
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Mutual comparing of source codes

Damir Gruncl

Supervisor: RNDr. Ingrid Nagyová, Ph.D.
Field of study: Open Informatics
Subfield: Software
May 2022

ctuthesis t1606152353 ii

Acknowledgements Declaration

I do solemnly swear that I compiled the
work submitted herein myself and that I
did list all used literature.

In Prague, 16. May 2022

iii ctuthesis t1606152353

Abstract

This work is focused on accurate and
traceable detection and displaying sim-
ilarities of source codes to help detect and
prove plagiarism. First, it looks at ex-
isting and commonly used solutions, ex-
amining their output and the nature of
underlying algorithms to see what they
can or can not detect and show.

Then it proposes an alternative ap-
proach to solve some deficiencies of the
examined tools - chief among them the low
accuracy and resulting necessity to man-
ually verify results. This is adressed by
parsing the compared source codes and us-
ing their syntax trees, structure and data
flows with the goal of achieving greater
accuracy and reliability of results.

Finally, a tool is implemented based
on these principles, and its performance
is then compared to some existing and
commonly used ones, such as Moss and
JPlag.

Keywords: plagiate, code comparing,
source code analysis, data flow

Supervisor: RNDr. Ingrid Nagyová,
Ph.D.

Abstrakt

Tato práce je zaměřena na přesné a traso-
vatelné hledání a zobrazování podobností
ve zdrojových kódech, s cílem napomoci
odhalování a prokazování plagiátorství.
Nejprve se zabývá existujícími a běžně
používanými řešeními, zkoumá jejich vý-
stupy a vlastnosti použitých algoritmů,
aby zjistila, co mohou nebo nemohou de-
tekovat a zobrazit.

Dále navrhuje alternativní přístup k ře-
šení některých nedostatků zkoumaných
nástrojů - především nízké přesnosti a z
toho vyplývající nutnosti ručního ověřo-
vání výsledků. K tomu se používá parso-
vání porovnávaných zdrojových kódů s vy-
užitím jejich syntaktických stromů, struk-
tury a datových toků s cílem dosáhnout
větší přesnosti a spolehlivosti výsledků.

Nakonec je na základě těchto principů
implementován nástroj, jenž je porovnán
s některými existujícími a běžně používa-
nými programy, jako jsou Moss a JPlag.

Klíčová slova: plagiát, porovnávání
kódů, analýza zdrojových kódů, datové
toky

Překlad názvu: Vzájemné srovnávání
programových kódů

ctuthesis t1606152353 iv

Contents

Glossary 3

1 Introduction 7

1.1 On plagiarism 7

1.2 Requirements 9

2 Current technologies 11

2.1 Test data . 11

2.2 Tested tools 12

2.2.1 Moss . 12

2.2.2 Codequiry 13

2.2.3 Winmerge 14

2.2.4 Other . 14

2.3 Conclusion 14

3 Design of own tool 17

3.1 Options . 17

3.2 Methods used 18

3.3 Algorithm 20

3.3.1 Parsing and normalisation . . . 20

3.3.2 Identifier pairing 22

3.3.3 Identifier renaming 22

3.3.4 Line pairing 22

3.3.5 Rematching original file 23

3.3.6 Common subsequences 23

3.3.7 Data flow analysis 23

3.4 User interface 25

4 Implementation 27

4.1 Tools used 27

4.1.1 Parsing the code 27

4.1.2 Comparing syntactic trees . . . 28

4.2 Code structure 28

4.3 Data structures 32

4.4 User interface 33

4.5 Data flow display 35

v ctuthesis t1606152353

5 Results 37

5.1 Testing and comparing with other
tools . 37

5.1.1 Testing on suspect datset . . . 38

5.1.2 Testing on raw dataset 39

5.2 Summary of testing 41

6 Conclusion 43

6.1 Possible development 44

Bibliography 45

Appendix A - List of attached files 47

Appendix B - Installation manual 49

Appendix C - GUI 51

ctuthesis t1606152353 vi

Figures

1 Antlr-generated syntax tree. 4

2 Data flow graph 5

3.1 Code tree . 21

3.2 Line tree . 21

3.3 Counterexample for
history-oriented data flow
comparing . 24

4.1 Functional blocks 29

4.2 Data structures for code
comparing . 32

4.3 Main menu 34

4.4 Data flow comparing view. The
code on right side follows. 36

6.1 Variable matching 52

6.2 Line matching 53

6.3 Original text matching 54

6.4 Results window 55

6.5 Data flow comparing. Code on
right side is the solution function
from previous images. 56

vii ctuthesis t1606152353

Tables

4.1 Data flow representation. The flow
nodes are interlinked, creating a tree
fitted into a table. 32

5.1 Results of comparing plagiated
codes using various tools. 39

ctuthesis t1606152353 viii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491848Personal ID number:Gruncl DamirStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

SoftwareSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Mutual comparison of source codes

Bachelor’s thesis title in Czech:

Vzájemné srovnávání programových kódů

Guidelines:

The aim of this work is to analyze the possibilities of current plagiarism detection tools with a focus on detecting plagiarism
of program codes and to design and implement a system that can compare two source codes.The purpose of the comparison
is to find and mark identical or similar parts of the code. The results of the work will be compared with tools for plagiarism
detection in the BRUTE system.
1. Analyze the possibilities of current plagiarism detection tools with a focus on detecting plagiarism of source codes.
Familiarize with tools for code obfuscation and their working methods.
2. Design a system for mutual comparison of source codes. Specify modifications to code that plagiarists tend to use and
suggest ways how to detect them.
3. Implement a system for comparison of source codes.
4. Analyze the effectiveness of the implemented system. Compare the results with the available tools, focusing on the
comparison with the tools in BRUTE.

Bibliography / sources:

1. Pawlik, M., Augsten, N. Efficient Computation of the Tree Edit Distance. ACM Trans. Database Syst. 40, 1, Article 3,
2015, 40 p. DOI: https://doi.org/10.1145/2699485.
2. Votroubek, T. Improving plagiarism detection. Thesis. FEL, ČVUT. 2018.
3. Wroblewski, G. General Method of Program Code Obfuscation. Wroclaw, 2002.
4. Behera, Ch. K., Bhaskari, D. L. Different Obfuscation Techniques for Code Protection, Procedia Computer Science,
vol. 70, 2015, pp. 757-763, https://doi.org/10.1016/j.procs.2015.10.114.

Name and workplace of bachelor’s thesis supervisor:

RNDr. Ingrid Nagyová, Ph.D. Center for Software Training FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 07.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureRNDr. Ingrid Nagyová, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1

Glossary

. Abstract syntax tree - a syntax tree (see 1), but generalised to be
independent of grammar or programming language.. Compound statement - A container that does nothing on its own - that
is, does not translate to any CPU instructions - and its sole purpose is
to define program structure by grouping statements together. In C-style
languages, it is denoted by curly braces: {}.. (user-defined) Identifier - is any token in the source code that the pro-
grammer (user of the language) can define themselves. Typically those
are method and variable names..Obfuscation - changing source code in such a way that it still has the
same function, but it looks different, for example, renaming variables.. Resistance to (a method of obfuscation) - When a plagiarism detector
is said to be resistant to a method of obfuscation, it means that two
code snippets, in which the only difference was created by applying said
method, will be marked as plagiarised.

3 ctuthesis t1606152353

..
. Syntax tree - describes the structure of a program. It contains only the

types of expressions used, ignoring their textual representation. Note
that the structure of these trees depends on language grammar, and as
the same language can be described by multiple grammars, so the same
code can have multiple syntax trees depending on what grammar was
used. The figure 1 depicts a syntax tree of simple method declaration in
C as produced by Antlr:

void method (int a,int b){}

compilationUnit

translationUnit

extenalDeclaration:1

functionDefinition

declarationSpecifiers

declarationSpecifier:2

typeSpecifier:6

typeDefName

Identifier:"void"

declarator

directDeclarator

directDeclarator:1

Identifier:"method"

(parameterTypeList

parameterList

parameterDeclaration:1

declarationSpecifiers

declarationSpecifier:2

typeSpecifer:6

typedefName

Identifier:"int"

declarator

directDeclarator:1

Identifier:"a"

Comma: , parameterDeclaration:1

declarationSpecifiers

declarationSpecifier:2

typeSpecifer:6

typedefName

Identifier:"int"

declarator

directDeclarator:1

Identifier:"b"

)

compoundStatement

{ }

EOF

Figure 1: Antlr-generated syntax tree.

. Tree structure of code - source code in almost all languages follows a
tree structure - file/class contains methods, which contain expressions
that contain operands etc.. Static data flow analysis - identify inputs of a program - stdio, command
line arguments, files opened, etc. - and trace what operations are applied

ctuthesis t1606152353 4

..
to data in these inputs. Alternatively. one can start from outputs and
trace how they were calculated.
For illustration, the code:
void main(int argc ,char ** argv){

char* path=argv [0];
path= strstr (path ,"/");
int x=5;
if(argc >1){

int success = sscanf (path ,"%d" ,&x);
}

printf (path);
}

might be represented by a graph like the one in Figure 2.

argc=input

If:argc

output=path

argv=input

path=argv

path=expr(path,const)

x=const

success=expr(argv,const,x)

Figure 2: Data flow graph

The graph 2 shows that there is only one path from in (argv) to out
(printf), with only two operations on the data; the rest is redundant.

5 ctuthesis t1606152353

ctuthesis t1606152353 6

Chapter 1

Introduction

The goal of this work is to design and write a program that can detect and
show similarities in source codes as accurately as possible, so as to help in
not only detecting plagiarism but also proving it.

In order to establish some context for said design, we will start by defining
plagiarism and methods it can use and examining properties of some commonly
used tools for its detection.

1.1 On plagiarism

There are two main use cases for comparing source codes:

. Finding differences between versions of the same software. This problem
belongs in the domain of version control systems and is outside of the
scope of this work.. Detection of plagiarism, which this work will focus on.

There has been much discussion on what exactly constitutes plagiarism of
source code; M.Novak et al. [10] list many definitions, with at least four being
fundamentally different from each other rather than variations of the same

7 ctuthesis t1606152353

1. Introduction
principle. The most widely used one essentially says that plagiarism occurs
when one uses code written by others without appropriate acknowledgment,
thus presenting it as their own work [4]. For the purposes of this text, another
useful perspective is
“A plagiarized program can be defined as a program which has been produced
from another program with a small number of routine transformations. Rou-
tine transformations, typically text substitutions, do not require a detailed
understanding of the program” [3].

It is widespread in programming courses due to many people working
independently on the same assignment [7]. Dozens of automated tools have
been developed for detecting such, with the most popular being Moss, JPlag,
and Sherlock[10]. A variety of algorithms is used internally, but invariably
the main output is a similarity percentage of the compared files, with files
above a certain threshold (around 50-70%) being marked as suspect. It is
difficult to objectively define and measure the quality of plagiarism detectors,
especially in a single number, but the testing conducted by Tomáš Votroubek
[11] suggests that these tools reach reasonably high success rates.

Note the phrase "marked as suspect". An accusation of plagiarism is a
serious thing, and naturally, any suspect cases have to be reviewed by an
ethics committee or other appropriate authority before disciplinary action
can be taken. A simple similarity percentage can not be enough to be certain
work was plagiarised; the authors of some tools themselves discourage this[1].
Thus arises the question of how to prove plagiarism, and the obvious answer
is to point out similarities in the suspect files.

This would be easy for simply copied works, but it can be assumed that
plagiators will take steps to hide the fact that the code is not theirs. This
practice is called obfuscation. A search of the extant literature on this topic,
most notably[10], failed to yield a comprehensive analysis of what methods
are used in real life and how often, but CTU has provided multiple source
codes where efforts were made to conceal plagiarism, so the assumption that it
does happen is a safe one, and those who seek to detect and prove plagiarism
must deal with it.

The aforementioned tools are fairly resistant to obfuscation as far as
marking suspicious file pairs goes [11], but another problem arises in proving
that, as the person reviewing the suspect files has to find and show the
similarities, even though obfuscation methods such as identifier renaming
can easily create textually very different file. It would be desirable, then,
to have the detection tools aid in this effort by showing the similar parts
or possibly even generating a version of the submitted code where the more
trivial obfuscations are undone.

ctuthesis t1606152353 8

.................................... 1.2. Requirements

1.2 Requirements

Detection of source code plagiarism differs from general text by the specific
and exact grammar of programming languages. Commutativity, associativity,
arbitrary renaming of user-defined identifiers, changing line count by joining
and dividing expressions, adding redundant code, etc. mean that two textually
different codes can in fact be structurally and functionally identical. Thus
it is not enough to compare code as plaintext; it is necessary to deal with
potential obfuscation.

Furthermore, when suspicion of plagiarism arises, it needs to be proven in
some manner of disciplinary action - that is, show the identical parts of code.
However, as mentioned before, the codes can look very different at a glance,
so it is helpful for the detector software to show the similarities as accurately
as possible, including any minor changes that might have been made.

Finally, while copying code unusual tokens may be copied, such as words
from foreign languages, non-standard compiler extensions, different line ending
(combining LF and CRLF in one file), or identical, non-trivial identifiers.

Henceforth, we shall consider two groups of requirements for plagiarism
detectors: for detection and for proof.

Detection

A plagiarism detector should mark a pair of files as suspect if they are similar.
Of course, this is too vague, and so the second definition mentioned in 1
can be used to clarify: A plagiarism detector should mark a pair of files as
suspect if a significant part of them is either identical or contains only formal
differences that have no impact on function and do not require understanding
the code.

It should be noted that as the files will only be marked as suspect, not
declared plagiarised outright, some relaxations of this requirement can be
permitted - in other words, the algorithm does not have to be exact.

Following is a list of differences considered formal (obfuscation methods)
based on the work of M.Novak et al. [10], who have compiled a list of all

9 ctuthesis t1606152353

1. Introduction
obfuscation methods mentioned in plagiarism research:

. Formatting changes, using characters that do not change program mean-
ing, mostly whitespaces. Changing strings that do not have an impact on program function, such
as identifiers, comments, or output messages.. Associative and commutative operators (Method parameter separator is
also considered commutative here). Line swapping.. Expression join and division..Method extraction or merging.. Addition of redundant lines, or removing optional functionality

Proof

A tool for aiding with plagiarism proof shall mark as suspect exactly those
subsections of submitted codes that are either identical or contain only formal
differences as per 1.2 and the second plagiarism definition in 1, and only if
they are long enough or in such context as to be relevant - standard library
methods, for example, are liable to occur many times thorough any code, and
so detecting them is of no use unless we also show that they are used in same
expressions or on same data.

Unlike in marking suspect files, no relaxation is permitted. The algorithm
must be accurate and its result traceable, so if anything is marked as suspect,
it must be known why.

It might also be beneficial to be able to revert detected formal differences,
the better to show that the codes are same. Detailed statistics of found
similarities should also be shown - that is not only the single similarity
percentage that most detectors provide[11], but also things like the number
of identical identifiers (Among real plagiates used in development there is one
where 65 out of 120 identifiers were not renamed), count of formal changes
detected, etc. - depending on methods used for comparing.

ctuthesis t1606152353 10

Chapter 2

Current technologies

We will now look at some existing tools for detecting plagiarism, and how
they meet the requirements outlined in 1.2.

Tomas Votroubek, also from CTU, conducted detailed testing [11] of the
effectiveness of various plagiarism detection tools in 2018, will be quoted in
the following sections, as there is no point in repeating what has already been
written. However, his work has focused mainly on the accuracy of marking
suspected plagiarism in whole files as per 1.2, while my goal is to help in the
proof process (1.2), and thus this work will aim to extend his findings in this
direction.

2.1 Test data

To verify the requirements mentioned the following pairs of files were used
prepared :

. Real plagiated code ("real1 mod.c" a "real2 mod.c"). Renaming all variables ("real2 mod.c" a "real2 mod renamed.c"). Flipping commutative operands ("flip1.c" a "flip2.c")

11 ctuthesis t1606152353

2. Current technologies
. Permuting variables ("var falsepos1.c " a "var falsepos2.c ") Note that

this is not really a renaming, but permuting - the programs perform com-
pletely different calculations, and can hardly be considered plagiarised.
They were included in the test suite because supposedly some plagiarism
detectors deal with renaming user-defined identifiers by replacing all of
them with a constant [1][6], thus losing information and creating a risk
of false positives.

In some tools, the length of the files to be compared is limited in the free
trial version, so shortened versions were used; this is indicated by the word
"short" in the file name.

2.2 Tested tools

2.2.1 Moss

Moss is a program for measuring software similarity. It is free to use and
the files to be checked can be sent from the command line, so its use can be
easily automated. There are also GUI tools.

The algorithm is text-based. It compares hashes of subsets is order to find
(largest) common substring quickly and with resistance to minor changes -
that is, the detection is inherently inexact and approximate. Whitespaces are
deleted, and identifiers are ignored (renamed to constant). Testing results:

. In a real-life plagiate, it finds 76% similarity (files "real1 mod.c" and
"real2 mod.c").. It is resistant to identifier renaming (97% similarity between "real2 mod
renamed.c" and "real2 mod.c"). Does not detect obfuscation by commutativity (flip1,2.c). By ignoring variable names it loses information and creates false positives
(96% similarity between "var falsepos1.c " and "var falsepos2.c ")

Moss shows the similarities found in the code, but very roughly, even in
blocks of tens of lines. Additionally, it will only show that any two sections are

ctuthesis t1606152353 12

..................................... 2.2. Tested tools

similar, but if the plagiarism has been masked somehow, it does not remove or
mark those changes - it leaves the files exactly as they were uploaded. Finally,
ignoring identifiers means that some sections marked as identical are actually
false positives. So it will flag suspicious works, but it won’t help much in
proving it, nor is it meant to do so, as the authors themselves emphasize.

2.2.2 Codequiry

Codequiry is a commercial plagiarism detection tool. It can be used via a
web application or web API. There is no specific information on the company
website about the algorithm used or its parameters, only a claim that it does
more than just text matching and that it is therefore resistant to various
obfuscations. It is paid, so the test files had to be truncated to fit within free
trial limitations. Testing results:

. In a real-life plagiate, it finds 70% similarity (files "real1 mod short.c"
and "real2 mod short.c").

. It is resistant to identifier renaming(95% similarity between "real2 mod
renamed.c" and "real2 mod.c")

. Does not detect obfuscation by commutativity (files flip1.c and flip2.c)

. By ignoring variable names it loses information and creates false positives
(100% match between "var falsepos1.c " and "var falsepos2.c ")

It shows similarities found in the code, but only in large blocks, often
more than ten lines at a time. Additionally, it will only show that some two
sections are similar, but if the plagiarism has been obfuscated, it will not
remove or highlight this - it leaves the files exactly as they were uploaded. In
addition, the code windows are quite small in the web application and cannot
be enlarged. It shows graphs and statistics of similarities - variance, graph of
distance between files, etc. So from a user perspective, it is like Moss with a
nicer but not necessarily better user interface. It does find similarities if they
are not well masked, but the usefulness for subsequent proofs is limited for
the same reasons.

13 ctuthesis t1606152353

2. Current technologies
2.2.3 Winmerge

This is a program for comparing two text files. It only detects and shows
exact matches of text, which precisely is what we need, and what other tools
did not do. However, it has no resistance to obfuscation whatsoever, and so
it is only of use for plagiarism by exact copying, which can be proven well
enough without specialised tools.

2.2.4 Other

There are many other tools, e.g. JPlag, PMD-CPD, Sherlock, Sim, or
Text::Similarity in Perl, which was at least until recently also used in the
Brute package. All of these have been tested for detection accuracy and
reliability by Votroubek, who writes: ". . . none of the tested detectors performs
parsing, let alone runs the code.. . . " [11]. He further elaborates that they are
all internally text-based comparers, relying on statistical methods usually
using hashes and removing user identifiers.

This means that while these tools can flag suspicious files with considerable
success, they cannot be used in proof for the same reasons as Moss - they do
not work with sufficient detail and accuracy, and they deliberately discard
some information.

2.3 Conclusion

There are tools capable of detecting suspiciously similar codes with consid-
erable success - or, more precisely, they detect similar subsections of those
codes.

However, the use of some vague similarity in proving plagiarism is limited
because multiple people can solve a problem the same way, resulting in
textually similar code. What is more interesting are sections of code that are
completely identical, or contain only simple formal modifications that require
no understanding of how the program actually works.

Obviously, this is exactly the kind of detection that is very difficult, if not

ctuthesis t1606152353 14

..................................... 2.3. Conclusion

impossible, with approximate matching as used in current tools - we can
hardly discern, for example, what is just a formal modification and what
affects the function of the program if we don’t even parse the code, and we
can’t tell that half of the user-defined identifiers in the code are identical if
we ignore them.

Indeed, it turns out that if the currently available tools show suspicious
sections at all, they do so very roughly - often matching blocks of more than
ten lines.

It would seem, then, that a tool the likes of which this work aims to create,
currently does not exist, or is not commonly in use.

15 ctuthesis t1606152353

ctuthesis t1606152353 16

Chapter 3

Design of own tool

3.1 Options

There are three basic types of information that can be extracted from source
code (and then compared):

. Text. Generally, this means treating the code as a string and searching
for some common attributes, such as common substrings, or tokens that
can not be changed by the user - keywords, standard library methods,
built-in data types, operators, etc. This is used in most comparers
2.2.4[10]. Common programming languages allow for a lot of formal
changes (1.2), so the accuracy of this method is limited.

. Syntactic trees (figure 1), whose structure is exactly defined by language
grammar, which makes them easy to work with. Requires parsing the
code.

. Static data flow analysis, defined in 2. Parsing the code by its grammar
will allow detecting all variables and methods, so running the program
is not necessary. This method will naturally be most resistant to formal
changes, since changing operations on data without breaking the program
requires some understanding of how the program works.

17 ctuthesis t1606152353

3. Design of own tool
3.2 Methods used

From the outset, the main goal was to create a tool that could show similarities
of source codes as accurately as possible and so help in proving foul play,
rather than just produce a similarity percentage, as many available tools do.
This means focus will be on comparing only two files, usually ones that have
already been marked as suspicious by another tool.

Now, there are multiple known algorithms for finding identical subsections
of strings, so that is easy - the difficult part is dealing with the differences,
detecting what is a formality that should still be treated as same and what is
not, and doing so exactly, in a deterministic manner, so that for every code
subsection that is marked as same, it is known why, as per 1.2.

The considerations made in previous sections (mainly the requirement of
accuracy) naturally led to solving this by parsing the source code and building
a comparer on tree structure of source code (described in glossary). Doing so
should allow to explicitly define what code is considered same and implement
a comparer that only accepts exactly that.

Some algorithms based on syntax trees have been proposed, but those
are again statistical in nature; the main difference from commonly used
tools is that instead of token strings they compare trees.[6][5] In doing so
they might mark suspicious pairs more accurately, as the tree retains more
information, but it still does not meet the requirements outlined in section
1.2. Furthermore, the program they have developed does not seem available
for testing.

We will now consider how to detect the changes listed as formal in the
section 1.2 of this work.

. Formatting changes. Because they do not affect program meaning,
parsing removes them.. Identifier renaming. Text comparing obviously can not be used to detect
this, so we are left with data types and syntax trees. If identifiers are
merely renamed, without change to the algorithm, then the expressions
they are used in will remain structurally same, and so by comparing
those the identifiers can be matched again.. Associative and commutative operators. (Method parameter separator

ctuthesis t1606152353 18

.................................... 3.2. Methods used

is also considered commutative here). Here the operands will be children
of a tree node, so it suffices to ignore order when comparing.. Line swapping. If the lines are contained in same compound statement,
it is almost same as the previous case, as these lines will be siblings in a
tree 3.1. If not, the problem becomes more complicated. Possible (partial)
solution is two-phase comparing: nodes not matched by reordering will
be flatmapped into a list and then compared regardless of position in
code, though that is not very accurate. Note the word almost at the
beginning. Code lines can not be swapped arbitrarily, and to compare
correctly here, data flow analysis 2would be necessary.. Expression join and split. Here it must be considered that the result of
every non-redundant expression must be written and read somewhere,
even if it is implicit, such as in method parameters. Then, expressions
can be safely divided and split only if all of its parts will write in the
same location. Order of read/write operations must also be preserved,
lest program behaviour becomes unpredictable. Thus data flow can be
analysed to detect which expressions can be joined or split, and then
before comparing convert them into basic state by executing all possible
joins or splitting everything into atomic operations..Method extraction or merging. Extraction and merging are the same
problems viewed from opposite sides, so they can be considered as one.
Effectively same as moving lines between compound statements, except
in the code where the method is extracted, the same variable will exist
under two different names. The correct resolution of this would be to
attempt inlining methods that can not be matched. A simpler, though
less accurate, option would be to add another comparing stage: take
the methods (not compound statements, of which methods are a special
case) whose content could not be matched normally and try to match it
to unmatched lines in other methods.

So theoretically it should indeed be possible to define and with reasonable
accuracy detect most obfuscation methods considered in this work.

A comparer thusly built will be able to show exactly which code subsections
will be considered same and why, unlike the approximate text-only methods
that are usually used. On the other hand, it requires parsing and modifying
the compared files, even though for proving foul play, finding exactly identical
sections of the original source codes is most valuable.

Finding longest common subsequences of strings is a well known problem,
and an algorithm can easily be implemented. It must be considered, though,
that the subsequences can be short, heavily overlapping or repeating many

19 ctuthesis t1606152353

3. Design of own tool
times, such as variable names, and in the context of an entire file insignificant
or confusing. So lines are first matched using methods outlined in this
section 3.2, and then common subsequences are only searched for in the pairs
of matched lines.

3.3 Algorithm

The files are compared in six stages:

. 3.3.1 Parsing and normalisation. 3.3.2 Identifier pairing. 3.3.3 Identifier renaming. 3.3.4 Line pairing. 3.3.5 Rematching original file

There is also a data flow comparer, but that is a separate algorithm, and
only requires files to be parsed and normalised, otherwise it is independent of
these stages.

3.3.1 Parsing and normalisation

Code is parsed to syntax tree as per provided grammar. Identifiers are de-
tected. The code is converted to a tree structure copying the structure of
lines compound statements, with standardised formatting - hence normalisa-
tion phase. Each line also contains its own tree for handling commutative
operators.

Thus the following code
void method (int a,int b){

printf (" message ");
if(a==b)

{
int c=a+b;
printf (" something ");
}

}

ctuthesis t1606152353 20

...................................... 3.3. Algorithm

is converted to structure like so:

Figure 3.1: Code tree

Henceforth, this structure shall be referred to as code tree.

The first line of said code, whose function parameter separator is considered
commutative operator, is then internally represented like so:

root

void method(,

int a int b

){

Figure 3.2: Line tree

Henceforth, this structure shall be referred to as line tree.

Note that these are indeed two independent tree structures. One is a tree
of lines structured according to compound statements, as per Figure 3.1.
Each node of that tree represents one line. In the figure, these lines are
depicted as simple text for simplicity’s sake, but in fact they are complex
objects containing various information used for matching, and among this
information is another the line tree Figure 3.2, structuring the line according
to its commutative operators, so that operand flipping can be detected.

Further information gathered in this stage and saved as part of the line

21 ctuthesis t1606152353

3. Design of own tool
objects composing the code tree is a syntax tree of the line, the identifiers
that it contains and where are they located in the syntax tree.

3.3.2 Identifier pairing

Identifiers are paired by comparing their data types and syntax trees of
expressions they are used in. Syntax trees, not line trees, because nodes of
line trees contain text - including user-defined identifiers - and those could
have been changed, and so can not be used in this stage.

3.3.3 Identifier renaming

Assigning generated names to all paired identifiers. Unpaired identifiers are
left as they are. The names should be random, with large edit distances.
Line trees of all lines must then be modified to reflect these new names. The
reason for this becomes apparent in the next stage.

3.3.4 Line pairing

Iterating through both code trees and pairing the lines using their line trees.
The line trees must have same structure except where commutative operators
are detected, and their text parts must be within a Levenstein distance
smaller than a certain fraction of their length. This fraction is a parameter;
here the value of 10% is proposed. The optimal value could be determined
by analysing a large enough sample of real plagiarised codes. This stage is
done by blocks, where a sufficient percentage of lines within a block must be
matched, otherwise, all matches in the block are rejected - thus the matcher
gains a rudimentary context-awareness. Currently, blocks are methods. The
stricter stages of matching also require that variables within the lines are
matched, with the goal of improving context-awareness.

ctuthesis t1606152353 22

...................................... 3.3. Algorithm

3.3.5 Rematching original file

The objects representing lines are matched with sections of original file that
they were parsed from. The parser does not provide this information, so it
has to be done separately.

To illustrate, here is the same line of code, first in its original state, then
normalised, and finally with identifiers renamed. Note that they are not
left-aligned - that is because the indentation has also changed.

if(fill_message_buf (msg , msg_buf , size , & length)){
if (fill_message_buf (msg , msg_buf , size , & length)) {
if (fill_message_buf (pointer31 , integer39 , integer37 , &

integer38)) {

Clearly matches found in original state are the most valuable ones for proving
foul play, but the modified versions are necessary to resist obfuscation, so we
use both.

3.3.6 Common subsequences

Now, for all lines that were paired, the program finds common subsequences
in the text they were created from.

3.3.7 Data flow analysis

It has been mentioned 3.2that for some obfuscation methods, data flow
analysis is necessary. Also, line pairing 3.3.4compares line to line with
minimal regard to context, which decreases accuracy. However, inserting data
flow into that algorithm was impractical, and so this is a separate part of the
program that can be used once the codes are parsed 3.3.1, independently on
results of other stages.

The data flow is generated by breaking program lines into minimal com-
ponents, called microlines, using an abstract syntax tree, which is essentialy
generified version of the syntax tree from Antlr (Figure 1). Each of these can
only have one operand, and they are linked together by both their order in

23 ctuthesis t1606152353

3. Design of own tool
the original program and the way data, contained in variables, flows from one
to another. Function call is also considered an operand. Think a graph like
in 2, but its elements are also sorted by program order.

Comparing these graphs, while taking into account possible obfuscation,
proved rather complicated. After lengthy experimentation, an algorithm was
developed that pairs the microlines, but to be considered same, they must
not only have same operand, but also all variables used must have been used
in same expression before.
For example, last lines of the following codes are not considered same, because
in left one, a is a result of multiplication, while on the right it is result of
division (declarations are ignored in data flow).

a=a*b; a=a/b;
a=a+b; a=a+b;

A disadvantage of this approach is that the first few lines indirectly pair up
the variables within them, and if this is done incorrectly, the algorithm will
fail to find further matches. For example:

a_L=a_L*b; x=x*y;
x=x*y; a_R=a_R*b;
a_L=a_L +2; a_R=a_R +2;

Figure 3.3: Counterexample for history-oriented data flow comparing

These codes are obviously same. However, when matching the first lines, the
variables in them will have no previous uses, and so a_L=a_L*b; and x=x*y;
will be considered same lines with renamed variables. The same will happen
for the second lines in both codes. But then the third lines will be considered
different because for them to be same, variables a_R and a_L must have same
history, but variable a_R was previously used in the second right line, which
is matched to the second left line - and that one does not contain variable
a_L at all.

That is because microlines are so simple that they are difficult to differen-
tiate without context information - both codes contain two multiplications,
and the only difference is in the uses of their operands: x appears only
once while a_L is later used in addition. So to compare microlines properly
one has to compare either previous or future uses of their operands. The
implemented algorithm defaults to previous uses, because this allows to use
dynamic programming approach - when comparing any two lines results of
comparing the previous comparisons are available.

ctuthesis t1606152353 24

.................................... 3.4. User interface

This obviously does not work very well on the first few lines of code, as
illustrated in 3.3, so if variables used in compared microlines have no previous
uses, the future use of these variables is considered instead. Thus the first
lines in 3.3 - a_L=a_L*b; and x=x*y; - would no longer be considered same,
because x is never used again while a_L later becomes an operand of addition
a_L=a_L+2;

3.4 User interface

Since the main purpose of the work is to help a person decide whether a work
will be considered plagiarized, it is obvious that the compared codes should
be shown side by side with the similarities found highlighted.

As described in previous section, the comparison is done in several stages,
each working with different information (the key domains are matching of
variables, lines, and subsequences in the original files). Therefore, the results
of each stage should be displayable.

Most stages work with code that is processed in some way, while the user
is interested in the original content. Therefore, it would be useful to be able
to show, in any given state, the part of the original file from which it was
created, for example in the form of a floating window that appears when the
mouse hovers over.

Finally, one of the crucial stages is matching identifiers by comparing the
expressions in which they occur. It is, therefore, appropriate to allow to show
only the expressions in which a selected identifier is present, so that one can
see easily whether the match is correct.

25 ctuthesis t1606152353

ctuthesis t1606152353 26

Chapter 4

Implementation

4.1 Tools used

The application is developed in Java, because it runs on all platforms, has
a native GUI framework, and a wealth of libraries to help with parts of the
application generic enough that existing software can be used rather than
reinventing the wheel. Two such parts have been delegated to pre-existing
tools.

4.1.1 Parsing the code

It is desirable to prepare for eventual support of more languages, and seeing
as parsing is both complex and easily extracted into separate component,
using an existing tool is obvious. Antlr, an open-source parser generator for
provided grammars, is used here. Grammars for all commonly used languages
are freely available, and the language they are written in is simple enough
to allow for fast and easy modification. It also has a Java version, so it is
trivial to integrate. Results of parsing can be extracted in one of two ways -
Listener-based or Visitor-based.

Here the former is used, and works like so: Antlr generates a default listener
class for given grammar, which contains an empty method for every type of

27 ctuthesis t1606152353

4. Implementation....................................
node defined in said grammar, with that type of node as parameter. Users
can extend this class and override any of its methods. Then, upon generating
a syntax tree, one can give this tree and listener to a tree walker, also a part
of Antlr, which traverses given tree inorder and calls appropriate method
from the given listener for each of its nodes.

4.1.2 Comparing syntactic trees

We have special definition of identical trees, where certain formal differences
are ignored, and this will necessitate implementing own comparer, but gram-
mars of programming languages are usually extensive and complex, and a
minor detail can easily be missed, throwing off the custom exact comparer.
Thus, to make the algorithm more robust, a fallback general-purpose algo-
rithm for approximate comparing of trees was included - APTED, which
calculates edit distance of ordered trees. Because it compares generic ordered
trees, it does not support commutative operators or any other acceptable
formal differences. That is why it is only a fallback option.

4.2 Code structure

The core classes of the project are structured by purpose, loosely following
the classic MVC architecture, as depicted in Figure 4.1. Yellow blocks are
View - GUI, blue corresponds to Control and does the "actual work", that is
the comparing, and grey are Model - data structures, which are described in
more detail later 4.3.

The comparing algorithms roughly follow the Visitor pattern: they are
stateless, with static functions that take data structures representing codes
to compare as parameters and proceed to edit these structures to mark the
matches found.

ctuthesis t1606152353 28

....................................4.2. Code structure

Figure 4.1: Functional blocks

Aside from classes in Figure 4.1, there are classes of the structs package,
containing data structures that will be expounded upon separately. There are
also the util and cmpresults packages, which contain respectively utility
methods and containers for results of comparing stages, and are unimportant.

Now the function of blocks in the diagram will be explained in more detail.

Frontend

Defines and controls main GUI window. Contains two FileViewArea ob-
jects, each of which displays data contained in a FileCodeHolder object.
Frontend.java sends user commands, such as load file or start comparing,
to state.java.

29 ctuthesis t1606152353

4. Implementation....................................
State

Manages execution of user commands. That means loading files into FileCodeHolder
objects and calling the code that runs comparing stages described in 3.3.
Note that it does not do any "real work" - it is just a level of abstraction
between UI and core code.

Code parsing

Executes stage 3.3.1. Parsing of source code is done using Antlr and the
CNormalListener.java class is used to gather the results and format them
to be used by rest of the program - meaning it generates the code tree (defined
in Figure 3.1) and list of user-defined identifiers (Var.java objects).

The Library.java class contains names of library functions, so that they
can be differentiated from user-defined identifiers. These names are ob-
tained by parsing C header files in include directives using Antlr, with
CHeaderListener.java to extract and format results.

Code comparing

The main part of this work. All the classes here are stateless and contain
static functions only.

CodeComparer.java does identifier matching (see 3.3.2). It contains algo-
rithms for comparing syntax trees as per requirements of 3.2. The main of
those algorithms is a simple recursion for checking tree identity, except some
nodes are given special treatment, most notably the roots of commutative
expressions, where order of children is ignored.
APTED is also used as a fallback. Matching itself is done in stages - for
two variables to be considered same, a sufficient percentage of their occur-
rences must be same. The class contains several functions that define "same
occurence of two identifiers" that vary by strictness. Identifiers are then
matched all-to-all first by the strictest method, and what remains is then ran
again by less strict ones.

TextComparer.java does line pairing. (see 3.3.4). Contains an algorithm

ctuthesis t1606152353 30

....................................4.2. Code structure

for comparing line trees 3.2, which supports commutativity. The text within
its nodes is compared using Levenstein distance. Uses stages similar to vari-
able matching.
CopyComparer.java finds common subsequences of the original files (see 3.3.6).

FileCodeHolder

Two instances exists, each bound to a FileViewArea. They contain the files
being compared and all related data structures - mainly the code tree of the
file and a list of user-defined identifiers.

DFView

Displays the result of data flow analysis 3.3.7 in a separate window. Uses
instances of DFBuilder.java to read the analysed code from and calls
FlowComparer.java to compare them.

Data flow comparing

ASTBuilder.java converts a Line.java of code into an abstract syntaxt tree
composed of ASTNode.java objects.
DFBuilder.java maps a list of Line.java objects to MicroLine.java, with
aforementioned abstract tree as intermediate step and stores the result. It
also generates and stores accompanying data structures describing the data
flow 2 in given code.
FlowComparer.java compares the code in given DFBuilders. It should be
noted that data flow is strictly separated from other comparing methods. Its
data structures frequently point to structures used for regular comparing, but
never the other way round.

31 ctuthesis t1606152353

4. Implementation....................................
4.3 Data structures

Found in structs and dataflow package. Figure 4.2 is a diagram of struc-
tures used for basic code comparing - essentially, they represent the code
tree 3.1. Figure 4.1 shows the representation of data flows in code.

«interface»
IVar

Var

+ name: string

+ type: enum

Line

+ originalContent: string

+ normalisedContent: string

+ matchedContent: string

+ code tree: tree<string>

TmpVar

+ name: string

+ type: enum
n

LineMatch

+ confidence: float

2 2

VarMatch

+ commonName: string

+ confidence: float

Fnc

+ name: string

Extends

n

1

n

Figure 4.2: Data structures for code comparing

[IVar] a [IVar] b [IVar] c [IVar] 0 [IVar] 4
[Microline] a=b+c flow node flow node flow node
[Microline] if(a>0) flow node flow node
[Microline] c=4; flow node flow node

Table 4.1: Data flow representation. The flow nodes are interlinked, creating a
tree fitted into a table.

. Line.java Instances of this class are nodes of code tree (Figure 3.1).
Contains line tree, syntax tree, and list of identifiers found in this line
(Var.java) and their position.
Has three text representations: original state, then normalised (created
in 3.3.1 while parsing), and finally with identifiers renamed (used in
3.3.4). The difference between the three is explained in 3.3.5.
After lines matching (3.3.4), this structure contains links to their coun-
terparts in the other code tree.

ctuthesis t1606152353 32

.................................... 4.4. User interface

After matching original files (3.3.6), if a line has a match, positions of
common substrings in the original text will be added.

.Var.java Is a user-defined identifier. Has name, data type a list of its
occurrences - Line.java instances.
After matching identifiers (3.3.2), they contain links to their counterparts
in the other code tree.

.VarMatch.java Used to link together identifiers matched in 3.3.2. Dur-
ing line matching (3.3.4), each instance is assigned an autogenerated
name used to undo identifier renaming.

. LineMatch.java links together matched lines. However, this is known
to contain bugs and may change in future.

.MicroLine.java contains minimal lines with only one operator, used to
work with data flows.

.TmpVar.java is a simplified version of Var.java, used for temporary
variables in data flow.

.DFNode.java is a node of data flow, as in 4.1

. IVar.java is a common interface for Var.java and TmpVar.java, used
in data flows.

4.4 User interface

The application is controlled through dropdown menus in top left corner.

33 ctuthesis t1606152353

4. Implementation....................................

Figure 4.3: Main menu

The items are used as follows:

. Choose left, Choose right - select files to compare. Normalise - excecutes 3.3.1.Match variables - excecutes 3.3.2.Match lines - excecutes 3.3.4.Match source - excecutes 3.3.6.Detail - opens another window containing only occurences of selected
identifiers.

ctuthesis t1606152353 34

...................................4.5. Data flow display

. Results - show results of executed stages

Variables can be selected by clicking on them; lines are selected by clicking
on their number. Selected elements are highlighted in yellow.

Matched identifiers are highlighted in green; selecting one will highlight
their match in yellow. Opening the detail window when a matched variable
is thusly selected will show only the lines where it occurs in a new window,
as proposed in 3.4.
Matched lines will have their number highlighted in green, and selecting one
will again highlight its pair in yellow. Images are in the appendix C.

4.5 Data flow display

In the Data Flow menu of the main window, Data flow comparing
will open new window with the selected lines of code disassembled into
microlines 3.3.7. If the selected lines are the start of a compound statement
(i.e. contain a }), the entire compound statement will be included in the
flow. User-implemented methods are inlined. In the new window Actions-
>Compare data flow then starts the matching. Actions->Compare
data flow LMR does the same but takes into account how the original lines
were matched.

Figure 4.4 shows an example of data flow comparing. The files are
HW07_21_91/grep_93.c and HW07_21_91/grep_110.c, entry line is
int main(int argc,char* argv). Corresponding excerpt from the former
follows after the figure.
Displayed are the two main functions, with inlined calls to user-implemented
methods, disassembled to microlines. Paired microlines are written in green
and connected by black lines. Also, clicking on a matched microline will
highlight its match. The lines of original code from which each microline
was generated are shown to the sides, but were cut out in the figure due to
insufficient page width.

35 ctuthesis t1606152353

4. Implementation....................................

Figure 4.4: Data flow comparing view. The code on right side follows.

void otevrit_soubor (FILE ** f, char* jmenoSouboru){
*f = fopen(jmenoSouboru ,"r");
if(*f == NULL)

exit (1);
}

void init_radek (str_radek * mujRadek){
mujRadek ->radek = (char *) malloc (sizeof (char));
mujRadek -> velikost = 0;
mujRadek -> kapacita = 1;
mujRadek ->radek [0] = ’\0’;

}
int main(int argc , char *argv []){

str_radek radek;
FILE* f;
int vystup = 1;
otevrit_soubor (&f,argv [2]);
int konec_cteni = NE_KONEC_RADKU ;
while (konec_cteni != KONEC_SOUBORU){

init_radek (& radek);
}

}

ctuthesis t1606152353 36

Chapter 5

Results

5.1 Testing and comparing with other tools

Having implemented a tool, the time came to ascertain whether it works. The
first step of that should be testing of correctness, that the algorithms work
as intended. This part was easy because, with the graphical visualization
of results, it could be seen at a glance whether the result is correct, which
naturally led to test-driven development - a stage of matching could not be
declared implemented before it showed expected results on both real plagia-
rised works (mainly those from folder sem in 5.1) and several handwritten
files with various obfuscation methods (folder Votroubek_avoidmoss in 5.1
are a good example of how such files might look).

The next step was to compare the tool’s performance to some similar
programs.

Now, as written earlier 2.3, main output of most plagiarism detectors is
a single similarity percentage, which is not the purpose of this tool, so the
comparison can not be direct. Nonetheless, the percentage of matched lines
is similar enough to similarity percentages provided by other tools, which is
better than no comparison at all. Thus the similarity percentage of my tool
is defined as count of lines matched as per 3.3.4, divided by line count of the
smaller file after normalisation 3.3.1.

37 ctuthesis t1606152353

5. Results
When deciding what tools to compare with, the work of Tomas Votroubek[11],

who is cited several times here, seems a natural choice. However, the provided
executable file could not be launched, having failed to open required .dll
libraries, and upon compiling the source codes instead, an arduous task that
included manually deleting dead links and incompatible attributes in the
.fsproj file (for those unfamiliar with the ways of .NET, it is the equivalent of
Makefile, but IDE-generated and the user is not expected to ever open it),
the resulting executable reported no similarities even in identical files.

Thereby, Moss was used instead, as it is among the best known and
performing tools [11][10]. Also, most of the plagiated works provided by my
supervisor have a similarity percentage found by the course’s detection tool
(JPlag [12]).

5.1.1 Testing on suspect datset

The first testing dataset consists of student-submitted codes suspected of
plagiarism by faculty members. Table 5.1 contains similarity percentages of
all these files(see Appendix A), divided into pairs. In most cases, one folder
contains one group of suspect files, with two exceptions:

Folders where name starts with "cross" contains solutions of the same
assignment, but from different groups - thus they should not be plagiates of
each other, and we expect a low similarity percentage to be found.

The folder "Votroubek_avoidmoss" contains a pair of files created by
Votroubek specifically to avoid detection by Moss.

Highlighted cells are those which are within 10% of JPlag result. Again
note that this is not necessarily a good thing, especially with my tool, as will
be elaborated later 5.2.

The Verdict column contains the result of human arbitration, if available:
Yes means was declared plagiarised, No passed inspection, Other is that both
codes used a third-party source that is not present in this table, typically
from the internet. So they are similar, and plagiarised, but not from each
other.

ctuthesis t1606152353 38

......................... 5.1. Testing and comparing with other tools

Folder Files JPlag Moss My tool Verdict
HW05_20_p30 main_30, main_71_47 47 37 31.7 Yes
HW05_20_p30 main_30, main_93_99 99 88 98.6 Yes
HW05_20_p30 main_30, main_137_76 76 41 72.4 No
HW05_20_p30 main_30, main_171_50 50 39 69.5 Yes
HW05_20_p21 main_21, main_37_76 76 7 37.2 Yes
HW05_20_p21 main_21, main_116_48 48 20 37.2 Other
HW05_20_p21 main_21, main_132_42 42 0 42.1 Other
HW05_20_p21 main_116_48, main_132_42 - 4 53.3 Other
HW05_20_60 main_82, main_123 60 50 58.4 No
HW05_20_59 main_169, main_182 59 36 82.4 Other
HW04_20_100 main_98, main_172 100 48 92.3 Other
HW03_20_100 main_159, main_10 100 0 100 Yes
HW02_20_95 main_98, main_172 95 89 95.6 Yes
HW02_20_94 main_193, main_185 94 88 90.4 Yes
HW07_21_78 linked_list_112, linked_list_103 78 0 38.7 No
HW07_21_78 linked_list_103, linked_list_38 78 0 30.1 No
HW07_21_91 grep_93, grep_110 91 48 53.5 No
HW07_21_91 grep_110, grep_159 91 27 55.3 No
HW07_21_90 grep_113, grep_156 90 77 77.6 No
HW07_21_90 grep_156, grep_168 90 57 78.7 No
HW07_21_87 grep_34, grep_117 87 75 64.4 No
HW07_21_87 grep_34, grep_143 87 67 65.5 No
HW07_21_87 grep_34, grep_152 87 77 55.9 No
HW06_21_83 main_118, main_156 83 4 29.6 No
HW05_21_84 main_158, main_5 84 0 77.6 Yes
HW05_21_82 main_69, main_1 82 7 92.9 Yes
sem prg-sem mod,semestral_project mod 78 79 75.9 Yes
sem prg-sem mod,main_3 mod - 74 70.1 Yes
sem prg-sem mod,my_screen - 46 49.1 Yes
cross05_21_82_84 main_69, main_158 - 0 14.1
cross07_21_90_91 grep_159, grep_113 - 32 71.3
Votroubek_avoidmoss Avoid_Moss.c,Avoid_Original.c - 0 88.8

Table 5.1: Results of comparing plagiated codes using various tools.

5.1.2 Testing on raw dataset

The second testing dataset consists of all files submitted by students in a
single assignment, ungrouped (see Appendix A). The goal was to compare
all-to-all and see what happens. However, with 113 submissions, that would
be too many tests to sort through, and so the files were divided into buckets

39 ctuthesis t1606152353

5. Results
by size. The file sizes were around 5kB, and each bucket contained a 300B
range. This resulted in much more manageable 488 pairs to compare, of which
119 had similarity above 20%. List of these can be found in attachments in
folder containing the compared files, under the name select_summary.txt.

Human examination of these files quickly showed that under 40% similarity
was negligible - usually the only significant similarity in these files was a
function named read_message or a variation thereof, which was similar in
most of the 119 "interesting" pairs, even if the rest was completely different.
It appears that it was a simple function to read input, and a skeleton of it
was provided by lecturers.

This eventually left seven notable pairs of files, with the last two being
almost certainly plagiated in the author’s estimation:

. a107/main.c, a27/main.c Similarity: 43%. The read_message func-
tions, with circa 25 lines, are almost identical save for a few letters. Even
with skeleton of function being provided, this is little strange, but the
rest is completely different.

. a107/main.c, a31/main.c Similarity: 48%. Same as previous case.

. a27/main.c, a31/main.c Similarity: 41%. Same as previous case.

. a107/main.c, a94/main.c Similarity: 59%. Despite high percentage,
the similar parts are only read_message and a few trivial utility function,
while the real work of the program is done differently.

. a18/main.c, a84/main.c Similarity: 56%. Just as in previous case,
the similar parts are only the unimportant parts of the code, but a84
uses an enum to define constants, but then uses a literal in the code
anyway, which hints that some parts may have been copied.

. a66/main.c, a67/main.c Similarity: 61%. Here, similarities can be
seen throughout the whole code, including shared typos in comments
(e.g "chyba vtupu"). Here, plagiarism was confessed, though this was
only revealed to the author of this work after having declared it suspect.

. a102/main.c, a92/main.c Similarity: 72%. Most of the code is same,
with renamed identifiers at most.

ctuthesis t1606152353 40

..................................5.2. Summary of testing

5.2 Summary of testing

We can see that percentages reported by the various tools are sometimes
wildly different. JPlag is the only one with consistently high percentages,
but these are heavily biased seeing as it was used to detect these plagiates in
the first place, so that means little. Also, folder cross07_21_90_91, which
contains files from same assignment in same semester, contains files that were
put in different groups by JPlag, meaning that they sohould be different, yet
our tool reported 71.3% of matched lines. Review of the files confirmed they
are indeed very similar(notably functions found_you) and find_in_line,
where only difference is renamed identifiers. Thus, it can be assumed that the
higher percentages of JPlag reports are indeed result of said bias, and thus
they provide no information about its performance compared to other tools.

Accordingly, Moss shall be used as a reference, as it has no such bias here.
It can be seen that percentages reported by our tool are similar or higher,
which serves as a good sanity check.

Comparing the similarity percentages to the final verdict, we see that most
of the pairs that were judged to be plagiated have high similarity percentages
- usually above 60%, and higher than Moss.

The same can be said for the pairs that were declared not plagiated, which
might make them out as false positives, but on human review the reported
percentages turned out to be well grounded in reality. For example, the files
grep_156 and grep_168, with reported 78.7% of lines matched, are almost
identical even in plaintext, which can be clearly seen in the program GUI. It
is unknown why they were judged not plagiated, but at any rate it is not a
false positive - the program correctly showed the similarities, and judgment
is left to human.

Thus it can be said that the developed program successfully detects similar-
ities in code, while showing them with greater accuracy than commonly used
tools (down to line and variable, as shown in appendix C). This is exactly
the goal set in 1.

41 ctuthesis t1606152353

ctuthesis t1606152353 42

Chapter 6

Conclusion

Analysis of available plagiarism detection tools has shown that all are based
on various approximate text comparing algorithms and the main output
is a single similarity percentage 2.3, while the reason behind the reported
similarity percentage - that is, the similar and different parts of code - is
shown roughly or not at all. Past testing[11] has shown that this approach
is sufficient for marking suspicions pairs, which is particulary useful when
dealing with large file sets, but these still have to be reviewed by a human to
confirm or reject, and there greater accuracy would be helpful.

It was noted that the text representation of a program is easy to change
without much understanding or effort 1.2, and accordingly it was proposed
to focus on properties of code that are more difficult to change, such as
syntax trees, data flows, operands, etc. Assuming that most plagiators will
not make the effort to understand the code, and thus they will be limited to
formal changes - essentially refactoring - it was also proposed to declare the
compared codes or their subsets similar only if they were same or had only
some predefined formal differences, called obfuscation methods.

On listing the available obfuscation methods, it was concluded that they
could be exactly defined in-program and detected 3.2. However, in actually
developing the comparing algorithms, some relaxations were made due to
time constraints - there were too many special cases to account for, and so
some degree of approximation was allowed.

Accuracy of comparing is difficult to quantify, as lower but true positive
percentage can have greater value than a higher similarity percentage at cost

43 ctuthesis t1606152353

6. Conclusion......................................
of false positives, but testing 5.1 has shown performance comparable with
or better than commonly used tools (Moss, JPlag), even finding similar file
pairs that were overlooked by JPlag, while displaying found similarities in
more detail; the most other tools do is highlights whole blocks, while our
tool shows exact lines, variables and substrings that were matched (images in
appendix C).

Data flow analysis, which is a rather experimental feature, has been im-
plemented and works well for strict comparing(shown in 4.5 and Figure 6.5),
but its results are difficult to quantify and summarise, so at this point it is
only for huma use; however, it does work, and could be also used as internal
part of the other comparing algorithms.

6.1 Possible development

The tool only works with C language. To make it multi-language, it would
have to internally use abstract syntax trees only, and convertors to this
abstract tree would have to be written for every language to be supported.
Only data flow analysis currently uses abstract syntax trees, and so the
main comparers would have to be refactored. This should also improve the
accuracy of detection, as it could help remove some formal differences - for
example, conditional operators v. if-else. Also the Antlr grammars, and thus
the derived syntax trees, are not meant for comparing, creating issues such as
addition and subtraction both being represented with same node type, which
have to be resolved with ad-hoc workarounds.
The support of C also is not complete - for example macros are ignored, so
running the files through a C preprocessor would be helpful, and the handling
of structs is simplified, etc.

Finally, the configuration of comparing stages (4.2) could be explored more
in-depth, and it would be worth trying to use data flow analysis as part of
the main comparer instead of the completely separate algorithm it is now to
gain more context awareness, and reduce the reliance on lines.

ctuthesis t1606152353 44

Bibliography

[1] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing”, Proceedings
of the 2003 ACM SIGMOD international conference on on Management
of data - SIGMOD ’03, pp. 76–85, 2003.

[2] T. Parr, “Antlr,” ANTLR. [Online]. Available: https://www.antlr.org/.
[Accessed: 04-May-2022].

[3] A. Parker and J. O. Hamblen, “Computer algorithms for plagiarism
detection”, IEEE Transactions on Education, vol. 32, no. 2, pp. 94–99,
1989.

[4] G. Cosma and M. Joy, “Towards a definition of source-code plagiarism”,
IEEE Transactions on Education, vol. 51, no. 2, pp. 195–200, 2008.

[5] D. Ganguly, G. J. Jones, A. Ramírez-de-la-Cruz, G. Ramírez-de-la-Rosa,
and E. Villatoro-Tello, “Retrieving and classifying instances of source
code plagiarism”, Information Retrieval Journal, vol. 21, no. 1, pp. 1–23,
2017

[6] D. Fu, Y. Xu, H. Yu, and B. Yang, “WASTK: A weighted abstract
syntax tree kernel method for source code plagiarism detection”, Scientific
Programming, vol. 2017, pp. 1–8, 2017.

[7] R. Fraser, “Collaboration, collusion and plagiarism in computer science
coursework”, Informatics in Education, vol. 13, no. 2, pp. 179–195, 2014.

[8] M. Pawlik and N. Augsten, “Efficient computation of the tree edit dis-
tance”, ACM Transactions on Database Systems, vol. 40, no. 1, pp. 1–40,
2015.

45 ctuthesis t1606152353

6. Conclusion......................................
[9] M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-

efficient”, Information Systems, vol. 56, pp. 157–173, 2016.

[10] M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection
and detection tools used in Academia”, ACM Transactions on Computing
Education, vol. 19, no. 3, pp. 1–37, 2019.

[11] T. Votroubek, "Improving Plagiarism Detection", CTU [Online]. Avail-
able: https://dspace.cvut.cz/handle/10467/73914 [Accessed: 04-May-
2022].

[12] Jplag, “JPLAG/JPlag: Detecting software plagiarism and collusion
since 1996.”, GitHub. [Online]. Available: https://github.com/jplag/JPlag.
[Accessed: 04-May-2022].

ctuthesis t1606152353 46

Appendix A - List of attached files

The following is also a part of this work:

. ./test_codes/ - Files used in testing properties of plagiate detectors (2.1). ./comparer/ - Maven-compiled Java 14 project containing implemented
comparer.. ./comparer.jar - Compiled jar of said project.. ./plag_codes/- Student-submitted codes suspected of plagiarism 5.1.1.. ./HW03-nonplagiated/- A collection of all solutions submitted by stu-
dents in a single assignment 5.1.2.. Appendix B - Installation manual - explains how to compile or run the
application.. Appendix C - GUI - contains images of the application interface

47 ctuthesis t1606152353

ctuthesis t1606152353 48

Appendix B - Installation manual

The application is built as a single .jar file using JDK 16, bytecode version
14. It uses the following supporting files:

. A XML settings file "./comparer_settings.txt", but if it can not be
loaded, hardcoded defaults will be used. The file contains comments, so
the possible settings will not be detailed here.. C library header files. assert,termios,unistd,pthread,stdio,stdlib
are part of the .jar, others will be searched for at location given in the
settings file. If they are not found, the program will still work, although
comparing accuracy will suffer somewhat.

Thus nothing but the .jar file and a sufficiently recent version of the JVM
should be needed for the application to work properly.

For compilation, there are the following dependencies:

. APTED comparer, which is part of project source code, so no setup work
is needed.. ANTLR-generated C parser, also part of source code.. ANTLR library, version 4.9.2[2] in the form of a .jar file which has to be
linked as an external library.

49 ctuthesis t1606152353

6. Conclusion......................................
There is one known caveat - the ANTLR jar can also be used on its own

from the command line, and for this purpose, it contains a MANIFEST.MF file
that defines, among other things, the entry point of the application like so:
Main-Class: org.antlr.v4.Tool. So one needs to make sure the main
project’s manifest file is used instead. A failsafe way to do this is to open the
MANIFEST.MF file of the compiled .jar and make sure it contains this record:
Main-Class: main.Main.

ctuthesis t1606152353 50

Appendix C - GUI

Here are screenshot of the GUI in various phases of comparing, to show how
are detected similarities shown. The program shows both compared codes
side by side, but the image would be too wide for an A4 page, so these images
are cropped to include only one side.

The colors are coded as follows:

. red - not matched. light green - matched, clicking will highlight its counterpart in other
file. dark green - strongly matched (identical text)

In the Results window (Figure 6.4), the most important figures are the
following:

. Lines - Original count and count after normalisation3.3.1.. Identifiers - Count of variables.. Identifiers matched - Count of matched variables..Unrenamed matches - Count of matched variables that have same
name in both files.

51 ctuthesis t1606152353

6. Conclusion......................................

Figure 6.1: Variable matching

.Matched lines - Count of matched lines..Text identical - How many matched lines have same text representation
after normalisation after normalisation and assuming matched variables
to have same name.. Identical lines - How many matched lines are identical in original
source code..Partially identical - How many matched lines have common substrings
of total length larger than certain threshold (15% is default) in original
source code.

In data flow comparing view (Figure 6.5) is shown disassembly of solution

ctuthesis t1606152353 52

................................. 6.1. Possible development

Figure 6.2: Line matching

function from previous figures, with inlined shiftMsg, compared to its match
from the other code. The original lines are shown to left and right, but had
to be cut out here due to narrow page.

53 ctuthesis t1606152353

6. Conclusion......................................

Figure 6.3: Original text matching

ctuthesis t1606152353 54

................................. 6.1. Possible development

Figure 6.4: Results window

55 ctuthesis t1606152353

6. Conclusion......................................

Figure 6.5: Data flow comparing. Code on right side is the solution function
from previous images.

ctuthesis t1606152353 56

	Glossary
	Introduction
	On plagiarism
	Requirements

	Current technologies
	Test data
	Tested tools
	Moss
	Codequiry
	Winmerge
	Other

	Conclusion

	Design of own tool
	Options
	Methods used
	Algorithm
	Parsing and normalisation
	Identifier pairing
	Identifier renaming
	Line pairing
	Rematching original file
	Common subsequences
	Data flow analysis

	User interface

	Implementation
	Tools used
	Parsing the code
	Comparing syntactic trees

	Code structure
	Data structures
	User interface
	Data flow display

	Results
	Testing and comparing with other tools
	Testing on suspect datset
	Testing on raw dataset

	Summary of testing

	Conclusion
	Possible development

	Bibliography
	Appendix A - List of attached files
	Appendix B - Installation manual
	Appendix C - GUI

