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Abstrakt / Abstract

Práce se zaobírá výběrem, implemen-
tací a hodnocením systémů schopných
provádět automatickou detekci, sledo-
vání a klasifikaci včel v okolí královny.
Systémy a metody řešení jsou popsané
jak v teoretické rovině, tak z technického
pohledu implementace a aplikace těchto
metod na obrazové datasety získané z
experimentální aparatury. Vybraný sys-
tém je rozšířen o schopnost detekce včel
blízkých královně tzv. dvůr. Na základě
výsledků experimentů je implementován
výpočetní uzel, který rozšiřuje sestave-
nou pipeline založenou na systému ROS
a určenou pro automatizovaný záznam
a analýzu obrazových dat z pozorova-
cího úlu. Práce slouží jako příspěvek do
mezinárodního výzkumného projektu
RoboRoyale.

Klíčová slova: včela medonosná, Apis
mellifera, počítačové vidění, detekce,
sledování, strojové učení, robotika, ROS

Překlad titulu: Automatická analýza
chování včelích dělnic v blízkosti krá-
lovny

The thesis deals with selecting, im-
plementing, and evaluating systems
capable of performing automatic detec-
tion, monitoring, and classification of
worker bees in the vicinity of the hon-
eybee queen. The systems and methods
of addressing the problem are described
theoretically and from the technical
point of view of the implementation and
application of these methods to image
datasets obtained from an experimental
setup. The selected system is extended
with the capability to identify bees in
the queen’s vicinity, called the court.
Based on the experimental results, a
computational node is implemented
to extend the constructed ROS-based
pipeline for automated recording and
analysis of image data from the ob-
servation hive. The work contributes
to the international research project
RoboRoyale.

Keywords: honey bee, Apis mellif-
era, computer vision, detection, track-
ing, machine learning, robotics, ROS
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Chapter 1
Introduction

The honey bee (Apis mellifera) has been the focus of human attention since ancient
times. Apart from the purely pragmatic interest in bee products, especially honey, it is
also for ecological reasons. The honey bee is an irreplaceable pollinator in nature [1].
Another aspect of bee life that has fascinated biologists worldwide is the ability of bee
colonies to function as a single unit. The modes of communication between individuals,
the hierarchical structure of the colony, the changes in roles depending on the age of the
individual, and the ability of the colony to survive for long years despite the short life
span of individual members, are just a short list of characteristics that are a constant
subject of research.

However, the species is in danger. Numerous studies indicate that the number of
bees on earth is steadily declining, and this process will affect our lives as well. This
thesis contributes to the research efforts of experts from the international RoboRoyale
project to reverse this negative trend and help the bee population thrive again. It seeks
to achieve this by helping at the level of individual colonies, which involves designing
a bio-hybrid system using robotics and computer science so that the behaviour of the
bee society can be influenced positively.

The goal is to create robotic agents operating in the vicinity of the honeybee queen.
To be able to understand the behaviour of these animals better, create sophisticated,
continuously improving models of their activity or navigate robotic agents inside the
beehive, appropriate positional data of individuals needs to be automatically extracted
from the behaviour observed. This work is focused on the research and experimental
testing of methods that address the described issue or are potentially applicable to
tackle the problem. The selected methods are extended with a system for detecting
bees from the vicinity of the queen (court bees) and integrated into a pipeline for the
automatic collection of image data from the observation hive.

The thesis content is structured as follows. For the introduction, objectives and
methods of the RoboRoyale project are presented and elaborated. A brief introduction
to the biological fundamentals of honey bee behaviour, including the findings on which
the project methodology is based, follows. The overlap of this biological discipline with
robotics is also described. The next chapter presents the theoretical foundations of com-
puter vision and machine learning that are used in the scope of the thesis. Also, in this
chapter, the reader can find a description of the principle of each method considered for
a potential application. In the Materials and Methods section, the selected key perfor-
mance indicators are described, based on which the performance of the tested methods
was assessed. This chapter also includes descriptions of the various approaches, sys-
tems, and datasets used or developed to meet the objective of the thesis. Subsequently,
the results of the experiments are documented, explained, and put into context in the
discussion. The systems are evaluated and compared.
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Chapter 2
RoboRoyale project

RoboRoyale [2] is an interdisciplinary EU-funded research project focused on the de-
velopment of a bio-hybrid system. The project aims to influence the behaviour of the
biological superorganism in the form of the honey bee colony in a positive and informed
way. Following the long-term decline in the number of pollinators in the ecosystem [3–4],
especially bees, this project seeks to develop ways to help the colonies of this essential
species. The core idea is to introduce micro-robots that should be able to operate au-
tonomously in the hive and blend in with the colony. The project thus combines the
latest findings in robotics, computer science, biology and biocompatibility research.

The main focus of the research is the honey bee queen. This individual is responsible
for the reproductive performance of the entire colony and, therefore, its long-term
prosperity. ”We plan to strengthen her egg laying activity, in order to create a non-
fragmented, strong and thus also energetically efficient broodnest at the core of the
colony. This will boost the colony’s population growth, thus also its foraging activity
and its survival [5].” By directly influencing the queen, it should therefore be possible
to affect the rest of the colony in a relatively non-invasive yet effective way.

Figure 2.1. Internal structure of the proposed RoboRoyale system including eight worker
bee agents [5].

Therefore, the project aims to introduce a multi-robot system operating in the vicin-
ity of the queen. These robots should substitute some of the bees that operate near the
queen. These individuals (so-called court bees) are responsible for feeding, grooming
and cleaning the queen, as well as pheromone transmission and communication. Taking
over some of these roles by a robotic system may allow the queen and, ultimately, the
colony to change their behaviour. Proving this hypothesis would bring new insights to
research on combined bio-robotic systems.

An essential capability of robots will be the transfer and provision of protein food to
the queen. Conventional methods do not allow the possibility of controlling the amount
of food. However, its impact on the colony can be substantial in terms of reproductive

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
strength. Increased brood quantity should translate into a greater need for food and,
therefore, stimulation of food foraging [2].

The behaviour of robotic agents plays a crucial role in their acceptance. In order
to achieve this behaviour, a model needs to be developed to predict the future be-
haviour of court bees. A simplified model has already been presented by [6]. It predicts
the movement of both the honeybee queen and her court bees. The model is based
on two interconnected finite automata controlling the movement of the queen and the
workers, respectively. Transitions between states are influenced by the state of the
environment, in particular temperature differences in the hive and queen pheromone
dispersal. The model depends on many parameters estimated from own empirical ob-
servations or earlier published findings. There was no significant difference from the
observation hive data obtained by manual annotation in the statistical validation of the
model simulation of the number of court bees. Also, a noticeable similarity between
the simulation and the experimental recording can be found by empirical observation
of the accumulated image. This model can serve as the basis for a more sophisticated
machine learning-based model that will continuously improve even after the deployment
of the robotic system, reflecting the various reactions of individuals to the behaviour of
artificial agents [6].

The project aims to explore the so-called Ecosystem Hacking concept. The idea of sta-
bilizing an ecosystem using active technological agents. There are several strategies to
this problem, but the one implemented in this project is a minimally invasive approach
using Organismic Augmentation, which involves artificially augmenting a selected or-
ganism with new capabilities. In the case of bees, the whole colony is considered as an
organism [6].

Figure 2.2. A demonstration of the principle of a minimally-invasive form of ecosystem
hacking in the RoboRoyale project. The figure shows how robotic agents could indirectly

affect the entire ecosystem [6].

The system that the project aims to develop would have many practical applications.
Foremost it is the actual colony stabilization and continuous monitoring of the bees’
health and condition. There is a possibility of improvement in the efficiency of the
colony based on information obtained from long-term weather forecasts. In the event
of a forecast of unfavourable weather, brood production could be reduced, lowering
the energy investment in offspring with little chance of reaching maturity. Conversely,
assuming the weather suitable for foraging, it would be possible to encourage brood
production and thus prepare the colony for a period of optimal maximum activity [6].

3



Chapter 3
Honey bee biology

The honey bee (Apis mellifera) is a eusocial insect. Eusociality is the highest level of
organization of sociality. It is characterized by cooperative brood care or division of
labour between individual members. Therefore groups of specialized non-reproductive
workers are formed, called ’castes’ [7]. Honey bee colonies can be described as a so-
called superorganism. It can survive in nature for many years with constant population
renewal.

The body of the bee is divided into three parts. On the head the sensory organs
such as the compound eye and antennae are located. The mouth is equipped with
mandibles. The thorax is the middle part of the body to which the wings and legs are
attached. It is the locomotor centre of the bee body. The rear and longest part is called
the abdomen [1].

3.1 Behaviour
The essential individual in the colony is the queen. This bee differs from the other castes
and can be recognised by the elongated shape of its abdomen. The queen is the only
bee in the hive with a fully developed reproductive system so that she can produce eggs
with full genetic makeup - female eggs. Therefore, she is responsible for the colony’s
growth and expansion. A queen hatches from the same type of fertilised egg as a
worker. However, she is fed royal jelly throughout the larval stage, unlike the worker
larvae, which are fed a less nutritious diet from day three onwards. Approximately five
days after the emergence, the queen leaves the hive for the so-called nuptial flight to
attract male bees (drones) for mating. She usually mates with multiple drones to fill
her spermatheca, from which she later fertilises the laid eggs. During peak activity, the
queen can lay up to 2,500 eggs per day [1]. The bee queen can live up to 8 years [8].

Figure 3.1. Honeybee queen (in the center) has longer abdomen, than worker bees
(Tashkoskim. Courtesy of wikimedia.org).

4
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Like the queen, worker bees grow from fertilised diploid eggs (which have a complete
gene complement). There are four stages in the development of the bee: egg, larva, pupa
and adult. The larvae hatch from the egg after about three days. For approximately
five days, the developing larvae are fed by nurse bees, which take care of the brood.
After that, the larvae cells are sealed with wax caps, and the pupas are formed. After
about 13 more days, the developed individual chews through the wax cap.

The role (temporal caste) changes with the age of the worker bee. They usually
work as nurse bees for the first ten days of their lives - cleaning the hive and caring for
the brood. For approximately five days, their job is to build new combs. The worker
bees serve as depositors of collected nectar by the twentieth day of life. Eventually, the
bee becomes a forager. Usually, this role remains for the bee for the rest of her life.
Working bees mostly perish before reaching senescence. According to research on bee
survivorship [9], foraging bees face a constant probability of death per hour of foraging
activity. ”However, if prevented from shifting to foraging activity they are recorded
as having a maximum lifespan of 75–135 days. Over winter, worker bees can also
develop into a stress-resistant form (called the “diunitus” stage) and their maximum
adult lifespan is recorded as 140–320 days over winter [10].”

It has been shown that bees have developed certain types of communication [11].
In the case of communication between foragers, bees communicate the location of the
food they have found by means of so-called dances. The issue of bee communication
has been studied in detail by Nobel Prize-winning physiologist Karl von Frisch, who
divided the communication dances describing the food location into two types, the
round dance and the waggle dance [12]. If the food source is close, the bee performs a
round dance that does not contain information about the direction in which the source
is located. Suppose the source is more than 100 meters away. In that case, the foraging
bee performs a waggle dance, a figure-of-eight movement, which conveys information
about both the direction and situation and the distance of the food source. However,
recent studies show that bees have only one dance, which looks different depending on
the distance of the source [11].

Pheromones play a crucial role in how colony members interact with each other.
”Pheromones are chemical substances secreted by an animal’s exocrine glands that
elicit a behavioral or physiological response by another animal of the same species [13].”
Bees have a highly complex system of pheromone communication. Every individual, re-
gardless of caste, secretes a specific pheromone. The other bees receive the pheromones
mainly through their antennae. There are many types of bee pheromones, and they have
many functions, whether they are caste-specific pheromones or pheromones secreted
only under certain circumstances (e.g. danger). An essential group of pheromones are
the compounds secreted by the queen. These substances can have both short- and
long-term effects on the entire population [14].

Bees can regulate temperature inside the hive. In the case of high temperatures,
the bees perform ventilation by shivering their wings. In the winter months, when it
is necessary to keep the internal temperature above a certain threshold, the bees form
winter clusters where the temperature is kept around 20∘C. The queen stops laying eggs
and returns to laying again shortly after the winter solstice, depending on the weather
conditions and geographical location [1].

5
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3.2 Behaviour in the vicinity of the queen
An important aspect of worker bee behaviour for this thesis is the behaviour in the
vicinity of the queen. According to previously published observations, specific patterns
in this behaviour can be observed [15]. Insights suggest that the queen is not in direct
contact with all colony members but only with a narrow subset of workers called court
bees.

The bees residing in the vicinity of the queen frequently lick her body, taking up
the specific pheromones she secretes. This scent is then passed on to other workers
through food exchange. The sign of the queen’s presence and the condition is thus
spread throughout the hive. These bees are constantly cleaning the queen. It is in
the colony’s best interest for the queen to thrive, and it is the frequent cleaning that
reduces the possibility of her becoming ill or infested with parasites [16].

Figure 3.2. Court event recorded by the experimental setup used in the thesis to collect
datasets. For illustration, the queen is highlighted in red and the court bees in yellow.

According to [15], the behaviour of the queen and the associated behaviour of her
court can be divided into several states: idle, patrolling, receiving food and laying
eggs. When the queen appears to be in an idle state, her movement is limited. Minimal
movement is often associated with the aforementioned cleaning and licking of the queen.
On the other hand, the patrolling state is associated with vigorous locomotion in which
the queen transfers between brood areas. During feeding, the queen is provided with
nutrition from the mouth of one of the court bees. In the case of egg-laying, the queen
slides her abdomen into an empty cell and places an egg inside. New individuals hatch
afterwards from these eggs.

3.3 Bee biology in robotics
Bee behaviour is the inspiration for many systems that address a wide range of problems.
Many algorithms implementing different aspects of bee behaviour are part of the field of
swarm intelligence. It refers to the activity of many independent agents whose sensing
is limited to their surroundings. However, based on self-defined responses to various
stimuli, the agents as a group can perform a specific task [17].

6
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An area which is an extension and application of swarm intelligence is swarm robotics.
It brings together multiple disciplines, engineering, computer science and biological re-
search. The effort in this field is to bring the knowledge of swarm intelligence to the
physical world through groups of robots. This approach has many obstacles but also
many advantages. Robots operating in swarms are usually not equipped with powerful
computing units, so the complexity of the algorithms needs to be minimised. At the
same time, many problems are related to robotics in general, such as noise in commu-
nication or other limitations in sensory data. On the other hand, swarms of robots can
be very resilient to the failures of individuals; they can react flexibly to environmental
changes or cover larger areas, for example, in space exploration problems [18].

Several solutions implement elements of bee behaviour in swarm robotics as well. An
example is the project of a swarm of foraging robots [19], which can find application
in space exploration. Other examples can be systems like CosΦ [20] or Phormica [21],
which seek to apply pheromone communication between agents using light-based non-
chemical methods.

7



Chapter 4
Image data extraction systems

In this chapter, the principles of state-of-the-art methods that are used for image data
acquisition are presented. In the context of this thesis, these are methods capable of
distinguishing individual objects in the form of bees and determining their location -
detection. Determining the position of particular objects over time is then dealt with
by tracking methods. The systems presented here fall under the domain of computer
vision. ”A computer vision system processes images acquired from an electronic camera,
which is like the human visual system where the brain processes images derived from
the eyes [22].” Most of the methods described here are based on the machine learning
approach, which will be explained in the following section.

4.1 Machine learning
Machine learning (ML) is an approach to programming in which a function (called a
model) is derived from data provided and can be applied to data previously unseen. The
data provided is called training data [23]. The principles on which ML is based have
been well known for a relatively long time. Still, it was foremost with the development of
GPUs and the associated massive parallelisation capability that this approach became
mainstream.

Machine learning can be divided into three main paradigms: supervised learning,
unsupervised learning, and reinforcement learning [23]. Which category a method falls
into depends on the information that is attached to the training data. In the case
of supervised learning, each sample is associated with a value from the model output
space (called a label). In the case of unsupervised learning, no additional information
is provided, and the algorithm is tasked with, for example, finding specific patterns or
clusters in the provided data. Reinforcement learning deals with decision making when
the associated value is delayed. Thus, the decision depends on the agent’s reward after
a series of steps [23].

An important concept of supervised learning, also for this paper, is classification.
Classification is a problem where the model function is of the form 𝑓: 𝒳 → 𝒦, where
𝒦 is a discrete set of classes 𝒦 = {0, . . . , 𝑘}, so that the empirical error on the training
data is minimised. 𝒳 represents a set of observable features in the form of single values,
vectors, images (matrices, tensors), or some other data format [23]. The resulting model
is called a classifier.

In the following, selected supervised learning methods used in this work will be intro-
duced. K-nearest neighbours (KNN) [24] is a method based on data classification based
on the distance of each sample. A sample falls into the most abundantly represented
class in the set of its 𝑘 nearest neighbours. All dimensions must have a given metric
in which distances can be calculated. The neighbour search is optimised using K-D
trees [24]. The Support Vector Machine (SVM) method [25] is based on linear data
separation in such a way that the gap width between samples from both classes is max-
imised. The method is robust to outliers, and despite being linear, it can be applied to
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linearly nonseparable data after applying the so-called kernel trick for dimensionality
lifting [25].

Neural networks (NN) is a traditional machine learning concept that resembles the
biological structure of the brain. It consists of multiple building blocks (neurons) that
have the following structure:

𝑦 = 𝑔(
𝑑

∑
𝑗=1

𝑤𝑗𝑥𝑗 + 𝑏),

where 𝑥𝑗 is the j-th component of the input vector 𝘅, 𝑑 is the number of dimensions of
the input vector, 𝑤𝑗 is the j-th component of the weight vector, and 𝑏 is the so-called
bias. The weights and biases are determined based on the input data in the learning
process. The function 𝑔 is a nonlinear activation function. Collections of neurons are
often connected in multiple layers with different numbers of these nodes. The connection
works on a one to each basis; therefore, such layers are called fully connected [23].

Convolutional neural networks (CNN) are widely used, especially for image process-
ing [23]. Compared to fully connected NNs, they reduce the required number of weights
by sharing them among neurons. Convolutional layers consist of so-called filters, which
are these shared weights. Each neuron in a convolutional layer receives input only from
a subset of the inputs from the previous layer (receptive field). Similar architectures
using deep neural networks are often referred to as deep learning [23].

4.2 Detection
Detection is a branch of computer vision that focuses on image classification [26]. The
system determines whether a given image contains a particular object or not. Depending
on the specific method, the system then provides additional information such as the
number of objects, their position in the image and other data (e.g. orientation in the
context of bee recognition). An object, in the sense of image detection, is a class of
objects, persons or animals that possesses common features such as colour or shape. [26].

Examples of traditional detection methods include the Scale-Invariant Feature Trans-
form (SIFT) [27] or the Histogram of Oriented Gradients (HOG) [28]. The SIFT
method is able to extract points from an image that are invariant to rotation, displace-
ment and resizing. Based on the extracted points, a classifier, here nearest-neighbour,
decides the resulting class. The HOG divides the image into a square grid, and for
each segment, a histogram of the intensity gradients is computed. Combining all his-
tograms produces a feature vector describing the image. Detection then works based
on classification using a machine learning method. Here the SVM method is used.

A noteworthy milestone in the field of image detection was the work of Paul Viola
and Michael Jones [29], who applied the machine learning technique AdaBoost for fast
face recognition in images. The methods used today; however, are commonly based on
deep learning (see 4.2). We can divide them into two groups, namely two-stage and
one-stage.

In the first stage of the inference process, two-stage algorithms use a neural network
to create regions. Generated regions are forwarded for further processing. In the next
stage, the classification of the found regions is performed, i.e., assigning classes and
creating positional information (e.g. bounding boxes). Typical adopters of this class of
systems are the R-CNN family of algorithms. On the other hand, one-stage detectors
estimate positional information directly from the input image. They can generally be
considered faster and are thus mainly used where fast real-time processing is required.

9
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The YOLO family of algorithms and the SSD series of detectors can be mentioned as
representatives [30].

4.2.1 Performance metrics

Two basic metrics are essential for measuring detection quality - precision and recall.
These metrics are only related to binary decision making; thus, they are calculated for
each class separately. The metrics are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

.

TP is the number of correctly detected objects, FP is the number of detected objects
that belong to another class or are not objects, and FN is the number of undetected
objects. Precision thus represents the quality of positive detections. The recall is the
ratio of objects correctly detected by the classifier.

A commonly employed metric is the F1 score. The F1 is the harmonic mean of both
precision and recall. Therefore, it takes into account both metrics. It is defined as
(× refers to multiplication):

𝐹1 = 2
1

Recall + 1
Precision

= 2 × Precision × Recall
Precision + Recall

.

Different precision-recall pairs will be obtained by filtering the detection results ac-
cording to their probability (as determined by the classifier). These pairs can be plotted
in a graph for different probability thresholds. The resulting graph is called a precision-
recall curve (here PR). The area under this graph is called the average precision (AP).
Since the observations are discrete, the area is replaced by a weighted sum in prac-
tice. Also, the curve derived from the empirical data is typically not smooth. Thus,
the evaluation of AP would be highly imprecise and more data sensitive. Therefore,
interpolation methods are used to calculate AP. A widely used method is an 11-point
interpolation. The resulting AP is then calculated as follows:

𝐴𝑃11 = 1
11

∑
𝑅∈{0,0.1,...,0.9,1}

𝑃𝑅𝑖𝑛𝑡𝑒𝑟𝑝(𝑅),

𝑤ℎ𝑒𝑟𝑒

𝑃𝑅𝑖𝑛𝑡𝑒𝑟𝑝(𝑅) = max
�̃�:�̃�≥𝑅

𝑃𝑅(�̃�).

Thus, the evaluation of the curve is only performed at eleven evenly spaced points,
with the appropriate value being sought from the threshold to the right. An alternative
is an all-point interpolation, which performs the same interpolation process but for all
recall values, regardless of their distribution [31].

The most commonly used metric for assessing the quality of a detection model is
mean average precision (mAP). The mAP is determined simply as the mean of all
average precisions over the individual classes part of the detection:

𝑚𝐴𝑃 = 1
𝑁

𝑁
∑
𝑖=1

𝐴𝑃𝑖.

In order to decide which detection category the detection belongs to (TP, TN, FP,
FN), the intersection over union (IOU) method is used in bounding box detection
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systems. As the name implies, the calculation for a single detection is the area of
intersection of the detection and ground-truth box to the area of their union:

𝐼𝑂𝑈 = 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡ℎ
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝐺𝑟𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡ℎ

.

Thus, we obtain a measure of how well the detection fits the annotated data. A
threshold is set to decide whether such a detection matches the truth. If the IOU of
the detection is less than this threshold, it is taken as false. The results of all the
fore-mentioned methods depend on the choice of this threshold [31].

4.2.2 R-CNN
The original R-CNN [32] system uses a selective search method to create so-called region
proposals. These regions represent parts of the image where a classifiable object could
be located. Each of the regions (about 2000) is cut and transformed to a specified
size. The resulting images are forwarded to the convolutional neural network. The
output is a 4096-dimensional vector characterising the object. A multi-class SVM [25]
method is then used in the feature vector space for final classification. ”R-CNN made
a breakthrough in object detection and improved detection accuracy on the VOC 2012
dataset by more than 30% [33].”

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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Figure 4.1. Overview of the R-CNN detection system [32].

In the following years, many improvements were developed that contributed to better
accuracy but predominantly higher speed, which was a significant bottleneck for R-
CNN. In 2015, the Fast R-CNN system [34] was introduced. The whole image is first
fed to a convolutional neural network. The output is a map of convolutional features,
from which regions are extracted using the Region of Interest pooling method. This
improvement caused a drastic increase in inference speed without sacrificing the quality
of the results.

In the same year, the Faster R-CNN system [35] was introduced to optimise the infer-
ence process further. Region proposals are no longer extracted using a pooling method
but another neural network, which shares some layers with the feature extraction net-
work. Further improvements to the R-CNN method were made in 2017 by the Mask
R-CNN method, which is based on R-CNN [33].

4.2.3 SSD
The Single Shot MultiBox Detector [36] (SSD) no longer uses a phase where candidate
regions are proposed, thus speeding up the inference and learning process considerably.
In the first step, feature maps are extracted from the image. In the case of the method
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proposed, it is a VGG16 convolutional neural network. The input image is divided
into a network of regular squares (locations). For a set of predefined bounding boxes
and each location, the probability that a particular box contains a specific class is then
derived for each class, including one reserved for no class. In addition to the individual
confidence values for each class, the location and size of the detected bounding box
relative to the predefined one is also output. The predefined final set of bounding boxes
is generated in the learning phase based on K-means clustering. Thus, these boxes
correspond to the usual sizes of all classes contained in the ground truth dataset. The
grid of location squares is multiple with different sizes so that the system is able to
detect objects with different dimensions [36]. Despite that, SSD does not achieve good
results in detecting small objects [33].

The DSSD [37] enhancement introduced in 2017 uses the ResNet-101 architecture for
feature map extraction while introducing further improvements to the detection step
that lead to better performance, especially on small objects [33].

4.2.4 YOLO

In contrast to two-stage methods, YOLO [38] (You Only Look Once) views the detection
problem as a regression problem in the space of bounding boxes and class confidence.
It uses a single pass through a neural network for detection, which analyses the input
image directly. Thus, YOLO exhibits a significant jump in speed compared to previous
methods [38].

The image is first resized to a 448×448 px, then fed into the convolutional neural net-
work. The network’s outputs are individual bounding boxes, including the probabilities
of each class. Eventually, those bounding boxes whose confidence exceeds a specified
threshold are selected. The neural network function works based on partitioning the
image into a 7 × 7 region grid. Bounding boxes of objects whose centre belongs to a
particular segment are detected separately. The neural network consists of convolu-
tional layers whose task is to extract features from each segment. This is followed by
several fully connected layers, which are responsible for predicting the boxes and class
probabilities [38].

The loss function of the YOLO algorithm is composed of three functions that take
into account multiple optimised aspects. Bounding box regression loss represents the
variation in box positions and sizes, object loss reflects the certainty with which the pre-
dictions are made, and the classification loss considers the error in the class assignment
for multi-class detectors [39].

The first version of the YOLO algorithm had many drawbacks in the form of inac-
curacy and struggle with objects at segment boundaries. Therefore, an improvement
was introduced a year later with the YOLOv2 [40] algorithm. For example, in this
version, the fully connected layers responsible for box prediction were replaced by a
system using the initial box sizes from the training data, similar to the SSD method.
Furthermore, class detection was tied to individual bounding boxes. These and other
improvements dramatically increased the detection accuracy [33].

The next generation YOLOv3 [41] implements features such as binary cross-entropy
loss function, multi-scale framework and feature-pyramid for greater adaptability to
different sized objects. Furthermore, Darknet-53 architecture is used as the backbone of
feature extraction, based on Darknet-19 and ResNet architectures. These improvements
have led to further improvements in accuracy, especially on small objects [41].

Two additional versions of the YOLO algorithm were released in succession. Version 4
introduces many innovations, which include mosaic data enhancement, self-adversarial
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making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S × S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predictsB bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ∗ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Classi|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S×S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7× 7× 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1× 1 reduction layers followed by 3× 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

Figure 4.2. Simplified demonstration of the bounding box detection process using the
YOLO method [38].

training and cross mini-batch normalisation [42]. YOLOv5 [43] does not introduce
much novelty; however, it implements the system in Python using the PyTorch library,
making integration easier for many authors.

4.2.5 YOLOR
You Only Learn One Representation [44] (YOLOR) is currently considered state-of-
the-art in the field of real-time image detection. The authors of this method aim to
create a multipurpose neural network that uses not only the knowledge learned from the
training data designed for a given task (explicit knowledge) but also the subconscious
knowledge (implicit knowledge) that the system acquires while learning different tasks.

While multi-task learning is still in a hypothesis state, the quality of the model for
object detection has been demonstrated. When tested on the MS COCO benchmark
dataset, YOLOR achieved comparable mean accuracy (mAP) to Scaled-YOLOv4 (an
enhanced version of the v4 classifier) at twice the inference rate [44].

4.3 Tracking
Object tracking is a field of computer vision that deals with determining the location,
path, and characteristics of an object of interest. ”The typical objectives of object
tracking are the determination of the number of objects, their identities and their states,
such as positions, velocities and in some cases their features [45].”

A major challenge for multi-object detection systems is the various sources of un-
certainty. Objects can move in unpredictable ways, their numbers changing over time.
Camera images, or sensory measurements, are generally affected by noise, making the
task more difficult. Especially for multi-object detection and dense object crowding
detection, they face different types of occlusions that make subsequent identification
difficult.

Object tracking methods can be classified according to several criteria. First of all,
single-object, which, as the name suggests, deals with detecting only one object instance
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in a series of consecutive images, and muti-object detection, which extends the detection
capabilities to multiple objects independent of each other [30]. In this thesis, we will
mainly deal with multi-object detection systems.

The division between online and offline methods divides the systems according to
sequence completeness requirements. Offline methods perform analysis on the entire
video sequence. They can thus use additional information based on this fact. Offline
methods are then often transformed into a graph search problem, where the vertices are
single detections, and the edges are distances and time deviations between individual
detections. On the other hand, online methods can be applied to real-time object
tracking without knowledge of future situation evolution [46].

Another possible categorisation of methods is generative and discriminative. Tra-
ditional methods fall into the class of generative models. These methods include the
mean-shift tracking method, particle filter and Kalman filter [30]. This chapter will
discuss selected discriminative methods based on deep learning, which are currently
considered state-of-the-art [46].

4.3.1 Performance metrics
Widely used metrics for evaluating the quality of a tracking system and for comparing
individual methods are Multiple Object Tracking Accuracy (MOTA) and Identification
F1-score (IDF1) [47].

The MOTA metric is defined as follows:

MOTA = 1 −
∑𝑡 𝐷𝑒𝑡𝐹𝑁𝑡 + 𝐷𝑒𝑡𝐹𝑃𝑡 + 𝐼𝐷𝑆𝑤𝑡

∑𝑡 𝑁𝑡
,

where 𝐷𝑒𝑡𝐹𝑁𝑡 is the number of all miss-detected objects, 𝐷𝑒𝑡𝐹𝑃𝑡 is the number of
false positives for all classes, 𝐼𝐷𝑆𝑤𝑡 is the number of identifier swaps, and 𝑁𝑡 is the
number of ground truth annotations; all at time t. The formula shows that detection
errors easily overwhelm the errors caused by imperfections in the tracking algorithm,
causing identifier swaps and dropouts. Despite that, the MOTA metric is the most
widely adopted [47].

IDF1, in contrast to MOTA, gives more weight to correct tracklet joining over accu-
rate detection. The calculation of this metric uses a bijective representation between
ground-truth trajectories and the trajectories predicted by the method under test. This
matching is optimal in the sense that it maximises the number of frames in which the
matched trajectories overlap. This value is called IDTP (Identification True Positives).
An overlap is counted if the IOU of the detection and prediction is greater than or
equal to zero in a particular frame. The Hungarian algorithm [48] is used to optimise
the matching [49]. Then the identification precision and recall can be defined:

ID-Recall = 𝐼𝐷𝑇 𝑃
𝑁

, ID-Precision = 𝐼𝐷𝑇 𝑃
̂𝑁

,

where 𝑁 is the total number of ground truth boxes and ̂𝑁 is the number of boxes in
the predicted tracks. IDF1 itself is then defined as follows [47]:

IDF1 = 𝐼𝐷𝑇 𝑃
1
2 (𝑁 + ̂𝑁)

.

The HOTA (Higher Order Tracking Accuracy) metric is also frequently used. Unlike
the two methods presented here, it combines both detection and tracking quality fairly.
At the same time, it can be decomposed into multiple metrics that focus on different
aspects of the quality of the method output [49].
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4.3.2 SORT
Simple Online and Realtime Tracking is a tracking method based on convolutional neu-
ral networks. FrRCNN (a variant of R-CNN) was employed as the detection backbone.
The estimation model is based on the Kalman filter, and the identifier assignment is
based on the IOU metric and optimised using the Hungarian algorithm [50]. SORT
achieved 74.6 MOTA (76.9 IDF1) on the MOT17 dataset. Although it achieved results
comparable to state-of-the-art methods at the time, it faced several problems (e.g., poor
performance in an overlap setting) [51].

4.3.3 DeepSORT
DeepSORT is an improved version of the original SORT method. The authors replaced
the association metric used with a metric that combines motion and appearance [52].
The authors were thus able to increase the amount of time an object could be located
behind another object, greatly reducing the number of identity swaps. DeepSORT
achieved 75.4 MOTA (77.2 IDF1) on the MOT17 dataset [51].

4.3.4 ByteTrack
The main idea behind ByteTrack is to use bounding boxes from the full range of confi-
dence values as extracted from the detection method. Thus, it contrasts with previously
developed methods that only analysed detection boxes with high object probability. Ob-
jects with lower confidence can often indicate the presence of an occluded object [53].
Byte track obtained 80.3 MOTA (77.3 IDF1) on the MOT17 dataset. ByteTrack rep-
resents the current state-of-the-art method for multi-object detection [51].

4.4 Bee-specific methods
Data collection from observation hives was a purely manual exercise in the past. ”Over
the last decades, various aspects of the social interactions in honey bee colonies have been
investigated with remarkable efforts in data collection [54].” However, with relatively
recent breakthroughs in computer vision and machine learning, these technologies are
increasingly being used for research purposes in the animal kingdom as well.

An essential step in data extraction is the detection of individuals. It is necessary to
determine the location of individual bees in a video recording of honeycomb activity.
It is also desirable to determine the orientation of the colony members found, as this
information is further used in the search for movement trajectories. Optional informa-
tion extracted from the video footage can also be the size of the bee in the form of
an oriented or non-oriented square bounding of the found object. The size information
can be further used, for example, to distinguish between different types of bees, such
as queens or drones.

Multiple object tracking is a challenging topic in computer vision. It has to deal
with difficulties such as changing appearance, irregular motion, dynamic illumination,
overlapping objects and also object substitution [55]. In the case of generating trails of
individuals, it is necessary to link the separate occurrences marked and identified in the
recognition phase in each image. Due to the problems mentioned above, detections of a
given individual may be missing in some images or image sequences. Short sections of
traces called tracklets are created. The task of the algorithm is to correctly combine the
resulting segments so that the movement in time of the missing detections corresponds
to the most probable state.
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4.4.1 Marker-based methods

A frequently used method for analysing bee behaviour is the marking of individuals
using distinctive markers. An example could be the experiment of Thomas D. Seeley [1],
who used multicoloured numbered tags to experimentally study phenomena such as
nectar collection and water collection. Manual tagging of bees is a tedious activity but
shows many undeniable advantages. Bees are easily identifiable and safely recognised
even after leaving and re-entering the hive. Furthermore, bees can be easily identified
outside the observation hive, which paves the way for various field observations and
monitoring of foraging. Apart from the requirement for manual tagging, a significant
disadvantage of the described method is the necessity to tag new individuals constantly.
If the method relies on identifiers with a finite number of unique values, this can hinder
long-term observation. Another problem may be that extraneous markings interfere
with the bees’ natural colouring and may expose them to predators in the outdoor
environment. At the same time, frequent entry into the hive to add markers for new
individuals disrupts the colony and potentially affects the collected data. Despite that,
marker methods have been used in a number of automated systems.

Several systems use manual marking of individual bees for identification using small
fiducial markers containing coded images (similar to QR codes). Solutions such as [56]
use a 26-bit correction code to minimise recognition errors. The fiducial marker system
used in this solution is bCode. This allows the true bee identifier to be computed in
the case of partial label occlusion. However, this approach requires the usage of an
expensive industrial camera with very high resolution. The camera lens also plays an
essential role, as high sharpness while maintaining the highest possible lens speed is
required. Another disadvantage is that the dependence on correct tag detection is high,
and images in which the bee is not detected are not considered. Thus, many tracklets
(segments of the true trajectories) are created.

Figure 4.3. Demonstration of the application of bCode markers to detect and track bees
to analyse social networks among colony members [56].

The system BeesBook presented in [54] dispenses with the need to add a correction
code and allows more space for the identifier itself, thus reducing the demands on the
camera resolution. It computes the probability of the identifier in the case of insufficient
visibility from the spatio-temporal data of the last occurrence of the candidate label.

The tracking task in BeesBook consists of two phases. First, tracklets of consecutive
detections are created. For each frame, the selection of the subsequent detection to ex-

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Bee-specific methods

Figure 4.4. A Example of a tag used in BeesBook. The centre of the tag consists of two
contrasting semicircles that define the bee’s orientation, with the white semicircle pointing
towards the head of the bee and the black one towards the abdomen. Around the rim is a
series of twelve white and black segments that decode the bee’s identification number (up

to 4,096 possible identifiers). B Example of tag placement on the thorax of a bee [54].

tend an existing tracklet is made from the available detections up to a certain distance
threshold. Three different features are then used for comparison, based on the positions
of the detections being compared and the Manhattan distance probabilities of the bit
identifiers. SVM [25] machine learning technique is then employed to obtain the proba-
bility that a pair of detections belongs to the same bee. The Hungarian algorithm [48]
is then used to find the optimal extension of the tracklets. A tracklet is terminated if
the optimal extension assignment has a probability of less than one half.

The second phase of tracking is merging the created tracklets. For this, the authors
experimentally derive a set of six features that define the relation of the end of one
tracklet to the start of a candidate tracklet. For example, this set contains the Euclidean
distance between the end of one tracklet and the beginning of another, the forward and
backward extrapolation distances error between the ends of candidate tracklets, or the
difference in the angles of rotation of the bee at the end and the beginning of candidate
tracklet fragments. The set also contains metrics that take into account the difference
between the detected identifiers. Deciding whether one tracklet is a continuation of
another is done by a machine learning classifier, this time a random forest classifier [57].
With the presented two-step method, the authors have shown a significant improvement
in the quality and accuracy of the generated trajectories compared to a method that
depends only on identifier recognition. The proportion of completed trajectories without
errors was improved by 67%.

4.4.2 Marker-less methods

Advances in research and development of convolutional neural network architectures
allow this technology to be used for both multi-object detection and pose detection and
feature extraction for object identification [58]. Methods such as [59] have demonstrated
that it is possible to use statistical machine learning methods to analyse bee behaviour
without the use of markers, albeit on a smaller scale. Methods like [60] in turn show
how convolutional neural networks can be used to identify objects, namely different
species of small animals (ants and fish).

In the system presented in [58], the authors completely do away with the need for
physically tagging bees, using a feature called ’pixel personality’ to help with object
identification. ”Importantly, previous work has shown that seemingly identical organisms
do carry distinct visual features, also termed ’pixel personality’, which can be quantified
and leveraged for markerless tracking [58].”
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Detection works in two phases. It is based on a modified U-Net architecture [61] that

was originally developed for biomedical image data segmentation. The model extracts
regions of pixels that form a single individual. For each pixel, the output is the decided
class membership and also the likely orientation angle of the bee. In the second stage
of detection, the output values for each pixel are used to form clusters with statistically
similar values. The orientation is then extracted using the PCA method as the first
principal component of pixels belonging to one cluster. The body orientation is then
decided by the mean value of the extracted angles belonging to a particular cluster.

For tracking, identification is again utilised together with the spatio-temporal orien-
tation of the bee. At the start of the algorithm execution, all detections are treated as
trajectories of length 1. The trajectories are then incrementally extended, considering
only detections within a certain, dynamically determined distance from the end of the
tracklet. The algorithm terminates if there are no more free detections not involved in
any trajectory.

Figure 4.5. Example of the detection pipeline used by the neural network in the project
for markerless bee tracking [58]. A Input annotated frame. B The Input annotations
are used to create pixel regions, top: class definition, bottom: orientation definition (the
colour assigned to the angle can be deducted from the colour circle). C Schematic of the
U-Net architecture used, including an illustration of the enhancement of using the inference
output from the previous frame as a prior. D Output evaluation of individual pixels. E

Resulting detection produced by clustering the output regions.

Identification is based on feature extraction. The Inception V3 architecture [62] was
chosen for this task. A 64-dimensional feature vector representing the particular bee
is extracted from the cuts of all candidate detections. The Euclidean distance between
the last detection vector in the extended trajectory and the candidate detection is taken
into account in the spatio-temporal detection fusion algorithm.

According to the authors, the system’s performance can be considered relatively high.
77% of the bees were correctly detected on a dataset upon which the system was not
trained. On the training dataset, 70-86% of the bees were recorded as assigned to the
correct trajectory using cross-validation.
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Chapter 5
Materials and Methods

5.1 Key performance indicators
Key performance indicator (KPI) is a performance metric used mainly in business
and economics. Established indicators assess the level of success of an organisation
or project. ”KPIs act as a set of measures focusing on those sides of organisational
performance that are critical for the success of the organization [63].”

In general, KPIs can be thought of as metrics that characterise the performance of a
system in crucial areas of the addressed problem. In the case of the systems compared
in this thesis, the key performance metrics can be divided into three areas in which
the systems are compared separately - detection, tracking and court bees detection.

5.1.1 Detection
The detection metrics chosen to assess the performance of the systems are either generic
or proprietary. Because the outputs of the methods under review take various forms, it
was necessary to establish a set of common metrics that fairly represent performance
on the test dataset.

Precision/Recall and F1-score (see 4.2.1) on the set of detected bounding boxes were
selected as suitable common metrics. Methods such as YOLO create rectangles that
encode the area filled by the detected object with a certain probability. Markerless
tracking [58], on the other hand, detects the centre of the bee and the orientation of
its body. It also does not support computing the detection’s confidence. The output
detections from the markerless system can be converted into a set of bounding boxes
based on the size of the bee and the elliptical shape of its body. In this way, both
methods can be unified to the same output format, except for the detection probabilities.
The aforementioned metrics do not depend on these probabilities and yet are richly
indicative of the quality of bee detection. A detection is considered successful if its
highest IOU value against all ground-truth boxes exceeds a specified threshold. A
threshold of 0.5 was chosen for the evaluation. The code from the Treesfive/calculate-
iou [64] project was used to calculate the intersection over union value between two
bounding boxes.

The individual methods also offer additional metrics. However, these can be used to
determine the quality of only a single method or compare the quality of different models
of a single method. In the case of the YOLO detectors, this is mainly the mAP metric
(see 4.2.1). This is based on the existence of probabilities of individual detections and
thus gives a better indication of the quality of the detection independent of the chosen
threshold for the probabilities. The Merkerless method offers several metrics used to
calculate loss functions employed to optimise segmentation.

. Foreground overlap expresses the number of pixels detected by the segmentation
model as part of a bee to the total number of pixels containing bees from the ground
truth dataset.
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. Background overlap defines the ratio of the number of segmented pixels not covered

by bees to the number of background pixels from the ground truth dataset.. Class error defines the number of misclassified pixels to the number of pixels in
the image. Classification is performed between the visible bee, bee inside cell and
background classes.. Angle error, the average deviation of the detected angles from the ground truth
angles.

However, these metrics are only related to the segmentation extraction phase.
Thus, they do not reflect the quality of the resulting detections derived from the seg-
mentation.

5.1.2 Tracking
The traditional MOTA and IDF1 metrics (see 4.3.1) were chosen to evaluate the tracking
quality. These methods are again based on bounding box evaluation. A threshold of
0.5 IOU is set to match the predicted bounding box and the ground truth box. As with
the detection metrics, the output detections of the markerless method are converted to
bounding boxes based on knowledge of bee size and elliptical body shape.

The markerless method offers as an additional metric the overlap between ground
truth trajectories and the tracks detected [58].

5.1.3 Court detection
A machine learning approach was chosen for the classification of court bees. Thus,
the basic KPIs chosen are again precision/recall and f1-score for each class, as well as
the accuracy metric. Accuracy is defined as [65]:

Accuracy(𝑦, ̂𝑦) = 1
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑
𝑖=1

1( ̂𝑦𝑖 = 𝑦𝑖),

where 𝑦 is the vector of ground truth classes of individual samples and ̂𝑦 is the vector
of their predictions. 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of samples. 1() is a function that
returns one if the argument is true and zero otherwise.

In the context of machine learning, we can also define the metric as follows:

Accuracy = TP + TN
TP + TN + FP + FN

.

Thus, the ratio of all correct predictions to all observations.

5.1.4 Other system properties
The presented systems also have other characteristics that have to be taken into account
when comparing their performance.. Inference speed - How long does it take to process an hourly record. Does the system

support parallelisation? Is the system capable of real-time processing and online
processing?. Computational power requirements - How demanding the system is in terms of com-
putational power and memory.. Detection capability in case of bee overlap. Adaptability to various conditions - for example, light conditions. Difficulty of experiment preparation - How difficult is the data preparation/data
collection? Is any special preparation required prior to observation (e.g. having to
mark individual bees manually)?
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5.2 Experimental setup

For the purpose of collecting experimental data, a laboratory setup was created. This
apparatus was built in collaboration with the Artificial Life Lab, Institute of Biology,
University of Graz. A recently renovated double room in the building of the University
of Graz, with one observation hive, was allocated for the installation. The setup consists
of a separate double-sided observation hive, which contains two observation combs on
top of each other. The observation hive consists of a wooden frame and two transparent
Plexiglas walls. An opening is located at the bottom of the wooden frame, which
the bees can use to move freely between the hive and the outside environment. At a
distance of 60 cm from the hive face, there is a wooden frame. Two lighting panels are
fixed on the sides of the frame, each with six Synergy 21 LED Retrofit 4x1W IR lamps
with a wavelength of 850 nm. Two Arducam B0274 camera modules with an IMX477
1/2.3� 12.3MP (4056×3040) sensor and a removable IR cut filter are attached to each of
the two frames. The lens has a fixed focal length of 6mm with speed F1.2 and variable
aperture. The cameras are directly connected to Nvidia Jetson Nano or Nvidia Jetson
Xavier microcomputers that perform the data pre-processing. The entire installation,
including the hive, is covered with black non-woven fabric to minimise light fluctuations
and eliminate distracting elements that could affect bee behaviour and data quality.
The collected data is then sent via a shared router to the master computer (CPU:
AMD Ryzen 9 5900X 12-Core, GPU: Nvidia GeForce GTX 980, RAM: 2 × Corsair
Vengeance LPX 32GB DDR4) for subsequent analysis and saving to a remote NAS
server.

Figure 5.1. Demonstration of mounting the cameras on a wooden frame. The cameras are
directly connected to the microcomputers.
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Figure 5.2. Connection diagram of individual components of the experimental setup.
A Nvidia Jetson Nano microcomputer (courtesy of nvidia.com), B Camera Arducam
B0274 (courtesy of arducam.com), C Observation hive, D Central router, E Nvidia Jetson

Xavier microcomputer (courtesy of nvidia.com), F Master computer.

5.3 Robotic Operating System
The Robotic Operating System (ROS) is a software layer on top of the host operating
system that provides synchronous and asynchronous communication between the com-
putational nodes of the robot control and monitoring system. ROS allows abstraction
over the hardware structure of the robotic device and the interaction of its often dis-
tributed components [66].

ROS Noetic was used to implement the software layer of the experimental setup.
The system is tasked with providing communication between the various components
of the observation apparatus, which are responsible for recording image data from
the observation hive and real-time analysis. ROS allows for creating and managing a
scalable system, permitting easy diagnosis and visualisation of the resulting data at
various levels.

ROS allows full use of the host operating system. In our case, this is Ubuntu Linux
20.04. Therefore, it is possible to use standard operating program tools in combination
with a wide range of user packages provided within the ROS distribution or by other
developers as part of the ROS ecosystem. Many tools and libraries that are often used
in robotics are already included in the original installation of the system.

The philosophical goals of ROS, according to the system authors, are as follows [67]:

. Peer-to-peer. Tools-based. Multilingual. Thin. Free and Open-Source

Peer-to-peer refers to communication scheduling between compute nodes. In contrast
to alternative client-server based systems, ROS can operate in heterogeneous topology
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networks of distributed systems. Thus, it can optimise traffic on individual physical
links.

The individual components of ROS implement the loose coupling principle. They
try to distribute the system’s functionality as much as possible to increase stability in
case of failure of certain components. The tool-based approach also emphasises many
separate tools that can be used for other tasks such as diagnostics and visualisation
that are not directly related to vital processes.

ROS supports many programming languages natively. This does not limit the user
in their choice. It allows for a diverse composition of projects, allowing developers to
choose a language according to a specific task or their preferences.

The system supports the independence of individual components from the base sys-
tem so as to maximise reusability. The compute nodes themselves should then be ’thin’,
only combining functionality from different modules and libraries and integrating them
into the system communication.

ROS is developed under a BSD license, which allows various applications, including
commercial usage. This opens up the possibility of community development, which
presents many potential improvements and regular updates and a higher probability of
discovering various bugs, etc.

The basic building blocks of the system are nodes. These are the processes in which
the logic itself is executed. Nodes communicate with each other by sending messages
that have a clearly defined structure. ROS offers many types of predefined message
types for standard communication purposes; however, it also offers the possibility to
define custom composite message types. Messages are sent to a topic, a name (a form
of address) where messages can be sent and from where they can be received. Such
publishing is done in the form of broadcast (potentially multiple recipients). In the case
of one-to-one interaction, it is possible to use a service which implements a request-
response communication. Nodes can be further structured into packages and meta-
packages, which helps maintain a clear structure of the project [67].

The fundamental component of the system is the master. The master name server
provides the interconnection of the nodes. It is launched with the roscore command.
The catkin tool is used to build packages. CMake language is employed to define
the dependencies that catkin uses during the build. The individual dependencies are
then listed in the file CMakeList.txt. The rosrun tool is used to run a single node. If
a package is composed of multiple nodes, it usually makes sense to build a graph from
these nodes, which will later be launched as a unit. The definition of such a network can
be specified in an XML file with the .launch extension, along with shared parameters
and other attributes. The roslaunch tool is used to launch a network of nodes defined
in this manner [66].

The rosbag tool can be used to record messages received on a selected topic.
The recordings are stored in files with the .bag extension. Replaying the bag file
simulates the system’s state at the time of recording. This allows to test system
components or visualise the robot in the simulator.

Applications such as RViz or rqt_image_view can serve as data visualization tools.
The RViz application acts as a subscriber node that listens on the specified topic. A
wide variety of data can be visualised. Apart from 2D image data, 3D data such as
point clouds generated by lidars or stereo camera systems (Intel RealSense, Kinect etc.)
can be displayed.
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5.4 ROS pipeline
Based on the ROS system, an automated pipeline was created. The task is to collect
and archive data and analyse it online or share interesting statistics via social media.

For each of the four monitored combs, a separate pre-processing of the data is per-
formed. The nodes rr_camera, rr_whycon, and rr_cropper are active on the individual
microcomputers. The camera node serves as a driver for the hardware recording de-
vice. The WhyCode node implements a circular ID-less fiducial marker introduced first
in [68], extended by an encoding scheme in [69], and improved with a full 6-DOF estima-
tion in [70]. Detailed use of the marker in RoboRoyale is described in [71]. The tracked
marker is placed on the queen’s thorax. Whycon also handles the detection of tags
at the corners of the combs, based on which positions a homography matrix is com-
puted. The cropper node provides image cropping in the vicinity of the queen. Thus,
it simulates a robotic camera manipulator moving simultaneously above the queen.

Comb (4x)

image

image

Camera
bee_positions

bee_detections

Whycode Cropper
queen_position

Collector

tweet

Statistics

Twitter

court_visualization

court_positions
Court
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Record

queen_position

Hive

Figure 5.3. Simplified communication diagram between computational nodes of the ex-
perimental setup system. Ovals represent nodes, and arrows represent communication

channels. The nodes created by the author are highlighted in burgundy.

The nodes in the comb group are also part of the hive group. The collector node han-
dles the collection of data from individual devices. It also decides which of the received
detections and crops of its surroundings indeed represent the queen and will be passed
on to the court node (see 6.6.1). Data about the queen’s movement and her court bees
is received by the statistics node, which takes care of its archiving and aggregation.
Interesting statistical data and logging information about the state of the system can
be periodically sent to the Twitter account via the twitter node (see 6.6.3). Image and
other data is stored on remote storage via the record node.

The system is implemented in such a way that it is scalable. Thus, there can be more
hive groups, which allows parallel monitoring of more colonies at a time and therefore,
more objective research conclusions can be drawn.

5.5 Datasets
Experiments were performed on data obtained from the experimental setup. A dataset
consisting of images taken on March 17 and 18, 2022 was used to establish the YOLO
detection model. The dataset consists of ten randomly selected images from combs
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0 and 3. The cameras used for the two combs have different settings, and therefore
the images do not have identical parameters and differ in the amount of noise and
brightness. In an attempt to generalise the resulting model, five images from each of
the aforementioned honeycombs are represented in this dataset. The images and their
annotations are cut into 60 squares of size 1024 × 1024. The posted dataset is split into
training and validation data at a ratio of 9:1. The training dataset contains a total of
3258 individual annotations, and the validation set 323 annotations.

The annotated detections are located in the text files. Each frame has a corresponding
detection file. One line of the file contains the description of one detection bounding
box in YOLO format:

<left> <top> <width> <height> ,

where left is the number of pixels between the left edge of the box and the left edge
of the image. Same for the top value, respectively. The width and height define
the dimensions of the bounding box in pixels. All values are normalised by the width
and height of the entire image [43].

Figure 5.4. A sample of one frame from a dataset containing images of entire honeycombs.
In this case, it is comb 0 from May 17, 2022.

The markerless bee detection model requires images in temporal sequence. Thus, it
was impossible to use the annotations from the first dataset, created upon randomly
selected images. A new dataset was constructed, consisting of forty 1024 × 1024 images
that are aligned such that the queen is located in the centre of the crop. The images
are from the 14th hour of recording on March 18, 2022. The images and annotations
are reduced to half the size to match the pre-trained model of the U-Net segmentation
neural network used. The detections, in this case, are in a proprietary format [58].
Again, each image file has an adequate text file associated with it. Each line contains
one detection, representing one bee in the image. The detection line is in the format:

<x>,<y>,<class>,<orientation> ,

where x and y represent the coordinates of the centre of the bee, calculated from the left
and top edges of the image, respectively, class represents one of the supported classes
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Figure 5.5. Example of cropped data centred on a honeybee queen. Left: sample of
the frame itself. Right: sample frame with ground truth annotations.

(visible bee = 0, in-cell bee = 1), orientation is the direction of rotation of the bee’s
body. A bee with orientation 0 faces upwards, and its orientation value increases
clockwise. Orientations are in degrees from the interval [0; 360).

A test dataset was created to test and compare the performance of each detection
and tracking method. It consists of nineteen consecutive images aligned to the honey-
bee queen’s body. The images were taken on March 18, 2022, during the 17th hour of
recording. Annotated detections in markerless system format also accompany the im-
ages. The dataset contains a total of 2320 annotation labels. In addition, the dataset
contains a folder of ground truth verified trajectories to evaluate the tracking perfor-
mance. Each unique identifier assigned to individual bees has a corresponding text
file. One line of the file represents one detection belonging to a particular identifier.
The lines of the file are in the format:

<frame-id>,<x>,<y>,<class>,<orientation> ,

where frame-id represents the identification number of the frame in which the detection
was made, the other parameters then match the format for the detections.

A separate dataset was created to train and validate a classifier, distinguishing bees
within and outside the court. It consists of more or less randomly selected images
from March 2022. The images used are again queen-centred and contain court events.
Ground truth annotations have been kindly provided by experts from the University
of Graz. The annotations apply the same format as the markless system but add an
additional court bee class (= 2) to represent bees interacting directly with the queen.

Ground truth data annotations were created using a modified version of the Dense
Object Annotation application [72]. The program has been extended with the ability
to change the class of the placed annotations, zoom the image detail view, and add a
new annotation class for bees that are part of the court.

A Python script was created to convert the annotations between the Markerless
tracking and YOLO formats. The dimensions of the detection bounding box are derived
as follows:

BoxWidth = 2√𝑎2 cos2(𝛼) + 𝑏2 sin2(𝛼),

BoxHeight = 2√𝑎2 sin2(𝛼) + 𝑏2 cos2(𝛼),
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where 𝑎 is half the length of the bee (semi-major axis of the ellipse), 𝑏 is half the width
of the bee (semi-minor axis of the ellipse), and 𝛼 is the angle defined in the markerless
annotation format description + 𝜋

2 .
All created datasets are enclosed (see Appendix A).

5.6 Libraries used
In the following section, the programming libraries used in this thesis will be described.
The OpenCV [73] library provides many tools for the manipulation of images and video.
The algorithms provided facilitate the work, especially in computer vision research.

Scikit-learn [74] is a python library that provides efficient implementations of many
machine learning algorithms. Individual methods offer a standard API, so the library
allows easy experimentation with a wide range of methods.

Imbalanced-learn [75] is an open-source library that serves as an extension to Scikit-
learn. The implemented algorithms deal with problems of imbalanced datasets. In
the case of this work, under-sampling methods were used.

The MLxtend [76] library was used to render decision boundaries for each classifier.
It primarily serves as an extension for Scikit-learn while implementing many additional
algorithms suitable for building and evaluating machine learning models.

A number of visualisations were created during the experiments using the Mat-
plotlib [77] library. The tool implements a straightforward API for creating many
standard figures and graphs.

The py-motmetrics [78] library implements an API for assessing the quality of multi-
object tracking algorithms using a set of defined metrics. The user defines an instance
of the MOTAccumulator class, on which the user in each frame records the ground truth
identifiers, the output identifiers of the tracking method and the relationship between
them. These relationships are defined by a distance matrix, which, in the case of MOT,
corresponds to the IOU values between every two boxes. This matrix can be calculated
using the distances.iou_matrix method, also provided by the library.

5.7 Other software
The experiments were implemented in the Python programming language [79]. Python
provides a friendly environment for creating machine learning models (see 5.6). At
the same time, all assessed methods were also implemented in this language. Finally,
the ROS system offers the integration of this language as one of the natively supported
languages, for which it also provides solid documentation.

Some experiments were performed in the Google Colab [80] environment, which offers
free cloud computing resources for research and development.

Computationally intensive experiments were performed on the high performance com-
puting cluster RCI [81] at the Czech Technical University. The supercomputer offers 61
nodes with specific purposes (CPU, multi CPU and multi GPU installations), designed
for computationally intensive research projects.

Weights & Biases [82] is a platform that offers the possibility of online monitoring of
machine learning experiments. It allows to visualise in real-time the results of experi-
ments and the state of the hardware, organise and reproduce the obtained results, and
assess the performance of the produced models.
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Chapter 6
Results

This chapter will present the results of the individual experiments performed. All
program bases and created models are enclosed (see Appendix A).

6.1 YOLO detector

The aim of this part of the project was to create a trained YOLO classifier that will be
able to detect individual bees on the acquired experimental data. YOLOv5 [43] system
was chosen for this experiment. Version 5 is one of the latest iterations of the algorithm,
providing a friendly environment for incorporating the algorithm into a custom Python-
based system. In addition, this project offers a link to an online platform for visualising
and managing machine learning experiments - Weights & Biases [82].

For training and validation, 40 images of 1024 × 1024, the original size of the source
cutouts (see 5.5), were used. Experiments were run remotely on the RCI computing
cluster [81] using a single NVIDIA Tesla V100-SXM2-32GB graphics unit. A total of
300 training epochs were performed, with the best mAP values on the validation dataset
achieved at epoch 97 with a mAP@0.5 value of 90.82%. Further in the process, the
detection quality stagnated (see Figure 6.1). In the case of F1 scores, the same break
in the trend of improvement around the 100th epoch can be observed.
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Figure 6.1. Values of mean average precision during the training process. Predictions with
an IOU to a ground truth greater than 0.5 are considered valid.

A continuing downward trend can be observed in the training dataset on the loss
function progression visualisation. However, both bounding box regression loss and
objectness loss have stabilised on the validation data.

The created YOLO model was tested on a test dataset (see 5.5). The model achieved
results shown in Table 6.1.
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Figure 6.2. Loss function values on the training and validation datasets during the training
process. Results on the training dataset in the upper half and results on the validation

dataset in the lower half.

Figure 6.3. Sample of YOLO classifier output detections.

Precision Recall F1 mAP@0.5 time memory

92.5% 73.3% 81.8% 81.6% 92.41 ms 2249 MiB

Table 6.1. Resulting performance statistics of the YOLO model on the test dataset. Time
represents the average time for inference of one frame; memory represents the amount of

RAM used by the program, both on the master computer of the experimental setup.
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6.2 Markerless bee detector

This part of the project aimed to establish a detection model for the Markerless Track-
ing system [58]. The model was created using a dataset consisting of 40 consecutive
images centred on the queen (see 5.5). The training process was performed on the RCI
cluster [81] using a single NVIDIA Tesla V100-SXM2-32GB GPU. The model is built
upon the 1000th epoch of the pre-trained model, which is extended by an additional
300 epochs.

0 50 100 150 200 250 300 350

1

2

3

4

Loss

train
test

0 100 200 300
0.4

0.5

0.6

0.7

0.8

0.9

Foreground overlap

train
test

0 100 200 300

0.1

0.2

0.3

0.4

0.5

0.6
Class error

train
test

Figure 6.4. Evolution of the values of selected parameters during training of the Markerless
detection model. The x-axis represents training iterations.

While the overall loss function on the validation set decreased mainly in the first
fifty iterations, the class error showed continuous improvement throughout the training
period. Angle error tended to oscillate in the area around the value of 0.35. During
experiments with a more significant number of iterations (up to 3000), the monitored
parameters tended to diverge, except for the background overlap, indicating over-fitting.
Therefore, the enhancement of 300 iterations of the pre-trained model has been chosen
for the final model.

The created Markerless model was tested on a test dataset (see 5.5). The model
achieved the following results:
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Precision Recall F1 time memory

79.3% 88.1% 83.3% 358.97 ms 964 MiB

Table 6.2. Resulting performance statistics of the Markerless detection model on the test
dataset (mean values). Time represents the average time for inference of one frame; memory
represents the amount of RAM used by the program, both on the master computer of the

experimental setup.

6.3 ByteTrack tracker
The original implementation [53] was employed to implement the usability evaluation
of the ByteTrack tracking system. The BYTE tracking algorithm was combined with
the earlier developed YOLOv5 model to generate input detections.

The tracking system was subjected to performance testing on a test dataset with
ground truth trajectories. The values of each tested metric were computed using the
py-motmetrics library [78]. The IOU metric with a threshold value of 0.5 was adopted
to compute the distance matrix. The resulting values of the monitored metrics are as
follows:

ID-Precision ID-Recall IDF1 MOTA

69.5% 48.2% 57.0% 29.6%

Table 6.3. Resulting performance statistics of the ByteTrack tracking system on the test
dataset.

6.4 Markerless bee tracker
In order to evaluate the quality of the tracking, the py-motmetrics library [78] and the
distance matrix between ground truth detections and generated predictions based on
the IOU metric with a threshold value of 0.5 were utilised again. By performing the
experiment using the test dataset, the following values of the observed metrics were
achieved:

ID-Precision ID-Recall IDF1 MOTA

77.0% 83.3% 80.2% 64.0%

Table 6.4. Resulting performance statistics of the Markerless tracker system on the test
dataset.

6.5 Court bee detection
For further use in the project, it is desirable to create a system to decide which bees
from the queen’s surroundings are part of her court. Previous research suggests that
court bees can also be distinguished from positional information [6]. These bees perform
direct interactions with the queen. Thus, they are located in her vicinity. This part
of the thesis presents a machine learning approach to distinguish court bees based on
their position and pose.
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The detections in the Markerless tracking system are used as input to the classifier.

The expected size of the source image data is 80 pixels per bee length. Another re-
quirement is that the queen is positioned in the centre of the image, which is achieved
by the Whycon tracking system (see 5.4) and subsequent cropping.

In the first stage, the input observation vectors are calculated. The vector consists
of two components for each bee: the Euclidean distance of the bee centre from the
queen and the rotation angle from the detected queen body centre. The angle is from
the interval [0; 180], i.e., the deviation to either side is positive. Classification (4.1) is
performed on this data in the next stage, where the list of observation vectors for each
bee is equivalent to the set 𝒳 and the set 𝒦 = {court bee, worker bee}.

In order to select the optimal classification method, a series of experiments were
performed. First, feature vectors were extracted from all frames of the court detection
dataset (see 5.5). These detections add the class ”court bee” to the original format. The
resulting data were highly unbalanced in favour of the off-court bee class. Therefore, the
NearMiss under-sampling method from the imbalanced-learn library [75] was applied
to the data. NearMiss falls into the prototype selection category of the under-sampling
algorithms, so it does not generate any new data to represent the original samples. The
method only reduces the number of samples from the over-sampled class to balance
that number with the number of samples in the other classes. This method leaves only
those points in the future training set that have the lowest average distance to the N
closest samples from the other classes [83]. In the case of the court classifier, 𝑁 = 3.
In this way, it was possible to balance the data on the same number of samples in each
class while the selected data is as close as possible to the future decision boundary.
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Figure 6.5. Legend: blue dots - bees outside the court; orange dots - bees included in the
court; Left - original dataset with unbalanced class representation; Right- Dataset after

reducing the number of bees in the over-sampled class using NearMiss method.

Three candidate methods were chosen for the classifier: k-nearest neighbours, SVM,
and a fully connected neural network. A 5-fold cross-validation method was used to op-
timise the hyperparameters. The methods were tested in this manner with the selected
hyperparameter values. The one that showed the best mean F1 score over all folds was
selected for the final testing on the validation dataset.
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For the k-nearest neighbours method, the optimised parameter was the number of
neighbours. It was selected from values between one and 50. The best score was
obtained for 𝑁 = 38 with a mean score of 91.66%. For the SVM method, the
regularisation parameter C was decided between values of 10𝑛, 𝑛 ∈ −2, . . . , 3. The best
score of 91.77% was achieved for 𝐶 = 100. The number of neurons in each layer
was tested for the neural network. The best F1 score of 94.10% was achieved for ten
neurons in the first layer and 190 neurons in the second layer. Rectified Linear Unit
(ReLU) was employed as the activation function, and stochastic gradient descent was
applied as the optimisation method.

During the evaluation, the dataset was split into training and test subsets in a 4: 1
ratio. Each method achieved the following scores on the test subset of the dataset:

Classifier Precision Recall F1-score Accuracy

KNN 96% 96% 96% 96%
SVM 96% 96% 96% 96%
NN 94% 94% 94% 94%

Table 6.5. Resulting performance statistics of the proposed Court detection classifiers.

6.6 ROS pipeline
The results of the experiments had to be integrated into an automated pipeline based
on the ROS system. In this section of the paper, the computational nodes contributed
by the author to this pipeline will be presented.

6.6.1 Court bee detection node
In order to extend the pipeline of automated data collection, a node implementing
the Markerless detection system was created. The node’s input is a 1024 × 1024 px
image crop. The cutout contains the queen bee in its centre and covers a large part
of its surroundings. The input image is expected on the topic /cropped_image. The
frame_id (image metadata) has the following format:

/hive_<hive-num>/comb_<comb-num>/camera/crop_<x>_<y> ,

where hive-num is the sequence number of the hive, comb-num is the sequence number
of the honeycomb from which the image originated, x and y are the coordinates of the
upper left corner of the cutout relative to the original image.

The original Markerless detection algorithm has been modified so that it can be
applied to online data. The image is first scaled to 512 × 512 px to match the input
size of the trained model. The model performs segmentation and subsequent detection
of bee positions and orientations. Afterwards, the created court detection classifier is
applied, which labels bees in and outside the court (see 6.5). The positions of the
detected bees are plotted. The individual classes are distinguished by colour. The
visualisation image is posted to the topic /court_visualization.

Detections of court bees are further processed and published on the topic
/court_poses in message format rr_msgs/BeePositionArray. The message con-
tains one BeePosition element for each bee in the court. The values u and v represent
the position of the bee within the original image. alpha contains the orientation angle
of its body in radians, starting on the positive x-axis and increasing counterclockwise.
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The values x and y represent the position of the bee on the plane in metric co-

ordinates, and phi represents the orientation of the bee after undistorting the im-
age. A function to convert image coordinates to hive coordinates is used to calculate
this positional information. First, the canonical coordinates are calculated using the
undistortPoints function from the OpenCV library and the camera properties con-
tained in the topic /camera_info. The resulting coordinates in the hive coordinate
system are calculated as follows:

Using the homography matrix H, the points are converted into the coordinate system
of the hive:

⎡⎢
⎣

𝑥ℎ𝑖𝑣𝑒
𝑦ℎ𝑖𝑣𝑒
𝑧ℎ𝑖𝑣𝑒

⎤⎥
⎦

= 𝗛 ⋅ ⎡⎢
⎣

𝑥𝑐𝑎𝑛
𝑦𝑐𝑎𝑛

1
⎤⎥
⎦

.

The homography matrix is obtained from the topic /homography_matrix and is being
constantly recalculated from positions of the calibration marks in the corners of the
comb. The resulting metric coordinates in the comb plane are obtained as follows:

[ 𝑥
𝑦 ] = [

𝑥ℎ𝑖𝑣𝑒
𝑧ℎ𝑖𝑣𝑒𝑦ℎ𝑖𝑣𝑒
𝑧ℎ𝑖𝑣𝑒

] .

The angle phi is calculated by converting two points into the hive coordinate system,
one at the centre of the bee and the other at the edge of its head. The angle of the line
between these points is equal to phi.

6.6.2 YOLO detection node
A node that implements the developed YOLOv5 detection model was devised for test-
ing and demonstration purposes. For this purpose, the library yolov5-pip [84] was
utilised, which wraps the original implementation and exposes the code on a public
package repository. The node listens similarly to the court detection node on the topic
/cropped_image. The annotated image is published on the topic /output_image.

6.6.3 Twitter node
In order to be able to automatically share the results of the experiments with the
public or log the system status on an easily accessible platform, rr_twitter_node was
created. This node listens on the topic /tweet and /tweet_testing, respectively.
The message is submitted in rr_msgs/Tweet format and contains either text-only or
text accompanied by an image. Messages are tweeted on one of the project accounts,
depending on the topic used. The tweepy library [85] was used for the implementation.
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Chapter 7
Discussion

7.1 Selection of the methods

The methods introduced in Chapter 4 represent state-of-the-art approaches for detec-
tion and tracking. These systems also represent candidates for the selection of methods
that were tested and extended for the final performance assessment at a later stage.

The YOLOv5 [43] algorithm was selected for the general detection experiment. Ac-
cording to the Papers With Code [86] portal, which compares current machine learning
methods of various disciplines, at the time of writing, the YOLO family algorithms rank
at the top of the performance rankings across the test datasets in the Real-Time Object
Detection category. The YOLOv5 system was chosen for the experiments because it is
one of the latest iterations of the YOLO algorithms and also offers a friendly framework
for implementation within the Python environment.

Among the systems specifically focused on bee detection, the Markerless tracking
system [58] was selected. According to the authors, the system offers comparable per-
formance to bee tagging based techniques. Tagging methods were abandoned due to
the need for continuous marker addition, associated colony disruption, and other dis-
advantages of using fiducial markers see 4.4.1.

The ByteTrack [53] method was chosen, as one of the newest methods for multi-
object tracking. This system again ranks high in the [86] benchmarks, where ByteTrack
achieved 80.3% MOTA on the MOT17 [87] dataset.

The methods used to assess the detection of courts were selected from a wide range of
possible classifiers offered by the Scikit-learn [74] library. K-nearest neighbors [24] was
chosen to represent non-parametric supervised learning methods, SVM [25] to represent
linear classifiers. Fully connected neural networks were selected for comparison with
both methods.

A number of arguments support the use of ROS. The experimental setup consists
of many heterogeneous hardware components. The cooperation of these parts and the
distribution of tasks between the different physical devices would be utterly complex
without a central communication system. It is a genuine challenge to ensure the correct
functionality of the individual programs separately and especially their cooperation.
ROS allows circumventing these problems with a standardised solution.

The experimental setup is located in the building of the University of Graz in Austria.
However, researchers from CTU need to have full remote control over the system. ROS
offers the possibility to connect to a remote kernel, so local tools that operate with the
remote system can be used. For example, one can monitor the real-time image from
the cameras using the RViz tool or use other visualisation applications.

Several partners are working on the project. The topic system allows simultaneous
work from multiple locations. At the same time, it offers a user-friendly way to check
the functionality and status of the system outputs.

35



7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Comparison of systems
The experimental results of each method will be evaluated and placed in the context of
other methods. Also, the choice of methods for the implementation of the ROS pipeline
will be justified.

7.2.1 Detection
The systems in the comparison showed highly comparable results in terms of the pri-
mary metric of interest, the F1 score. At the same time, the systems show a significant
difference in Precision and Recall. Thus, the values obtained indicate that YOLO excels
in determining positive detections, unlike the Markerless method. In other words, the
detections made by the YOLO model are 92.5% identical to the ground truth. However,
it lags considerably in the number of correct detections relative to the number of bees
in the image.

Despite the similar result, the Markerless detection method performed 1.5 percentage
points better on the test dataset and was chosen for further use and implementation in
the ROS pipeline(see 5.4). Another argument for choosing this method is the simulta-
neous detection of bee orientations, which is helpful for further analysis. Nevertheless,
the developed YOLO model represents a promising alternative for the chosen method.
The YOLO model shows a significantly higher speed in inference. On an experimental
setup, the method shows a speed of around 100 ms per frame, theoretically allowing on-
line inference at up to 10 FPS (frames per second). In contrast, the Markerless method
requires more than three times the processing time. The method also seems to be more
reliable in the case of overlapping bees, which is also due to the functionality of the
Markerless method. Obtained segmentations are clustered in the case of a bee partially
hidden behind another bee. The different parts of its body do not belong to the same
cluster and are therefore not considered potential detections.

Method Precision Recall F1 time memory

YOLOv5 92.5% 73.3% 81.8% 92.41 ms 2249 MiB
Markerless 79.3% 88.1% 83.3% 358.97 ms 964 MiB

Table 7.1. Resulting performance statistics of both detection methods tested. Time repre-
sents the average time for inference of one frame and memory, the amount of RAM used

by the program, both on the master computer of the experimental setup.

Compared to the results in [58], a decrease in detection performance can be observed.
Recall during the experimental testing reached hear 99% and could thus be compared to
the performance of human annotators (also 99%). However, the authors do not clearly
describe how the detections were categorised (TP, TN, FP, FN). These performance
checks were performed by manual evaluation, which does not allow an exact comparison
with the method used here based on an IOU threshold of 0.5. Another possible reason
may be the high noise and dimness of the data obtained from the experimental setup,
which often obscures essential contours, making the task more challenging even for a
human annotator.

7.3 Tracking
In the case of tracking methods, a fundamental difference between the performances
of the two methods can be observed. In the case of the IDF1 metric, which focuses
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primarily on the accuracy of the trajectories produced, there is more than a twenty per
cent difference. The MOTA metric, more weighted on detections’ quality, shows even
more than a thirty per cent difference. Thus, the values obtained suggest that even a
state-of-the-art method for multi-object detection finds a challenge in a densely popu-
lated environment such as a honeycomb. The missing orientation information probably
also plays a role in the erroneous assignment of identifiers and the concatenation of the
tracklets produced. The Markerless method was selected for further use.

Method ID-Precision ID-Recall IDF1 MOTA

ByteTrack 69.5% 48.2% 57.0% 29.6%
Markerless 77.0% 83.3% 80.2% 64.0%

Table 7.2. Resulting performance statistics of both tracking methods tested.

7.4 Court bee detection
SVM with regularisation parameter C = 100 and Radial Basis kernel Function
(RBF) [25] was chosen as the method used to distinguish bees in and out of court.
This method shows both F1-score and accuracy of 96%. The result is the same as for
the k-nearest neighbours method; however, SVM was chosen due to less dependence on
the training data in a smoother decision boundary and, therefore, potentially better
generalisation to previously unseen data. For the metrics comparison see Table 6.5.
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Figure 7.1. Decision boundary for court bees detection system based on SVM method.

7.5 Possible future improvements
The development of inference models and testing of selected methods revealed areas
for potential improvement. These suggestions can serve as a starting point for further
optional modifications of the mentioned methods for application within the project.

The recording setup offers room for improvement. As mentioned, some experimental
data contain a significant amount of noise and are dark. Also, cameras use wide-
angle lenses. Hence, the image is fairly distorted, affecting the detection quality at
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the honeycomb edges. The focal length used also creates a sharpening problem at
the periphery. The difference between distances from the sensor to the centre of the
honeycomb and between the sensor and comb boundary is significant. This problem has
to be compensated by a higher aperture value and, therefore, greater depth of field but
also worse light transmission. Since the experimental setup is limited by space, it is not
the preferred solution to use lenses with long focal lengths and thus allow the aperture
number to be reduced. At the same time, the lower aperture would probably result
in worse contrast in details. The solution proposed is to increase the amount of light
by adding additional infrared LED panels. Such an approach would allow reducing the
sensor’s sensitivity and, ultimately, noise caused by its high value. Adding more lights
would also improve the uniformity of the illumination.

Another suggestion for a possible improvement of the quality of the detections is
to increase the contrast between the bees and the background by using more fresh
and bright honeycombs. Of course, frequent wax changes would be a highly disruptive
element, but it would be good to at least experimentally test the impact of such a
measure on system performance.

In the case of Markerless bee tracking, performance can potentially be improved by
changing the input resolution. Currently, the image is reduced to half the size before
an inference is performed to correspond to the weights of the pre-trained model, which
operated with a bee length of 80 px. However, if the output resolution were changed
to use the complete information of the input data, the model would have to be learned
from scratch, requiring the expected hundreds of thousands of bee annotations [58] in
the original image size. It should be noted that downsampling of the data was also
applied in [58] to compensate for differences in the resolution of the cameras used. The
results generated from the downsampled images did not show a significant decrease in
detection performance.

As far as the detection of court bees is concerned, improvements in the computation
of feature vectors are possible. Currently, the calculation is based on the distance and
degree deviation from the centre of the queen’s thorax. However, the data suggest that
bees that come into contact with the queen’s abdomen are also part of the court. Thus,
the current method slightly discriminates bees that interact with this lower part of the
queen’s body against bees closer to the tracking mark. A possible solution would be to
derive the queen’s orientation and calculate the distance and deflection from either the
body axis or the oval representing the body silhouette.
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Chapter 8
Conclusion

The project is aimed to select and test methods capable of detecting and monitoring bees
in the vicinity of the honeybee queen. In the next phase, a method for distinguishing
bees belonging to the queen’s court had to be developed, tested and the resulting
classifier implemented within the experimental pipeline.

The theoretical basis for both the biological hypotheses in bee behaviour and the
principle functionality of the selected state-of-the-art methods was presented. Based
on the knowledge of the methods and the objectives of the thesis and the project, key
performance indicators were established to select the method that best fits the require-
ments. A bee type classification system was designed based on geometric data and
machine learning technology. The classification system was embedded in the selected
detection method and integrated within a pipeline that caters for data collection and
analysis in the context of the experimental setup.

The system developed in the thesis may find further applications. Based on the
positions of the bees around the queen, statistical information can be obtained that will
be used to understand better what happens in this particular region of the hive. For
example, various hypotheses can be tested based on the data obtained. Furthermore,
long-term observation data can be used to model the behaviour of bees in the vicinity of
the queen. The model could also be continuously improved based on real-time positions
obtained. In particular, the model would be used as a template of behavioural patterns
for robotic agents, thus being able to be more readily accepted by the surrounding
bees and thus blend in with the colony. Finally, information about bees’ movement
around the queen can be utilized by the controllers of the robotic agents to adjust their
movements and actions, depending on the actions of the other bees.

The work also offers potential for improvements and extensions. It is possible to
refine further the quality and generalization capability of the models created based on
newly acquired data and ground truth annotations created by modifying the detections
produced by the system. It would be advisable to attempt to accelerate and streamline
the method for real-time use. In addition, the input resolution of the detection method
could be increased, or the geometric model of the court detector could be enhanced, as
described in the discussion.
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Appendix A
Attached files

A.1 Data
Datasets and trained models can be downloaded from:
https://owncloud.roboroyale.eu/s/d4IjpZfBFsjultM.
The folder contains the following items:

. datasets
. court_detection
. markerless_bee_detection
. testing_dataset
. yolo_detection. models
. markerless_bee_detection
. markerless_bee_tracking
. court_model.joblib.ml
. yolo_model.pt

A.2 Code Base
Code Base contains the individual projects on the basis of which the results presented
were derived.
The folder contains the following items:

. CourtBeeDetectionExperiments. DenseObjectAnnotation. MarkerlessTracking. rr_courtdetector. rr_twitter. rr_yolo_detection. ByteTrack.ipynb. YOLOv5.ipynb
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