual corpus. This approach
works effectively, which is also confirmed by the state-of-the-art results in the machine
translation task.

The authors downloaded a large corpus with a total of 25 languages from Common
Crawl, including English, Russian, and many others but also including Czech, which
is an advantage for us because the bidirectional encoder and tokenizer can interpret
Czech words. Then, they tokenized the data with a SentencePiece model[23] learned on
the entire dataset, leading to a vocabulary size of 250 000 subword tokens. Also, each
input document was separated by the end of a sentence (</S>) token and extended by
the language token id. They configured the maximum length of the sequences to 512
tokens. For the decoder, the input is the original text with one position offset and with
the addition of a language token id as the initial token to predict the sentence.

The mBART model follows the BART large model, consisting of 12 encoder layers
and 12 decoder layers with a model dimension of 1024, resulting in 680M learnable
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parameters. The authors trained several models, but we are focusing only on the
mBART25, which we use in our work. The mBART25 model has been trained for
500K steps with a batch size of 8000 samples using the BART[18] objective, which took
approximately 2.5 weeks, and this is the checkpoint with learned weights we use. The
following figure 2.4 shows an example of the pre-training and fine-tuning process.

Figure 2.4. Scheme of Multilingual denoising pre-training(left) and fine-tuning on down-
stream machine translation task(right), where the sentence permutation and text infilling

as the objectives. Language id is added at both encoder and decoder. Copied from[2].

In conclusion, the model proved to be very powerful, and, among other things, the
authors demonstrated that an extensive multilingual vocabulary could improve gen-
eralization even for unseen languages. We use this model in our work based on a
recommendation from the supervisor who has conducted preliminary experiments with
many models in which this model appeared to be the best.

2.10 Inference
In the following sections, we introduce the theory behind the different methods of output
generation in the decoder, which is usually used by the state-of-the-art models and
which we employ in our work for generating summaries. Beam search 2.10.1 measures
the most probable summary, whereas sampling methods measure the current most
probable word at a given step.

2.10.1 Beam search
Beam search [24] is widely used in NLP to generate output sequences. It is a search
algorithm that, on each time step, tracks the 𝑏 most probable sequences, called hy-
potheses, and finally selects the sequence with the highest product of probabilities of
the included words, where 𝑏 denotes the beam size. For more efficient use, instead of the
product of the probabilities, the sum of the logarithms of these probabilities normalized
by the length of the hypothesis is performed. The normalization factor addresses the
difference among sequences of varying lengths since each hypothesis can produce the
end sentence token at various time steps. Despite giving reasonably good results for
text fluency, this algorithm is not optimal overall, leading to not finding the best so-
lution and often suffering from repetitive word sequences. In addition, when the beam
size is fixed at 1, the beam search algorithm becomes greedy and selects the word with
the highest probability at each time step, which requires less computation resulting in
the faster output generation but at the cost of non-fluent repetitive text.

11



2. State-of-the-art Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10.2 Sampling with Temperature

Sampling is a non-deterministic method that randomly selects a new word from a prob-
ability distribution of words conditioned on previously generated words. On its own,
this method is not very efficient and can generate improbable words out of context.
Therefore it is commonly used in conjunction with temperature. According to the pa-
per CTRL: A Conditional Transformer Language Model for Controllable Generation
[25], Nitish Shirish Keskar et al. briefly describe the shaping of probability distribu-
tions using temperature[26]. They show that an established size of temperature can
flatten or sharpen the distribution as follows 𝑝𝑖 = 𝑒𝑥𝑝(𝑥𝑖/𝑇 )

∑𝑗 𝑒𝑥𝑝(𝑥𝑗/𝑇 ) , where 𝑇 > 0 denotes
the temperature, 𝑥𝑖 ∈ 𝑅𝑑 indicates scores for each word (token) 𝑖 in the vocabulary,
and 𝑝𝑖 is the probability of predicting the i-th word. Setting 𝑇 ∈ [0, 1) magnitudes the
high-probability words as well as lowers the low-probability words, whereas 𝑇 ∈ (1, ∞)
flattens the distribution. In addition, this sampling method could be applied in combi-
nation with other mentioned methods.

2.10.3 Top-k Sampling

In the course of story generation research, the top-k method was introduced in the
paper Hierarchical Neural Story Generation[27] by Angela Fan et al. They applied
a top-k sampling method to generate stories using the learned models, which proved
to be more efficient than beam search in some contexts. The top-k sampling method
consists in selecting the next generated word from the 𝑘 most probable words in the
vocabulary, where the number 𝑘 is determined in advance. To put it in perspective, the
model produces a probability for each vocabulary word based on previously generated
words at each time step, then selects the 𝑘 words with the highest probability, which
are rescaled to produce a new probability distribution. To generate a new word, the
algorithm randomly samples one word from the new distribution composed of the 𝑘
most probable words. The main reason for using this strategy is that it reduces the
possibility of generating unlikely words when focusing only on 𝑘 samples.

Let us have an example, we have set 𝑘 = 3 and have already generated “I love“
the part of a sentence. Suppose we have a sorted list of vocabulary words with their
probabilities based on the words already generated “𝑉𝑃(𝑤𝑜𝑟𝑑|𝐼,𝑙𝑜𝑣𝑒,) ={ ‘you‘ : 0.4,
‘programming‘ : 0.15, ‘the‘ : 0.09, ‘a‘ : 0.06, ..., ‘do‘ : 0.001}“. We take the 3 most
probable words from the vocabulary and rescale their probabilities to add up to 1. We
do this by multiplying the normalizer= 1

0.4+0.15+0.09 = 1
0.64 with each probability of the

selected words. Then we get a new probability distribution of top-k words “𝑉𝑡𝑜𝑝−𝑘 ={
‘you‘ : 0.625, ‘programming‘ : 0.234, ‘the‘ : 0.141}“ from which we randomly sample
a new word, let’s say we have selected the word “the“, and thus our sentence is “I love
the“. Since we are using the top-k sampling strategy, we are filtering out the least likely
words, but we are still sampling randomly, and among the selected top-k words, there
may be some words due to a flat distribution that, i.e., beam search would never select
in some context, and this method can thus be a bit creative.

2.10.4 Nucleus Sampling

The top-k strategy has a major problem with fixed 𝑘 by obtaining very unlikely words
when having a peaked distribution or vice versa. This problem could be solved by using
the Nucleus sampling method known as top-p sampling, which was introduced in the
paper The Curious Case of Neural Text Degeneration[28] by Ari Holtzman et al. The
authors showed that by using the top-p method, generative models could reduce the
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repetition of outputs, and also, the vocabulary distribution generated by models that
have an “unreliable tail“ consisting of thousands of low-probability candidate words are
truncated. This method is very similar to the top-k method, but instead of selecting
the top-k words, the words with the highest probability whose cumulative probability
is equal to or higher than the specified number 𝑝 are selected. Then the next generated
word is sampled from a new distribution composed of these top-p words.

Let’s consider our example, we have set 𝑝 = 0.5 and have already generated “I love“
the part of a sentence. Suppose we have a sorted list of vocabulary words with their
probabilities based on the words already generated “𝑉𝑃(𝑤𝑜𝑟𝑑|𝐼,𝑙𝑜𝑣𝑒,) ={ ‘you‘ : 0.4,
‘programming‘ : 0.15, ‘the‘ : 0.09, ‘a‘ : 0.06, ..., ‘do‘ : 0.001}“. We are searching
for the most probable words from the vocabulary whose probabilities add up to or
exceed 0.5. We then rescale the probabilities of the top-p words into a new probability
distribution as described above. Hence, the new probability distribution with top-p
words is “𝑉𝑡𝑜𝑝−𝑝 ={ ‘you‘ : 0.73, ‘programming‘ : 0.27}“ from which we then randomly
sample a new word.

2.10.5 Repetition penalty

The problem of generating repetitive text negatively affects all of these methods. Beam
search, in particular, suffers from this problem the most. However, the use of sampling
also faces this problem when a peaked distribution is present, either generated using
temperature or for many different reasons. The authors of the paper CTRL: A Con-
ditional Transformer Language Model for Controllable Generation [25] propose a novel
sampling scheme preventing repetitions through a penalty by discounting the scores of
previously generated words (tokens). According to the paper, the probability distri-
bution 𝑝𝑖 is defined as 𝑝𝑖 = 𝑒𝑥𝑝(𝑥𝑖/(𝑇 ∗𝐼(𝑖∈𝑔))

∑𝑗 𝑒𝑥𝑝(𝑥𝑗/(𝑇 ∗𝐼(𝑗∈𝑔)) 𝐼(𝑐) = 𝜃 if 𝑐 is true otherwise 1, where
𝑇 > 0 denotes the temperature, 𝑥𝑖 ∈ 𝑅𝑑 indicates scores for each word (token) 𝑖 in the
vocabulary, 𝑔 is a list of generated tokens and 𝜃 > 1 denotes a penalization factor.

2.11 Metric
ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation and was first in-
troduced in the paper ROUGE: A Package for Automatic Evaluation of Summaries[29]
by Chin-Yew Lin et al. This evaluation metric is widely used in summarization tasks,
and all the aforementioned state-of-the-art models dealing with the summarization task
were measured by this metric. The main idea of this metric is to measure evaluation
by the overlapping n-grams between the text generated by a system or model and the
reference text, denoted as golden text, which was written by a human. An n-gram is
defined as a subsequence of n consecutive words from a given sequence. In essence,
ROUGE involves two scores, recall and precision:

. Recall in the context of ROUGE for summarization basically measure how much
of the golden summary is captured by the system generated summary and can be
computed as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑊𝑜𝑟𝑑𝑠
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑜𝑟𝑑𝑠𝐼𝑛𝐺𝑜𝑙𝑑𝑒𝑛𝑆𝑢𝑚𝑚𝑎𝑟𝑦

(1)

. To understand how many extra words are in summary generated by the system,
precision plays a role. Essentially, this measures the proportion of words in the
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system summary that occur in the golden summary. The equation is derived as
follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔𝑊𝑜𝑟𝑑𝑠
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑜𝑟𝑑𝑠𝐼𝑛𝑆𝑦𝑠𝑡𝑒𝑚𝑆𝑢𝑚𝑚𝑎𝑟𝑦

(2)

In addition, the ROUGE scores are computed in three ways ROUGE𝑅𝐴𝑊-1,
ROUGE𝑅𝐴𝑊-2, and ROUGE𝑅𝐴𝑊-L in this thesis because it was considered to
use language-agnostic ROUGE, which utilizes no stemmer and no stop words, provided
by the authors of SumeCzech[3] due to the comparable results. They denoted it as
ROUGE𝑅𝐴𝑊. For example, let us have golden summary “I love programming“ and
system summary “I love programming so much“ which carry the same meaning but
are written differently.

. ROUGE𝑅𝐴𝑊-1 computes recall and precision from overlapping uni-grams between
the golden summary and the system summary. Let’s consider our example, the golden
summary and the system summary in uni-grams are [I, love, programming] and [I,
love, programming, so, much] respectively. Hence, the overlapping uni-grams are [I,
love, programming] making 𝑟𝑒𝑐𝑎𝑙𝑙 = 3

3 (1) and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 3
5 (2).. ROUGE𝑅𝐴𝑊-2 computes recall and precision from overlapping bi-grams between the

golden summary and the system summary. According to our example we have bi-
grams as [I love, love programming] for golden summary, similarly done for system
generated summary. The overlapping bi-grams thus are [I love, love programming]
which means 𝑟𝑒𝑐𝑎𝑙𝑙 = 2

2 (1) and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 2
4 (2).. ROUGE𝑅𝐴𝑊-L computes recall and precision from the longest common subsequence

words between the golden summary and the system summary. In our example, the
ROUGE𝑅𝐴𝑊-L score equals the computed ROUGE𝑅𝐴𝑊-1 score because the longest
subsequence captures all the words in the overlapping unigrams. For the scores to
differ, the same word would have to occur in both summaries, but at apparently
distant locations, to interrupt the longest sequence but be recorded by ROUGE𝑅𝐴𝑊-
1.

All the results from the example above show a recall of 1, indicating that the system
summary contains everything from the golden summary, whereas the lower precision
indicates that the system-generated summary contains some different words, which is
not a significant issue in this case but might be somewhere else. Therefore, these
scores are often used to calculate the F1-score (f-score), which is the harmonic mean of
precision and recall and is calculated as follows:

𝐹 = 2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(3)

14



Chapter 3
Datasets

This chapter describes the Czech datasets composed mainly of news texts that we use in
this work and play a key role in fine-tuning and testing the summarization models. This
chapter also provides information about the documents included in the datasets and
shows the statistical representation of their sections, as well as describes the partitioning
of each dataset into the train, validation, and test sets. It also reports our modifications
made to the new Czech private dataset to avoid textual inconsistencies when training
the models.

3.1 The SumeCzech Dataset
SumeCzech dataset containing over one million Czech news articles was released in
2018 by the Institute of Formal and Applied Linguistics, SumeCzech: Large Czech
News-Based Summarization Dataset[3]. The documents were collected from the five
news websites shown in the table 3.1 below, which describes the representation of docu-
ments for each website. The dataset was downloaded from Common Crawl1 via scripts
provided by the authors of SumeCzech.

Website Number Percentage

ceskenoviny.cz 4 854 0.5%
denik.cz 157 581 15.7%
idnes.cz 463 192 46.2%

lidovky.cz 136 899 13.7%
novinky.cz 239 067 23.9%

Total 1 001 593

Table 3.1. Number of documents from individual websites. Table is copied from [3].

3.1.1 Structure of the Dataset Documents
Each document in the dataset is divided into three sections. The first section, named
headline, describes the entire article, usually in one sentence. The second section, an
abstract, is supposed to be a shorter version of the third section called full text. And
the full text bears the whole message and is the article itself. SumeCzech dataset
also includes additional sections focusing on more precise specifications regarding the
document; however, these are not part of the summarization task and are ignored.

The authors provide the dataset in JSON Lines format without escaping non-ASCII
characters to keep it human-readable, with each line containing all three sections of one
document.
1 http://commoncrawl.org
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Q1 Median Q3 Mean Stddev

Headline 7 9 11 9.4 2.9
Abstract 33 42 51 42.2 14.8
Text 265 378 553 470.1 365.3

Table 3.2. Quantitative statistics of lengths of headlines, abstracts, and texts in words for
the SumeCzech dataset. Q1 and Q3 denote the first and the third quartile, respectively.

Table is copied from [3].

3.1.2 Dataset Statistics
Authors provide the table 3.2 showing the statistics of the number of words in each
section of the headline, abstract, and full text of the Sumeczech dataset[3].

3.1.3 Dataset Split
Before splitting the dataset, the authors created an out-of-domain (OOD) test set
by clustering the dataset with the K-Means algorithm based on the normalized L2
similarity of abstracts. Therefore, the out-of-domain test set contains different articles
from the subsequently created train, validation, and test sets. The main idea behind
creating the OOD test set was to collect data that did not appear in the training set
on which a model is trained and can thus be considered as real-life data. In total, the
OOD set contains 44 976 documents, the test set 44 567 documents, the validation set
44 454 documents, and the training set 867 596 documents.

3.2 The CNC Dataset
The Czech News Center dataset (further CNC dataset) is supplied by a supervisor who
obtained it from the company Czech News Center, one of the largest media houses in
the Czech Republic[4]. The CNC dataset is private; hence only a few examples are
available in this thesis, and mainly consists of Czech articles from an online media such
as blesk.cz, isport.cz, e15.cz, reflex.cz, and many others. The correct representation of
articles belonging to certain newspapers is unknown due to the fact that the data has
been obtained in the raw text without a description of its origin.

3.2.1 Structure of the Dataset Documents
Each document is divided into three sections in the same way as the SumeCzech dataset
3.1.1 and therefore contains a headline, abstract, and full text sections.

3.2.2 Data Preparation
When examining the dataset, we revealed inconsistencies in the texts that could lead to
bias and adversely affect the training of the models. Data exploration was performed
using functions from the Pandas library, and subsequent data cleaning was accomplished
by the filter and map functions from the Hugging Face Datasets library. The preparation
of the CNC dataset is partly based on the idea of the SumeCzech paper [3] in order to
maintain the similarity of the datasets and avoid feasible biases. The table 3.3 and the
following steps demonstrate how we prepared the data.

1. Documents containing duplicate text either in the abstract, headline, or full text
were dropped. Unique documents were retained. In total, 15 173 documents with
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duplicate headlines, 23 650 documents with duplicate abstracts, and 4 113 documents
with duplicate full texts were removed.

2. Documents that included text with JSON format and advertising subtext were
dropped based on a simple regex. In total, 184 documents were removed.

3. Documents with English and German full text were removed by using the detect func-
tion from the langdetect2 library ported from Google’s language detection library.
The detect function also provides Czech language detection. However, when testing
the detect function, the results for Czech texts were not very accurate, and some-
times the function outputs Polish or Slovak for entered Czech text. Therefore only
German and English recognition is used here. In total, 470 non-Czech documents
were removed.

4. Several documents have been cleaned of various frequently occurring special symbols
such as HTML tags, hashtags, or unique keywords, both in the abstracts and full
texts. These symbols have been replaced with empty strings based on regex.

5. A large number of occurrences of the keywords VIDEO and FOTO were observed
during data exploration. These keywords were frequent in the documents, both
in the headlines and full texts. In the headlines, only the keywords were replaced
by an empty string, whereas in the full texts, these keywords appeared with their
descriptions which were out of context and would bias the training of the models.
Therefore the full texts were cleaned of the keywords with their descriptions based
on a regex.

6. Several documents were cleaned of multiple occurrences of spaces by replacing them
with a single one.

7. A couple of documents containing an empty section and considerable amounts of
documents that did not satisfy the word count requirements were filtered out. The
word count requirements were set for each section separately:. Headline at least 1 word. Abstract at least 10 words. Full text at least 50 words
In total, 21 188 documents were dropped based on these word count requirements.

Initial Dups JSONs NonCz Count Final
Docs 810002 42936 184 470 21188 745224

Table 3.3. A number of documents removed during data preparation. Initial means the
initial dataset size in the documents, Dups indicates removed documents with detected
duplicates (step 1), JSONs means removed documents with JSON format occurrences
(step 2), NonCz denotes removed non-Czech documents (step 3), and Count stands for
removed documents based on word count requirements (step 7). The Final is the final size

of the dataset in the documents after these steps have been performed.

3.2.3 Dataset Statistics
Before the modifications mentioned in the section 3.2.2 above, the dataset contained
approximately 810 000 documents. An estimated 65 000 documents were filtered out
during the data preparation, and the resulting dataset hence includes around three-
quarters of a million documents.

The table 3.4 shows the statistics of the number of words in each section of the
headline, abstract, and full text of the CNC dataset. It can be seen that the average
2 https://pypi.org/project/langdetect/
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length of the headline section is approximately 10 words and reaches one-fifth the size
of the abstract, and the abstract reaches almost one-seventh the size of the full text.
Compared with the statistical values from the SumeCzech dataset table 3.2, it can be
inferred that the full texts of the CNC dataset’s documents are relatively shorter with
respect to the abstract.

Q1 Median Q3 Mean Stddev

Headline 9 10 12 10.5 2.7
Abstract 34 45 58 46.9 17.5
Text 147 240 375 318.4 309.7

Table 3.4. Quantitative statistics of lengths of headlines, abstracts, and texts in words for
the CNC dataset. Q1 and Q3 denote the first and the third quartile, respectively.

3.2.4 Dataset Split
After data preparation, we split the dataset into train, test, and validation sets using a
function train_test_split from the sklearn.model_selection library3. The data was also
randomly shuffled with chosen seed to reduce bias in the evaluation, and then 35 000
documents were selected for the test set, 35 000 documents for the validation set and
the remaining 675 224 documents were kept for the training set.

3.3 The CNC-Sum Dataset
As the name suggests, this dataset was developed by concatenating two previous
datasets, the SumeCzech dataset, and the CNC dataset, in order to provide a wider
range of articles from different websites and, most importantly, to design a dataset
twice the size, which should help in training the large models that we use. Furthermore,
to attempt to reduce the bias by training the model on this large dataset and then
testing it on the test sets of each dataset separately.

When designing this dataset, the train, test, and validation sets of both datasets
were concatenated separately using the concatenate function from the Hugging Face
Datasets library to preserve the uniqueness and avoid undesirable phenomena, i.e., to
prevent the model from training on documents that it would then have in the test set.
Subsequently, a random shuffling of the data of each set was performed, and as a result,
the documents of the individual dataset were mixed with each other. Overall, the
dataset exceeds the number of 1.7 million Czech articles, which are divided as follows:
79 567 into the test set, 79 454 into the validation set, and 1 542 820 into the training
set.

3.3.1 Dataset Statistics
The table 3.5 shows the statistics of the number of words in each section of the headline,
abstract, and full text of the CNC-Sum dataset. As expected, most of the values
remained within the ranges of both datasets. All the values of quartiles in the abstract
have apparently decreased by a few units, probably caused by the union of a large
number of abstracts with lower word counts. However, the average number of words
in the abstract did not decrease significantly, most likely due to the presence of a few
abstracts with notably large word counts.
3 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_sp

lit.html
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Q1 Median Q3 Mean Stddev

Headline 8 10 11 9.5 2.7
Abstract 32 40 50 42.2 15.5
Text 192 289 438 369.7 318.1

Table 3.5. Quantitative statistics of lengths of headlines, abstracts, and texts in words for
the CNC-Sum dataset. Q1 and Q3 denote the first and the third quartile, respectively.
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Chapter 4
Implementation

In this chapter, we introduce the background of the summarization pipeline and the
way we built the individual parts of the pipeline. For the implementation, we used
the Python programming language, the two main libraries from HuggingFace that are
mentioned in this chapter, and then other notorious libraries such as Pytorch1, NumPy2,
Pandas3, etc.

4.1 HuggingFace Transformers

We took advantage of HuggingFace Transformers[30] library (HFT library) to facilitate
the manipulation of models because this library provides state-of-the-art Transformer
architectures[1] under a single API to simplify user access. Thus all the pre-trained
models mentioned in the chapter 2 are downloadable in this library from Model Hub4.
To unify, the models are defined by three main components - Tokenizer, Transformer,
and Head. The Tokenizer is different for each model and crucial, especially since it
converts the text into a numeric representation as expected by the model input. Trans-
formers are implementations of given Transformer architectures (BART[18], BERT[10],
etc.) incorporating their specifics. Heads are pre-implemented output layers for a spe-
cific task, such as Conditional Language Generation, Language modeling, etc., that are
added on top of the base Transformer model.

4.2 HuggingFace Datasets Library

We also used the HuggingFace Datasets library5 which provides easy access to public
shared datasets designed primarily for NLP as well as local datasets stored in a local
machine and also produces efficient data pre-processing with powerful built-in methods.
With Apache Arrow6 support and the use of mappings between RAM and the storage
file system, HuggingFace Datasets is capable of working with large datasets that would
overflow RAM and therefore are not fully loaded in memory. Datasets can be stored in
various formats such as JSON, CSV, Arrow, or plain text.

In this thesis, the Datasets library is utilized primarily for the ease of use of datasets
when training the models from the HFT library, as well as for the ability to work with
large datasets, but also for efficient data processing using two powerful functions, Map
and Filter.

1 https://pytorch.org/
2 https://numpy.org/
3 https://pandas.pydata.org/
4 https://huggingface.co/models?sort=downloads
5 https://huggingface.co/docs/datasets/v2.1.0/en/index#datasets
6 https://arrow.apache.org/
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. The Map function iterates over each row of the entire dataset and applies a passed

function to it separately, caching and storing the altered data. The whole process
can be accelerated by batching the input that iterates over batches of rows with an
established size instead of one row. Or moreover, the map function can be paral-
lelized. This function is frequently used to tokenize data to feed the model, but the
details are described in the next section.. The Filter function iterates over batches or rows of the dataset as the map function
does, but instead of modifying the data, it filters out rows that do not satisfy a
condition specified in the passed function.

When comes to data examination, this library provides the ability to change the
output format of the dataset entries. It can be set to Numpy, Pytorch tensors, as well
as DataFrame from Pandas library, which brings a simple way of data exploration.

4.3 Summarization Pipeline
The summarization pipeline represents the entire process of a summarization task, from
preparing data for training to generating summaries.

Thus, the first step is to prepare the data so that the model can be trained on it.
Since the model cannot read the text as humans usually do, the raw text needs to
be preprocessed into a numerical representation. This is done by a tokenizer, which
needs to be consistent with the model used. The tokenizer could be loaded using a
function AutoTokenizer.from_pretrained from the HFT library with a passed argument
indicating the name of the model used. The core function of the tokenizer is to split the
input into words or subwords referred to as tokens and then map the tokens to integers
and add any special tokens the model needs. Special tokens can be sentence separators,
language symbols, etc., depending on the input of the model. The tokenized input is
denoted as input ids and is usually stored in tensors. To facilitate tokenization, the
map function from the HuggingFace Datasets library comes into play. Since the map
function was discussed in the 4.2 section, the tokenization is applied over the entire
dataset. To effectively use the potential of the map function, batching is often used
with the addition of truncation and padding strategy, which is handled by the tokenizer.
Truncation is the act of shortening longer sequences to an established size, and padding
ensures a rectangular shape of shorter sequences by adding extra padding tokens to a
specified size. When padding is used, it is necessary to create an attention mask, which
is a tensor of precisely the same shape as the input ids that specifies to which input
id should or should not be attended by attention layers. This is primarily done due to
the model’s requirements because the model expects a batch of inputs in a rectangular
shape.

After tokenization is applied, a model needs to be defined. With the name of the
desired model checkpoint passed in, the AutoModel.from_pretrained7 function from the
HFT library allows to conveniently download the pre-trained model instead of training
it from scratch. Moreover, depending on the downstream task, a different AutoModel
class is used to automatically add a model head on top of it, usually consisting of several
linear layers.

The next step is training, specially fine-tuning, which is the process of training a
pre-trained model on some downstream tasks such as summarization, translation, etc.
First comes the tricky part, all the hyperparameters for the training need to be tuned.

7 https://huggingface.co/docs/transformers/model_doc/auto#auto-classes
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This is done by setting them up in the TrainingArguments class from the HFT library.
Afterward, a Trainer class from the HFT library is created by passing these arguments,
the model, the tokenizer, and the tokenized train and validation set of a dataset. Fi-
nally, calling the Trainer.train method, which is an optimized training loop allowing
additional features to be used, starts the training.

Once the training is completed, the learned model is ready for text summarization.
The model class stores a generate function, which can predict the output from the
input using the learned weights. This function allows adjusting various parameters of
inference methods that can positively affect the output leading to significantly better
summaries. Finally, the output of the generation function must be decoded by the
tokenizer to make it human-readable.

4.4 Model
The use of an mBART[2] model for the summarization task was considered for several
reasons. The main advantage is that it is a multilingual model with the Transformer ar-
chitecture pre-trained in 25 languages, which produces a universal representation across
these languages. In addition, one of the included languages is Czech, and as a result, the
pre-trained auto-encoder has a tokenizer for the Czech language. Moreover, the model
can be conveniently set up for the summarization task by defining the MBartForCon-
ditionalGeneration8 class and its method from_pretrained from the HFT library and
passing the model checkpoint name “facebook/mbart-large-cc25“. By this feature, we
construct the mBart model from the given checkpoint, which is described in the section
2.9, with a Conditional Generation head ready for fine-tuning.

4.5 Tokenizer
The tokenizer was downloaded using the MBartTokenizerFast9 class from the HFT
library and its from_pretrained method by providing the model’s checkpoint name
“facebook/mbart-large-cc25“ as an argument. This tokenizer inherits from PreTrained-
TokenizerFast class, which works similarly as described in the section above 4.3, but it
is a part of fast tokenizers. These fast tokenizers are written in Rust programming lan-
guage instead of Python and are therefore capable of tokenizing multi-gigabyte datasets
in minutes. Furthermore, both additional method’s arguments, the source language,
and the target language were set to the Czech language token id to generate a Czech
summary from a Czech article. The advantage of this tokenizer, besides its speed, is
that it is already pre-trained on a large corpus and reaches a vocabulary size of 250 000.
This tokenizer works based on SentencePiece[23] unsupervised text tokenizer and deto-
kenzier, which considers texts as sequences of Unicode characters, replaces spaces with
_, and does not depend on a language logic. The main feature of SentencePiece is re-
versibility, which means that the decoding of the tokens is done by concatenating them
and replacing _ with spaces. SentencePiece implements two subword segmentation tok-
enizations, Byte-Pair Encoding (BPE) tokenization[14] and a unigram tokenization[31].
Since we are using the pre-trained tokenizer, we do not train this tokenizer from scratch,
and we simply use the learned encodings.
8 https://huggingface.co/docs/transformers/main/model_doc/mbart#transformers.MBartForCond

itionalGeneration
9 https://huggingface.co/docs/transformers/main/model_doc/mbart#transformers.MBartTokeniz

erFast
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. Byte-Pair Encoding tokenization - splits a word into characters and applies the merge

rules learned during training.. Unigram tokenization - finds the most probable split into tokens using scores learned
during training.

Let’s have an example to see how this mBART tokenizer works.

'Nejkulaťoulinkatější balon'
["_Nej", "kula", "ť", "ou", "link", "at", "ější", "_balon"]
[24079, 21260, 1981, 796, 10187, 257, 62137, 118188, 2, 250002]
'Nejkulaťoulinkatější balon</s>cs_CZ'

As we can see, the sentence is first tokenized into subwords using a subword segmen-
tation tokenizer (BPE), where the space was replaced by the symbol _, and then
converted to token ids. Each token id corresponds to the subword token except the last
two, which indicate special tokens added by the tokenizer. The last row demonstrates
the decoded tokens, where we can see that the special tokens are a sentence separator
and a language id, respectively.

4.6 Data Preprocessing

Since we are dealing with modified tasks, we first merged the abstract section with the
full text for the headline + full text to abstract task and the headline section with the
full text for the abstract + full text to headline task as input text for each dataset.
According to the paper[2], the model expects input text with split sentences using a
sentence separator token. This was done by splitting the input text of each document
into sentences, then inserting a sentence separator token between each sentence. Since
we are dealing with a supervised sequence-to-sequence generation using the encoder-
decoder architecture, we also need to tokenize target output text to train the decoder
part. This is done by tokenizing the target sequences in a slightly different way (means
a different order of special tokens) and then by shifting created labels with replaced
padding tokens to the right as expected by the model. The tokenization is “<tokens>
<eos> <language code>“ for input language texts, and “<language code> <tokens>
<eos>“ for target language texts, where “<eos>“ is an end of sentence token. We
tokenized all datasets using the tokenizer4.5 with fixed sizes of truncation and padding
regarding the specific summarization task. For the headline + full text to abstract task,
truncation and padding were set to 512 tokens for the encoder input and 128 tokens for
the decoder input. For the abstract + full text to headline task, truncation and padding
were configured to 512 tokens for the encoder input and 64 tokens for the decoder input.

The following table 4.1 shows statistics of lengths of input ids and decoder input ids
for each tokenized dataset after the truncation was performed. The values of the input
ids show that in almost every dataset, we truncated more than half of the documents
to 512 tokens, possibly losing some text information at the expense of learning speed.
However, most documents contain essential information at the beginning of the text, so
we believe that the truncation will not significantly impact the generation of summaries.
In addition, the values of the decoder input ids were not significantly truncated, with
only a tiny percentage of the documents, preserving the information for the target
summaries.
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SumeCzech Q1 Median Q3 Mean Stddev

AT2H
input ids 507 512 512 484.9 58.6

decoder ids 16 20 23 19.9 4.8

HT2A
input ids 454 512 512 471.4 72.4

decoder ids 59 74 88 73.8 22.0

CNC Q1 Median Q3 Mean Stddev

AT2H
input ids 366 512 512 437.9 103.8

decoder ids 20 23 27 23.5 5.5

HT2A
input ids 309 486 512 410.1 123.1

decoder ids 66 86 109 86.9 27.1

CNC-Sum Q1 Median Q3 Mean Stddev

AT2H
input ids 444 512 512 464.3 84.8

decoder ids 18 21 25 21.5 5.4

HT2A
input ids 389 512 512 444.5 102.5

decoder ids 62 78 96 79.6 25.2

Table 4.1. Quantitative statistics of lengths of input ids and decoder input ids for each
tokenized dataset, after truncation. Q1 and Q3 denote the first and the third quartile,
respectively. AT2H and HT2A represents the summarization tasks abstract + full text to

headline and headline + full text to abstract, respectively.

4.7 Training
We applied a Trainer class from the HFT library in the training phase, which contains
a pre-programmed optimized training loop. For clarity and visualization of the learning
process, we used the Weight and Biases10 integration, which tracks the learning progress
of the models.

We encountered a few problems during the training. We ran out of memory several
times. After training all the models dealing with headline + full text to abstract task,
we also found that when we separated the target texts for the decoder with a sentence
token separator, the models tended to generate one max two long sentences connected
by commas. So we then separated only the encoder input and left the decoder input
only tokenized.

4.8 Inference
We implemented a Python script that loads the learned model and, according to the
inference methods 2.10, generates summaries and computes ROUGE𝑅𝐴𝑊 scores on
them. For inference methods, we utilized the generate method, which is built into
the model class from the HFT library, and different parameters of different inference
methods can be tested in various combinations using ParameterGrid11 from the scikit-
learn library.

10 https://wandb.ai/site
11 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterGri
d.html
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Chapter 5
Experiments

The main focus of this chapter is on training the summarization models, testing the
parameters of the inference methods, and the final results on the test sets. In the
first part, we present experimental settings, followed by the training process of our
models. Then, we focus on the effects of various inference method parameters on the
resulting summarizations we produced by our models learned on the SumeCzech and
CNC validation sets to determine which summarization hyperparameters fit best for
each model and dataset. The results of the ROUGE𝑅𝐴𝑊 scores of generated summaries
using the various inference hyperparameters are provided in the appendix B to maintain
the clarity of this work. The best hyperparameters tested in the experiments on the
validation sets were then used to generate summaries on the test sets of each dataset.
In addition to validation inference testing, this chapter also presents the ROUGE𝑅𝐴𝑊
scores on the test sets of all the datasets for the tasks we considered, as well as the
results on tasks of the SumeCzech dataset proposed by the authors. At the end of
this chapter, we provide some examples of the summaries generated by our models and
a discussion regarding the experiments with the summary generation parameters and
the results of the work. We use shortcuts for model names based on the name of the
summarization task and the dataset the model was learned on, shown in the table 5.1.

Model name Dataset Task Seen docs
AT2H-S SumeCzech abstract + full Text to headline 2576K
HT2A-S SumeCzech headline + full Text to headline 6928K
AT2H-C CNC abstract + full Text to headline 5984K
HT2A-C CNC headline + full Text to headline 3712K
AT2H-CS CNC-Sum abstract + full Text to headline 7936K
HT2A-CS CNC-Sum headline + full Text to headline 12896K

Table 5.1. Summary of the model names. Dataset indicates on which dataset the model
was trained, and Task indicates for which task. Seen docs are the number of documents
that the model has seen during training. For example, a model AT2H-S means Abstract

+ Full Text to Headline task performed on the SumeCzech dataset.

5.1 Experimental Settings
In these sections, we describe how we set up the hyperparameters for training. We then
present what parameters of the inference methods 2.10 we used to generate summaries
on the validation set, and finally, we explain how we measured the summaries against
each other.

5.1.1 Training settings
We configured the training arguments as follows. The Adam optimizer with decoupled
weight decay (AdamW), introduced in the paper Decoupled weight decay regulariza-
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tion[32] by Ilya Loshchilov et al. was set with initial parameters 𝛽1=0.9 , 𝛽2=0.999
and 𝜖=1e-8. The AdamW optimizer is a better variant of the Adam optimizer[33]
modifying the weight decay[34] implementation by fixing it from the gradient update.
Weight decay is a regularization technique that adds a penalty to the loss function by
which it attempts to prevent the model from overfitting. We then assigned the batch
size to 8 samples. The warm-up phase was established at 5000 steps, and the learning
rate was adjusted to 3e-5 with a linear learning rate decay scheduling according to the
fine-tuning of mBART25[2]. Then the model was configured for 16-bit floating-point
precision (fp16) to speed up the calculation. Overall, we trained the models based on
the cross-entropy loss calculated from the shifted labels and predicted tokens. The best
models have been selected according to the lowest loss on the validation set computed
after every 2000 steps. In setting the hyperparameters, we mainly followed the advice
and settings of the supervisor, and since we are unable to perform the training multiple
times and tune the hyperparameters mainly due to time constraints but also due to the
carbon footprint, the selection of hyperparameters for training may not be as effective
as it could be.

5.1.2 Inference settings

We tested the inference methods mentioned in the section 2.10 and were interested
in how they would affect the generation of summaries measured by the ROUGE𝑅𝐴𝑊
metric. We tried the Beam search with the beam sizes determined to be 1, 4, 6, 8,
12, and 16, both for the generation with and without sampling. We also applied the
top-p sampling with 𝑝 fixed at 0.28, 0.44, 0.55, 0.74, 0.84, 0.89, 0.92, 0.95, and also we
performed the Top-k sampling with 𝑘 values adjusted to 0, 20, 40, 50, 70, 80, 100. Each
sampling was done with the temperature set to 0.7, 0.85, 0.89, 0.95, 1.1. In addition,
we tried repetition penalty configured to 1.2 and 10.0. For each combination of the
inference parameters, we generated summaries of 10240 documents from the validation
sets, which corresponds to roughly one-third of the validation set of the CNC dataset
and one-quarter of the validation set of the SumeCzech dataset.

We attempted to compare the generated summaries with each other using the
ROUGE𝑅𝐴𝑊 metric by assuming the generated summaries of one choice of inference
parameters to be the system-generated summaries and calculating the ROUGE𝑅𝐴𝑊
scores with the other generated summaries of other inference parameters that we
considered to be the reference summaries. We followed this procedure for all of them.
This idea comes from the paper Texygen: A Benchmarking Platform for Text Gen-
eration Models[35] introduced by Zhu et al., which presents a Self-BLEU measuring
the diversity of documents in translation tasks. Since we use ROUGE𝑅𝐴𝑊 scores,
we have precision, recall, and f1 scores for each. Instead, we focus only on the recall
score because the other scores can be easily calculated from recalls. Assuming that
we have 𝑛 documents with system-generated summaries and we compute recall scores
for all documents relative to each other. We obtain an 𝑛 × 𝑛 matrix with ones on the
diagonal, where row 𝑟 is a document with summaries considered as system summaries,
column 𝑐 is a document with summaries considered as reference summaries, and cell𝑟,𝑐
contains the three recall scores for ROUGE-1,-2,-L computed relative to 𝑟 and 𝑐. When
we transpose the matrix, we get precision scores with respect to 𝑟 and 𝑐, and the
f-scores thus become a symmetric matrix. In the Inference sections 2.10, we denote it
as Self-Rouge.
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5.2 Training
This section briefly describes the learning process of each model. Models with the suffix
-S are trained on the SumeCzech dataset, with the suffix -C on the CNC dataset, and
with the suffix -CS on the CNC-Sum dataset as described in the table 5.1. All models
will be available on our website1.

5.2.1 Hardware
We took advantage of the RCI, a center of scientific excellence in computer science and
artificial intelligence, which also supports CTU students working on their theses. We
used the RCI Cluster, a high-performance computing infrastructure providing CPU,
GPU, and SMP nodes for use and data storage with a 100Gbit low-latency network. In
this thesis, we primarily worked on GPU nodes, especially on NVIDIA Tesla A100 40GB
with NVLink and on NVIDIA Tesla V100 32GB with NVLink, which both substantially
accelerated the training of our models.

5.2.2 AT2H-S
We trained this AT2H model twice for 20 hours on 1x NVIDIA Tesla A100 40GB. The
first part of the training with a total step count of 192,000 (192K) ran smoothly, and
the loss continuously decreased, while in the second part of the training, the loss started
to oscillate after reaching 322K steps. Thus, a total of 322K steps were run, which is
equivalent to 3.0 epochs, and the total loss of the validation set reached 1,73 from the
initial 2,62.

5.2.3 HT2A-S
We performed the training of this model once for 20 hours on 1x NVIDIA Tesla A100
40GB, twice for 20 hours on 1x NVIDIA Tesla V100 32GB, and then once for 20 hours
on 4x NVIDIA Tesla A100 40GB. During training, we manually tuned the learning
rate by decreasing it by a small value between each phase but in accordance with
the linear learning rate scheduler. In total, 8 epochs were executed, corresponding to
approximately 866K steps, and the final evaluation loss reached a figure of 2.03.

5.2.4 AT2H-C
We managed to train this AT2H model for 15 hours on 4x NVIDIA Tesla V100 32GB,
for 10 hours on 4x NVIDIA Tesla A100 40GB, and an additional 20 hours on 1x NVIDIA
Tesla A100 40GB. In addition, we tuned the learning rate during training. Overall, a
total of 748K steps were performed, which corresponds to approximately 8.9 epochs.
The final evaluation loss was reduced to a number of 1.67. In the final training phase,
we observed that the evaluation loss oscillated significantly and tended to increase,
which indicated overfitting.

5.2.5 HT2A-C
We trained this HT2A model three times for 20 hours on 1× NVIDIA Tesla A100 40GB.
Between individual training phases, we adjusted the learning rate to a lower value to
attempt to speed up the convergence while following the learning rate scheduler. In
total, the model made 464K steps, which equals 5.5 epochs. The evaluation loss de-
creased approximately to the value of 1.97. Unfortunately, further attempts at training
led to increasing and oscillating evaluation loss.
1 https://huggingface.co/ctu-aic
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5.2.6 AT2H-CS

This model was first trained for 40 hours on 1x NVIDIA Tesla A100 40GB, then 20
hours on 1x NVIDIA Tesla V100 32GB, and finally 20 hours on 4x NVIDIA Tesla A100
40GB. The model performed 992K steps equivalent to 5.1 epochs, and the evaluation
loss decreased to approximately 1.61 from the initial 2.63.

5.2.7 HT2A-CS

We successfully trained this model first for 60 hours on 1x NVIDIA Tesla A100 40GB
and then 40 hours on 4x NVIDIA Tesla A100 40GB. In addition, we tuned the learning
rate during training. Overall, the evaluation loss was significantly reduced to roughly
1.96 from the initial 2.65, with the model performing 1 612K steps corresponding to
approximately 8.4 epochs.

5.3 Inference
The following sections describe experiments testing various inference parameters to
better generate summaries. We only performed these inference experiments on the
validation sets of the SumeCzech and CNC datasets because we assume that models
trained on the CNC-Sum dataset will have the same summarization properties as mod-
els learned on separate datasets. In addition, we have summarized the results of the
ROUGE𝑅𝐴𝑊 best inference parameters, which are listed in tables from B.1 to B.12 in
the appendix, for clarity of the work, and also because these results are not as important
as the results on the test sets.

5.3.1 Inference of AT2H models

This section tested inference for AT2H-S and AT2H-C models dealing with the AT2H
task and compared generated summaries using Self-Rouge. We also provide the best
results of AT2H inference parameters for each model in the tables from B.1 to B.6 in
the appendix.

For generating summaries in the generation method, the minimum number of gener-
ated tokens is set to 10 by default. However, we also tested higher numbers obtained
by subtracting the standard deviation from the average number of heading tokens of
the validation sets. Thus, we also experimented with minimum token values of 15 and
18 for the SumeCzech and CNC datasets. By doing this, we aimed to test whether the
generation of summaries is either somehow affected by the minimum length or whether
the model can estimate the appropriate length based on the data provided. Since we
are generating headlines that are intended to be concise, we set the repetition penalty
to 10 to reduce the number of repeating tokens occurring in the generated summaries.

We first experimented with the beam search, which showed that a beam size of 4
with a minimum token count of 10 and no sampling produced the best results for both
models. However, similar high-performance results were obtained for larger beam sizes
demonstrated in the tables B.1 and B.2. For the SumeCzech model, the greedy search
results (beam size 1) achieve almost the same score as the others. The CNC model,
compared to the SumeCzech model, works better for larger beams, and this is also
confirmed by its Self-Rouge, which showed significantly low diversity between beams
of sizes 4, 12, and 16. Moreover, what we found interesting, the beam size of 6 was
slightly different from the other beams in terms of diversity. Next, when examining
the Self-Rouge, the results of both models revealed that the mutual recall scores were
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reasonably high between each other, indicating that the generated summaries showed
similarity and the different beam sizes produced relatively equal summaries. The greedy
search showed considerable diversity from others, and its average recall was roughly 50
30 40 without sampling and 30 20 20 with sampling, but as for the other beam sizes,
their recall was above 70 60 60 as well as the precision. Regarding beam size, closer
beam sizes were more highly correlated than more distant ones. For example, beam size
16 with beam size 12 achieved recall 91 88 90 and precision 93 90 92, whereas with beam
size 8 had recall 87 83 86 and precision 88 84 87, all without sampling. Furthermore, we
observed a higher correlation among beam sizes that were produced without sampling,
which is to be expected. From this, we can infer that sampling is more creative, but as
the beam size increases, the diversity decreases.

We then tested top-k sampling, which performed well for both models, with the best
result for 𝐾 = 20, a temperature of 0.95, and a minimum token count of 10. Scores
are demonstrated in the tables B.3 and B.4. All scores appeared fairly similar and
decreased with increasing temperature and number of 𝑘. We were very surprised by the
results of the last rows with a temperature of 1.1, which should flatten the distribution
and lead to worse results. Examining this more closely, we found that this setting
tended to generate longer sequences, which appeared to be good in recall score but
not in precision. By examining the diversity of summaries under different top-k testing
parameters, we found out that most lower 𝑘 values have a higher recall with larger
ones, but not vice versa. With a fixed 𝑘 value, we can say that those with smaller
temperatures show less diversity in contrast to the larger ones. We can also say that
the difference in the minimum number of tokens does not play a role here. We just
noticed that a smaller count with a large one exhibits higher recall than vice versa
and hence has a larger recall than precision. Furthermore, with an established value of
the temperature, we observed that the recalls are essentially similar regardless of the 𝑘
values.

Finally, we experimented with top-p sampling, which yielded the best results for the
SumeCzech model with p=1.0, a temperature of 0.89, and a minimum token count of
10, and for the CNC model with 𝑝 = 0.92, a temperature of 0.89, and a minimum
token count of 10, which are shown in the tables B.5 and B.6. We observed that top-p
behaves the same as top-k in terms of Self-Rouge, except that lower values of 𝑝 are
more correlated with each other independently of the temperature value.

5.3.2 Inference of HT2A models

This section provides an overview of our experiments with the HT2A task, in which
we tested inference for the HT2A-S and HT2A-C models, as well as a comparison of
produced summaries. We collected the best inference results, which are demonstrated
in the tables from B.7 to B.12 in the appendix.

We ran some experiments and found that the models often repeat tokens when gen-
erating summaries, so we tried adjusting the repetition penalty to 10 and 1.2 to see if
this could affect the score. From previous experiments held on the AT2H problem, the
default size of the minimum number of tokens worked out better because the model
was probably able to estimate the required size of the summary from the given output;
therefore, we left the minimum number of tokens set to the default value of 10.

Experimenting with beam search of various sizes, it turned out that a beam of size
4 without sampling was the best choice for both models, which is shown in the tables
B.7 and B.8. Other beam sizes without sampling performed similarly well, while with
sampling, the results only improved for larger beam size numbers. When considering
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the repetition penalty, again, both models showed the best results for 4 beams. Never-
theless, the higher penalty did not allow essential words that were crucial to the topic
to be repeated, resulting in a worse score. When investigated using Self-Rouge, we
observed similar characteristics as described in the above section with a few differences.
The greedy search showed significantly higher diversity than the others, for both with
and without sampling. Also, the more extensive beam sizes had lower average recall
among themselves. In addition, we observed that the precision of larger beam sizes
with smaller ones is greater than their recall and vice versa.

As the next, we applied top-k sampling, which produced only one best result for
both models shown in the tables B.9 and B.10 with set parameters to 𝑘 = 20 and
the temperature of 0.7, indicating that the models behaved mostly greedy. Overall,
scores decreased as the temperature increased; also, for each temperature, better scores
were obtained with the smaller 𝑘. Now the temperature of 1.1 showed a low score.
When we examined diversity using Self-Rouge, we found that it behaves similarly to
the behavior described in the section above, with a few differences. Here we observed
that lower values of 𝑘 have low diversity at a fixed temperature but start to become
more diverse as the temperature increases. Furthermore, we observed that the overall
recall is much smaller between each other compared to the AT2H models, most likely
due to the greater length of the generated summaries.

Testing of top-p sampling performed the following best results shown in the tables
B.11 and B.12. As can be deduced, the best results come for 𝑝 = 0.28 with a low
temperature of 0.75 that behaves mostly greedy. The value of 𝑝 mainly influenced the
scores, and thus temperature hardly mattered.

5.4 Test settings
From experiments conducted to investigate the best inference hyperparameters for gen-
erating summaries on the validation set, we derived which hyperparameters best fit
each model. Now is the time to test our models on test sets to see how they perform, as
demonstrated in the following sections 5.5 and 5.6. The evaluation focuses only on the
SumeCzech test and out-of-domain test sets and the CNC test set, which contain 44
567, 44 976, and 35 000 documents, respectively. When evaluating SumeCzech tasks, we
kept the same settings for generating summaries as for our tasks. We set the inference
parameters for each model as follows.

For the AT2H models, we set temperature 0.89, beam size 4, top-k 80, and repetition
penalty 10. Only the top-p values differed, which we adjusted to 0.92 or 1.0 for the CNC
model and the SumeCzech model, respectively. We tried to configure these parameters
according to their best results; however, we had to make a compromise between top-k
and top-p values when we set the temperature according to the best results of top-p,
and thus the value of 𝑘 was adjusted to 80 for both regarding the selected temperature,
which of course also does not yield bad results. For the AT2H-CS model, we set the
hyperparameters to always generate according to the model learned on the dataset of
the test set it was currently dealing with, which is not perfect. Nevertheless, we aimed
to have the best performance for each test set separately.

The HT2A models were all tuned to top-p 0.92, temperature 0.95, beam size 4, top-k
40, and repetition penalty 1.2. Neither the temperature, p-value, nor k-value matched
the previously mentioned best-fit values from the experiments run, and the reason for
this is that the program was unable to run, most likely due to an implementation error
on the HuggingFace side, as they use a deprecated function from PyTorch that causes
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an error “RuntimeError: probability tensor contains either ‘inf‘, ‘nan‘ or element < 0“.
So we tried to set the smallest possible values without errors.

We defined the minimum number of generated tokens as 10 and enabled sampling in
all cases. In addition, an effect of the individual hyperparameters on a validation set
can be seen in the tables from B.1 to B.12.

5.5 Results
This section presents the results of the ROUGE𝑅𝐴𝑊 scores based on the evaluation of
the summaries generated using our learned models. For each test set of both datasets,
we produced summaries using all the models for a given task to compare their results
with each other. We first analyze the models dealing with the Abstract + Full Text to
Headline (AT2H) task, whose results are shown in the following table 5.2.

SumeCzech
ROUGE𝑅𝐴𝑊-1 ROUGE𝑅𝐴𝑊-2 ROUGE𝑅𝐴𝑊-L

test set P R F P R F P R F
AT2H-S 27.44 25.43 25.77 11.27 10.46 10.54 24.97 23.15 23.44
AT2H-C 22.73 25.78 23.45 8.41 9.65 8.67 20.28 23.05 20.93
AT2H-CS 28.49 25.96 26.53 11.95 10.89 11.07 25.95 23.65 24.16

CNC
ROUGE𝑅𝐴𝑊-1 ROUGE𝑅𝐴𝑊-2 ROUGE𝑅𝐴𝑊-L

test set P R F P R F P R F
AT2H-S 29.86 24.45 26.02 11.82 9.92 10.38 26.88 22.04 23.42
AT2H-C 33.13 33.05 32.46 14.32 14.46 14.08 29.52 29.46 28.92
AT2H-CS 34.49 32.69 32.92 15.20 14.62 14.58 30.87 29.31 29.48

Table 5.2. ROUGE𝑅𝐴𝑊 results on test sets of both datasets for Abstract + Full Text to
Headline task (AT2H). The suffix after AT2H indicates the dataset on which the model is
learned. S, C, and CS denote SumeCzech, CNC, and CNC-Sum datasets, respectively. P,

R, and F denote precision, recall, and F1 scores. Scores in bold are the highest.

As can be inferred from the results, the model learned on the CNC-Sum dataset,
which was developed by concatenating the two datasets, exhibits the best ROUGE𝑅𝐴𝑊
scores in both cases. In the case of the SumeCzech test set, this model outperforms
even the one that was learned only on documents from the SumeCzech dataset. It can
be argued that we only trained the ATH2-S model (trained on SumeCzech) for 2576K
documents, and therefore it does not achieve acceptable results. However, this fact is
disproved by the other case, where testing is conducted on the CNC dataset because
there, the model AT2H-C has been trained for roughly 5794K documents, which is more
CNC documents than AT2H-CS performed, but its scores were again outperformed by
the model AT2H-CS. It can also be noticed that the result of the model AT2H-C on the
SumeCzech dataset is significantly lower than the score obtained by the model AT2H-
S, which was learned on it, this is also true in reverse, but the model AT2H-CS is the
opposite of this. Hence, for this task, we can argue that training the model on both
datasets’ concatenation helped it utilize the important textual information from both
datasets.

Next, we discuss the results of the models for the Headline + Full Text to Abstract
task. The following table 5.3 shows the evaluation of the individual model on both
test domains. From the table, we can notice that the HT2A-CS model trained on
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the CNC-Sum dataset again achieves good quality scores for both datasets. For the
SumeCzech documents, the results of the HT2A-CS and HT2A-S models are relatively
similar, but the HT2A-CS model performs better again, probably due to the training
on a large dataset and using features and dependencies learned especially from the CNC
data. Whereas for the CNC dataset, the model that is trained on this dataset performs
better, but only by a small percentage. This behavior is possibly caused by the fact
that the input sequences were not excessively truncated during tokenization in contrast
to the SumeCzech data, as shown in the table 4.1, and most of the textual information
was retained. The CNC model achieves the best overall f-score on its data, while the
SumeCzech model performs similarly there in terms of precision, even though it was
trained on a different dataset.

SumeCzech
ROUGE𝑅𝐴𝑊-1 ROUGE𝑅𝐴𝑊-2 ROUGE𝑅𝐴𝑊-L

test set P R F P R F P R F
HT2A-S 26.89 19.26 21.81 8.02 5.82 6.56 20.09 14.45 16.34
HT2A-C 24.52 20.18 21.01 6.83 5.80 5.96 17.94 14.77 15.37
HT2A-CS 28.73 18.40 21.76 8.97 5.83 6.86 21.73 13.99 16.51

CNC
ROUGE𝑅𝐴𝑊-1 ROUGE𝑅𝐴𝑊-2 ROUGE𝑅𝐴𝑊-L

test set P R F P R F P R F
HT2A-S 30.73 18.16 22.10 9.51 5.57 6.81 22.78 13.52 16.43
HT2A-C 30.36 22.84 25.35 10.57 8.12 8.95 22.62 17.08 18.93

HT2A-CS 31.51 21.57 24.90 10.96 7.63 8.76 23.62 16.22 18.71

Table 5.3. ROUGE𝑅𝐴𝑊 results on test sets of both datasets for Headline + Full Text to
Abstract task (HT2A). The suffix after HT2A indicates the dataset on which the model is
learned. S, C, and CS denote SumeCzech, CNC, and CNC-Sum datasets, respectively. P,

R, and F denote precision, recall, and F1 scores. Scores in bold are the highest.

In addition, both tables show that models learned on the CNC dataset yield relatively
high recall when tested on SumeCzech documents, which means that the produced
summaries are more relevant to the reference summaries than vice versa for SumeCzech
models.

5.6 Results on SumeCzech tasks
This section demonstrates the results of our learned models on tasks designed by the
authors of SumeCzech. Thus, we consider the tasks Text to Abstract (T2A), Abstract
to Headline (A2H), and Text to Headline (T2H). Intuitively, the models learned on
our HT2A task deal with the T2A task and the AT2H models with the A2H and T2H
tasks. We evaluated our models on both test and out-of-domain test sets of SumeCzech,
whose ROUGE𝑅𝐴𝑊 scores are shown in the following table 5.4, which also displays the
best results of models designed by the authors of SumeCzech[3] and the author of
the bachelor thesis, Štěpán Műller[36], which we obtained from their website2. Brief
description of their models:

. first - by SumeCzech, takes one or three first sentences as a summary regarding the
task.

2 https://ufal.mff.cuni.cz/sumeczech
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. textrank[37] - by SumeCzech, selects one or three sentences based on the represen-
tation of the text as a network of sentences based on their similarity.. tensor2tensor - by SumeCzech, an abstractive fine-tuned neural machine translation
model of Vaswani et al.[1].. Seq2seq-FT - by Műller, a seq2seq (bi-directional GRU as an encoder and a regular
GRU as a decoder)[38] model with global attention and FastText embeddings. Seq2seq-FT-NER - by Műller, a seq2seq (bi-directional GRU as an encoder and a
regular GRU as a decoder)[38] model with global attention and FastText embeddings
based on named entity recognition.

We should mention that our models were engaged in slightly different tasks that may
have benefited their understanding of textual information by learning headlines when
generating an abstract or also abstracts when producing a headline. On the other hand,
these features may have disadvantaged them when they relied only on that particular
part of the text.

We first present 5.4 an evaluation of the T2A task, where our SumeCzech model
(HT2A-S) achieved good results and outperformed the models of the SumeCzech au-
thors. It shows significantly higher f-scores in both test sets and up to twice as high in
the ROUGE𝑅𝐴𝑊-2. However, the results also suggest that the model had a problem
with the recall value in ROUGE𝑅𝐴𝑊-1 and ROUGE𝑅𝐴𝑊-L, which the textrank model
significantly beat. This can be explained by the fact that the textrank model is extrac-
tive and chooses sentences directly from the input text, in contrast to our abstractive
model building new ones. In comparison with our other models, they perform similarly,
achieving a higher recall for the CNC model and a relatively overall higher f-score for
the CNC-Sum model in the out-of-domain test set, probably caused by training on the
CNC documents.

Next, we present 5.4 the results of the A2H task with the best f-score obtained by our
SumeCzech model, which again shows a weakness in the recall values in all rouge scores.
What is most likely evident here is that our model was used to generate a headline from
a combination of abstract and text, which is missing in this task. At the same time,
the best recall score was achieved by the first model selecting the first sentence as a
summary, indicating that the extractive approach has a considerable effect on recall for
this task. On the other hand, our SumeCzech model achieves the best precision in all
cases. Our other models follow similar scores and are also likely affected by the smaller
input in the test set.

In the T2H task 5.4, the feature of learning on larger documents composed of abstract
and text and a better understanding of textual information is likely to be beneficial, as
our models outperform all others in all the ROUGE𝑅𝐴𝑊 scores by several times in some
places. The CNC-Sum model is the best in this task on both test sets, followed by the
SumeCzech model and then the CNC model. However, the overall ROUGE𝑅𝐴𝑊 scores
are lower than in the A2H task inferring that the abstract captures the headline more
than the text. The SumeCzech model also has greater precision than recall indicating
more concise summaries.

The CNC model results are the worst relative to the performance of our other mod-
els, but still outperforming the other models despite the CNC model has never seen the
SumeCzech dataset. The CNC-Sum model is comparable, if not better, to the perfor-
mance of the SumeCzech model, proving once again that the size and diversity of the
dataset it was learned on is indeed crucial.
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T2A Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
test set P R F P R F P R F
first 13.1 17.9 14.4 1.9 2.8 2.1 8.8 12.0 9.6
textrank 11.1 20.8 13.8 1.6 3.1 2.0 7.1 13.4 8.9
tensor2tensor 13.2 10.5 11.3 1.2 0.9 1.0 10.2 8.1 8.7
HT2A-S 22.9 16.0 18.2 5.7 4.0 4.6 16.9 11.9 13.5
HT2A-C 20.7 17.1 17.7 4.8 4.1 4.2 15.0 12.4 12.8
HT2A-CS 24.0 15.0 17.9 6.2 4.0 4.7 18.0 11.3 13.4

T2A Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
ood set P R F P R F P R F
first 11.1 17.1 12.7 1.6 2.7 1.9 7.6 11.7 8.7
textrank 09.8 19.9 12.5 1.5 3.3 2.0 6.6 13.3 8.4
tensor2tensor 12.5 9.4 10.3 0.8 0.6 0.6 9.8 7.5 8.1
HT2A-S 23.0 15.6 17.9 6.1 4.2 4.8 17.1 11.6 13.3
HT2A-C 20.4 18.3 18.2 5.3 4.7 4.7 14.8 13.2 13.2
HT2A-CS 24.5 15.6 18.3 6.9 4.4 5.2 18.3 11.7 13.7

A2H Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
test set P R F P R F P R F
first 13.9 23.6 16.5 4.1 7.4 5.0 12.2 20.7 14.5
tensor2tensor 20.2 15.9 17.2 6.7 5.1 5.6 18.6 14.7 15.8
AT2H-S 25.9 18.6 20.9 10.3 7.3 8.2 24.1 17.3 19.4
AT2H-C 22.1 17.9 19.0 8.0 6.5 6.8 20.3 16.5 17.4
AT2H-CS 24.8 18.0 20.1 9.7 6.9 7.7 23.1 16.8 18.7

A2H Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
ood set P R F P R F P R F
first 13.3 26.5 16.7 4.7 10.0 6.0 11.6 23.3 14.7
tensor2tensor 19.4 15.1 16.3 7.1 5.2 5.7 18.1 14.1 15.2
AT2H-S 29.4 21.3 23.8 13.8 9.7 10.9 27.4 19.8 22.2
AT2H-C 24.6 22.1 22.4 10.8 9.6 9.6 22.7 20.4 20.6
AT2H-CS 28.7 21.9 23.8 13.4 10.0 10.9 26.7 20.4 22.2

T2H Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
test set P R F P R F P R F
textrank 6.0 16.5 8.3 0.8 2.3 1.1 5.0 13.8 6.9
Seq2seq-FT 15.4 13.7 14.1 2.4 2.1 2.1 13.9 12.4 12.8
Seq2seq-FT-NER 15.3 13.6 14.0 2.4 2.0 2.1 13.9 12.4 12.7
AT2H-S 19.4 17.1 17.7 6.1 5.4 5.5 17.7 15.6 16.1
AT2H-C 16.0 17.3 16.0 4.2 4.6 4.2 14.3 15.4 14.3
AT2H-CS 20.4 17.6 18.3 6.6 5.6 5.9 18.6 16.0 16.7

T2H Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
ood set P R F P R F P R F
textrank 5.8 16.9 8.1 1.1 3.4 1.5 5.0 14.5 6.9
Seq2seq-FT 12.6 11.4 11.6 1.9 1.6 1.7 11.7 10.7 10.8
Seq2seq-FT-NER 13.0 11.6 11.9 1.9 1.7 1.7 12.0 10.8 11.0
AT2H-S 20.8 18.8 19.2 8.0 7.2 7.3 19.2 17.4 17.7
AT2H-C 17.2 18.2 17.0 6.0 6.4 5.9 15.7 16.6 15.5
AT2H-CS 22.0 18.9 19.7 8.8 7.4 7.7 20.5 17.5 18.3

Table 5.4. ROUGE𝑅𝐴𝑊 scores for SumeCzech tasks. Along with our models, the ones
with the best scores are shown here, which were designed by the authors of the SumeCzech
paper and Štěpán Műller. The suffix after HT2A or AT2H indicates the dataset on which
the model is learned. S, C, and CS denote SumeCzech, CNC, and CNC-Sum datasets,
respectively. P, R, and F denote precision, recall, and F1 scores, respectively. T2A, A2H,
and T2H stand for Text to Abstract, Abstract to Text, and Text to Headline, respectively.
The bold scores are the highest, but considering models learned only on the SumeCzeh

dataset.
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5.7 Summaries

We provide a few examples of summaries from CNC and SumeCzech test sets gener-
ated by our models to see how they perform. The reference summarizations marked as
“GOLD“ are shown at the beginning, followed by summaries generated using our mod-
els, which we have translated into English for non-Czech speakers. More summaries are
provided in the attached files C.

We present two shorter examples of summaries from the CNC test set for the Headline
+ Full Text to Abstract task in the following table 5.5. In the first example, all models
captured the reference summarization reasonably well. Whereas the second example
demonstrates a case where the reference text is trying to engage the reader and thus
cannot be considered as a full-text summary and is more of a news text generation.
However, in this case, our models summarized the text comparatively well with respect
to what was written in the input text, but elsewhere they also generated engaging
interrogative sentences with a question mark.

GOLD Pátek se stal šťastným dnem pro Slováka z Košického kraje. V loterii Euro-
jackpot vyhrál neuvěřitelných 58 807 427,70 eur (1,6 miliardy Kč)! Stal se tak
prvním Slovákem, který Eurojackpot vyhrál.
Friday was a lucky day for a Slovak from the Košice district. He won a whopping €58
807 427.70 (CZK 1.6 billion) in the Eurojackpot lottery! He became the first Slovak,
who won the Eurojackpot.

HT2A-C Slovák vyhrál v pátečním losování Eurojackpotu 58 807 427,40 eur (1,6 mil-
iardy Kč). Stal se tak prvním Slovákem, který vyhrál v loterii.
A Slovak won €58 807 427.40 (CZK 1.6 billion) in Friday’s EuroJackpot draw. He
became the first Slovak, who won in the lottery.

HT2A-S Slovák, který vsadil na Eurojackpot, vyhrál při losování 58 807 427,40 eur (1,6
miliardy Kč)!
A Slovak who bet on the Eurojackpot won €58 807 427.40 (CZK 1.6 billion)!

HT2A-CS V pátek se stal prvním Slovákem, který vyhrál v Eurojackpotu více než 1,6
miliardy korun!
On Friday, he became the first Slovak, who won more than CZK 1.6 billion in Euro-
Jackpot!

GOLD Jeden z nejlepších hráčů Counter-Strike: Global Offensive Oleksandr „s1mple”
Kostyliev, měl zabanovaný účet v konkurenční hře Valorant. Čím si to za-
sloužil?
One of the best Counter-Strike: Global Offensive players, Oleksandr “s1mple“
Kostyliev, had his account banned in the competitive game Valorant. What did he
do to deserve it?

HT2A-C S1mple je ukrajinský hráč, který se proslavil svými kontroverzními výroky o
Valorantu.
S1mple is a Ukrainian player who became famous for his controversial statements
about Valorant.

HT2A-S S1mple byl jedním z nejpopulárnějších hráčů Counter-Strike: Global Offen-
sive (CS:GO). Na streamu Valorant válcoval protihráčům a předvedl několik
skvělých herních momentů.
S1mple was one of the most popular players of Counter-Strike: Global Offensive
(CS:GO). On the Valorant stream, he rolled his opponents and showed off some
great gameplay moments.

HT2A-CS S1mple je jedním z nejpopulárnějších hráčů Counter-Strike: Global Offensive.
Na streamu s1mple tvrdil, že je pro něj Valorant až moc snadný.
S1mple is one of the most popular players of Counter-Strike: Global Offensive. On
the stream, s1mple claimed that Valorant is too easy for him.

Table 5.5. Two examples of CNC test summarizations. GOLD indicates the reference
summary, rows with summaries under the GOLD are generated using the appropriate
model. The suffix after HT2A denotes the dataset on which the model is learned. S, C,

and CS denote SumeCzech, CNC, and CNC-Sum datasets, respectively.
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The following table 5.6 contains our summaries from the SumeCzech test set con-

sidering the Abstract + Full Text to Headline task. The first example shows that the
models’ summaries captured the reference text reasonably well, except for the event’s
location, even though it occurred in the input text. The next example shows that the
CNC model produced a headline that was as eye-catching as the reference one. The
other models also produced essentially creative texts. And in the last example, it can
be seen that all the models started with the name of the country Sri Lanka, which
probably had a considerably high probability, and then proceeded generatively, except
the SumeCzech model, which copied the rest of the sentence from the text.

GOLD Tým studentů ČVUT představil svou novou formuli úspěšnou na Hockenheimu
A team of CTU students introduced their new formula successful at Hockenheim

AT2H-C Tým CTU CarTech představil svou formuli FS.02
CTU CarTech team introduced its formula FS.02

AT2H-S ČVUT představil formuli, která byla nejlepší na světě
CTU introduced a formula, which was the best in the world

AT2H-CS Studenti ČVUT představili svou novou formuli
CTU students introduced their new formula

GOLD Kde je umění za půl miliardy dolarů z loupeže století? Ani na smrtelné posteli
to nechce mafián říct
Where’s the half-billion-dollar art from the heist of the century? Even on his
deathbed, the mobster doesn’t want to say it

AT2H-C Kdo je muž podezřelý z největší krádeže umění v Americe?
Who is the man suspected of the biggest art theft in America?

AT2H-S Ukradené umění je záhadou. Policie tápe, kdo ho ukradl
Stolen art is a mystery. Police wonder who stole it

AT2H-CS Krádež umění za miliardy. Muž, který prodal zbraň vrahovi, nepromluví
Theft of art of billions. The man who sold the gun to the killer won’t talk

GOLD Srí Lanka – exotika za rohem
Sri Lanka - exotic round the corner

AT2H-C Srí Lanka: Toulky exotickými skvosty indického ostrova
Sri Lanka: Tours of the exotic gems of the Indian island

AT2H-S Srí Lanka: Požehnaná zářící země
Sri Lanka: Blessed shining land

AT2H-CS Srí Lanka: ostrov, který vypadá jako z Indie
Sri Lanka: island that looks like from India

Table 5.6. Three examples of SumeCzech test summarizations. GOLD indicates the refer-
ence summary, rows with summaries under the GOLD are generated using the appropriate
model. The suffix after AT2H denotes the dataset on which the model is learned. S, C,

and CS denote SumeCzech, CNC, and CNC-Sum datasets, respectively.

During the examination of the produced summaries, we observed factual errors more
often than grammatical ones. The models mainly had a problem when generating
sports scores, ages, percentages, or any other numbers, which they often mixed up.
For instance, when generating sports scores, the model was not able to assign the
correct score to the right team, so the summaries often showed that the team that
actually lost won. We also detected that the models often mixed up the names of people
in articles, creating nonsensical names of non-existent people, or even, for example,
in reports from police investigations, they sometimes swapped the participants with
the leading actor, resulting in giving false information. In practical use, these errors
could become fatal and seriously misinform readers. Unfortunately, the ROUGE𝑅𝐴𝑊
metric does not address these defects, and thus a new metric should be designed that
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would take factuality into account. For future work that would focus on the factuality,
the paper[39], which addresses the shortcomings of the ROUGE metric and suggests
possible solutions for measuring consistency, could provide a good starting point.

5.8 Discussion
By experimenting with different inference methods and their parameters, we were able
to derive which summary generation hyperparameters work best on our datasets. We
found that the model is capable of estimating the minimum length of the summary by
itself. Furthermore, excellent results were obtained from beam size 4 and estimated up
to beam size 8. While we did not test all beam sizes in this range, it appeared that
larger beam sizes tend to generate similar if not worse summarizations, varying only
in a few words. A beam search of size one (greedy search) may not be a bad choice
to quickly see how a model produces, but its ROUGE𝑅𝐴𝑊-2 scores are fundamentally
smaller. Generally, summaries produced using the beam search algorithm seem to be
more human-written and not as convoluted. Concerning top-k and top-p sampling, the
summaries generated using these methods are more creative but often syntactically and
grammatically incorrect, unlike the beam search algorithm. For top-k, we found that the
summarizations generated by 𝑘 values differing by tens are considerably similar when
we use a low temperature. Higher values of 𝑘 could affect the resulting summarizations,
but we did not test this. When we utilized top-p sampling, lower values of 𝑝 produced
similar summaries in terms of diversity but independent of the temperature value. It
would be worth testing top-p and top-k sampling together with a higher number of
beams because beam search looks for the most likely summary, whereas top samplings
select the most likely word at a given step.

Focusing on our tasks, the models performing on the test set of a dataset on which
they were trained produced high-quality results in terms of ROUGE𝑅𝐴𝑊 scores. How-
ever, they had lower but similar scores on the opposite dataset. The SumeCzech model
mainly produced higher precision than the recall, and for the CNC model vice versa.
Whereas the CNC-Sum model learned on both datasets performed best on test sets of
both tasks showing that it was able to learn the textual information of both datasets.

For SumeCzech tasks, our models outperformed most of the best results to date,
leading to state-of-the-art results on the SumeCzech dataset. For the Text to Abstract
and Abstract to Headline tasks, we achieved the best results for all ROUGE scores except
recall, where we were beaten by the extractive first and textrank models. However,
for the Text to Headline task, we achieved state-of-the-art results with all models for
all ROUGE𝑅𝐴𝑊 scores. It also appears that the utilized pre-trained mBART model
and its architecture indeed contributed to understanding the dependencies of textual
information because our model, which had never seen the SumeCzech data and was
only trained on documents from the CNC dataset, also achieved state-of-the-art results.
Furthermore, it showed that the model learned on both datasets performed considerably
well on ROUGE𝑅𝐴𝑊 scores and achieved better scores than the model learned only on
the SumeCzech dataset, and this also proves that having a large dataset is crucial for
such a large model.
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Chapter 6
Conclusion

In this work, we have presented recently published models derived from the Transformer
architecture. Subsequently, we described the three Czech news datasets we used during
the experiments. We have cleaned the private CNC dataset from textual inconsistencies
that could have affected the training of the models. Furthermore, we have presented a
large dataset CNC-Sum, which was developed by concatenating the CNC dataset and
the SumeCzech dataset. This was aimed to test whether model learning is affected by
the dataset size, which has been shown to be crucial. In addition, we trained a total of
six pre-trained multilingual encoder-decoder Transformer-based models, mBART, on
our datasets for two tasks. With the trained models, we studied the impact of different
inference method parameters on the generated summaries, which were then compared
with each other using the diversity measured by the ROUGE𝑅𝐴𝑊 metric. We selected
the best inference hyperparameters and applied our models to the test data, achieving
state-of-the-art results on all tasks of the SumeCzech dataset. Experiments showed that
the model architecture helped to improve text understanding and the model learned
on both datasets significantly dominated the others. For our tasks, this model again
proved best, followed by the model learned on the dataset of the current test set. We
found that, with few exceptions, the summaries produced were legible and resembled
human writing but contained occasional factual errors.
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Appendix A
Acronyms

NLP Natural Language Processing
NLG Natural Language Generation
RNN Recurrent neural networks

BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer

BART Bidirectional Auto-Regressive Transformers
mBART Multilingual Bidirectional Auto-Regressive Transformers

GeLU Gaussian Error Linear Unit
ReLU Leaky Rectified Linear Unit

ROUGE Recall-Oriented Understudy for Gisting Evaluation
CNC Czech News Center
OOD Out-of-domain test set

CNC-Sum A dataset concatenated from CNC and SumeCzech datasets
HFT HuggingFace Transformers
BPE Byte-Pair Encoding

AT2H Abstract + Full Text to Headline task
HT2A Headline + Full Text to Abstract task

A2H Abstract to Headline task
T2H Text to Headline task
T2A Text to Abstract task

AT2H-S A model learned on the SumeCzech dataset for the AT2H task
HT2A-S A model learned on the SumeCzech dataset for the HT2A task
AT2H-C A model learned on the CNC dataset for the AT2H task
HT2A-C A model learned on the CNC dataset for the HT2A task

AT2H-CS A model learned on the CNC-Sum dataset for the AT2H task
HT2A-CS A model learned on the CNC-Sum dataset for the HT2A task
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Appendix B
Inference results

In this section, several tables of the best inference parameter testing validation results
are presented. Explanatory notes: L denotes a minimum number of tokens, B indicates
the beam size, S stands for the sampling (F=False, T=True), K is the value of k in
the top-k sampling, and P is the value of p in the top-p sampling. P, R, and F denote
precision, recall and F1 scores, respectively. Scores in bold are the highest.

B.1 Inference results of AT2H models

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
S=F,L=10,B=1 24.98 27.11 25.40 9.18 10.00 9.30 22.12 24.01 22.48
S=F,L=10,B=4 26.26 28.13 26.53 10.71 11.47 10.77 23.61 25.31 23.85
S=F,L=15,B=6 24.31 28.97 25.84 9.49 11.57 10.14 21.64 25.93 23.05
S=F,L=10,B=12 25.85 28.00 26.26 10.63 11.54 10.77 23.26 25.23 23.64
S=T,L=10,B=4, 26.05 27.94 26.32 10.42 11.19 10.49 23.30 24.98 23.52
S=T,L=15,B=6 24.05 29.19 25.76 9.25 11.55 9.98 21.33 26.03 22.89

Table B.1. Rouge scores with the different beam sizes for the SumeCzech AT2H-S model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
S=F,L=10,B=4 32.27 35.47 33.15 14.25 15.60 14.59 28.60 31.42 29.37
S=F,L=10,B=6 32.11 35.52 33.09 14.25 15.70 14.64 28.48 31.48 29.33
S=F,L=10,B=16 31.81 35.38 32.89 14.17 15.70 14.60 28.21 31.38 29.16
S=T,L=10,B=4 31.97 32.33 32.89 13.85 15.27 14.20 28.26 31.22 29.05
S=T,L=18,B=12 30.94 35.95 32.63 13.25 15.63 14.03 27.22 31.71 28.73

Table B.2. Rouge scores with the different beam sizes for the CNC AT2H-C model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.89,K100 27.75 25.51 25.96 11.18 10.28 10.41 25.11 23.10 23.49
L10,T0.89,K80 27.69 25.56 25.95 11.21 10.36 10.46 25.14 23.21 23.55
L10,T0.95,K20 27.43 26.43 26.29 11.09 10.74 10.60 24.81 23.94 23.78
L15,T1.1,K20 23.91 29.33 25.73 9.09 11.39 9.83 21.08 25.96 22.70
L15,T1.1,K50 23.90 29.36 25.74 9.01 11.32 9.76 21.12 26.06 22.78

Table B.3. Rouge scores with the different values of k for the SumeCzech AT2H-S model.
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Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.89,K100 33.60 33.26 32.77 14.74 14.68 14.40 29.90 29.60 29.15
L10,T0.89,K80 33.61 33.17 32.72 14.69 14.59 14.32 29.98 29.61 29.19
L10,T0.95,K20 33.45 34.03 33.08 14.61 14.96 14.47 29.73 30.27 29.40
L18,T1.1,K40 29.75 36.50 32.16 12.46 15.49 13.51 25.94 31.90 28.05
L18,T1.1,K50 29.63 36.46 32.06 12.45 15.43 13.49 25.88 31.92 28.02

Table B.4. Rouge scores with the different values of k for the CNC AT2H-C model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.89,P1.0 27.65 25.47 25.88 11.18 10.29 10.41 25.09 23.13 23.49
L10,T0.95,P1.0 27.25 26.30 26.13 11.03 10.70 10.56 24.70 23.85 23.68
L10,T1.0,P1.0 26.06 27.99 26.34 10.43 11.19 10.48 23.31 25.03 23.54
L10,T1.1,P0.74 24.70 29.13 26.11 9.51 11.31 10.04 21.85 25.81 23.10

Table B.5. Rouge scores with the different values of p for the SumeCzech AT2H-S model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.89,P0.92 33.57 33.50 32.87 14.64 14.72 14.36 29.90 29.84 29.27
L10,T0.95,P0.92 33.32 34.01 33.00 14.54 14.95 14.42 29.57 30.23 29.30
L10,T1.0,P1.0 32.07 35.46 33.01 13.87 15.35 14.26 28.27 31.28 29.10
L18,T1.1,P0.74 29.69 36.44 32.09 12.39 15.38 13.42 25.88 31.84 28.00
L18,T1.1,P0.84 29.72 36.46 32.12 12.38 15.36 13.41 25.92 31.87 28.03

Table B.6. Rouge scores with the different values of p for the CNC AT2H-C model.

B.2 Inference results of HT2A models

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
S=F,L=10,B=4 24.22 22.14 22.25 7.37 6.59 6.70 17.75 16.18 16.28
S=T,L=10,B=4 24.12 22.10 22.21 7.12 6.42 6.51 17.54 16.03 16.12
S=T,L=10,B=12 22.73 22.83 21.75 6.94 6.71 6.52 16.63 16.55 15.84
S=T,L=10,B=16 22.19 22.96 21.56 6.77 6.68 6.42 16.19 16.61 15.66

Table B.7. Rouge scores with the different beam sizes for the SumeCzech HT2A-S model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
S=F,L=10,B=1, 23.94 24.07 23.07 6.50 6.74 6.38 16.33 16.43 15.75
S=F,L=10,B=4, 28.10 24.97 25.65 9.88 8.72 9.01 20.76 18.43 18.94
S=T,L=10,B=4, 27.92 24.96 25.58 9.69 8.63 8.88 20.58 18.38 18.85
S=T,L=10,B=8, 27.65 25.11 25.45 9.83 8.74 8.98 20.51 18.54 18.84

Table B.8. Rouge scores with the different beam sizes for the CNC HT2A-C model.
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Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.75,K20 18.26 20.92 18.77 3.56 4.06 3.65 12.13 13.77 12.40
L10,T0.95,K40 15.95 19.79 16.98 2.71 3.38 2.88 10.42 12.81 11.03

Table B.9. Rouge scores with the different values of k for the SumeCzech HT2A-S model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.75,K20 20.33 22.92 20.61 4.95 5.66 5.07 13.66 15.29 13.81
L10,T0.95,K40 17.97 22.05 18.93 4.06 4.95 4.27 11.92 14.44 12.48

Table B.10. Rouge scores with the different values of k for the CNC HT2A-C model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.7,P0.28 21.47 22.10 20.98 4.94 5.11 4.83 14.55 14.86 14.15
L10,T0.85,P0.28 21.14 22.19 20.85 4.79 5.06 4.73 14.31 14.90 14.04
L10,T0.95,P0.92 15.19 19.49 16.43 2.64 3.38 2.85 9.99 12.70 10.75

Table B.11. Rouge scores with the different values of p for the SumeCzech HT2A-S model.

Inference Rouge𝑅𝐴𝑊-1 Rouge𝑅𝐴𝑊-2 Rouge𝑅𝐴𝑊-L
param P R F P R F P R F
L10,T0.7,P0.28 23.76 24.02 22.95 6.46 6.72 6.35 16.22 16.37 15.66
L10,T0.85,P0.28 23.65 24.11 22.94 6.45 6.74 6.34 16.12 16.37 15.61
L10,T0.95,P0.92 18.62 22.29 19.38 4.25 5.15 4.46 12.41 14.70 12.85

Table B.12. Rouge scores with the different values of p for the CNC HT2A-C model.
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Appendix C
Attached files

This section describes the structure of the attached files. Models with learned weights
are not included due to its size, but can be downloaded from the web site https://
huggingface.co/ctu-aic.

readme.pdf file with contents description.
data directory with several examples of SumeCzech sum-

maries from the test set.
src/clean_cnc_dataset.py script for cleaning CNC dataset.

src/concatenate_datasets.py script for concatenating datasets and creating test, train,
and validation splits.

src/tokenize_dataset.py script for tokenizing dataset.
src/train.py script for training models.

src/test_inference.py script for testing parameters of inference method on
learned models.

src/Summarizer.ipynb Jupyter Notebook file for generating summaries from ar-
bitrary Czech texts using learned models.
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