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Abstract
This work will describe the implementa-
tion of Phantom Go and algorithms to
sample compatible histories and will show
and discuss the results of pairwise eval-
uation of different algorithms for play-
ing Phantom Go and the efficiency of IS-
MCTS.
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Imperfect-information games
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Abstrakt
V této práci bude popsána implementace
hry Phantom Go a algoritmů pro vytvá-
ření kompatibilních historií, a budou po-
psány a prodiskutovány výsledky páro-
vého vyhodnocení různých algoritmů pro
hraní hry Phantom Go a efektivita IS-
MCTS.
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IS-MCTS, Hry s neúplnou informací
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Chapter 1
Introduction

In this work, I am going to define the game Phantom Go, describe how the
game differs from its variant Go, and describe algorithms widely used for
games with imperfect information, which are games where players do not
have full observation of the state of the game, especially Phantom go, and I
will use these algorithms on Phantom Go and discuss their effectiveness.

Phantom Go is an interesting domain to study because of its large belief
space, but it is very easy to sample compatible histories for information/public
states.

The goals of this project are to implement the game Phantom Go into the
OpenSpiel framework[LLL+19], implement sampling method using OR-Tools,
implement an evaluation algorithm using a Go engine and to evaluate this
algorithm against already implemented algorithms in OpenSpiel and all of
the algorithms against a player playing random actions. Lastly, the efficiency
of IS-MCTS will be discussed according to the results of evaluations.

In Chapter 2 I will describe the game Phantom Go using a game formalism,
describe algorithms usually used on games of similar complexity and sum-
marize the literature about algorithms for solving large games of imperfect
information, with the emphasis on Phantom Go. Chapter 3 will cover Go,
and its imperfect information version Phantom Go as a board game and de-
scribe its implementation. Chapter 4 describes the algorithms used in perfect
information games. Chapter 5 provides an overview of Metapositions and
Infostates, state set quantifiers, and an approach to sampling. Chapter 6 gives
an outline of the usage of previously described algorithms, their efficiency,
and a discussion about the results of the experiment. In the last Chapter 7 I
will make an overview of the whole project and achieved goals.

1.1 Motivation

Subgame solving is the standard technique for playing perfect-information
games that has been used by strong agents in a wide variety of games including
go. Methods for subgame solving in perfect-information games exploit the
fact that a solution to a subgame can be computed independently of the rest
of the game. However this approach fails in imperfect-information games,
where the optimal strategy in a subgame can depend on strategies outside
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1. Introduction .....................................
that subgame. [ZS21]

Several problems have been identified with techniques based on determiniza-
tion such as Perfect Information Monte Carlo, , when used on imperfect-
information games. Two commonly reported problems are strategy fusion and
non-locality. Strategy fusion occurs when distinct actions are recommended in
states that the player is not able to distinguish due to the imperfect informa-
tion. Non-locality occurs due to optimal payoffs not being recursively defined
over subgames as in perfect information games. As a result, guarantees
normally provided by search algorithms built on subgame decomposition no
longer hold. [LLB15]

Recently, subgame solving techniques have been extended to imperfect-
information games. Some of those techniques are provably safe in the sense
that, under reasonable conditions, incorporating them into an agent cannot
make the agent more exploitable. However, all of the prior techniques have a
shared weakness that limits their applicability: as a first step, they enumerate
the entire common-knowledge closure of the player’s current infoset, which
is the smallest set of states within which it is common knowledge that the
current node lies. This is a problem in imperfect-information games like
Phantom Go, because the set is unmanageably large. [ZS21]

Because of the size, an approach with Infostate sampling, covered in chapter
5, using Infostate Monte Carlo 6, has been chosen. It is shown that this
heuristic approach does not converge to an ideal solution, because of the
mentioned problems of fusion and non-locality. However it has been shown,
that this approach can find in short time a solutions, that can play well.
[LLB15]

As one of the experiments for this work, I will implement a method for
sampling states the same Infostate for Phantom Go and evaluate the Infostate
Monte Carlo Tree Search against a random player.
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Chapter 2
Background

To begin, I would like to describe the whole problem fully. Game Phantom
Go, which I will describe in chapter 3, is a deterministic game with imperfect
information. The term Imperfect information suggests that, unlike in a perfect
information game, the game’s current state is only partially observable. A
game is said to be deterministic, if in a state taking an action always leads to
the same next state.

2.1 Game formalism

Phantom Go can be modeled as a factored-observation stochastic game which
is defined by following tuple:. Set on finite players N = {1, 2}.. Set of world states W and an initial state winit.. Player function p : W → 2N .. Space of joint actions A. This game is a sequential, which means that

player take turns. One player plays an action, while the other waits.. Transition function T : W × A → ∆W . This function defines the
stochasticity of this game, which means that by applying an action A on
a state W , we get probability distribution ∆W of into which states we
will get. Reward function R : W × A → RN . This zero-sum function which value
describes the result of the game at a terminal state, by assigning 1 to
the winning player and -1 to the player that lost, or 0 to both players in
case of a tie..Observation function O : W × A × W → O. This function returns an
observation after transitioning from a state by applying and action into
the following state.

[KSB+21]
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2. Background .....................................
2.2 Literature

2.2.1 A Comparison of Monte-Carlo Methods for Phantom
Go

[BSCU08]

Monte-Carlo methods for Phantom Go

In the following sections, first I will describe Monte-Carlo evaluation, which is
a evaluation function for game-tree search, and then a way of applying UCT,
a move selection algorithm, to Phantom Go with usage of two heuristics for
guessing the locations of opponent stones. These heuristics are important,
because to be able to apply UCT to the move selection task, the stones have
to be placed for more precise results.

Monte-Carlo evaluation for Phantom Go

In this article, a two-step approach was chosen. The first step consisted
of placing unknown stones randomly onto the board according to the rules.
In the second step, Monte-Carlo evaluation using one of the following two
sampling sampling techniques is used to find the best move.
In order to decide which game state Si of a set of game states has the best
Monte-Carlo evaluation, a number of Monte-Carlo evaluations are played
out. A crucial distinction for computing the best evaluation refers to two
sampling techniques: standard sampling and all-as-first sampling can be
distinguished.[BSCU08]
In all-as-first sampling each sample game contributes to the evaluation of
multiple game states Si simultaneously. Each move random sample which
results in a victory for the player to move first contributes to a statistic
maintained for each of the Si occurring in the random sample. The other
used approach to sampling is Standard sampling, in which A number of
Monte-Carlo evaluations are made for each Si . The best Si is the game state
with the best evaluation. In order to decide which game state is the best,
multiple samples are made succinctly.[BSCU08]

Monte-Carlo Tree Search for Phantom Go

To be able to use UCT to select a move in Phantom Go, a heuristic for
placing the unknown opponent stones is required. The two used move
guessing heuristics are (1) late random opponent-move guessing, and (2)
early probabilistic opponent-move guessing. Both of these heuristics are used
in leaf nodes of the game tree, which action were not all explored. Late
random opponent-move guessing places unknown opponents stones randomly
after a leaf node is reached during the exploration of the tree, whereas Early
probabilistic opponent-move guessing places the unknown stones right after
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...................................... 2.2. Literature

the first own move is played. To better understand the exploration of the
game tree using MCTS, see Subsection 4.2.

Experiment and Results

An experiment using the four Monte-Carlo based methods described above
was conducted. The exact methods are : (1) Monte-Carlo evaluation with
standard sampling (MCEstd), (2) MonteCarlo evaluation with all-as-first
sampling (MCEall), (3) UCT with random late opponent-move guessing
(UCTrand), and (4) UCT with early probabilistic opponent-move guessing
(UCTprob). Each method played 50 games against each other, playing half of
the games as Black and the other half as White.[BSCU08]

The following table 2.1 contains the comparison of results of the methods.
The rows show the number of victories the player in the leftmost column scored
against the players in the other columns. The results of the experiment allow

Figure 2.1: Table with game statistics of different algorithms [BSCU08]

the four following conclusions: (1) All-as-first sampling is a better choice for
Monte-Carlo evaluation than standard sampling. (2) Late random opponent-
move guessing is a better choice for UCT than early probabilistic opponent-
move guessing. (3) The best player based on UCT does not outperform the
best player based on Monte-Carlo evaluation but plays similarly strong. (4)
Monte-Carlo evaluation with standard sampling yielded the weakest player.
[BSCU08]

2.2.2 Belief-state Monte Carlo tree search for phantom go

[WZL+18]
In this article, a general search framework named beliefstate Monte Carlo

tree search (BS-MCTS) is put forward. BS-MCTS incorporates belief-states
into Monte Carlo Tree Search, where belief-state is a notation derived from
philosophy to represent the probability that speculation is in accordance
with reality. In BS-MCTS, a belief-state tree, in which each node is a belief-
state, is constructed and search proceeds in accordance with beliefs. Then,
Opponent Guessing and Opponent Predicting are proposed to illuminate
the learning mechanism of beliefs with heuristic information. The beliefs
are learned by heuristic information during search by specific methods, and
we propose Opponent Guessing and Opponent Predicting to illuminate the
learning mechanism. [WZL+18]

5



2. Background .....................................
Belief-State

The term of belief is derived from philosophy and used in game theory
especially imperfect information games to represent the probability that
speculation is in accordance with reality associated with various aspects, such
as the opponent strategy, a possible board configuration or the most likely
response of the opponent. [WZL+18]

Belief-State MCTS

The search method named as BS-MCTS is proposed to deal with imperfect in-
formation games with large state-space. During the evaluation, a Belief-State
Tree is being built, which is a directed graph with nodes being represented
by Belief-States and edges by actions. The whole tree is then being explored
using MCTS 4.2.

Computation of Beliefs

In the former section, we assume that the players always have the belief that
all the physical states within each beliefstate share the uniform distributions.
It is also assumed that the opponent tends to select the action with the
maximum expected reward according to the belief-state from player’s point
of view. For simplicity, pure strategy can be applied to evaluate beliefs that
assumes they are equally likely, or otherwise mixed strategy is applied instead
by using opponent modeling. Obviously, bliefs should be updated with the
progress of the game as more information is revealed or can be deduced.
Consequently, opponent modeling methods have been suggested to determine
the beliefs of opponents in Phantom games. Deviation-based best response
(DBBR) learns beliefs from previous actions and played games of opponents,
and has obtained good performance in Texas Hold’em poker. [WZL+18]

Summary

This paper proposes a novel algorithm, BS-MCTS, to deal with Phantom Go,
a challenging imperfect information game. In the algorithm, we incorporates
belief-state in imperfect information game. By considering belief-states, we
can make full use of opponent modeling to guess and predict the opponent’s
strategy. Therefore, the tree with belief-state nodes can be constructed and
an MCTS-based method is applied in searching. [WZL+18]

2.2.3 Study of strategy selection based on Phantom Go

[FLYY14] In this article, in addition to usage of Monte Carlo algorithms
and UCT, usage of Opening Gambits, which are predefined series of moves
used in Go, that help mainly in the beginning stages of the game, when the
discoverable game tree is too large to exploit the efficiency of Monte Carlo
and UCT.

6



...................................... 2.2. Literature

Specify Gambit

As described in part of the article describing advantages and disadvantages of
using Gambits in the beginning of a Phantom Go game, another advantage
pointed out, is that the observational moves are played less during the early
phases of the game, which means that a large portion of opponent’s stones is
undiscovered, which makes the mentioned algorithms even less effective.

Gambits are used in games of Go to capture favorable points on the board.
This continues until a stone of opponent is detected. At this time, UCT is
called in game.

Experiment

As an experiment, 10 games of Phantom Go were played against plain Monte
Carlo. 9 of these games were won by player with Specify Gambit, and 4 of
the wins the Gambit played an important role. In the summation of the
experiment, the four mentioned game’s beginnings were analyzed.
From the picture 2.2 we can see that the White stones have a scattered
distribution. It is difficult for the White to form a situation, while the Black
has occupied the important terrain which is easy to connect his stones and
segment battlefield and to be in a good opening condition. [FLYY14]

Summary

Different strategies were used in different stages of the game, according to the
characteristics of phantom go. Each strategy maximizes its advantages and
avoids the defect. It is limited that only changing strategy to improve the
ability of a game, however, the degree of strategy distribution and intelligent
algorithm are more important for a game programming. [FLYY14]

Figure 2.2: Example of a game with Specify Gambit [FLYY14]
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Chapter 3
Go and Phantom Go

3.1 Go

Go is a Chinese strategic board game played by two players. They aim to gain
more points than the opponent by surrounding territories with their stones.
Players take turns in placing the stones on the board. The usual board size
is 19x19, but smaller boards of sizes 13x13 or even 9x9 are used for quicker
games or beginners. The stones cannot be moved once they are placed, but
they can be removed by an opponent by occupying all orthogonally adjacent
points of a group of stones. Then the stones are considered captured and
removed from the board. One of the fundamental terms for Go is an Eye. A
point on board is considered an Eye if it is an empty point inside a group
of same color stones that acts as an adjacent point to the mentioned group,
preventing the enemy player from capturing the group. Figure 3.1 shows an
example of a game on a board of size 9x9. Black’s territories are A and C,
and a prisoners group D. Prisoner groups are those groups that could not
defend their territory, meaning that the opponent would surely capture them.
White has only one territory B. The territory F is dame, meaning it belongs
to neither player.

[Scs11]

Figure 3.1: Example of territories on board
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3. Go and Phantom Go .................................
3.2 Phantom Go

Phantom Go is a version of Go with imperfect information. Unlike Go,
Phantom go is played on three boards, one for each player and the third one
for the judge. The players see only their boards, unlike the judge, who can
see all the three boards. The judge’s board contains all the stones played,
and the player’s board contains their stones and the opponent’s stones they
have observed in their turns. Players take turns as in Go, but instead of
directly placing the stones, they point at a location on their board, suggesting
their move. The judge then decides if the move is legal and proceeds to place
a stone on the desired point or tells the player that the move was illegal
but does not comment on why. The first reason for this can be that an
opponent’s stone occupies the point. In this case, the player observed the
opponent’s stone, and the judge adds the stone to the player’s board. The
other reason is that the move would be against the rules, such as a move
inside the opponent’s Eye. In both scenarios of an illegal move, the player is
still on the move. One of the scenarios that can happen during a legal move
Is a capture of enemy stones. In Phantom Go, the judge points out to both
players which stones were captured.

Figure 3.2: Example of Phantom Go game with player’s observations [BSCU08]

In Figure 3.2 is shown an example of a Phantom Go game, with the judge
board in the middle, white player’s board on the right and black player’s
board on the left.

3.3 Implementation

As in the real board game, three objects represent the three boards. The
boards are represented as an array of Colors, which can be black, white or
empty. There are also auxiliary structures with the board to help with the
game logic, such as an array of groups, to simplify checking for captures and
counting the final score. The player boards are simplified because the only
game logic that depends on them is getting moves for the player, which is
done by searching for empty points. Finally, the last structure that was added

10



................................... 3.3. Implementation

with Phantom Go is an integer array of size two, which helps to keep count
of the stones on the judge board. This structure was implemented to simplify
sampling, which is described in Chapter 5.
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Chapter 4
Search Algorithms

Monte-Carlo Tree Search is a widely used algorithm for games with perfect
information like Go. Most of the published literature uses Monte-Carlo Tree
Search and its variants on Phantom Go. However, using MCTS naively in
perfect-information games leads to highly exploitable strategies. In chapter
6 I will describe an adaptation of MCTS to imperfect-information games.
It has been shown to not have convergence guarantees to minimax optimal
solutions but often empirically performs well in many games.

4.1 Monte Carlo evaluation

Monte-Carlo evaluation is an evaluation function for game-tree search based
on randomly sampled games. An evaluation for a game state A is computed
in three steps: (1) A defined number of playthroughs is played from state S
to a terminal state, (2) Each randomly played game is rated according to
the rules of the game, (3) A statistic is computed based on the results of the
randomly played games. By this evaluation of the game state, we can decide
which sub-tree is the player most likely to win.[BSCU08]

4.2 Monte Carlo tree search

Monte Carlo tree search is a search algorithm that gradually creates a tree
structure based on the game playthroughs using the Monte Carlo evalua-
tion [BSCU08]. Each node N in the tree contains at least three different
tokens of information: (i) a move representing the game-state transition
associated with this node, (ii) the number t(N) of times the node has been
played during all previous iterations, and (iii) a value v(N) representing an
estimate of the nodes’ game value. During each iteration, four stages are
consecutively applied:.Move selection - Using the tree policy, for instance, the UCT 4.3 function,

to select the most promising node N , which has an unexplored child
node.. Expansion - Randomly, a child node of the node N is picked

13



4. Search Algorithms...................................
. Simulation - One or more games are played randomly or using a simple

strategy to a terminal state, and we rate the game with a reward. 1 for
a win, 0 for a draw, and -1 for a loss. This stage is sometimes also called
Rollout.. Back-propagation - After evaluating the newly explored node, the tree
leading to the node N is updated. According to the simulation results,
the number of visits increases, and the value v(N) is updated.

4.3 UCT

UCT is a move-selection algorithm used in many successful Go programs, such
as 1Crazy Stone, 2Mogo, and 3Mango[BSCU08]. At start of each evaluation on
a state using Monte Carlo exploration, a new game tree is incrementally built,
an each node’s UCT value is being update with each exploration playtrough,
which visits the node. Given a node N with Ni representing its group of child
nodes, which can be visited by playing an action on node N , UCT chooses
the child node Ni, which maximizes the following function

f(i) = Xi + C

√
ln t(N)
t(Ni)

In this function, t(N) represents how many times the node N was visited,
t(Ni) represents how many times the child node Ni was explored, and Xi

is the average evaluation of the child node. The constant C controls the
ratio between exploration and exploitation. It prescribes how often a move
represented by child node Ni with high confidence (large t(Ni)) and good
average game value (large Xi) is preferred to a move with lower confidence
or lower average game value. The updating function used together with UCT
sets the value X of a node N to the average of all the values of the previously
selected children including the latest selected child’s value Xi. [BSCU08]

1https://www.remi-coulom.fr/CrazyStone/
2https://senseis.xmp.net/?MoGo
3https://web.archive.org/web/20071103202224/http://www.cs.unimaas.nl/go4go/mango/
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Chapter 5
State sampling

To be able to run algorithms on imperfect information games like Phantom
Go, we have to implement methods to sample the game state, that appear
the same from the point of view of the player, but the actual state is different
from the original state. The game can be resampled into a Metaposition or
into an Information State.

5.1 Information State

Two states are in the same Information State, if they are indistinguishable in
each step by the player’s observation.

As a solution to this rather difficult problem, I have decided to use OR-
Tools. OR-Tools is an open-source software suite for optimization, vehicle
routing, flows, integer and linear programming, and constraint programming.

The whole problem can be described as a Constraint satisfaction problem.
A model in this case is a structure of variables and constraints applied to
these variables. Each point of the board is modelled as a structure of three
BoolVars, each describing if the point is occupied by black stone, white stone
or if the point is empty. BoolVar is a variable, which represents true or false.
This structure was chosen, because it can be used as a condition in enforcing
constraints, such as “enforce a constraint only if a certain point is white”.

On each point of the board, a constraint is created, using a XOR operation
between those three Booleans to ensure that only one of them will be true in
the generated solution. This corresponds to the fact, that a point on a board
can be only white or only black or only empty. To sample a game state in
the information state, we need to ensure the observations the player receives
are compatible with the information state observations at all time steps.

When creating the model, each board, excluding the first empty board, is
based on the previous board and player’s observation at the current time.
Based on player’s observations, I add additional constraints which specify
what minimal changes between two successive boards are allowed

The new resampled state is then created by applying moves, which are
generated as differences between the boards from the solved model. If there
is no difference between the boards in the successive boards, there are 3
possibilities what type of move has happened. I) In the case of a pass move,

15



5. State sampling ....................................
in the resampled state, a pass move is also played. The other move that could
cause no difference in the generated boards is either II) an observational move
from the opponent, or III) player’s move into opponent’s eye, which results
in no difference in player’s observation. In case of opponent’s observational
move, an observational move onto any player’s stone is played, so the count of
the stones remains the same and the right player is on the move.In the other
case, an observational move onto any of the discovered opponent’s stones is
played, so that as in the previous case, count of stones and the player on
move remains the same as in the original state. If no opponent’s stone was
discovered, a move is played onto own stone.

For shorter games with 20 actions played take from 200 to 500 milliseconds
to resample, medium length games with length of 150 resample in range
between 1200 and 3000 milliseconds, and games longer than 300 actions take
from 3500 milliseconds up to 6000 milliseconds. These values were measured
on Intel i5-7300HQ 2.50GHz. The reason for almost exponentially rising
times of resampling is affected by few factors. The firs factor is captures. To
correctly resample with a capture, two extra boards to constrain boards at
time before and after the capture are created to ensure, that certain groups
of stones are present at the right time to be captured, when the boards
computed as Constraint satisfaction problem are converted into a history of a
state that is in the same Infostate as the state that is being resampled. The
other factor is the increasing count of stones on the boards at the later states
in histories, which create more constraints between the boards that need to
be satisfied.

Because OR-Tools solve Constraint satisfaction problems using an algo-
rithm, for every state in the same Infostate, the OR-Tools resampling outputs
the same state every time. Since this would reduce efficiency, a simple but
effective algorithm has been implemented. From the state, that is being
resampled, all empty points are inserted into a vector. The vector is then
shuffled and according to the length of the sampled game, n points are used
as a constraint, to make the point empty trough the whole history. The
constant n varies from 15 for games of length 50 or less, to 2 for games longer
than 300 actions. With this algorithm, more than 98% models are correct,
which is a sufficient percentage whereas each evaluation uses 10 word samples.
If this algorithms makes the model unsolvable, because the chosen point can
not be empty trough the whole game, the original state is returned.

5.2 Metaposition

Two states are in the same Metaposition, if they are indistinguishable by the
player in the last observation of the Information State.

Because only the observation and the count of the stones have to be the
same, sampling a state from a Metaposition can be done easily. By playing
moves for all the players stones, each excluding the last move followed by
opponent’s pass, then playing moves for all the known enemy stones, followed
by same move by player to add the stone to his observation and a pass.

16



.................................... 5.2. Metaposition

Finally for the remaining stones, the stones are placed randomly in a way
that does not cause changes on the board, such as captures.
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Chapter 6
Using Monte Carlo Tree Search on
Phantom Go

One of the goals of this project was to test the effectivity of MCTS algorithms
against a random player. There are three final policies for MCTS algorithms
implemented in OpenSpiel framework. I first tested their effectivity against
a random player, then after considering the result, I tested the two most
effective policies against each other.

6.1 Information State MCTS

Information State MCTS implementation is different from normal MCTS.
Instead of representing the minmax tree with state nodes, we represent the
tree with information set nodes, which uses the computational budget more
efficiently, because the statistics about the moves are stored in one tree.
Furthermore, the model is able to exploit moves that are good in many states
in the information state. [CPW12]

6.2 ISMCTS against Random player

As anticipated, ISMCST has shown great results against a random player.
ISMCTS with MaxValue final policy has won 96 out of 100 games, similarly
MaxVisitCount policy won 98 out of 100 games. The NormalizedVisitCount
has shown its inapplicability in Phantom go, winning only 68 out of 100
games.

Each of those 100 game simulations were played in a balanced way, 50
games played by the IS MCTS bot as a white player, 50 as a black player.

6.3 MaxValue or MaxVisitCount policy

Because both of these policies had great results against the random played,
1000 simulated games were played between those two policies. As in the
previous simulations, the colors were switched after the half of the games.
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Bot with MaxVisitCount policy has won 521 games out of the 100 simulated,
bot with MaxValue policy won 474 games and 5 games resulted in a tie.

6.4 Different efficiency with different number of
simulations

The most effective final policy MaxVisitCount was also tested against ran-
dom player with different number of simulations per step. Games with 200
simulated games were run, with 200, 500, 1000 and 2000 simulations done
for one step of the bot. As expected, the win-loss ratio was higher with each
increase of simulations.

Number of simulations per step Number of won games out of 200
200 174
500 182
1000 196
2000 199

6.5 Go engine as a heuristic

One of the main goals of this project is to implement an evaluation function
using a Go Engine. The selected engine is 1 GNU Go. This engine was picked
due to its availability and its text based mode, that was suitable for this
application.

To use an external program, a text-based communication environment
was created. The program is ran as a sub-process using forking, and the
communication with the process is done using pipes. To make the commu-
nication easier, Write and Read functions are implemented, which use the
functions read and write from unistd, and make handling potential errors
easier. To evaluate a state, after resampling, the judges board is passed to
the engine using the implemented Write function. After, a Write with GNU
Go command "experimental_score", followed by each color, is used to get
the value of the state for each player. These values are then get using the
implemented Read function, which parses the text into a number and returns
the obtained values as a vector of two values. The method was picked because
it is the only method in the GNUGO engine that can evaluate state score
based on the players color.

1https://www.gnu.org/software/gnugo/
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6.6 Go engine evaluation against Random Rollout
evaluation

As described in section 4.2, classical MCTS uses rollout evaluation to explore
the game tree and select the best action. MCTS using the Go engine as
evaluation function substitutes the Simulation stage by evaluating the state
picked by Expansion stage. Both of the IS MCTS bots used the most effective
MaxVisitCount final policy.

Since the evaluation using GNUGO is much slower and the evaluation
replaces many simulations during the Simulation stage, the number of evalua-
tions was lowered to 200 for the IS MCTS bot using GNUGO. Out of 400
simulated games, 284 were won by Bot with Random Rollout evaluation, 109
were won by Bot with GNUGO evaluation and 7 resulted in a tie. The lower
count of the simulations is caused by the fact, that my implementation of
GNUGO environment was not flawless, and many simulations did not reach
terminal state.

The Inefficiency of the GNUGO evaluation could be caused by one of
these factors: (1) the number of the simulations was picked too low, but
higher number would make an imbalance between time taken to generate an
action by each bot, (2) the GNUGO program may not be intended to be
used as a state evaluator, but as a move generator, which can be assumed by
its number of participations in online tournaments 2, (3) the used method
"experimental_score" may not have been suitable for this application.

2https://www.gnu.org/software/gnugo/tournaments.html
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Chapter 7
Conclusion

In this work I have shown the difference between Go and Phantom Go and its
implementation, described and implemented an algorithm to sample states
that belong into the same Information State.

Using the implemented sampling algorithm, I have evaluated Information-
State Monte Carlo Tree Search algorithm against a random player. In the
experiment I have proved the statement, which is proposed in the Introduction,
that IS-MCTS Search shows promising results in the domain of imperfect-
information games.

7.1 Future work

As a possible future work, I would re-implement the evaluation function using
a different Go engine, that would be more suitable for its usage as a heuristic
for the value function.
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