
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Bachelor thesis

Anonymous Communication Between Students and Teachers

Samuel Klas

Supervisor: Ing. Božena Mannová, Ph.D.

Study Programme: Open informatics

Field of Study: Software

May 20, 2022

iv

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483772Osobní číslo:SamuelJméno:KlasPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Anonymní komunikace mezi studenty a učiteli

Název bakalářské práce anglicky:

Anonymous Communication Between Students and Teachers

Pokyny pro vypracování:
Proveďte analýzu, návrh a implementaci aplikace pro podporu anonymní komunikace mezi učiteli a studenty. Cílem práce
je zatraktivnit a zpříjemnit výuku studentům a vyučujícím tak, aby se studenti aktivněji zapojovali do výuky a zjednodušit
komunikaci mezi studentem a učitelem. Proveďte analýzu požadavků a hodnocení již existujících nástrojů pro tuto
komunikaci (např. TEAMS). Na základě této analýzy navrhněte základní funkcionality navrhované aplikace, jako jsou
konferenční hovor, sdílení obrazovky, chat a možnost vytváření diskusních skupin. Zvolte architekturu aplikace a technologie
pro implementaci. Navrhněte přívětivé uživatelské prostředí. Věnujte se i problematice bezpečné komunikace. Aplikaci
otestujte. Zhodnoťte výsledky a navrhněte případné další funkcionality nebo jiná zlepšení. Využijte vhodných prostředků
SE

Seznam doporučené literatury:
[1] Roger S. Pressmann Bruce Maxim: Software Engineering: A Practitioner's Approach ,
ISBN-10: 9780078022128
[2] https://blog.genial.ly/en/techniques-online-communication-students-and-teachers/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Božena Mannová, Ph.D., kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 14.09.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Božena Mannová, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

vi

vii

Acknowledgements
First of all, I am extremely grateful to my supervisor, Ing. Božena Mannová, Ph.D. for her
advice, patience and endless positivity she has granted me throughout the creation of this
thesis. Writing this thesis would not have been possible without her support.
I would also like to extend my thanks to my family and friends for their emotional support,
helping me keep my spirits high during my entire university journey.

viii

ix

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Pavlice, Slovakia on 20. 5. 2022 .

x

Abstract

This thesis concerns itself with supporting teaching in a university setting by creating
an application that allows students to communicate anonymously with their teachers. By
hiding their identity, it helps students alleviate their anxiety, encourages them to actively
participate more in class and have a more positive experience. An analysis of currently used
communication software served as basis for the design, implementation and testing of the
application.

Keywords: classroom participation, anonymity, communication, web application, Java,
Spring, React

Abstrakt

Táto práca sa zaoberá podporou výučby v univerzitnom prostredí vytvorením aplikácie,
ktorá umožňuje študentom so svojimi učiteľmi komunikovať anonymne. Skrytím ich identity
im pomáha zmierniť ich úzkosť, povzdudzuje ich sa viac aktívne zúčastňovať na hodinách
a mať z nich pozitívnejší zážitok. Analýza sučasne používaných komunikačných softwarov
slúžila ako základ pre dizajn, implementáciu a testovanie aplikácie.

Kľúčové slová: účasť v triede, anonymita, komunikácia, webová aplikácia, Java, Spring,
React

Preklad názvu: Anonymná komunikácia medzi študentmi a učiteľmi

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Application overview . 2
1.4 Chapter overview . 2

2 Review of existing software 3
2.1 Microsoft Teams . 3
2.2 Moodle . 4
2.3 Discord . 5
2.4 Takeaways . 6

3 Business analysis 7
3.1 Functional and non functional requirements 7

3.1.1 Functional requirements . 7
3.1.2 Non functional requirements . 8

3.2 Process domain model . 8
3.2.1 Creating new thread . 8
3.2.2 Closing subject . 9
3.2.3 Creating quiz . 10

3.3 Business domain model . 10

4 Design 13
4.1 Single page and multi page application comparison 13

4.1.1 Multi page application . 13
4.1.2 Single page application . 14
4.1.3 Conclusion . 15

4.2 Used Technologies . 15
4.2.1 Spring . 15

4.2.1.1 Spring Boot . 15
4.2.1.2 JPA . 16
4.2.1.3 Security . 17

4.2.2 Authentication schemes . 18
4.2.3 JWT . 18

4.3 React . 20

xiii

xiv CONTENTS

4.3.1 React Router . 20
4.3.2 Responsive Design . 21

4.3.2.1 Bootstrap . 21
4.3.2.2 React-Bootstrap . 22

4.4 Security risks . 22
4.4.1 Injection attacks . 22
4.4.2 Cross site request forgery . 22
4.4.3 Cross site scripting . 22

4.5 Class Diagram . 23

5 Implementation 25
5.1 Structure . 25

5.1.1 Backend . 25
5.1.2 Frontend . 26

5.2 Features . 26
5.2.1 Login . 26
5.2.2 Student identity . 28
5.2.3 Joining subjects . 28
5.2.4 Forum . 28
5.2.5 Chat . 29
5.2.6 Quizzes . 30

6 Testing 33
6.1 Service layer testing . 33
6.2 API testing . 33
6.3 User testing . 34

6.3.1 Deployment . 34
6.3.1.1 Heroku . 34
6.3.1.2 Netlify . 34

6.3.2 Test scenario . 34
6.3.3 Testing process . 35
6.3.4 Results . 35

7 Conclusion 37

List of Figures

2.1 Example of the Microsoft Teams environment, with a live chat visible in the
center and a list of channels on the left side[1] 3

2.2 Example of the Moodle environment, specifically the subject Intelectual prop-
erty protection from the Faculty of electrical engineering at the Czech technical
university[3] . 4

2.3 Example of the Discord environment[6] . 5

3.1 Creating new thread process diagram . 9
3.2 Closing subject process diagram . 10
3.3 Creating quiz process diagram . 11
3.4 Business domain model . 12

4.1 Multi page and single page application lifecycle comparison[8] 14
4.2 Java server-side framework usage in 2020 to 2021[13] 16
4.3 Token based authentication process[23] . 19
4.4 Comparison between the Subjects component rendered on a computer on the

left, and on a phone on the right . 21
4.5 Class diagram . 23

5.1 Backend application structure showcase[35] 25
5.2 Showcase of a list of generated links for a given subject 29
5.3 Example of the forum collapse replies feature. The picture on the left shows

the original thread view, while the image on the right shows the same view
with some of the replies hidden. 30

5.4 Showcase of the QuizForm component . 31

xv

xvi LIST OF FIGURES

List of source code

4.1 Repository class with custom queries . 17
5.1 Functionality of the authentication filter, providing a JWT token on successful

authentication . 27
5.2 Function scheduled with a cron expression that represents midnight 28

xvii

xviii LIST OF SOURCE CODE

Chapter 1

Introduction

Classroom participation refers to the methods students use to actively take part in classes.
This can be done by way of raising one’s hand and responding to the teacher’s questions,
asking one’s own questions, partaking in discussions or sharing one’s opinions. Participating
helps students familiarize themselves with the subject matter, clearly present their arguments
and shows the teacher they have made an effort to understand their teaching. Students who
actively participate in class often take away more from the subject as they regularly engage
with it on a deeper level compared to simple memorization.

1.1 Motivation

Despite all these advantages, most students rarely choose to take active part in classes.
Whether because of poor communication skills, fear of looking foolish by asking for clarifi-
cation on simple topics or struggling to speak before large crowds of people, the anxiety of
speaking up is a real issue among students. As study material tends to build on top of pre-
viously explained and discussed topics, by sitting silently instead of asking for explanations,
the student not only robs themselves of another chance to understand the topic, but makes
it more difficult for them to keep up with the subject as they do not understand the core
concepts.

It is easy to talk about these issues because I experienced them myself during my studies.
Even though most teachers encouraged the asking of questions, no matter how trivial they
seemed, I did not take their advice. I was anxious and feared being judged for my lack of
knowledge, more often coming from my colleagues rather than the teacher, so I searched
for explanations on the internet instead. Sometimes the answers I found were satisfactory,
but more often they were either incomplete or straight up incorrect, so I spent more time
catching up, understood less of the subject matter and ended up walking away with a worse
grade than I could have, had I asked for help at the right time.

1

CHAPTER 1. INTRODUCTION

1.2 Objective

The objective of this bachelor thesis is to help these students alleviate some of this social
anxiety and encourage them to participate more often in classes. We hope to achieve this
by providing a way to communicate anonymously with their teachers and fellow students
during and outside of lectures. By hiding their identity, any question or contribution will
not be traceable back to the student, eliminating the irrational fear of prejudice or laughter
at their expense, which should help them speak up.

The process of creating this platform starts out with the review and analysis of existing
software used for communication between students and teachers. The output of this analysis
is then used to decide on the key features and functions of our solution, followed by the
design, choice of used technologies and implementation of the application.

1.3 Application overview

The communication platform was implemented as a web application that supports com-
munication through forums and live chat. It also allows teachers to create simple quizzes for
students to solve as preparation for lessons, and generate statistics regarding completion rate
and the average success rate of each question to see which topics the students are struggling
with the most.

1.4 Chapter overview

The thesis consists of five different chapters, each of which concerns itself with a phase
of development mentioned in the Objective section. The chapters are as follows :

• Review of existing software, which reviews existing options in terms of popular
communication platforms, highlights their benefits and drawbacks, and draws inspira-
tion for which functionalities could be used or adapted for use in anonymous commu-
nication.

• Business analysis describes the key functionalities and requirements based on the
previous review.

• Design, which talks about the design of the application, including the model class
diagram, chosen technologies and frameworks and the reasons behind them.

• Implementation goes over the implementation details of various functionalities of
the application, including snippets of code, screenshots of the application and the
discussion of alternative solutions.

• Testing of the application prototype, including testing phases and issues revealed
through it.

• Conclusion, which summarizes the work and talks about future development of the
application.

2

Chapter 2

Review of existing software

In this chapter, we review some of the popular existing solutions while focusing on
their key functionalities. While none of the reviewed applications were designed with full
anonymity in mind, there are features that could be adapted for use in anonymous commu-
nication.

2.1 Microsoft Teams

Figure 2.1: Example of the Microsoft Teams environment, with a live chat visible in the
center and a list of channels on the left side[1]

3

CHAPTER 2. REVIEW OF EXISTING SOFTWARE

Microsoft Teams is a communication platform developed by Microsoft. Though mainly
used for business communication, it has been widely adopted by many high schools and uni-
versities across the world as their primary communication platform during the COVID-19
lockdown. Microsoft Teams allows its users to schedule meetings, voice calls with the option
of adding video or screen sharing. It also allows them to create and join teams, where they
can communicate using text messages, images and GIFs, share files and create meetings
joinable by other team members. Users can also create private or group chats without the
need to belong to the same team.[2]

Teachers can use the Assignments feature to assign homework to students. This is done
by creating multi choice quizzes or by requiring students to upload files containing their
work. They can assign them to individuals or groups of students, grade, add feedback or
return their work in case they are not satisfied with the results. The advantages of Microsoft
Teams include a great variety of additional functionalities in the form of addons, and the fact
that it comes with no additional costs if the company already owns a Microsoft 365 license.

The drawbacks include the lack of a forum feature. Although this functionality can be
simulated by using different channels and conversations within these channels, this solution
is not nearly as intuitive as a regular forum. Another disadvantage comes in the form of
security risks due to the sharing of resources within teams, as team members could potentially
share malicious files or accidentally expose confidential information.

2.2 Moodle

Figure 2.2: Example of the Moodle environment, specifically the subject Intelectual property
protection from the Faculty of electrical engineering at the Czech technical university[3]

4

2.3. DISCORD

Moodle is a free learning management system (LMS for short) distributed under the
GNU general public license as open source software. Moodle supports many of the function-
alities as Teams, such as resource sharing, assigning and grading homework, communication
between users including a course wide discussion forum.[4]

It also supports plugins to extend existing functionalities or add new ones, for example
allowing video conferencing by integrating applications such as Zoom1 or BigBlueButton2,
and themes to change the look and functionality of the whole site or specific courses.

Although technically free in case the institution installs it on their own server, they will
need to take into account the cost of maintaining the server and the need to hire adminis-
trators to support it. Moodle offers several plans of cloud hosting on their own servers by
way of MoodleCloud, with the most expensive plan allowing up to 1000 users and 5GB of
storage space[5], so it is not a valid solution for schools whose needs exceed these values.

2.3 Discord

Figure 2.3: Example of the Discord environment[6]

Discord is a communication platform for online communities. It is available both as a
desktop and a web application. The main building block of Discord are servers, which consist

1https://zoom.us/
2https://bigbluebutton.org/

5

CHAPTER 2. REVIEW OF EXISTING SOFTWARE

of multiple text and voice channels. Users are invited to the servers exclusively via invite
links and assume different roles in each server.

Text channels support sending text messages, pictures and emotes, allow users to tag3

other users based on their identity or roles on the specific server. Voice channels support
video and screen sharing of multiple users at the same time.[7]

A unique advantage of Discord is the ability for users to set a a different identity on
different servers, and to change this identity whenever they wish. Another advantage is
the option to create and add bots to servers or channels to enhance the user experience by
reacting to different chat commands or events in the server.

2.4 Takeaways

The first and most obvious takeaway from these communication platforms is the need
for a feature that allows users to communicate with each other. While live chat offers syn-
chronous and more dynamic communication, forum threads tend to be focused on a single
topic and active over a longed period of time. In both cases, adapting them for anonymity is
quite simple, as it only requires us to hide the information about the student from the other
users. We have decided to implement both of these methods with the mentioned modification.

Another useful functionality would be a way for teachers to assess their students’ knowl-
edge. If teachers were to issue assignments to students in our application, they would not
be able to see individual students’ results. This of course means that the assignments would
not be gradable or compulsory, as there would be no way of knowing the grade an individual
student achieved, or even if they completed the assignment. Still, we believe this feature
to be worthwhile, as it would allow students to test their knowledge and for teachers to
see which topics are clear and which the students struggle with the most by looking at the
assignment statistics.

In case a student’s identity gets revealed for some reason, it is important for them to
have the ability to generate a new identity, as is the case for Discord users.

Although practically all modern communication software offers some form of voice com-
munication, sometimes along with screen and video sharing functionality, including all three
of the reviewed applications, we have decided not to include it in our application, as it would
be very difficult to implement while retaining full student anonymity.

3slang - A person is tagged when they are identified in a post on social media.

6

Chapter 3

Business analysis

3.1 Functional and non functional requirements

This section concerns itself with the analysis of the functional and non functional require-
ments, which arise from the initial assignment specification and discussion with the thesis
supervisor.

3.1.1 Functional requirements

1. Hidden student identity

• The students’ real identities will be hidden from teachers and other students. Each
student will be assigned a display name at the time of registering their account.
Each student will be able to generate a new display name.

2. Invite links

• The application will support the adding of students to subject via invite links.
Teachers will be able to generate an invite link and set its expiration time. They
will also be able to deactivate these links prematurely.

3. Discussion forum

• Each subject will contain a discussion forum. Users belonging to this subject
will be able to create new threads. They will also be able to create new posts
within these threads, reply to other users’, edit and delete their own posts. The
creator of the thread will be able to mark the thread as closed, after which no
more changes to this thread will be possible.

4. Subject wide chat

• The application will allow users to open a live chat to ask questions or discuss
issues regarding the chosen subject. Any user belonging to this subject will be
able to participate in this chat. Teachers’ replies will be easily discernible from
the students’ replies.

7

CHAPTER 3. BUSINESS ANALYSIS

5. Quizzes

• The application will provide an efficient way for teachers to create quizzes and
publish them in their respective subjects. Each quiz will contain multiple ques-
tions, each question will provide multiple possible answers with a single correct
choice. The quiz results will be immediately visible to the student after sending
in their solution, including the achieved point total and the correctness of each
answer. The application will enable teachers to generate the statistics of each
quiz to see the participation, average achieved overall point total and the average
achieved points for each question in the quiz.

3.1.2 Non functional requirements

1. Security

• The application will be resistant to common cyber attacks such as injection at-
tacks or cross site scripting. User passwords will be stored in their hashed form
using a strong encryption algorithm. Server resources will be protected and only
accessible to users with the required authorization.

2. Performance

• The application shall be able to load every page in 3 seconds or less when the
number of active users is less than 1000.

3. Responsive design

• The application frontend will be designed with responsiveness in mind, so that
it renders well on devices of different screen sizes and viewports by scaling and
rearranging components accordingly.

3.2 Process domain model

This section describes some of the essential processes that will take place while using the
application. The diagrams contain two actors, a user and the system. The user, being the
primary actor, initiates the process while the system interacts with the user. While these
diagrams do not differentiate users based on their roles, in the application this will not hold
true, e.g, a student will not be able to create a new subject.

3.2.1 Creating new thread

Any user belonging to the subject will be able to create a new thread in its forum. The
user will be asked to provide a unique thread title and content. After submitting the form,
the system will create a thread with the title and an initial post with the content inside the
thread.

8

3.2. PROCESS DOMAIN MODEL

Figure 3.1: Creating new thread process diagram

3.2.2 Closing subject

A teacher belonging to a subject will be able to close it, choosing to either archive or
delete the subject. If they choose to archive it, the subject will remain browsable by users
belonging to it, but it will block all interaction within the subject and will not allow new
users to join. By choosing to delete the subject, all data contained within the subject will
be deleted and therefore no longer be accessible. This method should only be chosen after
careful consideration, as the subject information may be useful to students even long after
the closing of the subject.

9

CHAPTER 3. BUSINESS ANALYSIS

Figure 3.2: Closing subject process diagram

3.2.3 Creating quiz

When creating a quiz, the teacher will need to input a title first, then add as many
questions as they want. Within each question, they will need to assign the points achievable
by correctly answering the question and add a number of choices, one of which they will
mark as correct. After submitting the quiz, it will be added to the subject quiz list with all
subject students being able to solve it.

3.3 Business domain model

Based on the analysis of the functional requirements and the process model, we have
come up with a concept of the business domain model, which describes the hierarchy of the
entities in the system. It can be roughly divided into four parts:

• User on the top left

• Live discussion chat on the top right

10

3.3. BUSINESS DOMAIN MODEL

Figure 3.3: Creating quiz process diagram

11

CHAPTER 3. BUSINESS ANALYSIS

• Forum in the bottom left

• Quiz on the bottom right

The reason why users are not directly connected to the chat entity is because it describes a
subject wide chat, with all users in a subject being able to participate by default.

Figure 3.4: Business domain model

12

Chapter 4

Design

Based on the analysis of the functional and non functional requirements done in the previ-
ous chapter, as well as the main instructions of the thesis assignment, it is necessary to choose
suitable technologies to implement the application. As modern technologies overwhelmingly
support the creation of web applications, we have decided to implement our project as such.
There are two main design pattern of developing web applications : single page and multi
page applications. The next section briefly describes both of these approaches, their ben-
efits and drawbacks, and the decision which one of them to use to implement the application.

4.1 Single page and multi page application comparison

4.1.1 Multi page application

”A Multi-page Application is a web application consisting of a large number of pages
completely refreshed every time when data changes on them. Any data change or data
transfer to the server leads to a new page displayed in the browser”[8].

Also called traditional applications, they perform most of the application logic on the
server, responding to each client request by creating and serving a new HTML page, which
places a relatively high workload on the server, while requiring very little of the client side.
Applications created using this method usually retain either full or partial functionality even
in browsers without JavaScript support.

The main advantage of multi page applications is search engine optimization. Search
engine crawlers are optimized for reading websites created in this manner, as they are fully
rendered by the time they access them, as well as not being reliant on JavaScript to display
the information contained within them, which the crawlers have historically had trouble in-
terpreting[9].
As multi page applications are quicker and easier to crawl, this leads to search engines having
a higher chance of connecting a user’s search query keywords to the content displayed on the

13

CHAPTER 4. DESIGN

Figure 4.1: Multi page and single page application lifecycle comparison[8]

website, generating more traffic and attracting potential customers.

Popular examples of multi page applications are e-shop websites such as eBay1 or Ama-
zon2

4.1.2 Single page application

”A Single-page Application is a type of web application loaded from one page, and all
user interaction with this service is carried out using one screen (page)”[8].

The way a typical single page application works is that on the initial load of the ap-
plication, a mostly empty HTML page is loaded into the browser, along with a bundle of
JavaScript code that is used to run the application. After this initial load, whenever the
client makes a request, instead of returning a full HTML page, the server provides the data in
the JSON3 format using AJAX4, which the application uses alongside JavaScript to render
the appropriate view. As the browser no longer needs to wait for server responses every time
they navigate to a new view, the transitions are faster and more seamless, which in turn
improves user experience.

1https://www.ebay.com/
2https://www.amazon.com/
3JavaScript Object Notation
4Asynchronous JavaScript and XML

14

4.2. USED TECHNOLOGIES

Another advantage that comes with the single page application implementation is the
lessening of the load on the server. As the server only responds with raw data when neces-
sary instead of creating and serving new HTML pages on every navigation change, instead
leaving that responsibility to the browser, it frees up server resources to be used elsewhere.

Because of single page applications’ heavy reliance on JavaScript to function, when access-
ing them from browsers with it disabled, they will either lose core parts of their functionality
or stop functioning altogether. Although statistics on JavaScript usage are hard to find,
based on Yahoo’s analysis of traffic on their website in 2010, around 1.3 percent of users had
JavaScript disabled[10]. We can only imagine that number has gone down throughout the
following years due to the development of web technologies.

4.1.3 Conclusion

To complete one of the main tasks in the assignment, to create a convenient and user-
friendly interface, and to best fulfill the non functional requirement of fast response times,
as well as not having to consider search engine optimization as a priority for this project, we
have chosen to implement the application as a single page application.

4.2 Used Technologies

4.2.1 Spring

Spring is an open source Java framework distributed under the Apache License 2.0 that
provides infrastructure support for developing web applications[11]. It is one of the most pop-
ular backend frameworks and the most popular java backend framework according figure 4.2.

The main feature of Spring as a framework is the use of dependency injection. Depen-
dency injection is a design pattern in which objects declare their dependencies, meaning the
objects they require to function, which are provided for them by external code, in Spring
called the IoC container. These objects are created, configured and managed by the con-
tainer instead of their owning objects[12]. It is a form of inversion of control.
The main advantages of dependency injection is the loose coupling between application com-
ponents, which increases their reusability and makes unit testing easier.

Spring consists of several modules which provide built in support for core functionalities
of modern web applications, such as the Core Container module, which is responsible for
the dependency injection feature described previously, data access, web, security or testing
modules.

4.2.1.1 Spring Boot

One of the main disadvantages of Spring as a framework is its complexity and steep
learning curve, which stems from the large amount of configuration needed to be written for
each part of the application to function. It also requires developers to manually define all the

15

CHAPTER 4. DESIGN

Figure 4.2: Java server-side framework usage in 2020 to 2021[13]

dependencies to be used in the application. This introduces needless complexity and time
costs, as developers need to write a lot of boilerplate code before handling actual application
logic.

Spring Boot is an extension of Spring which aims to solve these issues. It helps the
configuration issue by way of auto-configuration, which automatically configures the appli-
cation based on its specified dependencies, with the option of overriding this configuration
if required[14].

It handles the issue of managing dependencies by introducing starters, which are sets of
dependencies bundled together under a single name. For example, the spring-boot-starter-
test starter includes the JUnit5, Hamcrest6 and Mockito7 library dependencies, all of which
are widely used for testing java applications.

Among other features, it also provides an embedded server that assists in testing the
application functionality while in development, as instead of needing to set up a web server
and deploying the application, we just need to run the application.

4.2.1.2 JPA

Java Persistence API is a specification that concerns itself with the persistence of data in
Java applications[15]. It allows us to convert data from relational databases to java objects

5https://junit.org/junit5/
6http://hamcrest.org/JavaHamcrest/tutorial
7https://site.mockito.org/

16

4.2. USED TECHNOLOGIES

and vice versa as a way of achieving Object Relational Mapping, which allows us to work
with objects rather than having to write SQL statements. The mapping of objects and their
relationships into database tables is configured by using annotations in Java classes that the
JPA implementation uses to execute SQL statements.
As JPA is only a specification, it requires an implementation to perform the previously men-
tioned functionalities. For this role, Hibernate8 was chosen.

While JPA is used to model the domain classes, the data access layer implementation
is simplified by making use of the Repository interface from the Spring Data JPA mod-
ule[16]. Each repository takes in the domain class and the data type of its ID as arguments
and provides baseline CRUD9 functionality for the class it manages. It supports creating
simple queries by declaring their method in the repository class, for which Spring automat-
ically generates the implementation based on the keywords and parameters in the method
signature, as well as writing custom SQL queries and binding them to repository methods
by using the @Query annotation.

public interface UserRepository extends JpaRepository<User, Long> {
List<User> findByFirstName(String firstName);
User findByUserName(String userName);
User findByDisplayName(String displayName);
List<User> findAll();

}

Listing 4.1: Repository class with custom queries

4.2.1.3 Security

Security in web application consists mainly of the following concepts: authentication and
authorization.[17]

Authentication is the process of verifying a user’s identity by requesting identifying
credentials, comparing them to those stored in the application’s database or an authenti-
cation server, and granting access to the application in case they match. One of the most
simple ways of providing credentials is through the use of a password.

Authorization is the process of granting users access to application resources and fea-
tures based on their configured permissions. A common way of determining this is by assign-
ing users different roles. For example, a customer of an e-shop website are able to browse
and order goods, while an admin is able to see incoming orders and purchases of all customers.

Spring supports both authentication and authorization, including protecting server re-
sources by restricting user access based on their role and the configuration of custom servlet
filters to intercept, manipulate, or block requests before accessing these resources[18]. It also
offers implementations of various hashing algorithms to securely store passwords.

8https://hibernate.org/orm/
9create, read, update, delete

17

CHAPTER 4. DESIGN

4.2.2 Authentication schemes

The following types of authentication were considered:

• Basic authentication is a simple mechanism in which the user sends their credentials
in the form "username:password", which is then encoded using base64 encoding[19].
The resulting string is then included in the Authorization header in each request the
user sends to the server. The server can then decode the content of the header and
verify the user’s identity. Because this information is sent with every request, along
with the fact that it is easily decoded by a potential attacker if intercepted, it should
only be used when communicating through secure channels.

• Session based authentication, in which the server creates a session for the user
once they log in and send back the session ID. The session id is then stored in a cookie
on the user’s machine and sent along with every request while the user is logged in[20].
The server checks the session id against the session stored in the database. As the
sessions are created and stored on the server, it may lead to performance issues when
a large number of users are active at the same time. On the other hand, because of
the same reason, this method allows admins of the system to terminate the session in
case they suspect the user account was compromised.

• Token authentication works by providing the user a special access token once they
have logged in[21]. The token is stored on the client side and is, similar to basic
authentication, included in the Authorization header with each request. This allows
the server to skip authenticating the user on every request, as the presence of a valid
access token in the request acts as proof of the user’s identity. For this approach
to work, the server must be able to generate tokens that cannot be easily guessed
by attackers, as well as having a way to check the validity of received tokens. This
method is efficient and scalable, as tokens are stored on the client side, and checking
the validity of tokens is much faster than querying the database.

For this project, token authentication was chosen because of the previously mentioned reasons
and the relatively simple implementation thanks to available options such as the JSON Web
Token.10

4.2.3 JWT

"JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and
self-contained way for securely transmitting information between parties as a JSON object.
This information can be verified and trusted because it is digitally signed[22]."
The JWT in its encoded form is made up of three parts separated by dots:

• Header, which contains the type of the token, in this case the JWT, and the type of
the signing algorithm used.

• Payload, made up of information about the user, such as the username and their roles,
and additional information such as the expiration time.

10https://jwt.io/

18

4.2. USED TECHNOLOGIES

• Signature created by taking the encoded first two parts and using the algorithm spec-
ified in the header along with a secret to cryptographically sign it.

JWT tokens usually aren’t encrypted, meaning anyone can decode them and read their
contents. The main purpose of the token is confirming that the token was not modified by
the client or somewhere along the way to the client. For example, if an attacker wanted to
increase his access rights by changing his user role to an admin role in the payload, they could
modify the token and send it to the server. However, the signature computed by the server
after receiving the modified token would no longer match the original signature contained
in the third part of the token, and the server would reject the attacker access. Since the
attacker does not have access to the secret used to create the original signature, modifying
it is also not an option.

Figure 4.3: Token based authentication process[23]

19

CHAPTER 4. DESIGN

4.3 React

Over the last decade, as the single page application approach became widespread, many
frameworks and libraries used for their development began popping up. Some of the most
popular frameworks include AngularJS, ReactJS, EmberJS, or Vue. All of these frame-
works are maintained and updated regularly, and work to achieve the goal of facilitating
the development of SPAs, so the choice came down to preference. ReactJS was the chosen
framework, because of the author’s previous experience with it as well as the desire to im-
prove their knowledge of it.

ReactJS, more commonly referred to as React, is a JavaScript open-source library de-
veloped and maintained by Meta (formerly known as Facebook, rebranded in 2021).

React applications are made up of building blocks called components, which are reusable
pieces of code rendered onto the screen[24]. While they may be compared to classes in other
languages, they are in fact JavaScript functions that return HTML code comprised of HTML
elements and/or other components. They can track and change their state using state vari-
ables, as well as pass data to child components by way of props[25]. Components re-render
themselves on the screen whenever their state or props are updated.

A unique feature of React is its use of JSX, an extension of JavaScript syntax that allows
us to combine HTML and JavaScript to write components. It really is just syntactic sugar
which gets compiled into regular JavaScript on compilation.

4.3.1 React Router

As explained previously, navigation in single page applications does not involve loading
different pages, instead using a single page and dynamically rewriting it with the necessary
content. Because the user is always on a single page, there is no history of moving through
pages and no changing of the URL, which introduces issues that negatively impact user expe-
rience. Because of the unchanging URL, it is not possible to link or bookmark specific parts
of the application, and more importantly, makes navigation within the application using the
back and forward browser buttons impossible. By pressing the back button, the average user
expects to move back to the previous visited "page" in the application, but instead exits the
whole application. Hitting the refresh button would also redirect them to the initial view of
the application, regardless of their current position within the app.

React Router is the standard library used in React applications to emulate the desired
behavior of navigation[26]. Its main feature is the use of the Route component, which takes a
path string and a react component as inputs, and renders the component in case the specified
path matches the current application URL.
It also allows us to manipulate the browser history and change the active URL by using links,
or to do so manually in event handling functions. By changing the URL, the application
triggers a re-render to the view that matches it and pushes the active URL to the browser
history, which makes the back and forward buttons work as expected.

20

4.3. REACT

4.3.2 Responsive Design

Nowadays, websites and web application are accessed from a wide variety of devices, in-
cluding desktops, tablets and most importantly, mobile phones. According to a study carried
out in 2020[27], up to 68.1 percent of worldwide website visits came from mobile devices,
which tells us it is no longer sufficient to design only for desktop use, websites need to adapt
to screens of different sizes or risk losing customers.

Responsive design is a way of designing website and applications with this goal in
mind[28]. It achieves this by employing CSS11 techniques such as using relative size units,
fluid or flexible containers, and media queries, which allow us to conditionally change the
styling of different parts of the application, with the most commonly used condition being
based on the device screen width. There are several available CSS frameworks that focus on
responsive web design.

Figure 4.4: Comparison between the Subjects component rendered on a computer on the
left, and on a phone on the right

4.3.2.1 Bootstrap

Bootstrap is an immensely popular open-source CSS framework that offers a vast amount
of styles and components such as buttons, forms and tooltips[29]. Its main feature used for
creating responsive websites is its grid system, which lets developers define their website’s
layout to make its content stretch, shrink or reposition itself to make the best use of the
available space.

11Cascading Style Sheets

21

CHAPTER 4. DESIGN

4.3.2.2 React-Bootstrap

React-Bootstrap is a relatively modern (released in 2019) React framework that incorpo-
rates Bootstrap into React applications[30]. While it offers the same features as Bootstrap
(as it uses Bootstrap under the hood), its main benefit comes from the fact that it offers
ready to use React components. This saves us from having to create these components from
scratch by using regular HTML elements and applying Bootstrap styles to them, which leads
to shorter and more readable component code.

This project mainly uses React-Bootstrap because of the readability and conciseness it
provides, which can clearly be seen when creating complex components such as forms, but
falls back to regular Bootstrap when applying simple styles is sufficient.

4.4 Security risks

As described in one of the non-functional requirements, the application must be able to
resist common types of attacks against the application. The listed attacks were all part of
the OWASP Top Ten over the last 10 years[31].

4.4.1 Injection attacks

Injection attacks consist of an attacker providing malicious input which, if not properly
filtered by the application can expose critical data or damage the application[32]. SQL
injections are a subset of injection attacks which focus on exposing vulnerabilities in the
database access layer of the application. This is usually done through supplying unexpected
inputs in the application frontend, which changes the meaning of the original database query
if not properly validated. Queries provided by the JpaRepository interface from Spring
repositories are properly parametrized, and therefore safe against SQL injection.

4.4.2 Cross site request forgery

"CSRF is an attack that tricks the victim into submitting a malicious request. It inherits
the identity and privileges of the victim to perform an undesired function on the victim’s
behalf."[33]. It takes advantage of the data stored in the browser that gets sent automati-
cally along with every request, such as credentials stored in the cookies. In that case, the
application would have no way of differentiating intentional requests made by the victim,
and unintentional ones created by this attack.
In our case, the server authorizes requests based on the Authorization header, which does
not get sent automatically. It gets populated and sent with the request in event handler
methods, which the attacker using CSRF does not have access to.

4.4.3 Cross site scripting

In cross site scripting, an attacker attempts to insert malicious code into an otherwise
legitimate website or application[34]. If successful, by the time a victim visits the application,

22

4.5. CLASS DIAGRAM

the code, usually a browser-side script is already part of the application and therefore has
access to information stored in the browser. The code injection usually happens through
user input fields whose input is not properly validated.
In React, all potential user inputs embedded in JSX are escaped by default and converted
into strings, which eliminates possibilities of injection in these fields. If a user were to input
JavaScript code inside script tags, React would ignore the validity of the HTML element
they provided and render their whole input as a string. This allows for strong protection
against cross site scripting attacks.

4.5 Class Diagram

The class diagram uses the business domain model as a basis and enhances it with data
types of entity fields and concrete entity relationship types.

Figure 4.5: Class diagram

23

CHAPTER 4. DESIGN

24

Chapter 5

Implementation

This chapter talks about the implementation details of the application, from its structure,
to describing some of the key features with examples of code and application frontend views.

5.1 Structure

5.1.1 Backend

Figure 5.1: Backend application structure showcase[35]

The backend application is structured as a standard Spring multi-layered application, in
which each layer makes use of the layer one level below it. The layers are as follows :

25

CHAPTER 5. IMPLEMENTATION

1. Model, which contains simple java classes, which are mapped into database tables
through JPA. This layer contains no business logic, the classes are manipulated by the
layers above it.

2. Repository, made up of classes implementing Spring’s JpaRepository, which han-
dle the persistence of objects contained in the model layer.

3. Service is a layer that contains the majority of business logic, its functions create,
modify or delete the model objects and use the repository layer to persist these changes
to the database.

4. Controller, which catches and handles HTTP requests by mapping them to specific
functions, these functions extract the data contained within the request and pass it to
the service layer.

There are other packages inside the backend structure that do not belong to the main
layered architecture, but contain other vital code :

1. Config, which contain configuration classes for concerns such as security and web
configuration.

2. DTO stands for data transfer object. These classes, like model classes, are simple java
objects which only contain fields, getters and setters[36]. They are used to transfer
information between the application and the web, while reducing the amount of data
transferred, and more importantly exposing only the necessary information while doing
so.

3. Filter which are used to intercept requests to our application and handle them if
necessary. Currently there are only two filters which handle security in the form of
authentication and authorization.

4. Utils classes contain utility function to be used in any part of the application. Right
now there is only one utils class that is used to extract the currently logged in user
from Spring’s security context.

5.1.2 Frontend

The frontend structure is much more simple, as most of the files represent different react
components and are separated into packages based on which application views they represent.
For example, the forum and thread components belong in the Forum package.

5.2 Features

5.2.1 Login

As the majority of application features are only available to authenticated users, they
need to log in if they wish to access them. On the frontend side, this is done by a simple
login form, where the user inputs their email and password. On the backend side, the request

26

5.2. FEATURES

needs to get through the authentication filter that is attached to the /login URL, which
attempts to authenticate the user. If successful, it returns the JWT access token in the
HTTP response. This token is then stored in a cookie in the user’s browser and attached
to every subsequent request for authorization. Basic user information is also stored in the
browser’s local storage to save us from having to request it from the server every time we
need to display it.

@Override
public Authentication attemptAuthentication(HttpServletRequest request,

HttpServletResponse response) throws AuthenticationException {
String username = request.getParameter("username");
String password = request.getParameter("password");
log.info("Username is {}",username);
log.info("Password is {}",password);
UsernamePasswordAuthenticationToken authenticationToken =
new UsernamePasswordAuthenticationToken(username,password);
return authenticationManager.authenticate(authenticationToken);
}

@Override
protected void successfulAuthentication(HttpServletRequest request,

HttpServletResponse response, FilterChain chain, Authentication
authentication) throws IOException, ServletException {

User user = (User) authentication.getPrincipal();
Algorithm algorithm = Algorithm.HMAC256("secret".getBytes());
String accessToken = JWT.create().withSubject(user.getUsername()

)
.withExpiresAt(new Date(System.currentTimeMillis()+ longevity))
.withIssuer(request.getRequestURL().toString())
.withClaim("roles",user.getAuthorities().stream()
.map(GrantedAuthority::getAuthority).collect(Collectors.toList()

))
.sign(algorithm);

Map<String,String> token = new HashMap<>();
token.put("access_token",accessToken);
response.setContentType(APPLICATION_JSON_VALUE);
new ObjectMapper().writeValue(response.getOutputStream(),token);
}

Listing 5.1: Functionality of the authentication filter, providing a JWT token on successful
authentication

To be able to use Spring’s AuthenticationManager class, we need to provide it an im-
plementation of the UserDetailsService interface, which needs a loadUserByUsername
function to work. This is easily done by having our UserService class implement this in-
terface and use our repository layer to retrieve the user by email, which acts as the username
in our application.

27

CHAPTER 5. IMPLEMENTATION

5.2.2 Student identity

Students’ names are hidden to all other users while visiting the application. Instead,
they are identified by a display name, which consists of a "Student" string followed by a
randomly generated number from a range. This number can be changed by visiting their
profile and generating a new identity. If a student chooses to generate a new identity, all of
their previous contributions such as forum posts and chat messages will remain under the
identity they had at the time of writing them.

To avoid the possibility of users abusing this function of generating new identities, they
are limited to doing so once per day. This is achieved by having a function that resets their
option to do so execute at midnight of every day, scheduled using a cron expression1.

@Scheduled(cron = "0 0 0 * * *")
public void enableChangingOfDisplayName() {

List<User> users = userRepository.findAll();
users.forEach(user -> {

user.setCanResetDisplayName(true);
userRepository.save(user);

});
}

Listing 5.2: Function scheduled with a cron expression that represents midnight

5.2.3 Joining subjects

An interesting issue that arises when we consider the required full anonymity of students
is the way of them joining subjects while remaining anonymous. The standard way of a
teacher inviting them by adding them one by one, or even providing a list of students is not
a valid approach, as it would reveal the students’ identities.

We decided to implement it by using invite links. A teacher can generate an invite link in
a subject and share it with students either during a lecture or post it on the official learning
portal of the university. The issue with this method is that any user of the application can
join the subject if they get a hold of this link. This is solved by letting the teacher set a
time of expiration for this link by choosing a value ranging from 1 minute to 1 week, after
which the token expires and no longer gives access to the subject. They can also invalidate
tokens prematurely. Expired links get removed automatically every day at midnight.

5.2.4 Forum

The design of the forum feature was heavily inspired by Reddit2, which uses increasing
indentation to signify replying in conversation chains. While posts being on the same hori-
zontal level means that they are replying to the same post, increasing indentation shows the
continuation of the reply chain. For easier traversal of the thread, the user is able to hide

1https://docs.oracle.com/cd/E1205801/doc/doc.1014/e12030/cronexpressions.htm
2https://www.reddit.com/

28

5.2. FEATURES

Figure 5.2: Showcase of a list of generated links for a given subject

all replies of a particular post by pressing the first button from the left as shown in figure
5.3, and load them back at a later point. The thread allows the user to edit and delete their
own posts, and start new conversation chains.

5.2.5 Chat

The subject wide chat is implemented using websockets, which allows us to "open a two-
way interactive communication session between the user’s browser and a server"[37]. The
main advantage of keeping an open connection is that the server is able to send information
to the user without the user having to specifically request it first, as is the case communi-
cation over HTTP. When a user sends a message over websocket, the server first stores it
in the database and relays it over to the other chat participants. When first loading up the
chat screen, the browser sends a standard HTTP GET request to retrieve past messages,
after which communication over websocket is used to receive new messages without having
to reload the page.

29

CHAPTER 5. IMPLEMENTATION

Figure 5.3: Example of the forum collapse replies feature. The picture on the left shows
the original thread view, while the image on the right shows the same view with some of the
replies hidden.

Any user belonging to the subject can open up a new chat conversation or participate
in an ongoing one. The transmitted messages are simple object containing only the message
content and the display name of its author. The only difference between messages between
teachers and students is that the teachers’ display names are highlighted in bold, as there is
a higher chance of their contribution being valuable when answering questions, and therefore
should be easily discernible from the students’ messages.

5.2.6 Quizzes

The application provides a way for teachers to easily create multi choice quizzes for stu-
dents to solve by way of the QuizForm component. As the questions and choices are part
stored in React’s state variables, every time a new question or choice gets added or deleted,

30

5.2. FEATURES

the state variable gets updated, making the component rerender so it always represents the
current state of the quiz. After submitting the quiz, it becomes available to all students
belonging to the subject.

Students can then solve the quiz and submit their entries to be evaluated. Although the
evaluation of quiz entries and the generation of statistics for a given quiz are implemented
in the backend, viewing them is not currently implemented in the application frontend.

Figure 5.4: Showcase of the QuizForm component

31

CHAPTER 5. IMPLEMENTATION

32

Chapter 6

Testing

This chapter talks about the process of testing the application prototype, which consists
of three parts:

• Testing of the service layer through unit and integration tests

• Testing of the application’s API using Postman

• User testing

6.1 Service layer testing

Testing of the backend’s functionality was focused on the service layer as it contains the
majority of the application’s business logic. By declaring the spring-boot-starter-test
in our project, we gained access to previously mentioned frameworks JUnit, a framework used
to write automated tests for java applications, and Mockito, which allows us to isolate the
tested classes in unit tests by replacing their dependencies with mock objects with predefined
behavior.

6.2 API testing

Postman is an application that provides an interface to easily create, execute and save
HTTP requests. The creation of a request consists of inputting the URL of the API end-
point, specifying the request method, and optionally the body of the request, which contains
data to be sent to the server in case of POST or PUT requests. It also lets us add custom
headers to the requests, which was needed as most of the application is only accessible by
providing an authentication token in the Authorization header.

Apart from helping uncover bugs in the code, this type of testing was useful during
development by showing us the serialization of java classes into JSON objects in the response
body, as well as helping configure different response codes, as the frontend depends on them
to differentiate between the types of errors that could arise, such as sending a 409 conflict
code when a user tries to register under an email that is already in use, or a 403 forbidden
code when accessing a resource they do not have access to.

33

CHAPTER 6. TESTING

6.3 User testing

6.3.1 Deployment

For the application to be testable by users, we needed to provide them a way to access
it. We decided to do this by deploying the application on the web by making use of cloud
hosting services, specifically Heroku1 and Netlify2

6.3.1.1 Heroku

Heroku offers hosting services for applications written in many languages, including
Spring applications with PostgreSQL as their accompanied database engine. It offers a
free hosting plan that, while limiting access to most of its features is sufficient for our use
case. The deployment process was simple, all it required us to do was download its command
line interface plugin, package our backend application into a jar file and run a command to
deploy it on the cloud.

6.3.1.2 Netlify

Much like Heroku, Netlify offers cloud hosting with a free plan, this time focusing on
websites and web applications. The deployment of our React frontend was even simpler,
only requiring us to build the application and upload the resulting build/ folder.

6.3.2 Test scenario

The test scenario was designed to cover all of the implemented core functionalities. It is
made up of the following steps:

1. Register in the application

2. Log in to their created account

3. Use a provided expired invite link to try and join a subject, confirm the subject was
not added to their list of subjects

4. Use a provided active link to join a subject, confirm it has added a subject to their list
of subjects

5. Navigate to the subject forum

6. Create a new thread with an initial post

7. Reply to their post

8. Edit the reply and delete it afterwards

9. Navigate to profile and reset their display name, confirm it has been changed
1https://www.heroku.com/free
2https://www.netlify.com/

34

6.3. USER TESTING

10. Reset their display name again, confirm it has not been changed due to the once per
day limit

11. Navigate back to the created forum thread, confirm they can still edit and delete their
post even after they have changed their display name

12. Navigate to subject chats, create a new chat conversation and write a message

13. Navigate to quizzes, solve a quiz and submit their entry

6.3.3 Testing process

Testing was carried out by two different testers, both of whom have some experience
with web application development, one of them being a student of the Open Informatics
master’s degree programme at CTU FEE, and the other working as a software developer.
They were given the specified test scenario and asked to give their opinions on the various
tested functionalities as they went through it.

6.3.4 Results

When asked about the overall design of the application, both of the testers expressed
similar thoughts in that while it was functional, it was too basic. This was expected, as not
much time was left for graphic design by the time the core functionalities were implemented.

Another comment was made on the lack of features meant for editing user profiles, as
right now, the only supported feature is the generation of a new display name, other features
such as editing of the email address or password is not possible at the moment.

There were also issues of insufficient validation of various inputs fields in the application.

One of the testers discovered an oversight in the implementation of the reply chains in
forum threads. Because replies in continuing chains of posts have increasing left padding as
mentioned in section 5.2.4, this means that every following reply has less space to render
than the previous, eventually making them hard to impossible to read. While this would
take a very long reply chain to achieve on computer screens, it is much more likely to happen
on smaller devices. The reason for this oversight is that most of the development time was
spent looking at the computer screen version of the application and not considering the
mobile version enough.
This issue can and will be fixed by implementing a way to select a post in the middle of the
chain of posts, moving it to the left and only showing reply chains starting with this post.

35

CHAPTER 6. TESTING

36

Chapter 7

Conclusion

The goal of the bachelor thesis was to create an application that supports teaching and
increases class participation by providing a way for students to anonymously with their
teachers. The argument for the use of anonymity being that one of the prevailing causes of
low class participation is the students’ anxiety which prevents them from asking questions
or participating in discussions. Hiding their identity alleviates this anxiety, which helps
them participate more often and have a more positive experience. Further research on the
effects of anonymity in a school setting was part of the semestral project preceding this thesis.

The process started by taking a look at current popular communication platforms used
worldwide and highlighting key features that could be adapted for use in anonymous com-
munication. These features and other useful ideas were then used as basis for our business
analysis, which specified the requirements and functionalities that the application would
support. Based on the business analysis, fitting technologies and frameworks were chosen
and the application prototype was implemented. The application prototype was finally user
tested, which helped reveal some issues with the application frontend.

Along with fixing the issues that were revealed thanks to user testing, future releases
of the application will focus on finishing features specified in the functional requirements,
such as the visualisation of generated statistics for specific quizzes and better editing of
user profiles. Emphasis will be placed on improving the graphic design and interactivity
of the application by adding notifications, tooltips and animations. New features, such as
private chat conversations independent of subjects or file sharing will also be considered in
the future.

37

CHAPTER 7. CONCLUSION

38

Bibliography

[1] Microsoft Teams. Introducing the simplified Microsoft Teams for Education experience.
url: <https://support.microsoft.com/en-gb/topic/introducing-
the-simplified-microsoft-teams-for-education-experience-fd5b0668-
4156-4ce1-a51a-e6f54827973d> [online] [Cit. 14.04.2022].

[2] Microsoft Teams. Welcome to Microsoft Teams. url: <https://docs.microsoft.
com/en-us/microsoftteams/teams-overview> [online] [Cit. 14.04.2022].

[3] Intellectual property protection. url: <https://moodle.fel.cvut.cz/course/
view.php?id=5840> [online] [Cit. 14.04.2022].

[4] Moodle. About Moodle. url: <https://docs.moodle.org/400/en/About_
Moodle> [online] [Cit. 14.04.2022].

[5] MoodleCloud. The fastest way to start teaching and training online. url: <https:
//moodle.com/solutions/moodlecloud/> [online] [Cit. 14.04.2022].

[6] Advanced Community Server Setup. url: <https://support.discord.com/
hc/en-us/articles/213530048-Advanced-Community-Server-Setup>
[online] [Cit. 15.04.2022].

[7] What is Discord? url: <https://discord.com/safety/360044149331-
What-is-Discord> [online] [Cit. 15.04.2022].

[8] Single-Page Application vs Multi-Page Application: Pros, Cons, and Which is Better?
url: <https://lvivity.com/single-page-app-vs-multi-page-app>
[online] [Cit. 15.04.2022].

[9] Daniel Cartland. Common Single Page Application Crawling Issues How To Fix Them.
url: <https://www.deepcrawl.com/blog/best-practice/spa-seo/>
[online] [Cit. 20.04.2022].

[10] Ruud Hein. How Many Users Have JavaScript Disabled. url: <https://www.
searchenginepeople.com/blog/stats-no-javascript.html> [online]
[Cit. 20.04.2022].

[11] Spring Framework. url: <https://spring.io/projects/spring-framework>
[online] [Cit. 20.04.2022].

[12] Prasanna Dhananjay. Dependency injection: design patterns using spring and guice.
Simon and Schuster, 2009.

39

https://support.microsoft.com/en-gb/topic/introducing-the-simplified-microsoft-teams-for-education-experience-fd5b0668-4156-4ce1-a51a-e6f54827973d
https://support.microsoft.com/en-gb/topic/introducing-the-simplified-microsoft-teams-for-education-experience-fd5b0668-4156-4ce1-a51a-e6f54827973d
https://support.microsoft.com/en-gb/topic/introducing-the-simplified-microsoft-teams-for-education-experience-fd5b0668-4156-4ce1-a51a-e6f54827973d
https://docs.microsoft.com/en-us/microsoftteams/teams-overview
https://docs.microsoft.com/en-us/microsoftteams/teams-overview
https://moodle.fel.cvut.cz/course/view.php?id=5840
https://moodle.fel.cvut.cz/course/view.php?id=5840
https://docs.moodle.org/400/en/About_Moodle
https://docs.moodle.org/400/en/About_Moodle
https://moodle.com/solutions/moodlecloud/
https://moodle.com/solutions/moodlecloud/
https://support.discord.com/hc/en-us/articles/213530048-Advanced-Community-Server-Setup
https://support.discord.com/hc/en-us/articles/213530048-Advanced-Community-Server-Setup
https://discord.com/safety/360044149331-What-is-Discord
https://discord.com/safety/360044149331-What-is-Discord
https://lvivity.com/single-page-app-vs-multi-page-app
https://www.deepcrawl.com/blog/best-practice/spa-seo/
https://www.searchenginepeople.com/blog/stats-no-javascript.html
https://www.searchenginepeople.com/blog/stats-no-javascript.html
https://spring.io/projects/spring-framework

BIBLIOGRAPHY

[13] Karsten Silz. Snyk JVM Ecosystem Report 2021 Finds Increased Usage of Java 11 in
Production. url: <https://www.infoq.com/news/2021/07/snyk-jvm-
2021/> [online] [Cit. 21.04.2022].

[14] Spring Boot. url: <https://spring.io/projects/spring-boot> [online]
[Cit. 25.04.2022].

[15] Matthew Tyson. What is JPA? Introduction to the Java Persistence API. url: <https:
//www.infoworld.com/article/3379043/what-is-jpa-introduction-
to-the-java-persistence-api.html> [online] [Cit. 25.04.2022].

[16] Working with Spring Data Repositories. url: <https : / / docs . spring . io /
spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/
repositories.html> [online] [Cit. 25.04.2022].

[17] Okta. Authentication vs. Authorization. url: <https://www.okta.com/identity-
101/authentication-vs-authorization/> [online] [Cit. 25.04.2022].

[18] Spring. The Security Filter Chain. url: <https://docs.spring.io/spring-
security/site/docs/3.0.x/reference/security- filter- chain.
html> [online] [Cit. 30.04.2022].

[19] mdn web docs. HTTP authentication. url: <https://developer.mozilla.
org/en-US/docs/Web/HTTP/Authentication> [online] [Cit. 30.04.2022].

[20] OWASP. Session Management Cheat Sheet. url: <https://cheatsheetseries.
owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html>
[online] [Cit. 30.04.2022].

[21] Fortinet. Authentication Token. url: <https://www.fortinet.com/resources/
cyberglossary/authentication-token> [online] [Cit. 30.04.2022].

[22] JWT. Introduction to JSON Web Tokens. url: <https://jwt.io/introduction>
[online] [Cit. 03.05.2022].

[23] Macy Ngan. Modern Token Authentication in Node with Express. url: <https://
developer.okta.com/blog/2019/02/14/modern-token-authentication-
in-node-with-express> [online] [Cit. 03.05.2022].

[24] React. Tutorial: Intro to React. url: <https : / / reactjs . org / tutorial /
tutorial.html> [online] [Cit. 09.05.2022].

[25] React. Components and Props. url: <https://reactjs.org/docs/components-
and-props.html> [online] [Cit. 09.05.2022].

[26] React Router. Tutorial. url: <https://reactrouter.com/docs/en/v6/
getting-started/tutorial> [online] [Cit. 09.05.2022].

[27] Eric Enge. Mobile vs. Desktop Usage in 2020. url: <https://www.perficient.
com/insights/research-hub/mobile-vs-desktop-usage> [online] [Cit.
10.05.2022].

[28] Responsive design. url: <https://developer.mozilla.org/en-US/docs/
Learn/CSS/CSS_layout/Responsive_Design> [online] [Cit. 12.05.2022].

[29] Bootstrap. Introduction. url: <https://getbootstrap.com/docs/4.1/
getting-started/introduction/> [online] [Cit. 12.05.2022].

40

https://www.infoq.com/news/2021/07/snyk-jvm-2021/
https://www.infoq.com/news/2021/07/snyk-jvm-2021/
https://spring.io/projects/spring-boot
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://www.okta.com/identity-101/authentication-vs-authorization/
https://www.okta.com/identity-101/authentication-vs-authorization/
https://docs.spring.io/spring-security/site/docs/3.0.x/reference/security-filter-chain.html
https://docs.spring.io/spring-security/site/docs/3.0.x/reference/security-filter-chain.html
https://docs.spring.io/spring-security/site/docs/3.0.x/reference/security-filter-chain.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://www.fortinet.com/resources/cyberglossary/authentication-token
https://www.fortinet.com/resources/cyberglossary/authentication-token
https://jwt.io/introduction
https://developer.okta.com/blog/2019/02/14/modern-token-authentication-in-node-with-express
https://developer.okta.com/blog/2019/02/14/modern-token-authentication-in-node-with-express
https://developer.okta.com/blog/2019/02/14/modern-token-authentication-in-node-with-express
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactrouter.com/docs/en/v6/getting-started/tutorial
https://reactrouter.com/docs/en/v6/getting-started/tutorial
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage
https://www.perficient.com/insights/research-hub/mobile-vs-desktop-usage
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Responsive_Design
https://getbootstrap.com/docs/4.1/getting-started/introduction/
https://getbootstrap.com/docs/4.1/getting-started/introduction/

BIBLIOGRAPHY

[30] React-Bootstrap. Introduction. url: <https://react-bootstrap.github.io/
getting-started/introduction> [online] [Cit. 12.05.2022].

[31] OWASP. OWASP Top Ten. url: <https://owasp.org/www-project-top-
ten/> [online] [Cit. 05.05.2022].

[32] René Milzarek. Injection Attacks Types and How to Best Protect Your Web Apps? url:
<https://crashtest-security.com/what-are-the-different-types-
of-injection-attacks/> [online] [Cit. 05.05.2022].

[33] OWASP. Cross Site Request Forgery (CSRF). url: <https://owasp.org/www-
community/attacks/csrf> [online] [Cit. 05.05.2022].

[34] OWASP. Cross Site Scripting (XSS). url: <https://owasp.org/www-community/
attacks/xss/> [online] [Cit. 05.05.2022].

[35] Spring Boot Architecture. url: <https://www.javatpoint.com/spring-
boot-architecture> [online] [Cit. 14.05.2022].

[36] Okta. Data Transfer Object DTO Definition and Usage. url: <https://www.okta.
com/identity-101/dto/> [online] [Cit. 14.05.2022].

[37] The WebSocket API (WebSockets). url: <https://developer.mozilla.org/
en-US/docs/Web/API/WebSockets_API> [online] [Cit. 16.05.2022].

41

https://react-bootstrap.github.io/getting-started/introduction
https://react-bootstrap.github.io/getting-started/introduction
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://crashtest-security.com/what-are-the-different-types-of-injection-attacks/
https://crashtest-security.com/what-are-the-different-types-of-injection-attacks/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://www.javatpoint.com/spring-boot-architecture
https://www.javatpoint.com/spring-boot-architecture
https://www.okta.com/identity-101/dto/
https://www.okta.com/identity-101/dto/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

	Introduction
	Motivation
	Objective
	Application overview
	Chapter overview

	Review of existing software
	Microsoft Teams
	Moodle
	Discord
	Takeaways

	Business analysis
	Functional and non functional requirements
	Functional requirements
	Non functional requirements

	Process domain model
	Creating new thread
	Closing subject
	Creating quiz

	Business domain model

	Design
	Single page and multi page application comparison
	Multi page application
	Single page application
	Conclusion

	Used Technologies
	Spring
	Spring Boot
	JPA
	Security

	Authentication schemes
	JWT

	React
	React Router
	Responsive Design
	Bootstrap
	React-Bootstrap

	Security risks
	Injection attacks
	Cross site request forgery
	Cross site scripting

	Class Diagram

	Implementation
	Structure
	Backend
	Frontend

	Features
	Login
	Student identity
	Joining subjects
	Forum
	Chat
	Quizzes

	Testing
	Service layer testing
	API testing
	User testing
	Deployment
	Heroku
	Netlify

	Test scenario
	Testing process
	Results

	Conclusion

