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Abstract

Relational algebra is a formal procedural query language commonly
taught in introductory courses into database systems. Due to the com-
plexity of its notation, some schools use a simplified version which is
easier for students to understand. The notations are described in a form
of a conversion table, and the advantages of the simplified notation are
discussed thereupon.
A way of inputting queries implemented by some of the tools that work
with relational algebra is analysed.
After constructing formal grammars and describing the parsing and con-
version processes, an online application for conversion between the two
notations is implemented. The way of inputting queries is based on the
mentioned analysis.
Additionally, a conversion from relational algebra into tuple relational
calculus, which is a declarative counterpart of relational algebra, is de-
fined and implemented into the application.

Keywords: relational algebra, relational calculus, tuple rela-
tional calculus, converter, notation

Abstrakt

Relačńı algebra je formálńı procedurálńı dotazovaćı jazyk, jenž se běžně
uč́ı v úvodńıch kursech do databázových systémů. Kv̊uli komplexnosti jej́ı
notace použ́ıvaj́ı některé školy zjednodušenou verzi, která je pro studenty
srozumitelněǰśı. Obě notace jsou popsané formou převodńı tabulky, načež
navazuje krátká diskuse o výhodách zjednodušené notace.
Dále je analyzován zp̊usob, jakým r̊uzné nástroje, které také pracuj́ı s
relačńı algebrou, umožňuj́ı vkládáńı dotaz̊u.
Poté, co jsou zkonstruovány formálńı gramatiky a vysvětlen parsovaćı
a převodńı proces, je implementována online aplikace, která dokáže
převádět mezi zmı́něnými dvěma notacemi. Zp̊usob, jakým aplikace řeš́ı
vkládáńı dotaz̊u je založen na zmı́něné analýze.
Dodatečně je také definován a implementován převod z relačńı algebry do
n-ticového relačńıho kalkulu, což je deklarativńı protěǰsek relačńı algebry.

Kĺıčová slova: relačńı algebra, relačńı kalkul, n-ticový relačńı
kalkul, převodńık, notace
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List of abbreviations

In Table 1 are listed abbreviations used in this thesis.

Abbreviation Meaning
RA relational algebra
TRC tuple relational calculus
AST abstract syntax tree

Table 1: List of abbreviations



vi Chapter 0. List of abbreviations



Chapter 1

Introduction

Contents
1.1 Relational Algebra and Relational Model . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Relational Algebra and Relational Model

Relational algebra (RA) is a formal query language that formed the basis of the
widely used SQL language. [1] For the purposes of this work, a basic understanding of the
SQL language and its operations is assumed.

Just like SQL, RA defines a set of operations that are combined into queries, which are
then used to retrieve data from the database. While SQL works with relational databases,
RA is a formal language; therefore, it works with a mathematical model of relational
databases. This mathematical model is called relational model.

The relational model aims to formalize the concept of tables by using set theory.
Tables are represented by relations which are ordered pairs that contain a set of rows
(tuples) and an ordered list of column names (attributes). The tuples contain the data as
ordered pairs of values with the corresponding attributes. [2] For simplicity’s sake, we can
think of relations as regular database tables with a distinction that there are no identical
rows because the tuples are organized in a set. To be terminologically correct, the tables,
columns, and rows will henceforth be referred to with the names of their counterparts from
the relational model.
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1.2 Goals

The main goal of this thesis is to construct an online tool for a conversion between
two RA notations. For the purposes of this work, we will call them the standard and
simplified notation. The standard notation is the original notation used in the paper [3]
where RA was first introduced. It uses Greek letters and subscripts, which makes it difficult
to type queries on a keyboard. As an alternative to that, a simplified notation has been
introduced by prof. RNDr. Jaroslav Pokorný, CSc. It uses different syntax and common
symbols, thereby making it easier to learn and work with.

The tool will help with a better understanding of the advantages of simplified notation
and will also serve as a communication bridge between two parties using different notations.
Students who only know the simplified notation can use it to convert their queries into the
standard notation. They can then use the result in other tools or in a thesis avoiding having
to learn the standard notation and simultaneously getting all the advantages thereof.

The second goal is to look at other RA tools and analyse the way they use to input
queries. The implementation of the conversion tool should then be based on this analysis.

Thirdly, after the implementation is finished, it should be tested to ensure the cor-
rectness of the conversion.

The last goal is to briefly introduce tuple relational calculus (TRC) and to explore
the possibilities of conversion from or into RA.
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Relational Algebra Notations

Contents
2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Characteristics of the Simplified Notation . . . . . . . . . . . 5

2.1 Operations

The table 2.1 showcases RA operations in two notations with a brief explanation
of what they do. [4] The first six operations - projection, selection, renaming, Cartesian
product, union, and difference are so-called atomic operations. [4] Just by using those, we
can infer any other operation in the table.

Although most of the operations are relatively simple and have an equivalent in
SQL, a division stands out. Let us look at an example. Having a relation of programming
languages and a relation of users with programming languages they know, the query 2.1
returns users who know all the languages in the right relation.

user language
john21 Java
carl04 C
peter2 Java
john21 Python
peter2 Python
carl04 PHP
peter2 SQL

÷
language
Java
SQL

=
user
peter2

(2.1)

Finally, the table 2.2 contains the requirements that some operations have for the input
relations. [4]
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Name
Standard
notation

Simplified
notation

Meaning

Projection πa,b(R) R[a, b] Leaves only selected attributes

Selection σx=y(R) R(x = y)
Leaves only tuples

satisfying the condition
Renaming ρb/a(R) R⟨a→ b⟩ Changes attribute names

Cartesian product R× S R× S
Yields all combinations of tuples

from R and S
Union R ∪ S R ∪ S Performs set union

Difference R \ S R \ S Performs set difference
Intersection R ∩ S R ∩ S Performs set intersection

Natural join R ▷◁ S R ∗ S Joins R and S
based on common attributes

Theta join R ▷◁x=y S R[x = y]S
Joins R and S

based on a given condition

Left/right semijoin
R⋉ S
R⋊ S

R < ∗ S
R ∗ > S

Leaves tuples from the left/right
relation that can be naturally joined

with the other

Theta semijoin
R⋉x=y S
R⋊x=y S

R⟨x = y]S
R[x = y⟩S Semijoin with a condition for the tuples

Left/right antijoin
R ▷ S
R ◁ S

R ▷ S
R ◁ S

Leaves tuples from the left/right
relation that can’t be naturally joined

with the other

Left/right/full
outer join

R ▷◁ S
R ▷◁ S
R ▷◁ S

R ∗L S
R ∗R S
R ∗F S

Natural join that fills the tuples
from the first/second/both relations
that can’t be joined with null values

Division R÷ S R÷ S Explained above

Table 2.1: Standard and simplified notation with a brief explanation

Operation Constraint

Projection
The list of attributes is not empty and
all of them are present in the relation.

Renaming No duplicate attributes in the result.

Union, intersection, difference
Both relations have the same number
of attributes with the same names.

Cartesian product, theta join and semijoin Both relations have disjoint attributes.

Division
The left relation

is a proper superset of the right one.

Table 2.2: Constraints of RA operations
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2.2 Characteristics of the Simplified Notation

As we can see from the table 2.1, the simplified notation mostly uses common symbols
that are easy to find on a keyboard. Another advantage is that it uses a postfix notation
when selecting, projecting, and renaming which may make reading and creating a query
easier.

To illustrate, when reading the following expression

ρb/a,d/c(πa,c(σa=4((R× S) ▷◁x=y (P ∪Q)))), (2.2)

we first get to know that we are renaming some attributes, projecting and then selecting
without actually knowing what’s inside. We have to first evaluate what’s inside the paren-
theses and then we have to come back to these three operations. On the contrary, when
reading the same query in the simplified notation

((R× S)[x = y](P ∪Q))(a = 4))[a, c])⟨a→ b, c→ d⟩, (2.3)

the order of operations is closer to the evaluation order.

Nevertheless, one small disadvantage is that the theta join and projection both use
the same brackets, so an expression

πx(R ▷◁x=y S) (2.4)

has an equivalent

R[x][x = y]S, (2.5)

which may raise concerns whether the simplified notation introduces ambiguity. There is,
fortunately, nothing to worry about as theta conditions cannot contain commas and a
single attribute name is not a valid theta condition, so they can’t be mistaken.
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Chapter 3

Tuple Relational Calculus

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Equivalence Between RA and TRC . . . . . . . . . . . . . . . 9

3.1 Introduction

TRC is a declarative language that was invented by E. Codd. - the same scientist
who introduced RA. [5] Unlike RA, which is a procedural language, TRC is declarative. In
other words, in RA we say how to obtain the result, while in the TRC we specify what we
want to retrieve without explicitly saying how to do it.

TRC uses the concept of a set builder. This means that instead of listing all elements
of a set, we specify a condition that an element has to meet to become a member. [6] This
condition is what TRC is about - making a statement that is true only for the tuples we
want in the resulting relation. Such a set has a form

{ t | φ(t) }, (3.1)

where φ(t) is the condition to be satisfied. This condition has a form similar to a first-order
predicate logic formula. It specifies which tuples we want to retrieve from the schema. The
t is called a tuple variable. Despite the fact that Codd’s paper [5] allows for multiple tuple
variables, the vast majority of lecture notes were found to use only one. We will therefore
focus on TRC with a single tuple variable, the expressiveness of which, as we will see, is
preserved. Moreover, the mental model presented in the following section would not work
with multiple tuple variables - it is much easier to only work with one.
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A TRC formula can contain predicates in these three forms:

1. Unary predicate P (t) says that t belongs to a relation P .

2. p.a = q.a says that an attribute a of a tuple variable p equals to the attribute a of a
tuple variable q.

3. p.a = x says that an attribute a of a tuple variable p is equal to x (a number or a
string literal).

We can then join them with logical connectives (t.a = p.a ∧ t.a > 4) and quantify them
(∃z(R(z) ∧ t.a = z.a)) just like in predicate logic.

3.2 Examples

Let us have a relation called Elements :

element protons electrons
neon 10 10
copper 29 35
gold 79 118
oxygen 8 8
carbon 6 6

(3.2)

If we wanted to select all elements with the same number of protons and electrons,
we would write

{ t | Elements(t) ∧ t.protons = t.electrons }. (3.3)

If the belonging of a tuple variable t is not specified, then only the attributes mentioned
with equality to t get into the result. We use this fact to retrieve only a part of a relation
- if we only wanted the element attribute from the previous query, we would write

{ t | ∃z(Elements(z) ∧ z.protons = z.electrons ∧ t.element = z.element }. (3.4)

As a mental model, we can imagine taking the condition in the query and going through
the whole schema asking at each tuple whether it holds true. If so, we include it in the
result.
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3.3 Equivalence Between RA and TRC

In the paper [5], Codd proved that TRC is at least as expressive as RA. That, however,
does not mean that any TRC query can be converted into RA. Consider a query

{ t | ¬R(t) }. (3.5)

If we wanted to write an equivalent query in RA, we would need to somehow involve
relations that were not named in the query. And even if we managed to do that, the
query would only make sense in terms of that one specific database. Such queries are
called domain-dependent. Because there is no way of expressing domain-dependent queries
in RA, Codd restricted himself to domain-independent TRC. In contrast, all RA queries
are implicitly domain-independent; thereafter, the algorithm merely proved that RA is a
subset of TRC. [7]

Implementing the conversion algorithm would be of little utility for learning purposes
because no attention was paid towards optimization - the resulting queries can become very
complicated. [8] In addition to that, deciding whether a query is domain-independent is an
undecidable problem1 which makes sanitizing the input queries impossible. [2]

1A problem with a yes or no answer is undecidable if no algorithm that always terminates with a
correct answer exists. [9]
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Chapter 4

Conversion from RA to TRC

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Conversion of Atomic Operations . . . . . . . . . . . . . . . . . 11

4.3 Conversion of Derived Operations . . . . . . . . . . . . . . . . 13

4.1 Introduction

We will not be focusing on a conversion from TRC into RA as it is already well de-
scribed in the literature. [3, 8] Instead, we will try to define rules for the opposite conversion
for which very few sources were found.

As was established in chapter 3, we will focus on a TRC with a single tuple variable.
In addition to the mentioned reasons, there appears to be no actual source that specifies
the conversion apart from lecture notes [10] which use multiple tuple variables.

We will omit the conversion of renaming and outer joins as our model would need a
special extension for those and we will be working with the most basic one.

4.2 Conversion of Atomic Operations

We will work with expressions ER = { t | φ(t) } and ES = { t | ψ(t) }. Relations
represented by φ(t) and ψ(t) have attributes r1, . . . , rm and s1, . . . , sn, respectively. Note
that they may not be actual relations from the schema - they may have gone through
projections, natural joins, etc.
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4.2.1 Relation

Firstly, we need to convert individual relations. A relation Q can be converted into
TRC as [10]

Q ≡ { t | Q(t) }, (4.1)

meaning that we want to select all tuples t such that t belongs to Q.

4.2.2 Projection

As we discussed in the chapter 3.4, we can pick a subset of attributes only by not
specifying the belonging of t.

Let us have α1, . . . , αk from φ(t). Then the projection on those attributes is [10]

πα1,...,αk
({ t | φ(t) }) ≡ { t | ∃z

(
φ(z) ∧

k∧
i=1

t.αi = z.αi

)
}. (4.2)

4.2.3 Selection

Let us have a predicate P (r1, . . . , rn). Conversion formula for selection is [10]

σP (r1,...,rn)({ t | φ(t) }) ≡ { t | φ(t) ∧ P (t) }, (4.3)

where P (t) is the same as P (r1, . . . , rn) but each ri is replaced by t.ri. We are saying that
we want to find all t’s such that φ(t) is true with the addition that P (t) is also true.

4.2.4 Union

When evaluating union, the resulting set contains all elements that belong to the first
set or (non-exclusively) to the second set. This notion translates well into predicate logic
as [10]

{ t | φ(t) } ∪ { t | ψ(t) } ≡ { t | φ(t) ∨ ψ(t) }. (4.4)

4.2.5 Difference

Difference, similarly to union, has an intuitive translation. When placed between two
sets, we are looking for all elements that belong to the first set and simultaneously are not
in the second one. By translating that logic, we get [10]

{ t | φ(t) } \ { t | ψ(t) } ≡ { t | φ(t) ∧ ¬ψ(t) }. (4.5)



4.3. Conversion of Derived Operations 13

4.2.6 Cartesian Product

Suppose that φ(t) and ψ(t) do not share any attributes. The Cartesian product can
be expressed in two ways. An easier way of looking at the problem is to use the actual
definition of Cartesian product from set theory [11]

{ t | φ(t) } × { t | ψ(t) } ≡ { t, v | φ(t) ∧ ψ(v) }; (4.6)

however, we only have one tuple variable available. Fortunately, there is an alternative way
of defining Cartesian product. [12] We need to introduce two bound variables p and q, one
for each of the relations, and then use the concept of not specifying the belonging of t to
assign the attributes to it, resulting in

{ t | φ(t) } × { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

m∧
i=1

t.ri = p.ri ∧
n∧

i=1

t.si = q.si

)
}.

(4.7)

4.3 Conversion of Derived Operations

Now that all atomic operations are defined, we can just expand any RA expression
and convert it notwithstanding a possible loss of compactness of the resulting expression.
We will take a different route instead and explore the ways in which we can optimize the
results of derived operations.

4.3.1 Intersection

Set intersection can be expressed in terms of set difference as

A ∩B = A \ (A \B). (4.8)

And by using 4.5 we receive

{ t | φ(t) } ∩ { t | ψ(t) } ≡
{ t | φ(t) } \ ({ t | φ(t) } \ { t | ψ(t) }) ≡

{ t | φ(t) ∧ ¬(φ(t) ∧ ¬ψ(t) } =

{ t | φ(t) ∧ (¬φ(t) ∨ ψ(t)) } =

{ t | (φ(t) ∧ ¬φ(t)) ∨ (φ(t) ∧ ψ(t)) } =

{ t | φ(t) ∧ ψ(t)) }.

(4.9)

If we were applying the rules as a computer, we would not go beyond the third row even
though the expression can be nicely simplified.
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4.3.2 Division

Let φ(t) and ψ(t) have attributes α1, . . . , αk, β1, . . . , βl and β1, . . . , βl respectively.
Division between R and S is defined as [4]

R÷ S = πα1,...,αk
(R) \ πα1,...,αk

((πα1,...,αk
(R)× S) \R) . (4.10)

We could try to derive the TRC formula by using 4.10, however, the resulting formula
would be quite complicated and it is not clear how to simplify it by means of algebraic
manipulation.

Recall the example 2.1. We wanted to find a user whose languages all appear in the
right relation. Programmatically, we need to find tuples from the user attribute for which
all occurrences of a language from the right relation can be found somewhere next to them
in the left relation. This can be generalized as [13, 14, 15]

{ t | φ(t) } ÷ { t | ψ(t) } ≡

{ t | ∀q

(
ψ(q) ⇒ ∃p

(
φ(p) ∧

l∧
i=1

p.βi = q.βi ∧
k∧

i=1

t.αi = p.αi

))
}.

(4.11)

According to [15], it is important to use implication instead of logical and. The reason
is that if there were no languages in the right relation, we would get an empty relation
instead of a relation of all users1. The difference is that ψ(q) ⇒ φ(q) is true when ψ(q) is
false.

Following the fact that

ψ(q) ⇒ φ(q) ≡ ¬ψ(q) ∨ φ(q), (4.12)

we can eliminate the implication by rewriting the formula 4.11 to

{ t | ∀q

(
¬ψ(q) ∨ ∃p

(
φ(p) ∧

l∧
i=1

p.βi = q.βi ∧
k∧

i=1

t.αi = p.αi

))
}. (4.13)

1If there are no languages in the right relation, all users satisfy the condition that they know all of
them.
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4.3.3 Natural Join

Let us split the attributes of R and S into four sets:

1. C = {c1, . . . , co} are the common attributes between R and S.

2. D = {d1, . . . , do} are dummy attribute names that are not in R nor S.

3. R′ = {r′1, . . . , r′k} are the attributes from R without the common ones.

4. S ′ = {s′1, . . . , s′l} are the attributes from S without the common ones.

Natural join is defined as [4]

πr′1,...,r′k,c1,...,co,s′1...sl(σ o∧
i=1

di=ci
(ρd1/c1,...,do/co(R)× S)). (4.14)

Notice that we cannot even evaluate the part ρd1/c1,...,do/co(R) × S since we do not have
renaming in TRC and we cannot do a Cartesian product between relations with non-disjoint
attributes - we have to arrive to the same result using a different method.

Let us have an example of natural join evaluation with tables CountrySymbols and
CountryAbrreviations.

ISO symbol
CAN maple leaf
CAN beaver
CZE lion
UKR trident
UKR nightingale
ARG Sun of May

▷◁

ISO country
CAN Canada
CZE Czech Republic
POL Poland
UKR Ukraine
HRV Croatia

=

ISO country symbol
CAN Canada maple leaf
CAN Canada beaver
CZE Czech Republic lion
UKR Ukraine trident
UKR Ukraine nightingale

.

(4.15)

We first need to define a variable for each of the relations. We will call them p and q
respectively and in the end, we will assign the tuples that we want in the resulting relation
indirectly.

First, we restrict ourselves only to tuples from the common attributes that are in
both relations. Here, we are looking at the tuples from the ISO attribute. We do that by
writing p.ISO = q.ISO or, generally, p.ci = q.ci.
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This gives us CAN, CZE and UKR - these are the shared tuples which we assign to the
resulting t by t.ISO = p.ISO, or we can choose the other variable and write t.ISO = q.ISO
- they both have the ISO. Generalized version of that is t.ci = p.ci.

Now we need to add the symbol and the country to that.

To add the symbol, we write t.symbol = p.symbol or t.r′i = p.r′i in general because
the country lies in the set R′.

With the exact same reasoning, we add t.country = q.country or t.s′i = p.s′i.

A TRC expression for 4.15 is

{ t | ∃p ∃q(CountrySymbols(p) ∧ CountryAbbreviations(q) ∧
p.ISO = q.ISO ∧ t.symbol = p.symbol ∧ t.country = q.country) }.

(4.16)

We can generalize that into

{ t | φ(t) } ▷◁ { t | ψ(t) } ≡ { t | ∃p ∃q(
φ(p) ∧ ψ(q) ∧

o∧
i=1

p.ci = q.ci ∧
o∧

i=1

t.ci = p.ci ∧
k∧

i=1

t.r′i = p.r′i ∧
l∧

i=1

t.s′i = q.s′i

)
}.

(4.17)

4.3.4 Left and Right Semijoin

Semijoins can be reduced to atomic operations as [4]

ER ⋉ ES ≡ πr1,...,rm(ER ▷◁ ES), (4.18)

ER ⋊ ES ≡ πs1,...,sn(ER ▷◁ ES). (4.19)

We see that it is the same thing as natural join (4.17) but we do not want the resulting t
to have all the attributes but just the left or the right ones.

We follow the same path as in the natural join example to the point where we are
adding the tuples from the left and from the right relation and add only those on the left
for the left semijoin and those on the right for the right semijoin.

{ t | φ(t) }⋉ { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

o∧
i=1

p.ci = q.ci ∧
m∧
i=1

t.ri = p.ri

)
},

(4.20)

{ t | φ(t) }⋊ { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

o∧
i=1

p.ci = q.ci ∧
n∧

i=1

t.si = q.si

)
}.

(4.21)

A significant number of terms was saved by completely avoiding the projection variable.
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4.3.5 Antijoin

Antijoin join can be reduced to [4]

ER ▷ ES ≡ ER \ (ER ⋉ ES), (4.22)

ER ◁ ES ≡ ES \ (ER ⋊ ES). (4.23)

There is, however, nothing we can do to simplify the resulting query.

4.3.6 Theta join

Theta join can be reduced to [4]

ER ▷◁P (r1,...,rm,s1,...sn) ES ≡ σP (r1,...,rm,s1,...sn)(ER × ES). (4.24)

Albeit we clearly will not be able to simplify it, we will use the resulting conversion later.

Using 4.7 and 4.3, we get

{ t | φ(t) } ▷◁P (r1,...,rm,s1,...sn) { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

m∧
i=1

t.ri = p.ri ∧
n∧

i=1

t.si = q.si

)
∧ P (t) },

(4.25)

4.3.7 Theta semijoin

Theta semijoin is reduced to [4]

ER ⋉P (r1,...,rm,s1,...sn) ES ≡ πr1,...,rm(ER ▷◁P (r1,...,rm,s1,...sn) ES)

ER ⋊P (r1,...,rm,s1,...sn) ES ≡ πs1,...,sn(ER ▷◁P (r1,...,rm,s1,...sn) ES).
(4.26)

We will just use the same expression as 4.25 and cut the attributes we are not projecting
onto out of the Cartesian product part:

{ t | φ(t) }⋉P (r1,...,rm,s1,...sn) { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

m∧
i=1

t.ri = p.ri

)
∧ P (t) },

{ t | φ(t) }⋊P (r1,...,rm,s1,...sn) { t | ψ(t) } ≡

{ t | ∃p ∃q

(
φ(p) ∧ ψ(q) ∧

n∧
i=1

t.si = q.si

)
∧ P (t) }.

(4.27)
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Because the standard notation in RA uses subscripts and Greek letters, it is not a
trivial task to design an easy-to-use input field with an intuitive input grammar. We will
take a look at how other RA calculators attempt to tackle this problem1 and then, based
on this analysis, we will design our own solution in the chapter 6.

5.1 Other Tools

5.1.1 RelaX

ReLax [16] is an online tool for evaluating RA queries. The input field is accompanied
by a toolbar containing symbols that are difficult to type on a keyboard. Without reading
a manual, it is not clear how to input queries such as selection or projection. The subscript
part is simply solved by separating the inner expression by spaces, so the queries look like
this:

π r1, r2 R,

σ r1 = 4 ∧ r2 = 6 R,

R ▷◁ r1 = 4 S,

(5.1)

with the numbers and operators highlighted for better readability.

1Note that the statements and views expressed herein are those of the author.
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Figure 5.1: RelaX input field

There is also an option to use words for Greek letters (sigma, pi, etc.) and logical
symbols (and, or) which can then be all replaced by their Unicode counterparts by clicking
a button. The benefit of that is that we can comfortably write a query without using the
toolbar.

Even though there are examples of usage when hovering over toolbar buttons, it can
be argued that an additional effort has to be made in order to understand the semantics
of the input field.

5.1.2 Rachel

Rachel (Relational Algebra CHecker and EvaLuator) [17] has been developed by a
FEL CTU student Lukáš Kotĺık as an alternative to RelaX. Because it only works with
simplified notation, it uses a simple default input field with a toolbar below it.

Figure 5.2: Rachel input field

One thing to note is that when we click on the renaming, it automatically outputs
the first arrow and moves the cursor to the left of it. That is a great way of guiding the
user without explicitly telling them what to do.
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5.1.3 RAT

RAT (Relational Algebra Translator) [18] is a desktop application for converting RA
queries into SQL.

Figure 5.3: RAT input field

Operations can be chosen from the toolbar on the left side. Once we choose an
operation such as projection, we automatically get a subscript block for the columns, and
parentheses for the inner expression. The application also supports keyboard shortcuts
such as CTRL + S for selection, which makes inputting the expressions faster.

Overall, this application offers a very intuitive way of entering queries; mainly because
of its support for visual subscript.

5.2 Conclusion

Table 5.1 summarizes the discussed features.

Feature RelaX Rachel RAT
Toolbar with unusual symbols ✓ ✓ ✓

Automatic completion ✓
Keyboard shortcuts ✓

Example of usage on operator hover ✓
Operator highlighting ✓ ✓

Visual subscript ✓

Table 5.1: Overview of features of analysed tools

While RAT has the most of the discussed features available, it is a desktop application
which may have made the implementation easier. Although Rachel only has two of the
features ticked off, it has a great user manual and only works with simplified notation,
which makes the visual subscript superfluous.

Most users would be clueless without a toolbar - it is a must.
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The automatic completion makes it a little easier when long relation names are used,
although it could be argued that it does not make much of a difference for the user as the
schema can always be visible below the input field.

When writing very long queries, the keyboard shortcuts might seem to be useful; how-
ever, the difference between clicking on a toolbar item and using the shortcut is negligible.
Most users will not write such long queries anyway.

The examples of usage have proven to be a great practice, especially when the tool
does not offer the visual subscript, the absence of which was very confusing when using
RelaX for the first time.

Operator highlighting is a small detail that enhances readability and is easy to im-
plement. It is, for sure, worth adding into the tool.

The visual subscript is very appealing because it makes the queries look exactly
the same as in the textbooks right when typing them, although it might be difficult to
implement.
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This chapter contains all the information about the application. The first section
shows the architecture and explains the conversion process in terms of the communication
between the browser and the server. After that, there is a use-case diagram with a brief
explanation of the available functionalities. The parsing section then shows how the parsing
was implemented, what grammars were used and what role visitors play in the application.
Since both grammars and visitors had been explained at that point, a brief explanation
of the conversion process is presented. The rest of the implementation is explained in the
classes section, where we take a look at a class diagram with an explanation of some
of the classes. The frontend section contains a screenshot of the application GUI with a
description of the controls. Finally, there is an explanation of the testing process and an
installation manual with instructions for downloading and deploying the application.
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6.1 Architecture

The application consists of two parts - frontend in JavaScript framework called React
which communicates with Rest API on the backend. The Rest controller and the service
layer are under a Java framework called Spring. The diagram 6.1 depicts communication
between the user (Client browser) and the server (Web server).

«device»
Client browser

React JS

«device»
Web server

Rest controller Service layer ConvertersHTTP

Figure 6.1: Deployment diagram of the application

Conversion of an input query has the following steps:

1. User enters the website with a GUI through which they enter an expression and
choose options for the conversion.

2. After clicking on a conversion button, the input is wrapped into JSON format and
sent through HTTP to a dedicated Rest API endpoint.

3. Upon receiving the request, the Rest controller unpacks the JSON, converts it to
Java context and sends it to the service layer.

4. Service layer then takes care of the conversion logic. It calls the parser, converters
and other helping classes and it either produces a result or an error message. When
it finishes, it wraps the result back into JSON and sends it to the user.

5. User sees a result or an error message in the output field.

The decision to make a web app instead of a desktop app was made because it is the
easiest way to offer the service to everyone regardless of the platform they are using. It is
easy to access, simple, mobile-friendly, and does not require any installation. Furthermore,
the API can communicate with any other website, not just this one.
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6.2 Use Cases

The diagram 6.2 depicts the actions a user can take in the application.

U ser

Convert RA query from standard 
to simplified notation

Convert RA query from 
simplified to standard notation

Convert RA query in standard 
notation to TRC

Convert RA query in simplified 
notation to TRC

Enable prenex form for the 
conversion

Enable formatting for the 
conversion

Save query

Input saved query

Enable semantic checking 
for the conversion

Pipe the conversion result back 
into the input field

Copy the conversion 
result in LaTeX

Generate random RA 
query

Add schema

«extend»
«extend»

«extend»

«extend»

«extend»

Figure 6.2: Use case diagram

On the bottom right, there is an option to enable prenex normal form for TRC
expressions. It means that all the quantifiers will get grouped without negations before the
inner formula. It was added as a demonstration that the conversion is not solely string-
based and that we have a syntax tree available.

Saving and restoring queries has initially been made as a tool for easier testing, but
it seemed to be a useful utility, so it was left there as a feature.

Putting the result back into the input field is useful for demonstrating that the
notation converters are actually equivalent - when we convert any valid RA expression into
the other notation, put the result back into the input field, switch notations and click on
the conversion again, we always get the initial expression.

Since the TRC converter only works with a valid expression under a given schema,
it was easy to offer the functionality of checking the semantic correctness of the RA query
also during the conversion between notations.
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6.3 Parsing

In order to be able to manipulate with user queries, we need to parse them into an
abstract syntax tree (AST). For that, we will use a tool called ANTLR.

ANTLR is a powerful program in the category of compiler generators1. It is widely
used not only in the industry but also in academia and its purpose is to take a formal
language description and produce a code that recognizes strings from the given grammar.
There is an API through which we can intercept the parsing process and save the input
into our own syntax tree. [20]

6.3.1 Grammars

Formal grammar is a description of some language that consists of terminals, non-
terminals, starting symbol and a set of production rules. The production rules specify how
to form strings from a language’s alphabet. Terminals are just symbols from the alphabet
and they cannot be further substituted for, while non-terminals serve as variables on which
we apply the rules. [21]

When we look at the table 2.1, we can see that the notations only differ in the
way RA operators are written, while the logical conditions in selections and theta joins
(together called theta conditions) are the same. For that reason and because ANTLR
supports importing grammars into other grammars, we can define a separate grammar for
theta conditions and import it into the grammars for the individual notations. Listing 6.1
shows the theta condition grammar in ANTLR notation.

The words written in capital letters are the terminals. They are specified by string
literals or regular expressions. The regular expression for the IDENTIFIER says that it
must be a sequence of alphanumeric characters that does not start with a number. The
STRING_VALUE allows for any sequence of alphanumeric characters as long as they are
surrounded with quotes. The WS is a directive that tells ANTLR to skip spaces when
parsing.

Non-terminals are written in camel-case and they are defined by the production rules
specified after the colon. When there are multiple productions rules for one non-terminal,
a pipe symbol | is used to separate them.

The names on the right side starting with the hashtag are specifying which visitor
methods should be generated. This visitor will allow us to access a parsing context and
insert the values into our AST. We will see that in the next section.

As we can see, only ∧, ∨, and ¬ are allowed in the theta condition. They were chosen
because the set {∧,∨,¬} is functionally complete [22], meaning that we can infer any other
logical operation by only using those three.

1Compiler generator or a compiler-compiler is a tool that generates a code for a parser, interpreter or
compiler [19]
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� �
1 grammar ThetaCondition;

2
3 NUMBER : (’0’ .. ’9’) + (’.’ (’0’ .. ’9’) +)?

4 ;

5
6 STRING_VALUE : ’\’’ [a-zA-Z0-9_-]+ ’\’’

7 ;

8
9 IDENTIFIER : [a-zA-Z][a-zA-Z0-9_-]*

10 ;

11
12 WS : [ \r\n\t]+ -> skip

13 ;

14
15 COMPARISON_OP : ’>’ | ’<’ | ’=’ | ’\\lneq’ | ’\\leq’ | ’\\geq’

16 ;

17
18 BINARY_CONNECTIVE : ’\\land’ | ’\\lor’

19 ;

20
21 UNARY_CONNECTIVE : ’\\lnot’

22 ;

23
24 formula : columnSpec COMPARISON_OP columnSpec # Predicate

25 | columnSpec COMPARISON_OP term # Predicate

26 | term COMPARISON_OP columnSpec # Predicate

27 | ’(’ formula ’)’ # FormulaParentheses

28 | UNARY_CONNECTIVE formula # NotOperation

29 | formula BINARY_CONNECTIVE formula # BinaryLogicalOperation

30 | formula BINARY_CONNECTIVE formula # BinaryLogicalOperation

31 ;

32
33 columnSpec : IDENTIFIER # ColumnSpecification

34 ;

35
36 term : STRING_VALUE # StringTerm

37 | NUMBER # NumberTerm

38 ;� �
Listing 6.1: Theta condition grammar

Listing 6.2 contains a standard RA grammar with the theta condition imported from
6.1. The definitions we have already seen are omitted.
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� �
1 grammar RAStandard;

2
3 import ThetaCondition;

4
5 BINARY_OPERATION : ’\\cap’ | ’\\cup’ | ’\\times’ | ’\\setminus’ | ’\\div’

6 ;

7
8 REGULAR_JOIN : ’\\triangleleft’ | ’\\triangleright’ | ’\\leftouterjoin’ |

9 ’\\rightouterjoin’ | ’\\fullouterjoin’

10 ;

11
12 THETA_JOIN : ’\\bowtie’ | ’\\ltimes’ | ’\\rtimes’

13 ;

14
15 root : expr EOF

16 ;

17
18 expr : ’\\pi’ ’_{’ columnList ’}’ ’(’ expr ’)’ # Projection

19 | ’\\sigma’ thetaCondition ’(’ expr ’)’ # Selection

20 | ’\\rho’ ’_{’ renameList ’}’ ’(’ expr ’)’ # Rename

21 | expr BINARY_OPERATION expr # BinaryOperation

22 | expr REGULAR_JOIN expr # JoinOperation

23 | expr THETA_JOIN thetaCondition expr # JoinOperation

24 | ’(’ expr ’)’ # Parentheses

25 | IDENTIFIER # Relation

26 ;

27
28 thetaCondition : (’_{’ (formula)? ’}’)?

29 ;

30
31 columnList : IDENTIFIER ( ’,’ IDENTIFIER )*

32 ;

33
34 renameList : IDENTIFIER ’/’ IDENTIFIER ( ’,’ IDENTIFIER ’/’ IDENTIFIER )*

35 ;� �
Listing 6.2: Standard RA grammar

The root is a starting rule here. ANTLR’s default behaviour is that once it accepts
a string, it also accepts everything that comes after it. That is bypassed by specifying the
EOF after an expression.

Regular expression operators can also be used in the production rules as we can see
in the columnList where the ∗ is used to signify zero or more allowed occurrences.

Finally, the listing 6.3 contains a grammar for the simplified notation.
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� �
1 grammar RASimplified;

2
3 import ThetaCondition;

4
5 BINARY_OPERATION_SYMBOL : ’\\cap’ | ’\\cup’ | ’\\times’ | ’\\setminus’ | ’\\div’

6 ;

7
8 JOIN_OPERATION_SYMBOL : ’*’ | ’<*’ | ’*>’ | ’*L’ | ’*_L’ | ’*_{L}’ | ’*R’ |

9 ’*_R’ | ’*_{R}’ | ’*F’ | ’*_F’ | ’*_{F}’|

10 ’\\triangleleft’ | ’\\triangleright’

11 ;

12
13 root : expr EOF

14 ;

15
16 expr : expr ’[’ columnList ’]’ # Projection

17 | expr ’(’ thetaCondition ’)’ # Selection

18 | expr ’\\langle’ renameList ’\\rangle’ # Rename

19 | expr BINARY_OPERATION_SYMBOL expr # BinaryOperation

20 | expr JOIN_OPERATION_SYMBOL expr # JoinOperation

21 | expr ’[’ thetaCondition ’]’ expr # JoinOperation

22 | expr ’\\langle’ thetaCondition ’]’ expr # JoinOperation

23 | expr ’[’ thetaCondition ’\\rangle’ expr # JoinOperation

24 | ’(’ expr ’)’ # Parentheses

25 | IDENTIFIER # Relation

26 ;

27
28 thetaCondition : (formula)?

29 ;

30
31 columnList : IDENTIFIER ( ’,’ IDENTIFIER )*

32 ;

33
34 renameList : IDENTIFIER ’\\rightarrow’ IDENTIFIER ( ’,’ IDENTIFIER ’\\rightarrow

’ IDENTIFIER )*

35 ;� �
Listing 6.3: Simplified RA grammar

In the JOIN_OPERATION_SYMBOL, there are also variants of outer join symbols without
subscript to avoid confusing users who expect the simplified notation to be subscript free.

Now that we have the grammars ready, we need an AST. We will use a hierarchy
with an abstract class Expression which will be extended by everything else.
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BinaryOperation

+ leftExpr: Expression
+ rightExpr: Expression

Expression

+ accept(RAVisitor<T>): T

Cartesian Product Difference Division IntersectionUnion

Projection

+ expression: Expression

ColumnList

+ columnNames: List<String>

ParenthesesExpression

+ expression: Expression

Relation

+ name: String

Rename

+ expression: Expression

RenameList

+ renameList: List<Pair<String, String>>

Selection

+ expression: Expression

Formula

+ accept(LogicalExpressionVisitor<T>): void

JoinOperation

+ leftExpr: Expression
+ rightExpr: Expression

ThetaCondition

FullOuterJoin LeftAntijoin LeftOuterJoin LeftSemijoin

NaturalJoin

RightAntijoin

RightOuterJoin

RightSemijoin

AndOperationBinaryLogicalOperation

+ leftFormula: Formula
+ rightFormula: Formula

OrOperation

BelongingPredicate

+ relationName: String
+ variableName: String

ComparisonPredicte

+ leftTerm: Term
+ rightTerm: Term
+ symbol: String

ColumnSpecification

+ column: String

Term

NumberTerm

+ number: int

StringTerm

+ content: String

SpecifiedColumnSpecification

+ column: String
+ relation: String

ExistsQuantification

+ formula: Formula
+ variableName: String

«interface»
Quantification

ForallQuantification

+ formula: Formula
+ variableName: String

FormulaParentheses

+ formula: Formula

NotOperation

+ formula: Formula

Figure 6.3: Abstract syntax tree for RA and TRC
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Because we also need to store TRC expressions, we can make use of the similarities
between theta condition and TRC formula. The difference is that TRC formula allows
quantifiers and uses different terminals. For that reason, classes BelongingPredicate,
Quantification, and SpecifiedColumnSpecification were added.

6.3.2 Visitors

Visitors play an integral part in the application. That is not surprising because the
most common use case for the use of visitors is to define operations on AST.

Visitors allow us to add an operation to the AST without having to change the
signature of its classes. [23] There is a method� �

1 public <T> T accept(RAVisitor<T> raVisitor) {

2 return raVisitor.visit(this);

3 }� �
Listing 6.4: Accept method for RA expressions

at every subclass of RA Expression.

The visitors contain a visit method overloaded for every subclass of Expression as
well as one for the Expression itself, which always looks like this:� �

1 public T visit(Expression expression) {

2 return expression.accept(this);

3 }� �
Listing 6.5: Visit method for Expression

That is because when we, for instance, call a visit method with a projection in the
argument, the visit method with an expression type gets called. It then calls the accept
method with an instance of the visitor in the argument. That causes an accept method of
a correct subclass to get called - a projection class in this case. Now that we are in the
context of projection a visit method of the visitor from the argument gets called again,
now being invoked directly from the projection class. Finally, the specific visit method
(the method having Projection in the argument) is called. This process is called double
dispatch and since Java does not support it directly, we have to use visitors. [24]

Using this pattern, we can unpack the expression from the root and perform a com-
putation at each level. Because the visit method has a return value, we can also work with
results from the subtrees.

The class diagram 6.4 shows the structure of the visitors used for parsing.
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Classes generated by ANTLR

SimplifiedExpressionVisitor

+ visitBinaryOperation(): Expression
+ visitColumnList(): Expression
+ visitJoinOperation(): Expression
+ visitParentheses(): Expression
+ visitProjection(): Expression
+ visitRelation(): Expression
+ visitRename(): Expression
+ visitRenameList(): Expresssion
+ visitSelection(): Expression
+ visitThetaCondition(): Expression

SimplifiedThetaConditionVisitor

+ visitBinaryLogicalOperation(): Formula
+ visitFormulaParentheses(): Formula
+ visitNotOperation(): Formula
+ visitNumberTerm(): Formula
+ visitPredicate(): Formula
+ visitSimpleColumnSpecification(): Formula
+ visitStringTerm(): Formula

ThetaConditionVisitor

ExpressionVisitor

+ visitBinaryOperation(): Expression
+ visitColumnList(): Expression
+ visitParentheses(): Expression

RASimplifiedBaseVisitor<T>
AbstractParseTreeVisitor<T>

«interface»
RASimplifiedVisitor<T>

+ visitBinaryLogicalOperation(): T
+ visitBinaryOperation(): T
+ visitColumnList(): T
+ visitFormulaParentheses(): T
+ visitJoinOperation(): T
+ visitNotOperation(): T
+ visitNumberTerm(): T
+ visitParentheses(): T
+ visitPredicate(): T
+ visitProjection(): T
+ visitRelation(): T
+ visitRename(): T
+ visitRenameList(): T
+ visitRoot(): T
+ visitSelection(): T
+ visitSimpleColumnSpecification(): T
+ visitStringTerm(): T
+ visitThetaCondition(): T

«interface»
ParseTreeVisitor<T>

+ visit(): T
+ visitErrorNode(): T
+ visitChildren(): T
+ visitTerminal(): T

AbstractParseTreeVisitor<T>

StandardThetaConditionVisitor

+ visitBinaryLogicalOperation(): Formula
+ visitFormulaParentheses(): Formula
+ visitNotOperation(): Formula
+ visitNumberTerm(): Formula
+ visitPredicate(): Formula
+ visitSimpleColumnSpecification(): Formula
+ visitStringTerm(): Formula

StandardExpressionVisitor

+ visitBinaryOperation(): Expression
+ visitColumnList(): Expression
+ visitJoinOperation(): Expression
+ visitParentheses(): Expression
+ visitProjection(): Expression
+ visitRelation(): Expression
+ visitRename(): Expression
+ visitRenameList(): Expresssion
+ visitSelection(): Expression
+ visitThetaCondition(): Expression

RAStandardBaseVisitor<T>

«interface»
RAStandardVisitor<T>

+ visitBinaryLogicalOperation(): T
+ visitBinaryOperation(): T
+ visitColumnList(): T
+ visitFormulaParentheses(): T
+ visitJoinOperation(): T
+ visitNotOperation(): T
+ visitNumberTerm(): T
+ visitParentheses(): T
+ visitPredicate(): T
+ visitProjection(): T
+ visitRelation(): T
+ visitRename(): T
+ visitRenameList(): T
+ visitRoot(): T
+ visitSelection(): T
+ visitSimpleColumnSpecification(): T
+ visitStringTerm(): T
+ visitThetaCondition(): T

Figure 6.4: Class diagram of visitors used for parsing

The classes in the square are generated by ANTLR. Although the generated base
visitors contain all the visit methods, they can be extended by multiple classes, each imple-
menting some of the methods. That feature was used to differentiate between an expression
visitor and a theta condition visitor.

Each overridden visit method gets a parsing context in the argument which they can
access to create the needed structure. Listing 6.6 shows an example of a visitProjection

method implementation.
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� �
1 @Override
2 public Expression visitProjection(RAStandardParser.ProjectionContext ctx) {
3 ColumnList columnList = (ColumnList) this.visit(ctx.columnList());
4 Expression expression = this.visit(ctx.expr());
5
6 return new Projection(columnList, expression);
7 }� �

Listing 6.6: Visit method for projection

Lastly, ExpressionVisitor and ThetaConditionVisitor are helping classes that
implement a common behavior. They are used by the main visitors.

6.4 Conversion Process

The visitors simulate a process that is equivalent to taking a preorder path through
the AST. A figure 6.5 shows how the expression 6.1 gets converted into simplified notation.

σx=y(R)× πa(S ▷◁ Q). (6.1)

×

σ

R

π

▷◁

S Q

visit(CartesianProduct)

vis
it(
Sel

ect
ion

)

visit(Relation)

visit(Projection)

visit(NaturalJoin)

vis
it(
Re

lat
ion

) visit(Relation)

”R”

”R(x = y)” ”(S ∗Q)[a]”

”S” ”Q”

”S ∗Q”

”R(x = y)× (S ∗Q)[a]”

Figure 6.5: Diagram of a notation conversion process
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The filled arrows represent a method call, while the dashed ones show the return
value. We can see that the branching always stops at the relation level as it is the only
terminal symbol in RA.

Conversion into TRC works on a similar basis; however, instead of returning a string
straight away, a pair <Formula, Header> is returned from the visit method. Some oper-
ations such as Cartesian product or division need to know the attributes to construct the
TRC expression. Let us have an example

(R ∩ S)× πq1(Q), (6.2)

where both R and S have attributes r1, r2 and Q has attributes q1, q2, q3. Diagram 6.6
shows how the expression 6.2 gets converted into TRC.

×

∩

R S

π

Q

visit(CartesianProduct)

vis
it(
Int

ers
ect

ion
)

vis
it(
Re

lat
ion

) visit(Relation)

visit(Projection)

visit(Relation)

⟨R(t), {r1, r2}⟩

⟨S(t), {r1, r2}⟩

⟨R(t) ∧ S(t), {r1, r2}⟩

⟨Q(t), {q1, q2, q3}⟩

⟨∃p(Q(p) ∧ t.q1 = p.q1, {q1}⟩

⟨. . . , {r1, r2, q1}⟩

Figure 6.6: Diagram of a conversion from RA into TRC

Notice that the projection and Cartesian product both return a different header.
Without the headers, the Cartesian product visit method would have no way of knowing
that the q1 has been projected onto, and it would add the q2 and q3 back into the resulting
expression.
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6.5 Classes

ConverterController

+ simplifiedToStandard()
+ simplifiedToTRC()
+ standardToSimplified()
+ standardToTRC()

ConverterService

- convertNotationsGeneral()
+ convertSimplifiedToStandard()
+ convertSimplifiedToTRC()
+ convertStandardToSimplified()
+ convertStandardToTRC()
- convertToTRCGeneral()
+ getRandomQuery()
- parseRA()

RandomQueryController

+ getRandomQuery()

InputWrapper

- expression: String
- prenexForm: boolean
- semanticChecking: boolean Schema

Header

- columns: Set<String>

HeaderEvaluator

+ evaluateCartesianProduct(): Header
+ evaluateDivision(): Header
+ evaluateFullOuterJoin(): Header
+ evaluateLeftAntijoin(): Header
+ evaluateLeftOuterJoin(): Header
+ evaluateLeftSemijoin(): Header
+ evaluateNaturalJoin(): Header
+ evaluateProjection(): Header
+ evaluateRename(): Header
+ evaluateRightAntijoin(): Header
+ evaluateRightOuterJoin(): Header
+ evaluateRightSemijoin(): Header

FreshVariableGenerator

- defaultVars: List<String>
- getNumberedVariable: Function<Integer, String>
- index: int

+ generateFreshVariable(): String

NotationConverterUtil

+ convertBinaryOperation(): String
+ convertColumnList(): String
+ convertParentheses(): String
+ convertRegularJoinOperation(): String
+ convertRelation(): String

«interface»
RAVisitor<T>

+ visit(Expression): T
+ visit(CartesianProduct): T
+ visit(Difference): T
+ visit(Division): T
+ visit(Intersection): T
+ visit(Union): T
+ visit(ThetaCondition): T
+ visit(ParenthesesExpression): T
+ visit(Projection): T
+ visit(Relation): T
+ visit(Selection): T
+ visit(FullOuterJoin): T
+ visit(LeftAntiJoin): T
+ visit(LeftSemijoin): T
+ visit(LeftOuterJoin): T
+ visit(NaturalJoin): T
+ visit(RightAntijoin): T
+ visit(RightOuterJoin): T
+ visit(RightSemiJoin): T
+ visit(Rename): T

ForbiddenTRCOperatorsChecker

RandomExpressionGenerator

+ generateExpr(): Expression
+ generateSimplifiedStringExpr(): String
+ generateStandardStringExpr(): String

RAToTRCConverter

SemanticRAChecker

ToSimplifiedNotationConverter

ToStandardNotationConverter

«interface»
LogicalExpressionVisitor<T>

+ visit(Formula): T
+ visit(FormulaParentheses): T
+ visit(AndOperation): T
+ visit(OrOperation): T
+ visit(ComparisonPredicate): T
+ visit(NumberTerm): T
+ visit(ColumnSpecification): T
+ visit(SpecifiedColumnSpecification): T
+ visit(StringTerm): T
+ visit(NotOperation): T
+ visit(ForAllQuantification): T
+ visit(ExistsQuantification): T
+ visit(BelongingPredicate): T

ToTRCPredicateConverter

ToTRCPrenexFormConverter

ToTRCStringConverter

+ convert(Formula): String

LogicalExpressionToStringConverter

SemanticThetaConditionChecker<Void>

<String>

0..*

0..1

<Header>

<String>

<Formula>

<Formula>

<Pair<Header, Formula>>

<Void>

<String>

Figure 6.7: Class diagram of the application

The diagram 6.7 depicts relationships between the rest of the classes in the applica-
tion. Because the visitors use generic types, the label in angle brackets above the dotted
arrows signifies which type was implemented.

Input from the HTTP POST request is captured by the ConverterController and
converted into the InputWrapper which contains all the necessary information about the
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expression and selected options for the conversion. It uses a Schema object to store the
schema in a set of strings.

The wrapped input is then passed into the ConverterService which is responsible
for delivering either the resulting query or an error message. It controls the converters and
parsing visitors and uses them to produce the result.

Evaluation of the resulting header based on a given operation is generalized into
HeaderEvaluator. For example, in the evaluateRename method, it returns a new header
with renamed attributes. It is used for semantic checking and during conversion into TRC.

The RAToTRCConverter uses a fresh variable generator because it needs a new variable
for each quantification. The generator takes a list of default fresh variables and when they
run out, it uses a given function to generate new fresh variables indefinitely.

We can see that the checkers both implement the visitor interface with a Void

type. That is because they do not need to propagate results from the subexpressions,
they just record errors into a list above the scope of their visit methods. Conversely,
SemanticRAChecker uses a Header type because it needs to know the resulting header
from the subexpressions to recognize errors.

6.6 Frontend

Figure 6.8: Frontend of the application

Regarding the points from the analysis 5.1, all of them have been implemented with
the exception of the visual subscript and keyboard shortcuts.
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The project uses a rich text input field library called draft-js which allows for a
substring of the input to be displayed in subscript. The problem is that, unlike in RAT
(5.1.3), there is no visual cue that the subscript is on. Because the library does not directly
support rendering a separate bordered box for inputting subscript, the decision to make a
portion of the input text display as a subscript has to be made just based on the contents
of the string. That proved to be very difficult, especially for theta joins.

Due to the clumsiness of the subscript formatting, the input field uses LaTeX notation
in the following way:

πa,b(R) → π {a, b}(R). (6.3)

When the user clicks on a projection, selection, or renaming symbol, the following will
appear in the text field:

π → π {}(),
σ → σ {}(),
ρ→ π {}(),

(6.4)

and the cursor will be placed in the first pair of brackets.

There are two buttons on the right of the input field. The floppy disk saves the
current content of the input field into the numbered list above. The saved queries can then
be accessed by a left click and discarded by a right-click. The button below generates a
random RA expression.

The box labeled LaTeX input view is translating the input into LaTeX, so that the
user knows what the query looks like.

The second box shows the converted query and error messages. It also has two buttons
on the right. The arrow puts the query into the input field and the second button triggers
a window containing the query in LaTeX format.

The user can choose which notation they want to convert from in the leftmost section
under the views. There are also two buttons that trigger the conversion process. Of course,
once the notation is switched to simplified, the text within the middle button changes to
Convert to standard notation.

To the right of the optional checkboxes are the input fields for the tables from the
schema. The user enters the relations and their attributes in a pattern shown in the place-
holder of an empty text field. The input fields are checked against a regular expression and
the box changes color when the input is not accepted.
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6.7 Testing

There are unit tests for every conversion rule between the notations. They test the
basic cases like

σx=y(R) → R(x = y). (6.5)

Correctness of the conversion of nested expressions like σx=y(πr1(R)) is guaranteed by the
recursive nature of the conversion process (6.5) - once we are sure that the subexpressions
are called recursively, we can inductively assume that if all the simple tests pass, the
converter is working properly.

To test the equivalence of the notation conversion, a random query generator has been
implemented. It assigns each operation a number and recursively generates the expressions
based on the randomly generated integer.� �

1 public static Expression gen(int len) {

2 int n = len <= 0 ? 0 : getRandomNumber(0, 17);

3
4 ThetaCondition tc = new ThetaCondition(null);

5
6 // 50 % chance for an empty theta condition

7 if (n >= 9 && getRandomNumber(0, 1) == 0) {

8 tc = generateThetaCondition(getRandomNumber(1, 3));

9 }

10
11 switch(n) {

12 case 0: return new Relation(getRandomLetter(true));

13 case 1: return new ParenthesesExpression(gen(len - 1));

14 case 2: return new CartesianProduct(gen(len - 1), gen(len - 1));

15 ...

16 case 9: return new Selection(tc, gen(len - 1));

17 case 10: return new NaturalJoin(gen(len - 1), gen(len - 1), tc);

18 case 11: return new RightSemijoin(gen(len - 1), gen(len - 1), tc);

19 ...

20 }

21 }� �
Listing 6.7: Random expression generator

The generator is restricted by a given length because there is only 1 : 17 probability of
selecting a terminal in each recursion level. The probability that the generator terminates
is then getting smaller and smaller at each recursion level when selecting binary operations.
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The length gets subtracted at each recursion level and when it reaches zero, the
variable n is turned to 0, guaranteeing that the Relation is returned, preventing further
recursion.

The generator is then used in a test of conversion equivalence where a random ex-
pression is generated, converted into another notation, converted back, and then compared
to the original. This process is repeated many times. This test helped to reveal an accu-
mulation of parentheses between the conversions.

The classes for semantic checking have also been tested by unit tests with consid-
eration for edge cases. The tests create a schema and test whether the semantic checker
returns an appropriate error.

Furthermore, a series of exercise queries from the Database Systems course at CTU,
which were written in both notations by a teacher, have been tested in both ways, and the
conversion proved to be correct.

Lastly, there are unit tests for each of the TRC conversion rules defined in chapter 4.
Because the conversion into TRC is more nuanced, more complex testing including nested
expressions may be needed to give the same assurance of correctness as with the notations
conversion.

The tests helped to uncover several errors and gave a reasonable assurance that the
application is working properly.
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6.8 Deployment Instructions

During the presentation of this thesis, the application will be available at [25]. The
react application uses free hosting for one static website by github pages and the backend
is deployed on https://heroku.com, however, the computation time is limited there.

In case the website is no longer working, the frontend and backend are both accessible
on github. To try the application out, it needs to be deployed locally. To run the react
application,

1. Install npm2.

2. Clone or download the application3.

3. Go to src/App.js and change the BASE_URL variable on line 10 to const BASE_URL

= ’http://localhost:8080/’;.

4. Open a terminal in the root directory of the application.

5. Run npm install.

6. Run npm run.

7. Open a browser and go to http://localhost:3000/.

To run the backend,

1. Install Java 8 or newer4.

2. Clone or download the application5.

3. Download the newest version of Maven6.

4. Open a terminal in the root directory of the application.

5. Run mvn clean.

6. Run mvn install.

7. Run mvn spring-boot:run.

8. Verify that when going to http://localhost:8080/, an OK message gets displayed.

2Download and run an installer according to your OS from https://nodejs.org/en/download/.
3Available at https://github.com/tomashauser/Relational-Converter-Frontend
4Available at https://www.oracle.com/java/technologies/downloads/
5Available at https://github.com/tomashauser/Relational-Converter-Backend.
6Available at https://maven.apache.org/download.cgi

https://heroku.com
http://localhost:3000/
http://localhost:8080/
https://nodejs.org/en/download/
https://github.com/tomashauser/Relational-Converter-Frontend
https://www.oracle.com/java/technologies/downloads/
https://github.com/tomashauser/Relational-Converter-Backend
https://maven.apache.org/download.cgi
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Conclusion

After introducing the different RA notations (2), an analysis of the way of inputting
queries in other RA tools has been performed (5), resulting in a comparison table (5.1)
which was then used as a reference during the implementation.

A web application for conversion between the notations has been implemented (6).
All points from the analysis of other tools (5) were implemented with the exception of
keyboard shortcuts and visual subscript. There were technical difficulties in configuring an
input field to support it, so a different approach was used. Instead of showing the subscript
directly in the input field, user enters it in LaTeX notation (6.3). The input is then in
real-time compiled into LaTeX and shown in a separate box below the input field (6.8). It
can be argued that this approach has a similar effect as showing the subscript directly in
the input field.

After briefly introducing TRC (3), there was the question of the possibilities of a
conversion from or into RA. The conversion from TRC into RA has already been established
in the literature [5, 8]. The conversion algorithm is very complex and the input queries
cannot be sanitized (3.3), so the effort was devoted to the opposite conversion. After
deciding to use TRC with only a single tuple variable (3.1) a conversion from RA was
assembled using a variety of different sources. [10, 11, 12, 26, 13, 14, 15] The conversion
was then implemented into the application (6.6).

The application was thoroughly tested (6.7). A random query generator (6.7) was
implemented and used in a test of equivalence between the notation converters. Thanks
to the testing, several mistakes and bugs were found and fixed. It can be argued with a
reasonable level of confidence that the conversion has been implemented correctly.

The application can be accessed from [25] or downloaded and deployed locally by
following the deployment instructions (6.8).
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Attachment Content

/

Relational-Converter-Backend .......................source code for backend
src

main

antlr4 ........................................ANTLR grammar files
java

app

endpoint ......................................Rest controllers
languages .......................classes separated by languages

logicalexpression .......logical expression and TRC classes
antlr4visitors ..........................parsing visitors
ast ............................AST for logical expression
visitors .................................general visitors

ra ................................. relational algebra classes
antlr4files .................. files generated by ANTLR
antlr4visitors ..........................parsing visitors
ast ............................AST for relational algebra
utils ................schema and header evaluator classes
visitors .................................general visitors

trc

converters .............................visitors for TRC
utils ............................................utility classes

test

java

app

conversion ................................tests for conversions
semanticchecking .................. tests for semantic checking

Relational-Converter-Frontend

public ........................................favicon and index HTML file
src ..................................................React components

controls ....................React components for conversion control
images ........................................................ icons



48


	List of abbreviations
	Introduction
	Relational Algebra and Relational Model
	Goals

	Relational Algebra Notations
	Operations
	Characteristics of the Simplified Notation

	Tuple Relational Calculus
	Introduction
	Examples
	Equivalence Between RA and TRC

	Conversion from RA to TRC
	Introduction
	Conversion of Atomic Operations
	Relation
	Projection
	Selection
	Union
	Difference
	Cartesian Product

	Conversion of Derived Operations
	Intersection
	Division
	Natural Join
	Left and Right Semijoin
	Antijoin
	Theta join
	Theta semijoin


	Inputting Queries
	Other Tools
	RelaX
	Rachel
	RAT

	Conclusion

	Application
	Architecture
	Use Cases
	Parsing
	Grammars
	Visitors

	Conversion Process
	Classes
	Frontend
	Testing
	Deployment Instructions

	Conclusion
	Appendices

