
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Integration of DevOps for Software
Development and Delivery

Vít Lupínek

Supervisor: Ing. Karel Frajták, Ph.D.
Field of study: Open Informatics
May 2022

Acknowledgements
I want to thank my supervisor Ing. Karel
Frajták, Ph.D. for valuable feedback dur-
ing writing of this thesis. I also want to
thank my family and friends for support.

Declaration
I declare that this work is all my own
work and I have cited all sources I have
used in the bibliography.

Prague, May 19, 2022

Prohlašuji, že jsem předloženou
práci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

Praha, 19. května 2022

ii

Abstract
This thesis focuses on solving the chal-
lenges in development of cloud based ap-
plications following the microservice archi-
tecture. We first analyse these challenges,
and we show ways to solve them with au-
tomation. We also describe the principles
of Infrastructure as a Code and Contin-
uous Integration and Delivery. Then we
design and implement an easy to use sys-
tem for small to medium sized develop-
ment teams, which automates the setup
of infrastructure for their application and
also automates the process of building,
testing and deploying new versions of the
software. We put emphasis on simple use,
readability, reusability while eliminating
as much manual interference as possible,
while keeping the ability to customise ev-
ery aspect of the system.

Keywords: DevOps, infrastructure, IaC,
infrastructure as a code, ci/cd, pipeline,
continuous integration, continuous
delivery, Terraform, Terragrunt, GitOps

Supervisor: Ing. Karel Frajták, Ph.D.

Abstrakt
Tato práce se soustředí na řešení problému
spojených s vývojem cloudových aplikací
podle architektury mikroslužeb. Nejdříve
tyto problémy analyzuje a ukážeme, jak je
lze automatizovat. Také popisujeme prin-
cipy Infrastruktury jako kód a Kontinu-
ální integrace a nasazení. Dále v práci
nejdříve navrhneme, a pak také imple-
mentujeme snadno použitelný systém pro
malé a středně velké týmy, který auto-
matizuje proces vystavění infrastruktury
jejich aplikace a také automatizuje pro-
ces sestavení, testování a nasazení nové
verze tohoto softwaru. Kladli jsme důraz
na jednoduchost využití systému, čitelnost
a přepoužitelnost a zároveň jsme chtěli eli-
minovat co nejvíc manuálních zásahů do
konfigurace, při zachování možnosti vlast-
ního přizpůsobení všech aspektů našeho
systému.

Klíčová slova: DevOps, infrastruktura,
IaC, infrastruktura jako kód, ci/cd,
pipeline, kontinuální integrace,
kontinuální nasazení, Terraform,
Terragrunt, GitOps

Překlad názvu: Integrace DevOps ve
vývoji a řízení softwarových řešení

iii

Contents
Project Specification 1
1 Introduction 2
1.1 Objectives . 2
1.2 Thesis Outline. 3
2 DevOps (as a Service) 4
2.1 Challenges to Solve 4

2.1.1 Networking 4
2.1.2 Scalability 7
2.1.3 Infrastructure Provisioning and

Configuration 14
2.1.4 Automation of Continuous

Integration and Delivery 16
2.1.5 Environment Variables and

Secrets . 17
2.2 Infrastructure as a Code (IaC) . 18

2.2.1 Ad-Hoc Scripts 19
2.2.2 Configuration Management

Tools . 20
2.2.3 Server Templating Tools 21
2.2.4 Orchestration Tools 23
2.2.5 Provisioning Tools 24
2.2.6 The Benefits of Infrastructure

as a Code . 25
3 Technology Stack 27
3.1 Cloud Provider 27
3.2 Orchestration 27
3.3 Provisioning and Environments

management 28
3.3.1 Terraform 33
3.3.2 Pulumi 40

3.4 Continuous Integration and
Delivery . 42

4 System Design 43
4.1 Web UI . 44
4.2 Authorisation 45
4.3 Microservices 46
4.4 Data storage 49
4.5 Logging and Monitoring 50
4.6 Environment variables storage . . 51
4.7 Continuous Integration and

Delivery . 52
5 Implementation Process 55
5.1 Infrastructure Provisioning 55

5.1.1 Global Modules 55
5.1.2 Environment Specific Modules 57

5.1.3 Environments 60
5.2 GitLab CI/CD pipelines 61

5.2.1 Extending Pipeline Jobs 61
5.2.2 Creating Docker Images 62
5.2.3 Docker Images in pipelines . . 65
5.2.4 Code Quality and Linting . . . 66
5.2.5 Automated Testing 67
5.2.6 Deploying to Cloud

Environment and Launching New
Tasks . 68

6 Example Project 70
6.1 Vendure E-commerce 70
6.2 Demo storefront 72
6.3 CI/CD and Infrastructure 73
7 Conclusion 75
7.1 Further work 75
Bibliography 76
A Attachment Content 77

iv

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483757Personal ID number:Lupínek VítStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

SoftwareSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Integration of DevOps for Software Development and Delivery

Bachelor’s thesis title in Czech:

Integrace DevOps ve vývoji a řízení softwarových řešení

Guidelines:

Design and implement a general infrastructure as a code for simpler management, development and testing of containerized
applications. The system will allow automatic code linting and complete unit testing of the application, as well as end to
end testing support for front-end web application. It will also automatically containerize the solution and ensure its smooth
deployment to a chosen environment. The system will manage this environment through a set of text configuration files.
Test functionality of the system on a simple example project.

Bibliography / sources:

1)The Devops Handbook, Authors: Gene Kim, Jez Humble, and Patrick Debois
2) Starting and Scaling DevOps in the Enterprise, Author: Gary Gruve

Name and workplace of bachelor’s thesis supervisor:

Ing. Karel Frajták, Ph.D. System Testing IntelLigent Lab FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 27.05.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Karel Frajták, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Chapter 1
Introduction

DevOps is a set of practices which aim to combine and simplify the work of
developers (Dev) and IT operations (Ops). The main goal of DevOps is to
create a more efficient process of developing software. There has not been
developed a universal definition for the term "DevOps", so it is mostly defined
by a set of key principles being: shared ownership, workflow automation,
and rapid feedback1. Nowadays, programmers and software developers first
encounter DevOps in the workflow automation form.

The number one priority for programmers is the actual code they write,
if it runs smoothly, and solves the given problem efficiently. They do not
want to worry about managing servers where their code will run, or configure
data centres, or how the final application will be served to the end user. This
theses focuses on solving most of these everyday problems for programmers
through automation, and letting them focus on fast code development, and
frequent updates to their applications.

1.1 Objectives

The main goal of this thesis is to implement an easy to use system of configu-
ration files, that helps small teams provision infrastructure for a microservice
architecture, and automate the process of testing, building, and deploying
small services to the cloud. It also aims to allow for simple customisation
of this process. Implementing such tool eliminates the need for manual ad-
justments to the infrastructure of applications thus removing most of the
errors introduced by a human, and also increasing the team’s efficiency of
developing their product.

First, we will look at problems in development and application deployment
teams usually come across. We will focus on those, that can be solved with
automation, and what principles can be applied to eliminate these challenges.
Then we will analyse existing solutions and talk about the implementation
process of our system. We will also discus technologies, libraries, and third
party applications which were used, and why we chose them.

The implementation will consist of configuration files that provide infras-

1Mentioned in [Lou12]

2

....................................1.2. Thesis Outline.

tructure provisioning for a cloud based web application following microservice
architecture. There will also be an option to create multiple environments
such as development, staging or testing, and of course a production environ-
ment. This system tries to create very similar environments to the production
one with only small changes to for example database storage, number of
instances for each microservice or the verbosity of log files. Last but not
least the system will provide a fully functioning template CI/CD pipeline for
linting, building, testing, and deployment of each microservice. We list the
main goals below for clarity:. out of the box provisioning for small to medium size projects. simple extension of CI/CD pipelines. ability to create environments on demand. easy customisation of each step

1.2 Thesis Outline.

We briefly introduce each chapter of the thesis:. DevOps (as a Service) - In Chapter 2, we introduce principles of DevOps,
that can be automated through code, then we discuss challenges that
developers encounter when developing new applications. We also discus
the principles of Infrastructure as a Code(IaC) in more detail.. Technology Stack - In Chapter 3, we present the technologies that were
used in the implementation and why.. System Design - In Chapter 4, we first visualise the design for our system,
separate the system into smaller components, which we then describe in
more detail.. Implementation Process - In Chapter 5, we show the process of imple-
menting this system, and discuss some of the challenges we faced in
development. The implementation is split into two parts: IaC implemen-
tation and CI/CD implementation.. Example Project - In Chapter 6, we test the system on an example
E-commerce project, and provide some screenshots of this project as well
as of the infrastructure our system has provisioned.

3

Chapter 2
DevOps (as a Service)

In this chapter, we will look at some of the problems that appear the most
while developing a cloud native web service or application. As DevOps is
a large set of practices, we will only focus on two parts: Infrastructure as
a Code and Continuous Integration and Continuous Delivery as they work
closely with the actual code of application and they can be implemented
programmatically. We discuss some of the major benefits in section 2.2.6. This
programmatic approach to DevOps is emerging as a new kind of philosophy,
at least in the cloud environment, the DevOps as a Service philosophy. We
will not use this term as it does not have a specific definition, however it
describes our implemented system or the motivation behind creating it in a
compact way.

2.1 Challenges to Solve

Let’s first look at some of the challenges that need to be solved when developing
and running a cloud native application following a microservice architecture.

2.1.1 Networking

In a microservice architecture networking is no longer as straight forward
as it is with monolithic application. What used to be one simple function
call to a remote service now requires a network hop, because we need to for
example route our requests to different services, balance out the load and
more. Distributing load among microservices and using virtual networks to
isolate and speed up communication to them are challenges that we want to
address with our system.

There are two main categories to keep in mind. Traffic within our
networks e.g. communication among components of our data centre such as
microservices, routers, or data storage. This is sometimes called East-West
Traffic. The second category is managing traffic between our networks and
the outer world e.g. from users and their browsers, or third party services.
This type of communication is called North-South Traffic.

4

..................................2.1. Challenges to Solve

Figure 2.1: Visualisation of north-south and east-west traffic[NEU16]

East-West Traffic

In a microservice architecture each microservice has its delegated function,
for example one could manage user authentication, while another could only
work around creating, updating and deleting orders. This microservice would
need to ask user management service, if a user is authorised to access a
specific order. Now allowing these components of our data centre to talk to
each other very quickly is essential for an efficient and fast response time.

Because the usage of virtual systems has grown extensively, and because
organisations now prefer private cloud infrastructure more and more, east-
west traffic volumes have increased drastically. Nowadays there are many
functions and services performed virtually, instead of how they used to – on
physical hardware. We need to treat these services as a dynamically updating
software. We need to update the configuration whenever we create or destroy
new microservices in our system, or when we want to change how to balance
out the load. We also need to keep in mind that parts of our system can crash
and for example when we do not want to route requests to a crashed service
instance the load balancer configuration needs to be updated accordingly.

Virtual Private Cloud. In the cloud computing environment servers and other
resources can share physical networking resources with other people’s servers.
To isolate data centres and networks, cloud service providers introduce the
ability of creating a Virtual Private Cloud which acts as a logical isolation
solution that gives us control over networking environment the same way as
if we ran infrastructure on-premise.1

This abstraction provides us with one very important advantage that
1Meaning the same way as if we had all the servers run on our own hardware in a

dedicated place only we could access.

5

2. DevOps (as a Service).................................
is the ability to communicate among services over a local network, which
greatly decreases the latency and also isolates their communication from the
outer world.

North-South Traffic

Any communication between components of a data centre and another system,
which is physically out of the boundary of the data centre, is referred to as
north-south traffic. For instance a client requesting access to web application.

Traffic coming into the data centre through a firewall or other network
device is referred to as southbound traffic. The opposite of it, traffic going
out of the data centre is referred to as northbound. This type of traffic is
prone to attacks from the outside as it flows over the public internet and in
some sense anyone can intercept it. Proper security control needs to be in
place to ensure safe data transfer in and out of our data centres. There are
plenty of tools to help us secure our infrastructure like Application Gateway,
Firewall, Network ACL2 and many more.

Authorisation. In an on-premise infrastructure there were some specific
attacks for example malicious Office macros, and Powershell deployments,
sometimes even phishing attacks. These issues are more or less irrelevant
in the cloud environment as the cloud platforms usually provide protection
against such attacks, however new risks occur when using cloud as the attack
surface increases. One major threat is access to individual resources in the
infrastructure. A big part of North-South traffic, and to some degree also
East-West traffic, is deciding on who has access to our data centre components
e.g. who is authorised to use the resource. This is usually handled via firewall
or a virtual abstraction of it such as security groups in AWS. They control
which IP addresses, ports or protocols can be accessed in our data centre.

Load balancing

Balancing load among not only different microservices, but also splitting work
among multiple instances of these services is a key point in our system. We
can imagine 2.2 Load Balancers as routing and naming devices, that redirect
network traffic to individual components of our data centre. These devices are
able to check the health of our application instances and not send traffic to
servers that are unavailable or route that work to different available instances
in the system.

2Access Control List

6

..................................2.1. Challenges to Solve

Figure 2.2: How Load Balancers work [Awa]

Load balancers are able to leverage algorithms for splitting work including:.Round Robin - As the name suggest round robin strategy distributes
network load around instances in turns. It forwards the first request
to the first instance, the second request to the next instance and so on,
until it runs out of instances to forward and then it starts again with
the first instance. This is a very simple way of distributing work and is
usually outperformed by the other approaches.. Least connection - The least connections algorithm stores a record of
active connections and forwards new connection to the server with the
least number of active connections. 3

Balancing load can be done at different layers of the ISO/OSI model.
We can have an Application Load Balancer managing network traffic at
the application level (HTTP/HTTPS) and make routing decisions based on
metadata in requests. For example the AWS ALB supports making decisions
according to different paths, sub-domains or header contents in each request.

Network Load Balancers on the other hand handle load at the network
layer (TCP/UDP) and they do not analyse the contents of each request but
only forward traffic.

2.1.2 Scalability

Scalability describes a system’s elasticity. While we often use it to refer to a
system’s ability to grow, it is not exclusive to this definition. We can scale

3There is also a Weighted version of this algorithm which only adds weights according
to priority of each instance

7

2. DevOps (as a Service).................................
down, scale up, and scale out accordingly.

When we run a software product e.g. a website, web service, or applica-
tion4, we can measure a websites reach by the amount of network traffic it
receives. For example in E-commerce more network traffic generally means a
higher probability of selling goods, however it can bring other challenges we
need to solve when ensuring quality interaction between our product and the
visitor, such as delay when serving the application, or when we communicate
with data storage. It is common to underestimate the amount of network
traffic our website will incur, when designing it, or in the early stages of
development. This can result in crashed servers and decline in quality of our
product, which can lead to less people visiting our website or service.

In one sentence, scalability describes how our product adapts to change
and demand. We talked about more people visiting our website, a higher
demand, and providing more resources, but we also need to keep in mind, that
adding more resources increases the operating costs and when the demand
decreases we need to remove these newly added resources to cut back on
expenses.

There are two types of scaling your application or its underlying infrastruc-
ture. Vertical and Horizontal scaling.

Figure 2.3: Difference between Vertical scaling (scaling up) and Horizontal
scaling (scaling out)[Sta20]

Vertical Scaling

Vertical scaling, or scaling up and down, means adding, or decreasing resources
to maintain performance in changing demand. CPU, memory, network or
storage are the most common targets for scaling up and down. It could also
mean replacing a server with an upgraded one. At the same time scaling up

4We will use these terms interchangeably

8

..................................2.1. Challenges to Solve

could easily mean allowing our application to allocate more memory.
Let’s say we have a simple client/server application where the client

makes HTTP requests to our server application, a back end API5. As the
time goes there are more and more end users using our application. The client
side is run in a browser of a visitor so there is not an issue with performance.
Every browser makes requests to the same server instance and we need to
handle all of these requests on our server at the same time, but there is not
enough processing power to respond to each request without a delay that
would affect the end user’s experience. With vertical scaling we could increase
the CPU on the machine that hosts our server application, thus increasing
the performance and hopefully respond to requests faster. For example in
AWS terms if we had our application running on a t3.micro instance we could
upgrade it to a t3.medium which would give us twice the processing power
and also more memory. This approach has many disadvantages including:. Server downtime - In order to increase resources on a server you usually

need to stop the server and the application with it, then increase its
resources, start the server up again and restart your application. While
this process is going on, no users will be able to access your application.
In an on-premise environment buying and replacing new components for
our servers could take days or even weeks, but we will stick to a cloud
based environment where this process usually takes minutes. Still this
delay can lead to potential loss of profit. A big enough E-commerce
application with downtime in minutes could lose hundreds of thousands
of dollars in revenue. Also users might get angry, that the website is
down and never come back to it.. Single point of failure - Having all operations on a single server,
increase the chance of losing all your data if a hardware or software
failure occurs. In the event of a server failure your application crashes,
and is unavailable for the end user which again leads to potential revenue
loss.. Limited upgrade options - There is an upper limit to how much you
can upgrade a server. Every machine has its threshold for RAM, storage,
and processing power.

Taking into account all of the above stated disadvantage for very small
projects, or when you are on a tight budget, it still might be more beneficial
to start with vertical scaling. Let us list the advantages bellow:.Cost effectiveness - Upgrading an already existing machine is much

cheaper then purchasing a new one. You are still running the same
operating system, or using the same virtualisation.. Easier communication among services - When you have only one
instance of your application, for example a back end application commu-
nicating with only one database instance, there is no need to balance the

5Application Programming Interface

9

2. DevOps (as a Service).................................
network traffic as it is always being handled by the same server. Also
you have data in one place, there is no need to manage replication and
synchronisation of data among storage nodes.

. Simpler development of services - Usually it is much simpler to
develop an application, which runs on a single machine as developers do
not have to think about their application being stateless, thus lowering
the initial cost for developing a functioning application.

. Easier maintenance - Maintaining one instance is always going to be
easier then managing multiple ones. You do not have to think about
setting up new backups, or upgrading operating systems on multiple
servers.

Horizontal Scaling

On the other hand Horizontal scaling, or scaling out, refers to creating new
instances of the same application. It could mean starting a new container
with the same application on the same server and only balancing network
load among these containers, or it could mean adding a whole new machine
to our infrastructure. These new instances are all functionally exactly the
same, in fact they do not have to know anything about the other running
instances, or that they even exist. They also do not have to run on the same
server or in the same country. That adds a new level of complexity for both
the developers and DevOps engineers. We now need to keep in mind, that
there is no guarantee which instance will process a given action and every
instance has to handle it in the exact same way.

Going back to the example client/server application above, when facing a
higher demand, scaling out could be accomplished by setting up a new server,
installing the same software on this node and running our application. But
then we would need to somehow decide on which instance handles an incoming
request. This is called load balancing, we discussed different approaches to
load balancing in section 2.1.1. After a load balancer is setup it is much
simpler to add new nodes to this application cluster and redirect network
traffic. In the world of AWS cloud computing we could achieve this by
spinning up a new EC2 instance with an elastic IP address, then create an
Application Load Balancer(ALB)2.1.1 which would distribute the network
load between these two instances. The end users should not see a difference,
they still access the same endpoint, only with this setup, there is no guarantee
which EC2 instance will receive the request

To visualise this in figure 2.4 we illustrate a simple EC2 setup with a
Internet Gateway to have it accessible from the internet.

10

..................................2.1. Challenges to Solve

Figure 2.4: EC2 with Internet Gateweay setup

And then in figure 2.5 we show a possible setup with two EC2 instances,
and an Application Load Balancer to distribute the network traffic.

11

2. DevOps (as a Service).................................

Figure 2.5: Two EC2s with ALB setup

One could argue scaling out requires a lot of steps and this is partially true.
The complexity of such setup is one of the main disadvantages of horizontal
scaling. Some of the disadvantages are listed bellow:. System complexity - Adding load balancers and possibly virtualisation

to your system, increases the possible points of failure in your system.
Backing up your machines may also become a little more complex. You
will need to ensure that nodes synchronise and communicate effectively.
This possibly increases the delay in response to a user request..Higher costs - Multiple servers all need to run their operating systems
and have their own storage and RAM, this is obviously more expensive,
then keeping all data and operations on a single server..More complicated development process - Keeping with some if not
all of the principles described in The Twelve-Factor App6 is essential
when creating an application that can be scaled out. This would require

6https://12factor.net/

12

https://12factor.net/

..................................2.1. Challenges to Solve

more experienced developers, who generally demand higher salaries. Also
designing a system with horizontal scaling in mind proves to be slightly
more difficult then an application which would only scale vertically..Maintenance - More servers, load balancers, virtualisation, all of these
need to be maintained which is again harder then maintaining a single
server. Keeping everything exactly the same, upgrading all servers,
deploying to all servers proves to be a difficult task, that usually can not
and should not be done manually, but solved through automation tools.
Again this brings another level of complexity to the project and possibly
requires a specialist to set this process up.

On the other hand having multiple instances distributed around the world
all behaving exactly the same brings a lot of benefits to a project. Let’s again
list them out:. Simpler and more elastic scaling - From a hardware perspective,

adding a new machine to your cluster is much simpler, than analysing
what resource needs to be upgraded. Also spinning up a new instance,
or tearing one down proves to be much more viable when dealing with
spikes in demand. This is much more cost effective as your project grows
in size and demand, but also if managed properly, scaling down when
needed could save a small project money when additional nodes are not
needed..Absence of a single point of failure - Having multiple instances of
your application, or even better having multiple servers running the same
application with distributed data among multiple locations eliminates
the risk of losing all your data. If you have many servers with a copy
of your application, when one instance crashes, another one can handle
requests, meaning the end user never notices that one of your servers
does not respond and could be on fire..No or fewer periods of server downtime - This closely relates to the
statement above, when you have multiple instances of your application
one being down does not affect the end user. We can use this when rolling
out updates to our application by having an instance handle requests
while we upgrade a second instance to a new version, then redirecting
network traffic to this updated instance and updating the previous
one. Some practices like blue-green deployment or rolling updates in
Kubernetes take advantage of this benefit..Possibly unlimited scaling - Theoretically there is no upper limit to
how many instances of your application can run at the same time as
long as you have enough finances to cover the cost of the underlying
infrastructure.

13

2. DevOps (as a Service).................................
Which Method To Use?

As always there is no clear answer to which method to use. Both horizontal
and vertical scaling have their benefits and limitations. Also they are not
mutually exclusive, so to some extend we can benefit from using both.
When deciding on which scaling option your organisation needs, you might
want to consider some of these factors..Cost - As stated above, horizontal scaling has a higher initial cost ten

vertical scaling, but could be potentially more cost effective long term.. Future of your project - Keep in mind how much your project can
grow. A project that will not need to be expanded by a lot would not
benefit much from being able to horizontally scaled and scaling it up
and down would be sufficient. On the other hand if you expect to grow
not only in demand, but you will also need to serve your application
in multiple countries around the world, then being able to spin up new
instances, e.g. scaling out, that can be run anywhere in the world, will
greatly simplify the process of expansion..Reliability - Horizontal scaling generally provides a more reliable system
as it is more redundant then vertical scaling..Complexity - A simple straightforward application will not benefit
much from being run on multiple machines, it could even decrease its
performance.

2.1.3 Infrastructure Provisioning and Configuration

When creating a web based software such as a web application, or any other
cloud application, we need to be able to create and setup the corresponding
IT infrastructure. This process is handled by provisioning and configuration.

Provisioning vs Configuration

Provisioning is sometimes confused with configuration, but while both of
them are commonly solved together in the development process, they are
not the same thing. Provisioning focus more on the physical hardware or at
least the virtualisation of such hardware. Once something is provisioned, only
then it can be configured. That is where configuration steps in and solves
the setup of software on a newly provisioned machine.

Provisioning. We wrote about Networking 2.1.1 and Scalability 2.1.2 as
some of the more complex tasks that need attention while developing a new
application. These fall mostly under the domains of provisioning7 and because
they are so complex, setting them up manually could introduce complications
and possible errors made by us, humans. That is one of the reasons why we

7Although some networking issues for example proxiyng could be handled by tools such
as NGINX, thus falling under the category of configuration of these tools.

14

..................................2.1. Challenges to Solve

want to automate the process of provisioning infrastructure for our applica-
tions.

There are tools that make it more convenient for us to manage provi-
sioning automatically with text files for instance Terraform and its wrapper
Terragrunt, but we will discuss them more in section 2.2.5

When the term "provisioning" is used it can mean different types of provi-
sioning, for example:.Network Provisioning - This can include setting up a network that

the users, servers, containers, other services can access. In the hardware
world it could mean setting up cables and wiring. But for us in the cloud
it could mean creating a VPC setting up firewalls etc.. Server Provisioning - As the name suggests it includes setting up a
new server in the network. For example spinning up a new EC2 instance..User Provisioning - It manages identities and access to our network
and individual components of a data centre. In AWS it could mean
setting up IAM8 roles and policies for databases or access to VPC.. Service Provisioning - It includes the set up of a new service and
managing the data associated with it. For example running a new
container.

Configuration. On the other hand the development team usually expects
the end machine to run some kind of operating system and to have other
third party applications running on the given instance. Configuration can
address these needs by creating a sequence of steps, that will configure new
servers, start applications and overall prepare the environment. For example
the most common use of configuration is when setting up NGINX.9 On every
machine you would want to install NGINX, configure what ports it handles
and then you want to actually start the NGINX service. That is the job
of configuration tools such as Ansible10, again we will clarify this in a later
section2.2.2

Another good reason to introduce automation to infrastructure is the ability
to create identical or at least very similar environments.

Environments. When developing almost any software, as a developer you
want to have a safe space to test your application. Of course you can do this
on your local machine, but in the end that is not where the final application
will run, so that raises a very common issue of developers saying "It works
on my machine". We would like to create an environment for developers to
play around with their code and also for it to be as similar as possible to the
actual production environment, but it does not need as many resources or

8Identity and Access Management
9“NGINX is open source software for web serving, reverse proxying, caching, load

balancing, media streaming, and more” [Tea16]
10https://www.ansible.com/

15

https://www.ansible.com/

2. DevOps (as a Service).................................
that it does not have to work without downtime.

We might also need a special environment for user testing by either testers
or the actual client. Sometimes referred to as UA11 or Testing environment.

We established that we need multiple very similar environments. Managing
all of these environments manually is a very tedious task and when introducing
changes to one environment, that will one day be projected to a different
environment, it can lead to possible errors. Maybe we forget what changes
were made to the environments, or we setup something slightly different
and in the end our application does not start or can not communicate with
other services. It would be much easier to have all of these changes to
infrastructure managed by a set of configuration files and then have them
automatically apply to a specific environment when we deploy a new version
of our application that already knows how to work with these changes in
infrastructure. That is where Infrastructure as a Code comes in and we will
discuss it in more detail in section 2.2

2.1.4 Automation of Continuous Integration and Delivery

When developers code a new feature or fix a bug in their service, they usually
version it with some sort of version control system, probably Git. Pushing
new code to a Git repository means storing it somewhere and having backups
or versions of that code, but that is all. In order to serve this new version
of application we need to first execute a number of steps. These steps can
include but are not limited to:.Checking the quality of code - This step is not mandatory to the

successful deployment of new application version, but is commonly a
part of the process. It ensures that the newly added code follow some
sort of style that the team agreed on and that it does not include any so
called "code smells"..Automatic testing of the new application - Either unit testing in a
sandbox environment, or running end to end tests, or any other form of
testing the application, that can be done by a computer..Building application artifact - The process of converting source code
files into standalone software artifact or machine code, that can then be
run on a server. Sometimes this can precede the testing step.Deploying built application - After we have a fully tested and built
application we need to copy the artifacts to our server. There are many
strategies for deploying a new version of our application in order to
reduce downtime including canary deployment, rolling updates, blue
green deployment, or A/B testing strategy.

This is a very tedious and time consuming process which can be done by a
computer. A decade ago these processes would be handled by a special set of

11User Acceptance

16

..................................2.1. Challenges to Solve

people, the IT Operations specialists, and it would take them a significant
amount of time to get a new version running on a server. With automation
we can achieve much faster and more frequent deploys of new versions. We
also eliminate any possible errors that could occur if a human was doing this
task. By triggering this task in a pipeline on a push to a Git repository we
allow developers to in a way deploy their new code to a server alone and in
the matter of minutes.

There is a whole new philosophy around deploying cloud based applica-
tions by keeping declarative descriptions of the infrastructure and application
states in a Git repository, called GitOps, but again we will not discuss it in
more detail as it is only an enclosing term for what we want to achieve with
our system, but if the reader wishes to know more, we can recommend the
book GitOps - cloud- native continuous deployment [BKH21].

We achieve this automatic process by introducing Continuous Integration
and Continuous Deployment to our system

2.1.5 Environment Variables and Secrets

Microservices need to be able to run in different environments without modi-
fication to their code. We might have different databases for dev, stage and
production environments, so we need to have a way of telling the service, how
to connect to a specific database or any other third party service. We do this
by externalising all configuration and reading the configuration at application
startup from OS environment variables.

To visualise the concept of passing environment variables let’s create an
example. We could have a frontend and a backend application and we need
to tell frontend how to access our backend. We can do this by passing a
variable with the backend’s endpoint. We also need to pass credentials for a
PostgreSQL12 database to the backend service. In Docker Compose13 we can
achieve such configuration with the following code 2.1:

Source Code 2.1: Docker Compose FE and BE configuration

version: '3'

services:
frontend:

build: ./frontend
ports:

- 3000
depends_on:

- backend
environment:

BACKEND_ENDPOINT: localhost:8080

12https://www.postgresql.org/docs/
13https://docs.docker.com/compose/

17

https://www.postgresql.org/docs/
https://docs.docker.com/compose/

2. DevOps (as a Service).................................
backend:

build: ./backend
expose:

- 8080
environment:

- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres

By exposing port 8080 from the backend container we can then access it
on the local network as localhost:8080.

The advantage of this setup is that we do not need to build our frontend
application every time we want it to communicate with a different backend. We
can then only set the BACKEND_ENDPOINT variable to a different value when we
deploy our application to a server for example https://backend.example.com.

Secrets. Secrets are an upgrade to environment variables. They work very
similarly as environment variables and are usually passed to the application
more or less the same way, but there is an added layer of security by encrypting
these values

Secrets should be used when dealing with sensitive data for example
credentials, API keys, and encryption keys. Another good practise is to
retrieve secrets only once when starting our application to minimise possible
leaks of these values.

As we speak about securing these values we must mention a common
mistake with storing secrets and that is committing these values to a version
control system. You should never commit secret values, or the encryption
keys to retrieve them. Either projects get forked, or the communication while
committing code could be interrupted, or you could unintentionally expose
the .git folder. All of these possibilities are reasons to never commit secrets
to repositories. Also we need to keep in mind, that if we once commit secrets
to a repository and then delete them it does not mean they are gone forever.
They are still kept in Git history and could be retrieved.

Because the stakes are high when storing environment variables and
secrets, there are tools that help us manage them in a more effective and
secure way such as Secrets Manager on AWS, or Vault by HashiCorp.

2.2 Infrastructure as a Code (IaC)

In the mid 2000s we saw an increase in complexity to applications. More
hardware virtualisation and the rise of cloud providers allowed for cheaper
infrastructure, but it also became more complicated to manage this infras-
tructure. It was a challenge to dynamically and frequently update your
infrastructure and keep all environments as similar as possible.

The idea behind IaC is to write and execute code that defines, deploys,
updates and destroys your infrastructure. We can split tasks of IaC tools
into five different categories listed bellow:

18

............................. 2.2. Infrastructure as a Code (IaC)

. Ad-hoc scripts. Configuration management tools. Server templating tools.Orchestration tools. Provisioning tools

Let’s look at them more closely.

2.2.1 Ad-Hoc Scripts

The simplest approach to automating almost anything is to write ad-hoc
scripts. If possible you take any task you normally do manually and write a
Bash, Ruby, or Python script to execute this task for you.

For example let’s create a bash script to setup NGINX on a server:

Source Code 2.2: Bash NGINX Installation and Configuration

Update dependencies
sudo apt-get update

Install NGINX on our server
sudo apt-get install nginx

Forward 'frontend.example.com' to 'localhost:3000'
echo "server {

listen 80;
server_name frontend.example.com;
location / {
proxy_pass http://localhost:3000;

}
}" > /etc/nginx/sites-available/default

Start the NGINX service
sudo service nginx start

The benefits of this approach are:.We can use general purpose programming languages to write scripts.We have complete control over the steps that are executed and we can
customise this process as much as we want.. The task previously done manually is now scripted, and can be executed
multiple times and should produce very similar outputs, unless the
machine is in a different initial state then anticipated.

19

2. DevOps (as a Service).................................
On the other hand even though we listed that we can write completely

custom code for every task it is also a big downside as we have to write custom
script for each task. The tools that are purposely built for IaC provide APIs
for accomplishing much more complex tasks. If we had to maintain a big
structure of bash scripts, the benefit of having IaC diminishes greatly.

To summarise: ad-hoc scripts are great for small tasks or tasks that are
not executed frequently. But if we want to handle all of our infrastructure as
a code, we need to use more sophisticated IaC tools.

2.2.2 Configuration Management Tools

Configuration management tools such as Ansible, Chef, Puppet are designed
to install and manage software on existing machines. It sounds very similar
to what ad-hoc scripts do, the difference is that these tools provide some
convention advantages, but let’s first create the same NGINX server using
Ansible playbook:

Source Code 2.3: Ansible NGINX Playbook

- name: Update dependencies
apt:
update_cache: yes

- name: Install NGINX
apt:
name: nginx

- name: Forward 'frontend.example.com' to 'localhost:3000'
shell: "echo `server {

listen 80;
server_name frontend.example.com;
location / {

proxy_pass http://localhost:3000;
}

}` > /etc/nginx/sites-available/default"

- name: Start NGINX
service: name=nginx state=started enabled=yes

On its own we do not really see the benefits of using Ansible over ad-hoc
scripts.14

By using such tool we gained these advantages:.Coding Conventions - Ansible enforces consistent structure, file layout,
and also is self documenting, which is one of the great benefits of IaC.
So by enforcing some structure to the Ansible playbook we can on board

14Granted we did not introduce much customisation to the playbook as we wanted to
keep the examples simple. A more clear and reusable way can be found in article [AN20]

20

............................. 2.2. Infrastructure as a Code (IaC)

new developers much more easily as they only need to know the structure
of Ansible and not the structure, that someone created by writing a big
pile of ad-hoc scripts.. Idempotence - Writing an ad-hoc script, that works once is quite simple,
but writing an ad-hoc script, that runs correctly even though you execute
it multiple times is a much more difficult task. Even tasks as simple as
creating a folder require you to first check if that folder already exists,
the same goes with a new line of configuration, or when we started the
NGINX service we should first check if the service is not already running.

Idempotent code produces the same result without errors no matter
how many times you run it. Most of Ansible’s functions are idempotent
by default and we no longer need to add many conditional statements to
decide how our code should act in different situations. For example the
above playbook 2.3 will only install NGINX if it is not already installed
on the server..Distribution - By default Configuration management tools are designed
specifically to be run on large numbers of remote machines.

Again in Ansible we could accomplish this by first creating a file
with the host IP addresses of the machines we want to execute the above
playbook on.

[webservers]
3.80.11.11
3.80.11.12
3.80.11.13
3.80.11.14
3.80.11.15

Next, you define the following Ansible playbook:

- hosts: webservers
roles:
- webserver

Executing this playbook will tell Ansible to configure all five servers in
parallel.

2.2.3 Server Templating Tools

An alternative to configuration management tools are server templating tools
such as Docker15, Packer16, and Vagrant17. These tools work more around
the idea of packing a snapshot of the operating system, the necessary third

15https://docs.docker.com/
16https://www.packer.io/docs
17https://www.vagrantup.com/docs

21

https://docs.docker.com/
https://www.packer.io/docs
https://www.vagrantup.com/docs

2. DevOps (as a Service).................................
party software, files, and all other relevant details in a so called image of a
server. These images can be later installed on servers by a different IaC tool.
This means we no longer need to setup multiple servers and then configure
them by running the same code on each one.

For example the commonly used server templating tool is Docker. It creates
an image of our system with all necessary third party services by executing a
set of commands described in a Dockerfile. Then we can create multiple so
called containers to run a copy of the image.

Let’s create an example Dockerfile that will provide us with an image of
alpine Linux running the NGINX service with a custom configuration as
before.

First we create a frontend.conf file with the NGINX configuration:

server {
listen 80;
server_name frontend.example.com;

location / {
proxy_pass http://localhost:3000;

}

Then we define the actual Dockerfile 2.4:
Source Code 2.4: Dockerfile for NGINX Image

Specifying a base image with only alpine linux installed
FROM alpine:latest

Update the system packages
RUN apk update

Install NGINX
RUN apk add nginx

Copy the custom configuration for NGINX
COPY ./frontend.conf /etc/nginx/sites-available/default

Specify the command to execute when running a container with
this image↪→

CMD ["service", "nginx", "start"]

We now need to build the snapshot into an image with this command:

docker build -t nginx-example

and then we can spin up a container with the nginx-example image with
the following command:

docker run nginx-example

22

............................. 2.2. Infrastructure as a Code (IaC)

The obvious benefit of this approach is that we have everything necessary
to run the application in one image and we only need Docker installed on a
machine to run our application. Another benefit is that we can scale out our
application by only spinning up new containers of this pre-built image.

Server templating became a major component in shifting to immutable
infrastructure. It comes from declarative programming to create only im-
mutable variables. If we need to update something in an image we need to
create a new one. This eliminates unexpected errors that are hard to trace
and enables us to debug and reason about our code.

2.2.4 Orchestration Tools

Now that we have images and containers created by server templating tools
we need to actually manage them. To handle most use cases we will need to
do some of the following steps:. Deploy containers and make use of hardware efficiently. Handle updates to existing containers e.g. rolling updates, blue-green

deployment, canary deployment, and A/B testing strategy.Monitor health of these containers and if necessary replace unhealthy
instances by new ones. Dynamically scale the number of running instances either vertically or
horizontally (see 2.1.2). Distribute work load among containers (see 2.1.1). Allow these containers to talk to each other and talk to the outer world,
or any third party services (see 2.1.1)

To achieve this we can use orchestration tools such as Kubernetes18, Docker
Swarm19, Elastic Container Service20, or Nomad21. One of the more pop-
ular tools is Kubernetes. Every major cloud provider has their managed
way of running Kubernetes clusters (Elastic Kubernetes Service on AWS22,
Azure Kubernetes Service23, Google Kubernetes Engine24, DigitalOcean Ku-
bernetes25). We would recommend starting with DigitalOcean Kubernetes
because it is the cheapest out of the major providers and provides easy to
use Dashboard for managing the cluster as well as a simple way of installing

18https://kubernetes.io/docs/home/
19https://docs.docker.com/engine/swarm/
20https://docs.aws.amazon.com/ecs/index.html
21https://www.nomadproject.io/docs
22https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
23https://docs.microsoft.com/en-us/azure/aks/
24https://cloud.google.com/kubernetes-engine
25https://docs.digitalocean.com/products/kubernetes/

23

https://kubernetes.io/docs/home/
https://docs.docker.com/engine/swarm/
https://docs.aws.amazon.com/ecs/index.html
https://www.nomadproject.io/docs
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.microsoft.com/en-us/azure/aks/
https://cloud.google.com/kubernetes-engine
https://docs.digitalocean.com/products/kubernetes/

2. DevOps (as a Service).................................
already prepared deployments such as Loki26 or Cert-Manager27.

Kubernetes provides us with a way of managing our containerised ap-
plication through code. Although Kubernetes is very popular nowadays,
from what we found out while developing our system, they are unnecessarily
complex for smaller projects and Amazon Elastic Container Service provided
us with seamless deployments as well as easy to use autoscaling. All of that
only for the price of running server instances, while using Amazon Elastic
Kubernetes Service for managed Kubernetes starts at $70 for the simplest
cluster.

Once more we create an NGINX deployment with Kubernetes to introduce
the technology:

Source Code 2.5: Kubernetes NGINX deployment

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx

image: nginx:1.14.2
ports:
- containerPort: 80

This code snippet 2.5 was taken directly from Kubernetes documentation28.
For further reading, please refer to that documentation.

2.2.5 Provisioning Tools

While all previously mentioned tools define the code to be run on a server,
provisioning tools focus on creating servers themselves. You can also define
how to provision databases, caches, load balancers, service mesh, queues,
monitoring, firewalls, SSL certificates, DNS records, basically almost anything

26https://grafana.com/oss/loki/
27https://cert-manager.io/docs/
28https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

24

https://grafana.com/oss/loki/
https://cert-manager.io/docs/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

............................. 2.2. Infrastructure as a Code (IaC)

you could think of when talking about infrastructure. Terraform 3.3.1,
CloudFormation29, Azure Resource Manager30, OpenStack Heat31 are all
tools that try to simplify the process of provisioning infrastructure.

For example let’s spin up a new EC2 instance running NGINX with
Terraform 2.6.

Source Code 2.6: Terraform NGINX instance

resource "aws_instance" "app" {
instance_type = "t2.micro"
availability_zone = "eu-central-1a"
ami = "ami-0c55b159cbfafe1f0"
user_data = <<-EOF

sudo service nginx start
EOF

}

That’s all there is to it. Sometimes it can be even faster to create resources
with Terraform, then it is to create them manually through the AWS Console.

2.2.6 The Benefits of Infrastructure as a Code

Now that we saw all the possible types of tools used in IaC, we will provide
some reasons for why we want to introduce IaC into the development process.
Even though we already described some advantages of IaC in section 2.1.3
there are some other benefits to IaC worth mentioning:. Clear and available infrastructure code for everyone on the team. There

is no longer the need to have one system administrator, that handles all
the magic behind closed doors.. Safe and fast deployments are a direct product of automating the process.
The safety part comes from eliminating human errors in the process of
deployments.. Self documenting. Again if we have infrastructure defined in code and
following some conventions defined by the tool we are using, anyone can
read it. All the knowledge about infrastructure is no longer locked in
the head of one sysadmin..We can benefit from version control the same way we do while developing
other software. This could mean having the ability to create merge
requests and have changes recorded in history logs, so we can easily find
out and roll back any changes that caused errors.

29https://aws.amazon.com/cloudformation/
30https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/

overview
31https://wiki.openstack.org/wiki/Heat

25

https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://wiki.openstack.org/wiki/Heat

2. DevOps (as a Service).................................
. Having the state of our infrastructure defined in code gives us the ability

to create automated tests for it, or run code analysis.. Packaging infrastructure in reusable modules let’s us create deployments
for different environments without having to define new code for every
environment from scratch.

26

Chapter 3
Technology Stack

3.1 Cloud Provider

The choice of cloud provider usually comes down to personal preference. There
are three major cloud providers which provide basically the same services for
very similar price. These are Amazon Web Services(AWS), Google Cloud
Platform(GCP) and Microsoft Azure. We chose AWS because we have the
most experience using it, and HashiCorp has an official resource provider
with great documentation1 for AWS, which makes it simpler to implement.
Also there are many verified third party Terraform modules which helped us
create a more reliable system.

We want to mention DigitalOcean as a good option when trying out
cloud computing, as we found it on less expensive, especially when you want
to get into Kubernetes. That said it feels much less polished and less reliable
then any of the major providers. The lack of quality support from Terraform
makes it an inferior choice when developing infrastructure as a code.

3.2 Orchestration

We wanted to avoid dealing with complex orchestration as it only really makes
sense when creating large applications, that need a lot of custom behaviour.
That was our biggest reason for not choosing Kubernetes. The initial setup
is unnecessarily complicated to run a simple microservice application.

By choosing AWS we got the option to use Elastic Container Service,
a simple orchestration tool that runs Docker containers without the need
for manual intervention. That said, we vendor locked ourselves to AWS
and because ECS only runs Docker containers we had to use Docker as a
server templating tool. For some this could be a downside, but again we
have experience with AWS. Docker is the most commonly used tool for server
templating, and a lot of developers are familiar with it. With our system we
are able to take any Docker image and run it on ECS and prepare it for public
access, however we need the developers to specify how their code should be

1AWS provider https://registry.terraform.io/providers/hashicorp/aws/latest/
docs

27

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

3. Technology Stack...................................
bundled, so they need to create the Dockerfile which assembles that image.
We could say that being forced to use Docker is actually a benefit to us as
the developers will be able to prepare their images for our system.

There are other orchestration tools such as Mesos2, Docker Swarm3 or
Nomad4, but all of these tools are again way too complicated to setup initially
and are inadequate for our goal of simplicity.

3.3 Provisioning and Environments management

When deciding on a provisioning tool we can choose either from a variety of
third party tools, or if we have previously chosen a specific cloud computing
platform, then usually that platform has its own IaC provisioning tool. For
AWS it is CloudFormation, for Azure it would be Azure Resource Manager
and Google Cloud Platform have their Google Cloud Deployment Manager.
These tools are well designed for their specific platform, but when it comes to
migrating to a different cloud computing platform, we more or less have to
implement the whole infrastructure from scratch. To avoid this problem we
want to use a platform agnostic tool for example Terraform 3.3.1 or Pulumi
3.3.2.

However this is not the biggest issue we find with a tool like CloudFor-
mation, the important part for us is, that it is too specific for the given
provider, and you need to learn basically everything from scratch about
how CloudFormation works when you try to read your infrastructure code.
Platform agnostic tools provide a very similar interface and the same syntax
for every provider.

To demonstrate this benefit, let’s create an Elastic Compute Cloud instance
and allow SSH access to it using CloudFormation 3.1 and compare it to
Terraform code with the AWS provider plugin 3.2. Then are going to do the
same for a virtual machine using Azure Resource Manager Template 3.3 and
again compare it to Terraform code with Azure provider plugin 3.4

Source Code 3.1: CloudFormation EC2 setup

{
"Resources": {

"Ec2Instance": {
"Type": "AWS::EC2::Instance",
"Properties": {

"SecurityGroups": [
{

"Ref": "InstanceSecurityGroup"
},
"MyExistingSecurityGroup"

2https://mesosphere.github.io/marathon/
3https://docs.docker.com/engine/swarm/
4https://www.nomadproject.io/docs

28

https://mesosphere.github.io/marathon/
https://docs.docker.com/engine/swarm/
https://www.nomadproject.io/docs

....................... 3.3. Provisioning and Environments management

],
"KeyName": "mykey",
"ImageId": "ami-7a11e213"

}
},
"InstanceSecurityGroup": {

"Type": "AWS::EC2::SecurityGroup",
"Properties": {

"GroupDescription": "Enable SSH access via port 22",
"SecurityGroupIngress": [

{
"IpProtocol": "tcp",
"FromPort": 22,
"ToPort": 22,
"CidrIp": "0.0.0.0/0"

}
]

}
}

}
}

Example taken from official AWS documentation5.

Source Code 3.2: Terraform EC2 setup

// This security group allows incoming traffic from every IP
address on port 22 and outgoing traffic to every IP address
and every port

↪→

↪→

resource "aws_security_group" "ingress-ssh-all" {
name = "ingress-ssh-all"
ingress {

from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]

}

egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]

}

5https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
gettingstarted.templatebasics.html

29

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html

3. Technology Stack...................................
}

resource "aws_instance" "app" {
instance_type = "t2.micro"
availability_zone = "eu-central-1a"
ami = "ami-7a11e213"
// This line attaches the security group for ssh access
security_groups =

["${aws_security_group.ingress-ssh-all.id}"]↪→

}

Source Code 3.3: Azure Resource Manager VM setup

{
"$schema": "https://schema.management.azure.com/schemas/

2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {

"_generator": {
"name": "bicep",
"version": "0.4.613.9944",
"templateHash": "7822315097766237434"

}
},
"parameters": {

"adminUsername": {
"type": "string",
"metadata": {

"description": "Username for the Virtual Machine."
}

},
"adminPassword": {

"type": "secureString",
"minLength": 12,
"metadata": {

"description": "Password for the Virtual Machine."
}

},
"OSVersion": {

"type": "string",
"defaultValue": "2019-datacenter-gensecond",
"allowedValues": [

"2019-datacenter-gensecond",
"2019-datacenter-core-gensecond",
"2019-datacenter-core-smalldisk-gensecond",
"2019-datacenter-core-with-containers-gensecond",
"2019-datacenter-core-with-containers-smalldisk-g2",

30

....................... 3.3. Provisioning and Environments management

"2019-datacenter-smalldisk-gensecond",
"2019-datacenter-with-containers-gensecond",
"2019-datacenter-with-containers-smalldisk-g2",
"2016-datacenter-gensecond"

],
"metadata": {

"description": "The Windows version for the VM.
This will pick a fully patched Gen2 image of this given

Windows version."↪→

}
},
"vmSize": {

"type": "string",
"defaultValue": "Standard_D2s_v3",
"metadata": {

"description": "Size of the virtual machine."
}

},
"location": {

"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {

"description": "Location for all resources."
}

},
"vmName": {

"type": "string",
"defaultValue": "simple-vm",
"metadata": {

"description": "Name of the virtual machine."
}

}
},
"variables": {},
"resources": [

{
"type": "Microsoft.Compute/virtualMachines",
"apiVersion": "2021-03-01",
"name": "[parameters('vmName')]",
"location": "[parameters('location')]",
"properties": {

"hardwareProfile": {
"vmSize": "[parameters('vmSize')]"

},
"osProfile": {

"computerName": "[parameters('vmName')]",

31

3. Technology Stack...................................
"adminUsername": "[parameters('adminUsername')]",
"adminPassword": "[parameters('adminPassword')]"

},
"storageProfile": {

"imageReference": {
"publisher": "MicrosoftWindowsServer",
"offer": "WindowsServer",
"sku": "[parameters('OSVersion')]",
"version": "latest"

},
"osDisk": {

"createOption": "FromImage",
"managedDisk": {

"storageAccountType": "StandardSSD_LRS"
}

},
"dataDisks": [

{
"diskSizeGB": 1024,
"lun": 0,
"createOption": "Empty"

}
]

}
}

}
]

}

Example taken directly from Microsoft Azure Quick-start guide, but without
network resources 6

Source Code 3.4: Terraform VM setup

variable "prefix" {
default = "tfvmex"

}

resource "azurerm_resource_group" "main" {
name = "${var.prefix}-resources"
location = "West Europe"

}

resource "azurerm_virtual_machine" "main" {
name = "${var.prefix}-vm"

6https://docs.microsoft.com/en-us/azure/virtual-machines/windows/
quick-create-template

32

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-template
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-template

....................... 3.3. Provisioning and Environments management

location = azurerm_resource_group.main.location
resource_group_name = azurerm_resource_group.main.name
vm_size = "Standard_DS1_v2"
storage_image_reference {

publisher = "Canonical"
offer = "UbuntuServer"
sku = "16.04-LTS"
version = "latest"

}
storage_os_disk {

name = "myosdisk1"
caching = "ReadWrite"
create_option = "FromImage"
managed_disk_type = "Standard_LRS"

}
os_profile {

computer_name = "hostname"
admin_username = "testadmin"
admin_password = "Password1234!"

}
os_profile_linux_config {

disable_password_authentication = false
}

}

Example taken from Terraform documentation for Azure provider, but again
without network resources7

From these examples we can clearly see that Terraform enforces the use of
unified syntax and in our opinion the code is more clean and readable. Even
though we created server instances for different platforms, in Terraform we
use the same keywords for example variable and resource.

There are not many purely provisioning tools other then Terraform and
Pulumi. You can use most of the Configuration Management Tools such
as Ansible for provisioning, but it is not optimal to do so. Let’s look at
Terraform and Pulumi in more detail

3.3.1 Terraform

Terraform is an open source Infrastructure as a Code tool created by HashiCorp.
It was written in the Go programming language which compiles down to into
a single binary called terraform.

Under the hood the terraform binary makes API calls to a provider such
as AWS, Azure, Google Cloud, OpenStack and more. This means that

7https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/
resources/virtual_machine

33

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/virtual_machine
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/virtual_machine

3. Technology Stack...................................
Terraform gets to leverage from the providers existing infrastructure for their
API servers and use authentication mechanisms we are already using with
this provider e.g. API keys for our account at AWS.

Our job is now to declare how should Terraform execute these API calls.
We use the word declare as Terraform encourages a more declarative style in
which we write code that specifies the desired state of our infrastructure and
Terraform it self is responsible for figuring out how to achieve that state. On
the other hand Chef and Ansible encourage a procedural style in which we
write code that specifies, step by step, how to achieve the desired state.

Let’s demonstrate this difference from which we will clearly see, why
declarative approach is a benefit. If we wanted to deploy 5 servers (EC2
instances on AWS) we can do this with Ansible using procedural approach as
follows:

- ec2:
count: 5
image: ami-7a11e213
instance_type: t2.micro

And here is the corresponding Terraform configuration that does the same
thing using declarative approach:

resource "aws_instance" "example" {
count = 5
ami = "ami-7a11e213"
instance_type = "t2.micro"

}

At first glance, these two approaches look similar, and when we execute
them, they will initially produce the same results. The interesting thing is
what happens when we try to update this configuration. For example if we
wanted to increase the number of servers from 5 to 15. The procedural code
is no longer viable as it says create 5 t2.micro instances with the specified
ami. If we only changed the count from 5 to 15, Ansible would again create
15 t2.micro instances. But because this is a procedure, Ansible does not care
about the 5 previously created server, which results in us having 20 servers
instead of 15. So to reach the desired goal of having 15 servers we would have
to write this code:

- ec2:
count: 10
image: ami-7a11e213
instance_type: t2.micro

With declarative code, all we do is declare the end state that we want,
which is to have 15 t2.micro instances, and we let Terraform figure out how
to reach this state. Terraform is aware of the 5 previously created servers
and will deploy only 10 additional servers. We do this by editing the same
Terraform configuration:

34

....................... 3.3. Provisioning and Environments management

resource "aws_instance" "example" {
count = 15
ami = "ami-7a11e213"
instance_type = "t2.micro"

}

With declarative approach we gained two major advantages:. Fully captured end state of our infrastructure - Reading through
the Ansible templates is not enough to know what is deployed in the end.
We also need to know in which order were these templates applied. With
our example it would not have mattered in which order we execute them,
but we can definitely imagine a more complicated situation in which the
order would result in different infrastructure. With declarative approach,
the code always represents the latest state of the infrastructure..Re-usability - In procedural code we had to manually take into account
the current state of the infrastructure. Because the state is constantly
changing the procedural code quickly becomes nonfunctional as it was
designed to modify a state of the infrastructure which no longer exists.
With declarative approach, we let Terraform account for the current
state, and only describe the next end state.

To summarise, by using Terraform we gain:. platform agnostic syntax for our infrastructure code. self-documenting infrastructure. reusable infrastructure code

There are two key concepts when working with Terraform.

Reusable modules. The concept of reusable modules falls back to the idea of
loose coupling. In Terraform a module is a set of multiple resources that are
used together and logically relate to each other. For example when creating
a Virtual Private Cloud we want to also create subnets and security groups.
Having all of this as one reusable module gives us the option of creating
multiple VPCs by only passing different variables to this module.

We do not want to go more in depth about this topic as this thesis is not
a guide on how to write Terraform infrastructure, so we will refer the reader
to the official Terraform documentation8 for further reading.

State management. The second import concept in Terraform is how to
keep track of the current state of infrastructure. The Terraform state keeps
track of the latest state of our infrastructure as well as creates a link between
our infrastructure code and the actual corresponding resources. For example
this configuration:

8https://www.terraform.io/language/modules/syntax

35

3. Technology Stack...................................
resource "aws_instance" "example" {

ami = "ami-0c55b159cbfafe1f0"
instance_type = "t2.micro"

}

will produce this terraform.tfstate file:

{
"version": 4,
"terraform_version": "0.12.0",
"serial": 1,
"lineage": "1f2087f9-4b3c-1b66-65db-8b78faafc6fb",
"outputs": {},
"resources": [{

"mode": "managed",
"type": "aws_instance",
"name": "example",
"provider": "provider.aws",
"instances": [{

"schema_version": 1,
"attributes": {

"ami": "ami-0c55b159cbfafe1f0",
"availability_zone": "us-east-2c",
"id": "i-00d689a0acc43af0f",
"instance_state": "running",
"instance_type": "t2.micro",
"(...)": "(truncated)"

}
}]

}]
}

This maps the aws_instance with name example to the corresponding AWS
EC2 instance with id i-00d689a0acc43af0f.

When dealing with terraform.tfstate we need to be careful as it stores
sensitive data about our infrastructure, so we never want to commit it to Git.
However if we can not commit Terraform state to version control we need to
find a secure way of sharing this state with other members of the development
team. This is handled by remote Terraform state and HashiCorp provides a
secure place for storing your state called Terraform Cloud, but other options
such as keeping state on Amazon Simple Storage Service(S3) or Azure Blob
Storage are possible and because we are already using AWS we chose the
option of storing Terraform state on S3.

Both of these concepts are not well managed by Terraform on its own, so
we will use Terragrunt 3.3.1 to handle them more effectively.

36

....................... 3.3. Provisioning and Environments management

Terragrunt

Terragrunt is an open source wrapper for Terraform which provides tools for
keeping our infrastructure code DRY(Don’t Repeat Yourself). It can leverage
Terraform’s reusable modules as well as manage the remote state.

Terragrunt is a thin wrapper for Terraform, which means after we install
it, we can run all the standard terraform commands using the terragrunt
binary:

$ terragrunt init
$ terragrunt validate
$ terragrunt plan
$ terragrunt apply

The only difference is that Terragrunt also uses any configuration specified
in a terragrunt.hcl file. This file provides us with some extra behaviour.
The basic idea is that we define infrastructure with Terraform code only
once in reusable modules, and then use terragrunt.hcl files to configure these
modules for different environments, thus enforcing the DRY principle onto
our infrastructure code.

Let’s look at an example. We want to setup an EC2 instance connected to
a PostgreSQL database managed by AWS Relational Database Service(RDS):

Source Code 3.5: Terraform code for EC2

variable "count" {
default = 1
description = "Number of ec2 instances to setup"
type = number

}

variable "instance_type" {
default = "t3.micro"
description = "The instance type for ec2 instance"
type = string

}

resource "aws_instance" "example" {
count = var.count
ami = "ami-7a11e213"
instance_type = var.instance_type

}

Source Code 3.6: Terraform code for RDS

37

3. Technology Stack...................................
variable "allocated_storage" {

default = 10
description = "Allocated storage for RDS instance in GBs"
type = number

}
variable "instance_class" {

default = "db.t3.micro"
description = "The instance class for db instance"
type = string

}

resource "aws_db_instance" "db" {
allocated_storage = var.allocated_storage
engine = "postgres"
engine_version = "11.10"
instance_class = var.instance_class

}

We can imagine variables the same way as in normal software development,
only writing the definition is a bit more complex. However introducing
variables into our code gives us the option to configure resources for each
environment differently.

Now we can use Terragrunt to setup dev environment with 1 EC2 instance
using the t3.micro instance type and allocate only 5 GB of storage to our
database and the production environment with 5 EC2 instances using the
t3.medium instance type and allocate 50 GB of storage for the database. Both
of theses environments will use the same Terraform modules defined in 3.5
and 3.6:

Source Code 3.7: Terragrunt EC2 configuration for Dev Environment

inputs = {
instance_type = "t3.micro"
count = 1

}

Source Code 3.8: Terragrunt RDS configuration for Dev Environment

inputs = {
instance_class = "db.t3.micro"
allocated_storage = 5

}

And the production environment configuration:

38

....................... 3.3. Provisioning and Environments management

Source Code 3.9: Terragrunt EC2 configuration for Production Environment

inputs = {
instance_type = "t3.medium"
count = 5

}

Source Code 3.10: Terragrunt RDS configuration for Production Environment

inputs = {
instance_class = "db.t3.micro"
allocated_storage = 50

}

Splitting the code into two modules gives us more flexibility when setting
up the infrastructure, but also introduces an issue with dependencies. In
our example we would like to always first create the RDS instance before
creating any EC2 instances. We can achieve this with Terragrunt with the
dependency keyword as follows:

Source Code 3.11: Terragrunt EC2 configuration with RDS Dependency

dependency "rds" {
config_path = "/data-storage/rds"

}

inputs = {
instance_type = "t3.medium"
count = 5

}

Now we have the sequence in which we want to apply the code. Terragrunt
lets us execute the terraform apply command on multiple modules at the
same time by providing the terragrunt run-all apply command. This
will go through all the modules with terragrunt.hcl file inside and create the
desired sequence before applying the configuration.

Another advantage of using Terragrunt is the DRY management of remote
state and Terraform provider. We are able to create a common terragrunt.hcl
file 3.12 in the root directory, which defines these settings:

Source Code 3.12: Root Terragrunt configuration file

generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF

provider "aws" {

39

3. Technology Stack...................................
region = "eu-central-1"

}
EOF

}

remote_state {
backend = "s3"
generate = {

path = "backend.tf"
if_exists = "overwrite_terragrunt"

}

config = {
bucket = "terraform-state"
key =

"${path_relative_to_include()}/terraform.tfstate"↪→

region = "eu-central-1"
encrypt = true
dynamodb_table = "terragrunt-lock-table"

}
}

We will not explain in detail how this code snippet works as it is part of
the official documentation9.

We can see that Terragrunt uses the same language as Terraform which is
the HashiCorp Language(HCL)10. It keeps the syntax for provisioning similar
to pure Terraform code.

To summarise, these are the benefits of using Terragrunt:. simple configuration of different environments with DRY modules. handling of module dependencies. DRY management of provider and remote state. similar syntax to using pure Terraform code. one command to deploy and destroy the entire infrastructure

3.3.2 Pulumi

Pulumi11 is an open source12 Software Development Kit(SDK) for managing
infrastructure as a code. It let’s you define infrastructure as a code by
using familiar programming languages. This brings the concept of defining
infrastructure through code closer to the end developer.

9https://terragrunt.gruntwork.io/docs/features/keep-your-remote-state-configuration-dry/
10https://github.com/hashicorp/hcl
11https://www.pulumi.com/docs/
12https://github.com/pulumi/pulumi

40

https://terragrunt.gruntwork.io/docs/features/keep-your-remote-state-configuration-dry/
https://github.com/hashicorp/hcl
https://www.pulumi.com/docs/
https://github.com/pulumi/pulumi

....................... 3.3. Provisioning and Environments management

Pulumi works with traditional infrastructure such as VMs, network,
databases, server instances, but it can also provide solutions for containerised
applications, Kubernetes orchestration and many more.

We can use different languages to work with Pulumi such as TypeScript,
JavaScript, Python, Go or C#. Let’s once again create an EC2 instance with
SSH access, this time using Pulumi 3.13 with JavaScript;

Source Code 3.13: Pulumi NGINX setup

import * as aws from "@pulumi/aws";
import * as pulumi from "@pulumi/pulumi";

const instanceType = "t2.micro";
const ami = aws.getAmiOutput({

filters: [{
name: "name",
values: ["amzn-ami-hvm-*"],

}],
owners: ["137112412989"], // This owner ID is Amazon
mostRecent: true,

});

const group = new aws.ec2.SecurityGroup("security-group", {
ingress: [

{ protocol: "tcp", fromPort: 22, toPort: 22,
cidrBlocks: ["0.0.0.0/0"] },↪→

],
});

const server = new aws.ec2.Instance("webserver", {
instanceType,
vpcSecurityGroupIds: [group.id], // reference the

security group resource above↪→

ami: ami.id,
});

// Outputs for the newly created server
export const publicIp = server.publicIp;
export const publicHostName = server.publicDns;

We can see, that using JavaScript to code our infrastructure looks the same
as coding any other application.

Looking back it would be beneficial to use Pulumi instead of Terraform
for our system, because the other developers would be able to read and use
our infrastructure code even more easily. Unfortunately at that time Pulumi
was only in version 2 and we had some issues for example with creating Task

41

3. Technology Stack...................................
Definitions for Elastic Container Service. Also we had more experience with
Terraform so it felt like the better choice. Even with some previous issues,
we feel like Pulumi is a great SDK, and we would probably use it in a future
project over the Terraform, Terragrunt combination.

3.4 Continuous Integration and Delivery

The choice of a tool that provides us with Continuous Integration and Contin-
uous Delivery(CI/CD) was quite simple. There were two criteria that affected
our choice: simplicity of the tool and our experience using it.

We will divide CI/CD tools into two categories:.Third party self-hosted tools - Tools that are separate from our Git
environment and usually need to be self-hosted. In this category we
have very popular tools such as Jenkins13, CircleCI14, Agola15, AWS
CodeBuild16 and many more17..Tools from Git providers - In the second category we put tools that
are implemented by the chosen Git provider and directly integrated
into their service. These tools can be self-hosted, however usually the
providers give us the option to use shared resources to run CI/CD
pipelines. In this category there are three major Git providers and their
tools. GitHub has their GitHub Actions18 tool, Bitbucket let’s their
users use Bitbucket Pipelines19, and GitLab implemented a tool called
GitLab CI/CD20

Now we said the choice was simple, because all of the self-hosted third party
CI/CD tools are more complicated to setup then the ones implemented by Git
providers. That leaves us with Bitbucket, GitHub and GitLab. All of these
providers and their tools can be used for our purposes, so the choice comes
down to our experience and also our choice of Git provider. We went with
GitLab CI/CD as we have been using it for the past four years on personal
projects and are quite content with its features and syntax.

13https://www.jenkins.io/doc/
14https://circleci.com/docs/
15https://agola.io/doc/
16https://docs.aws.amazon.com/codebuild/index.html
17A detailed list of CI/CD tools can be found in the awesome-ci GitHub repository
18https://docs.github.com/en/actions
19https://bitbucket.org/product/features/pipelines
20https://docs.gitlab.com/ee/ci/

42

https://www.jenkins.io/doc/
https://circleci.com/docs/
https://agola.io/doc/
https://docs.aws.amazon.com/codebuild/index.html
https://github.com/ligurio/awesome-ci
https://docs.github.com/en/actions
https://bitbucket.org/product/features/pipelines
https://docs.gitlab.com/ee/ci/

Chapter 4
System Design

Figure 4.1 illustrates most of the common requirements for infrastructure.
A cloud web application most likely consists of a frontend or Web UI1

component 4.1, followed by a backend application which consists of one
or more microservices 4.3. These services may need other resources usually
data storage 4.4 such as relational database or cache storage. This backend
application should be only accessible to authorised users 4.2. A very common
requirement is to store logs from all of the resources in the system as well as
to monitor them in real time 4.5. In section 2.1.5 we talked about external
configuration of services through environment variables, so we provide the
development team with the ability to edit these values 4.6. Last but not
least a major part of every software development is the delivery of new code
updates 4.7.

1User Interface

43

4. System Design

Figure 4.1: Infrastructure Diagram

The above diagram 4.1 shows all the described components, however it is
quite complex. Let’s describe the design in smaller parts:

4.1 Web UI

The Web UI component of our system is quite simple and also optional.
Nowadays it is very common to build frontend applications into a set of static
files. These files usually include all necessary JavaScript, HTML and CSS
code to run the application. We can then store these files for example on
S32. Then we let users access these static files through a Content Delivery
Network(CDN) such as CloudFront3. Having a CDN provides us with out of
the box caching of these files, or other assets.

2Simple Storage Service
3https://docs.aws.amazon.com/cloudfront/index.html

44

https://docs.aws.amazon.com/cloudfront/index.html

.................................... 4.2. Authorisation

Figure 4.2: Web UI component

Figure 4.2 visualises this setup.
Another very common way of serving frontend applications is by running

a small web server, similar to a backend service, which accepts HTTP requests
for the files. In our system we can solve this by adding a microservice, the
same way as any other, see 4.3.

4.2 Authorisation

In section 2.1.1 we talked about the importance of securing our application.
One of the components was allowing only authorised users to use our appli-
cation. We can manage these users with AWS Cognito4. It is possible to
let Cognito store the users, but usually we want to add more information to
the user entity or use it elsewhere in our application. That is why we add a
NoSQL5 database such as DynamoDB6, to store user entities. This setup is

4https://docs.aws.amazon.com/cognito/index.html
5https://cs.wikipedia.org/wiki/NoSQL
6https://docs.aws.amazon.com/dynamodb/index.html

45

https://docs.aws.amazon.com/cognito/index.html
https://cs.wikipedia.org/wiki/NoSQL
https://docs.aws.amazon.com/dynamodb/index.html

4. System Design
shown in figure 4.3

Figure 4.3: Authorisation component

Again some projects already use their own methods of authorising and
authenticating users with a special microservice to handle these operations.
That setup is again not a problem for our system and can be achieved by
running a microservice setup 4.3.

4.3 Microservices

The core of our system lies in the definition of individual microservices. In
section 3.2 we discussed different orchestration tools and opted for Elastic

46

.................................... 4.3. Microservices

Container Service(ECS). It allows us to create task definitions7 which describe
what Docker image to use, and how much resources we want allocated to
our service. However we need to keep in mind, it is only a definition of
how the end service should look like and we need to specify where to get
these resources. AWS provides us with two main options for server instances:
regular EC2 instances and Fargate8. When choosing the route with EC2
instances you need to manage them manually. This means you need another
configuration for scaling the instances both horizontally or vertically. We
chose the second option with using Fargate. It is a fairly new concept in AWS
and it provides resources on demand, meaning we only need to specify, how
much resources we want for our service, and let Fargate provide them. ECS
can then request these resources when it creates new services, figure 4.4.

7https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_
definitions.html

8https://aws.amazon.com/fargate/

47

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://aws.amazon.com/fargate/

4. System Design

Figure 4.4: Elastic Container Service with Fargate
48

.....................................4.4. Data storage

In the second figure 4.5 we show an example of how a setup of two microser-
vices could look like. Both of these services are managed by ECS and have
their private subnet. The first service also communicates with a Relational
Database on its network, while the second one uses an in memory ElastiCache
such as Redis9. This is a basic setup and we designed the system to be able
to create new microservices on demand, by creating new Terragrunt configu-
ration files, which use the same base ECS module 5.1.2. The microservices
are not limited to one private subnets, they can be in multiple ones allowing
them to either share database, or communicate with each other, if they lie in
the same subnet.

Figure 4.5: Microservices component

4.4 Data storage

Currently the system is designed to support two types of data storage 4.5:
Relational Databases, which by default run on the PostgreSQL engine, and
ElastiCache clusters, by default running Redis. Individual microservices can
connect to this storage instances by exposing endpoints and credentials with
environment variables 4.6. We expect users of our system to use relational
databases for persistent data storage, and ElastiCache for caching and storing
temporary data such as user sessions [Ora].

9https://redis.io/

49

https://redis.io/

4. System Design
4.5 Logging and Monitoring

All components in our system, that we described up to this point log either
directly into CloudWatch, or send logs to a S3 bucket, from which we can
then import logs and metrics into CloudWatch when needed, figure 4.6.

Figure 4.6: Logging and Monitoring

Every project has their specific needs for what it needs to monitor, so
we do not create any metrics or graphs with our system as every metric in
CloudWatch costs around $0.3, which might seem like a small amount, but it
quickly adds up. To give the reader a sense of how quickly the number of
metrics can grow, in figure 4.7 we show a real world metrics count in a setup
of two microservices in ECS and two environments.

Figure 4.7: Metrics count

93 metrics at $0.3 each equals to $27.9 a month just for metrics. To put
that in perspective, an ECS service with 2GB of RAM and 1 vCPU running
on Fargate for 28 days costs roughly the same amount. That is why we let
users create their metrics on their own. However it could be a nice future

50

............................. 4.6. Environment variables storage

feature to analyse the most common and necessary metrics, so we could create
essential metrics for every project.

4.6 Environment variables storage

In section 2.1.5 we discussed the need to configure services for different
environment without adjusting their code. We use AWS Parameter Store10

to store and inject environment variables and secrets into microservices. We
will show how we setup individual parameters and link them to corresponding
services dynamically in section 5.1.2

Figure 4.8: Parameter Store Component

10https://docs.aws.amazon.com/systems-manager/latest/userguide/
systems-manager-parameter-store.html

51

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

4. System Design
The process of adding environment variable looks as follows:. (Manual) create new parameter in AWS Parameter Store with Terragrunt. (Automated) update task definition, to link this new parameter to an

ECS service. (Manual) an user responsible for managing environments sets the value
for this new parameter. (Automated) we update ECS to follow this new task definition

Unfortunately this process still involves manual adjustments to the infras-
tructure code, especially when creating new parameters. In the future, we
would like to propose a common principle of defining environment variables
in version control without the actual values, so we could dynamically create
parameters in Parameter Store.

4.7 Continuous Integration and Delivery

The CI/CD part of our system begins with developers pushing their code to
version control with a tag on commit and ends with an updated version of
the application running on an environment. We can summarise the flow of
this process with the following steps:. Push code to version control with a tagged commit.. Check quality of code and run lint jobs.. Create a temporary Docker image with all development dependencies.. Use this Docker image to run unit tests and if available run e2e tests.. Use the same image to build the application and create a distribution

folder with production files.. Create a new Docker image with only production dependencies and copy
the distribution file from previous step to this image.. Tag the image with the commits tag (usually version tag e.g. v1.0.0). Upload the final image to Elastic Container Registry. Update task definition of the ECS service to use this new image when
creating new services.. Redeploy the ECS service definition with new task definition to a specific
environment. We leave this process as a manual trigger from the Gitlab
Pipelines tab, so developers can deploy their code when they want to.. ECS rolls the new update and when it finishes, it destroys the outdated
service.

52

.......................... 4.7. Continuous Integration and Delivery

The steps above 4.7, are mostly just sequences of shell commands to be
executed. We needed to design the system and the scripts to be reusable in
all other project repositories so we upload these scripts to an S3 bucket, and
we can download and use them in individual project repositories.

Figure 4.9: Continuous Delivery

53

4. System Design
Running Continuous Integration and Delivery also needs its own infras-

tructure. For now we can use the GitLab shared runners to run our CI/CD
pipelines11. A good next step for our system would be to create our own EC2
instance and setup a managed GitLab Runner specific to our project.

In figure 4.9 we show the setup outside of Gitlab CI/CD. It consists of a
S3 bucket, to store and transfer our bash scripts. From the CI/CD pipeline
we create container images, those get stored in Elastic Container Registry.

An important part of the Continuous Delivery component are the CI/CD
User Policies. We need to provide GitLab CI/CD with programmatic access
to our AWS account, however we need to restrict its access to only a small
set of operations such as download and upload files to S3, or manage ECS
services and task definitions.

11At the time of writing this thesis, GitLab is updating their policy regarding free use
of shared runners, because they had problems with people using their shared runners to
mine cryptocurrencies. As of June 2022, GitLab will provide 400 pipeline minutes only
to public projects and projects that enrol in their Public Open Source Program https:
//about.gitlab.com/blog/2022/02/04/ultimate-perks-for-open-source-projects/

54

https://about.gitlab.com/blog/2022/02/04/ultimate-perks-for-open-source-projects/
https://about.gitlab.com/blog/2022/02/04/ultimate-perks-for-open-source-projects/

Chapter 5
Implementation Process

5.1 Infrastructure Provisioning

The implementation of provisioning infrastructure consists of Terraform and
Terragrunt configuration files. All of the files are located in the attachment
infrastructure/provisioning/.

5.1.1 Global Modules

The global modules folder handles provisioning of resources shared among
environments. When creating new versions of the application i.e. creating
new container images, we upload images to ECR, that is shared among all
environments as they all need to pull the same image.

Elastic Container Registry. Setting up ECR is done very simply by telling
Terraform to create an repository for our microservice.

resource "aws_ecr_repository" "example_app_repository" {
name = "example-app"
image_tag_mutability = "MUTABLE"

}

By default an ECR repository has immutable image tag, meaning that
when we upload a container image with a given tag, we can never upload an
image with the same tag again. We want to set this to mutable, because we
need to store Docker images for layer caching1 when building the application.
More about that in 5.2.2.

The second important part is to tell ECR how long to retain older images.
We can setup different life cycle policies to tell ECR when to delete an image.
Our system is setup to retain the last 30 images with a version tag, and delete
all untagged images 5.1.

1https://medium.com/swlh/docker-caching-introduction-to-docker-layers-84f20c48060a

55

https://medium.com/swlh/docker-caching-introduction-to-docker-layers-84f20c48060a

5. Implementation Process

Figure 5.1: ECR Repository with tagged images

IAM Policies and Roles. Usually we want to keep IAM Policies and Roles
tightly coupled with the resources, that require them, however there are some
specific reusable policies, that we need in different modules and can define
here without the risk of creating security threats. These policies are internal
and are never attached to a specific user. For example here we define the
ECS task execution policy and role 5.1, which is passed to individual service
definitions, so ECS can run tasks by using task definitions.

Source Code 5.1: Task Execution Policy and Role

// ECS execution IAM role
resource "aws_iam_role" "ecs_task_execution" {

name = "ecs_task_execution"
assume_role_policy =

data.aws_iam_policy_document.assume_role_policy.json↪→

}
resource "aws_iam_role_policy_attachment"

"ecs_task_execution_policy" {↪→

role = aws_iam_role.ecs_task_execution.name
policy_arn = "arn:aws:iam::aws:policy/service-role/ \

AmazonECSTaskExecutionRolePolicy"
}

Last but not least we create common S3 buckets in the global modules for
deploy scripts, and logs.

56

...............................5.1. Infrastructure Provisioning

5.1.2 Environment Specific Modules

The modules that are specific to each environment are located in:

infrastructure/provisioning/modules

We structure them logically into five folders according to the areas they
relate to. Let’s look at these directories in more detail:

Cluster. The cluster package defines how to setup Elastic Container Service.
It tells ECS to use Fargate as a capacity provider2 and sets up logging of
services defined by ECS.

In section 3.2 we wrote that we chose ECS because it is easy to setup.
By executing this small Terraform code 5.2 we have setup ECS with logging
to CloudWatch.

Source Code 5.2: Elastic Container Service Setup

resource "aws_ecs_cluster" "ecs-cluster" {
name = "${var.environment}-cluster"
capacity_providers = ["FARGATE", "FARGATE_SPOT"]
configuration {
execute_command_configuration {
logging = "OVERRIDE"
log_configuration {
cloud_watch_log_group_name = var.cw_group_name

}
}

}

Data stores. The data-store package is split into two sub-modules: RDS and
Redis. We mentioned that our system currently supports these two types
of data storage in 4.4. However it is quite simple to extend the system to
support a different data storage for example DynamoDB, or Elasticsearch, by
creating a new sub-module in this directory.

Of course we keep in mind monitoring and logging of these resources. We
also handle backups by creating a policy to keep the last seven days of RDS
in snapshots, so we can easily restore the database to a specific point in time.

It is worth mentioning, that we do not allow public access to data storage,
so it is impossible to connect to your database instance from the internet.
However when using the system in practice we found out this restriction is
only viable in production as the developers frequently want to modify data
while testing the service they are developing. We setup RDS to be accessible
within the VPC in environments other then production. This allows us to
create a bastion host3. We allow SSH access with authorised keys to the

2https://docs.aws.amazon.com/AmazonECS/latest/developerguide/
cluster-capacity-providers.html

3https://en.wikipedia.org/wiki/Bastion_host

57

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html
https://en.wikipedia.org/wiki/Bastion_host

5. Implementation Process
bastion from the internet and that let’s our developers connect to RDS with
SSH port forwarding4.

Network. The network package, as its name suggests, handles everything
regarding networking:.Application Load Balancer - The ALB sub-module creates the load

balancer and sets up target groups to allow for routing network traffic to
different microservices. We create listeners that handle traffic according
to the subdomain in Host Header 5.3

Source Code 5.3: ALB listener rule

resource "aws_lb_listener_rule" "example_app_listener_rule"
{↪→

listener_arn = aws_lb_listener.https_listener.arn
action {

type = "forward"
target_group_arn =

aws_lb_target_group.example_app_target.arn↪→

}
condition {

host_header {
values = ["example-app.${var.domain_name}*"]

}
}

}

However creating listeners on its own does not do anything, we attach
them to a target group and then we need to specify what targets are
linked to this target group. This is done from the other end, in service
definition we define that a service belongs to this target group. In 5.4
we show a small part of service definition, that links it to target group
and load balancer.

Source Code 5.4: Link Load Balancer to Service

resource "aws_ecs_service" "example_app_service" {
// ...(truncated)
load_balancer {

// Referencing target group
target_group_arn = var.target_group_arn

}
}

For security reasons we also redirect all HTTP calls from port 80 to the
secure HTTPS on port 443 with a simple redirect listener 5.5

Source Code 5.5: Redirect HTTP to HTTPS
4https://www.ssh.com/academy/ssh/tunneling/example

58

https://www.ssh.com/academy/ssh/tunneling/example

...............................5.1. Infrastructure Provisioning

resource "aws_lb_listener" "listener_http_forward" {
load_balancer_arn = aws_alb.application_load_balancer.arn
port = "80"
protocol = "HTTP"
default_action {

type = "redirect"
redirect {

port = "443"
protocol = "HTTPS"
status_code = "HTTP_301"

}
}

}.Virtual Private Cloud - This sub-module handles the creation of VPC,
route tables, and subnets for RDS, ElastiCache and all private or public
subnets we will need in the system. As this process is fairly straight
forward and similar to most infrastructure VPCs, we were able to use
an official HashiCorp module for AWS VPC 5.. Security Groups - The security-groups sub-module handles security for
east-west and north-south traffic. For example, here we specify, that the
RDS instance can be accessed only from within VPC, and allow access
only on port 5432 which is the default PostgreSQL port.

Secrets and Environment Variables. The secrets module specifies a base
module which only specifies that we want to use parameter store. It accepts
two main variables: string_parameters to define environment variables that
do not have to be encrypted and securestring_parameters, which do get
encrypted. We use this module with Terragrunt for each service that needs
environment variables 5.6.

Source Code 5.6: Terragrunt Secrets and Environment Variables

terraform {
source = "/modules/secrets//base-secrets"

}

inputs = {
app_name = "example-app",
securestring_parameters = [

"AWS_REGION",
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"POSTGRES_PASS"

]
string_parameters = [
5https://registry.terraform.io/providers/hashicorp/aws/latest

59

https://registry.terraform.io/providers/hashicorp/aws/latest

5. Implementation Process
"SERVER_PORT",
"POSTGRES_DB",
"POSTGRES_HOST",
"POSTGRES_PORT",
"POSTGRES_USER",
"REDIS_HOST",
"REDIS_PORT"

]
}

Outputs of this module are the final Amazon Resource Names(ARN) of
each parameter. We use these outputs in service definitions to specify, which
parameters to read on service creation.

Services. The services module began as a place to define all microservices
needed in the application, however as the development progressed we were
able to generalise most of the necessary resources created by this module.
Now this module defines only one base service sub-module, which creates
task definitions, service definitions, logging and accepts the Task Execution
role from 5.1. This module is then used by Terragrunt configuration for
different services and environments. We pass different container images and
environment variables but the core of the module remains the same.

5.1.3 Environments

The environments directory consists of all the terragrunt.hcl configuration
files. Each environment has its own sub-directory. It closely resembles the
structure of the modules directory. Here we specify all the services that
should be deployed, configure data storages and specify what environment
variables to create.

Each module can be provisioned on its own by entering the directory
and executing the terragrunt apply command. This will first look at all
the dependencies and check if they have been previously applied, if not, the
command fails, otherwise Terragrunt will try to provision the module with
specific configuration.

However if we wanted to provision the entire environment, we can enter
the root directory for a given environment, and run terragrunt run-all
apply. This command will go through all the terragrunt.hcl configuration
files and by looking at the dependencies, it will create a sequence in which it
applies individual modules. We can see this process in figure 5.2.

60

................................ 5.2. GitLab CI/CD pipelines

Figure 5.2: Terragrunt plan in run all mode

This process let’s us create entire environments in minutes, and it is the
simplicity we tried to achieve with our system.

Pre-configured environments. Out of the box we provide the users with
three environments: Dev, Stage and Production. The users are able to create
new environments simply by copying any of the environment folders, and
changing the name of this environment in root terragrunt.hcl:

locals {
region = "eu-central-1"
profile = "example-profile"
environment = "user-acceptance" //Name of the new

environment↪→

}

Now by executing terragrunt run-all apply in this newly created di-
rectory, we can deploy the whole environment infrastructure.

5.2 GitLab CI/CD pipelines

This section describes how we implemented the steps from 4.7. We usually
define the configuration in a .gitlab-ci.yml file in the root directory.

All of our infrastructure code is located in a single repository, which
is separated from the microservices repositories. We will use the terms
infrastructure repository and project repository, to differentiate between
them.

5.2.1 Extending Pipeline Jobs

The configuration in .gitlab-ci.yml file is automatically picked up by
GitLab Runner on every push to version control, however this is still only a
YAML file, and we can use multiple files to structure the pipelines.

GitLab let’s us include configuration from different YAML files with the
include keyword6:

include:
- local: .gitlab/templates/common.yaml
6https://docs.gitlab.com/ee/ci/yaml/includes.html

61

https://docs.gitlab.com/ee/ci/yaml/includes.html

5. Implementation Process
We use this to define common pipeline configurations in one file and then
reuse them in multiple files. Internally including files works simply as merging
two configuration files together, but this is done by GitLab for us.

Hidden pipeline jobs. When defining a pipeline job we can prefix its name
with a period to tag it as a hidden job:

.variables:
variables:

DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
LOG_COLOR_DEFAULT: \e[0m
LOG_COLOR_DEPLOYER: \e[1;94m
LOG_COLOR_COMMANDS: \e[1;32m
DEPLOYER_DIR: ./tmp
PRIVATE_TOKEN: $CI_JOB_TOKEN
SCRIPTS_DIR: .gitlab/scripts

Then we can extend this hidden job definition in other jobs with the
keyword extends:

.build:
extends: .variables
variables:

SCRIPT_NAME: build.sh

We use this frequently throughout our code to keep the configuration DRY.
However extending jobs works again by merging the jobs together, and if we
define one part in the parent and child job, the configuration from parent
will get overridden. To use only a part of the jobs definition we use the
!reference tag:

.base:
rules:

- !reference [.needs_aws_vars_only_tags, rules]

This tells the runner, that we want to use only the rules from
.needs_aws_vars_only_tags job.

5.2.2 Creating Docker Images

Building Docker images consists of executing a set of instructions defined
in Dockerfile. Each instruction adds a layer to the final image which gets
cached for future builds of the image. In our system, we want to use Docker
to develop the application, test it, and then run it in production. However
in the production image we do not need any third party dependencies used
only for development, and we want to keep the size of this image as small as
possible. To manage multiple different images, and keep the setup DRY, we
can leverage from the multi-stage build functionality7.

7https://docs.docker.com/develop/develop-images/multistage-build/

62

https://docs.docker.com/develop/develop-images/multistage-build/

................................ 5.2. GitLab CI/CD pipelines

Multi-stage builds

Our system works with four core stages and one optional but useful stage for
dependencies:. deps - This optional and simple stage extracts dependencies, and scripts

from the package.json file. We do this to prevent invalidating layer
cache of Docker. Because package.json keeps the version number of
applications, the contents of this file will change frequently, but only in
this version number, however when a file changes for Docker it means
something is different and it tries to rebuild the whole stage. By keeping
only dependencies, and scripts in the package.json file, we can cache
dependency installation in the next stage.

Source Code 5.7: Package json stage

FROM alpine AS deps

COPY package.json /var

RUN apk add jq

RUN jq '{ dependencies, devDependencies, workspaces,
private, scripts }' < /var/package.json >
/tmp/deps.json

↪→

↪→. dev_modules - This image stage consists of all development dependen-
cies, all source code, and is quite big in size. Our Dockerfile for Node.js
looks as follows:

Source Code 5.8: Development dependencies stage

---------- DEV DEPENDENCIES ----------
FROM node:14-alpine AS dev_modules_image

WORKDIR /usr/src/app

RUN apk add curl git
RUN apk add --virtual .build-deps ca-certificates wget

COPY --from=deps /tmp/deps.json ./package.json
COPY yarn.lock ./
RUN yarn install

We can notice the COPY –-from=deps part which handles file transfer be-
tween stages. Now if we build an image targeting this dev_modules_image,
we can use it for development purposes.. build - The build stage copies installed dependencies from dev_modules_image,
then copies all source code files, and finally builds the application into a
dist/ folder, which can be used in the runtime_image.

63

5. Implementation Process
Source Code 5.9: Build stage

FROM node:14-alpine AS build_image

WORKDIR /usr/src/build

COPY --from=dev_modules_image /app/node_modules
./node_modules↪→

COPY package.json ./
COPY tsconfig.json tsconfig.build.json ./
COPY src ./src

RUN yarn build.modules - The modules stage extends the previously defined
dev_modules stage, and removes dependencies needed only in devel-
opment.

Source Code 5.10: Modules stage

FROM dev_modules_image as modules_image
WORKDIR /usr/src/app
ENV NODE_ENV=production
RUN yarn install --production. latest or runtime_image - This is the final stage, which is used in ECS
task definitions. It combines the previous stages into one by copying only
the necessary files. This decreases the final size of the image, because we
do not store for example Yarn8 cache in this image.

Source Code 5.11: Runtime Docker Image stage

FROM node:14-alpine as runtime_image

ENV NODE_ENV=production

WORKDIR /app

COPY --from=modules_image /app/node_modules/
./node_modules/↪→

COPY --from=build_image /usr/src/build/dist/ ./dist/
COPY package.json ./package.json

USER node

Docker layer caching

We stated that each instruction in Dockerfile is a layer which can be cached.
Docker creates hashes for each layer from the related resources, and if a new

8https://yarnpkg.com/

64

https://yarnpkg.com/

................................ 5.2. GitLab CI/CD pipelines

hash matches the old hash it uses the layer from cache. This can greatly
speed up the build process of images. However each pipeline job is run in
a new environment, so the cache here is clean and everything needs to be
rebuild from scratch. We can specify a tagged docker image to be used as
a cache source by using the –-cache-from argument, which lets us leverage
layer caching. We do this in our code:

Source Code 5.12: Docker layer caching in CI/CD

docker build --target runtime_image \
--cache-from $DOCKER_REPOSITORY:dev-modules \
--cache-from $DOCKER_REPOSITORY:modules \
--cache-from $DOCKER_REPOSITORY:build \
--cache-from $DOCKER_REPOSITORY:latest \
-t $DOCKER_REPOSITORY:latest .

Here we use all four modules as cache sources for the fastest build time.

5.2.3 Docker Images in pipelines

Building images in our system is a little bit more complex then usual as we are
using the multi-stage builds. And because we want to use layer caching, we
need to first build images in individual stages and upload them to ECR. This
is done by the docker push command. When we have images for different
stages uploaded on ECR, we can then download them in the next run of our
pipeline, by using docker pull.

The process of building new image includes these four steps:. Pull latest images from ECR, so we can use them with the –-cache-from
argument.. Using these images as cache sources, rebuild them one at a time. Tag the newly created images.. Upload the images to ECR, so we can use them in next pipeline, and as
a source in ECS service definitions.

The function that builds the runtime image using cache sources looks as
follows:

Source Code 5.13: Build runtime Docker image script

pull_latest () {
Pull all the images for caching
docker pull $DOCKER_REPOSITORY:dev-modules
docker pull $DOCKER_REPOSITORY:modules
docker pull $DOCKER_REPOSITORY:build
docker pull $DOCKER_REPOSITORY:latest

}

65

5. Implementation Process
build_push_runtime_stage_image() {

Use previous images as cache source
docker build --target runtime_image \

--cache-from $DOCKER_REPOSITORY:dev-modules \
--cache-from $DOCKER_REPOSITORY:modules \
--cache-from $DOCKER_REPOSITORY:build \
--cache-from $DOCKER_REPOSITORY:latest \
-f $DOCKERFILE_PATH \
-t $DOCKER_REPOSITORY:$CI_BUILD_REF_NAME \
-t $DOCKER_REPOSITORY:latest .

}

The script in infrastructure/.gitlab/scripts/build.sh has also other
commands which are mostly for logging purposes. However the script also
provides functions for creating other images such as the build stage image.

The functions 5.13, are then called from the GitLab CI/CD configuration.

Source Code 5.14: Build runtime Docker image job

.build:
extends: .base
variables:

SCRIPT_NAME: build.sh

script:
- !reference [.fetch_commander_script, script]
- commander pull_latest
- commander build_push_build_stage_image
- commander build_push_runtime_stage_image

5.2.4 Code Quality and Linting

The system’s first step after a developer pushes code into version control is
to check the quality of code and apply lint rules. We can execute these two
jobs in parallel in one pipeline stage.

To check the quality of code, we used GitLab’s predefined docker image
for code quality 5.15, which generates a JSON file with all problems in the
code. Then we store this file for later use. However even if we find code smells
or other issues in the code, the pipeline does not get interrupted.

Source Code 5.15: Code quality check

DOCKER_IMAGE="registry.gitlab.com/gitlab-org/ci-cd/codequality"
docker run \

--env SOURCE_CODE="${SOURCE_CODE:-$PWD}" \
--volume "${SOURCE_CODE:-$PWD}":/code \

66

................................ 5.2. GitLab CI/CD pipelines

--volume /var/run/docker.sock:/var/run/docker.sock \
${DOCKER_IMAGE}:${CODE_QUALITY_VERSION:-latest} /code

The second part is linting the code. We can use the previously created
Docker image with dev dependencies dev_modules_image and execute the
command yarn lint. This process is specific to Node.js applications and in
the future it would be better to create specific Docker images that run a lint
command at runtime.

5.2.5 Automated Testing

Running automated tests is an essential part of the development process. In
this stage we can automatically find issues with the final application, and
there is no need to trouble testers. Again we use docker images to run tests
of the application, because it allows the environment to look similar to the
environment the application will actually run in.

We have setup steps for unit testing as well as end-to-end testing, however
it would be simple to extend these steps for other testing strategies such as
integration. Figure 5.3 shows an example of the system executing unit tests
in a pipeline job and figure 5.4 shows an example of running end-to-end tests
with cypress9.

Figure 5.3: Pipeline job executing unit tests.
9https://www.cypress.io/

67

https://www.cypress.io/

5. Implementation Process

Figure 5.4: Pipeline job executing e2e tests.

Any failing tests will interrupt the pipeline and alert developers, that there
is a problem that needs to be solved before we can build their application.

5.2.6 Deploying to Cloud Environment and Launching New
Tasks

After we have built the final runtime image, we can finally proceed to the
last step which is deploying the application to an environment. We allow
developers to trigger this stage manually, as we want to let them decide when
a new version of application gets pushed to an environment.

The deployment process is done by Terragrunt. First we need to update
the task definition with a new image tag. And then we need to apply it to
our infrastructure 5.16.

Source Code 5.16: Deploy service template

.deploy-service:
stage: deploy
image: alpine/terragrunt
variables:

VERSION: "latest"
ENVIRONMENT: "dev"

rules:
- when: never

allow_failure: false
script:

- cd
provisioning/environments/$ENVIRONMENT/services/$APP_NAME↪→

- export TF_VAR_image_tag=$VERSION
- terragrunt init

68

................................ 5.2. GitLab CI/CD pipelines

- terragrunt validate
- terragrunt plan
- terragrunt apply --auto-approve

This is a base job definition, which we can then extend and pass variables:
APP_NAME, to specify which service to deploy, ENVIRONMENT, to specify which
environment to deploy to, and VERSION, which is the new Docker image tag.

However the Terragrunt code is located in our infrastructure repository,
but when running pipelines the context is in project repository. To avoid
copying all files between repositories, and creating potential security risks, we
can remotely trigger a pipeline in infrastructure repository from the project
repository. This is done with the trigger keyword 5.17, and can be used on
public repositories, and repositories in the same group.

Source Code 5.17: Trigger remote pipeline

.deploy-base:
stage: deploy
variables:

<<: *globals
ENVIRONMENT: "dev"

trigger:
project: git-group/infrastructure
branch: infrastructure

only:
- tags

when: manual

This produces a downstream pipeline setup in project repository, which
is shown in figure 5.5. The downstream job is executed in infrastructure
repository.

Figure 5.5: Remote pipeline trigger

69

Chapter 6
Example Project

The system was tested on a simple example E-commerce project using a tem-
plate called Vendure1. This project is an open source headless E-commerce
platform, meaning it does not have a specific client, or storefront applica-
tion, but it only provides a GraphQL2 interface. For the frontend applica-
tion, we will use a demo-storefront3 application, that has implementation
for Vendure backend interface. The code for this application is located in
project/storefront and project/example-app folders.

6.1 Vendure E-commerce

This application consists of two Node.js services. The backend application,
that handles all logic with data, communicates with a relational database,
and stores request session data in Redis. The second part is an Admin
UI component for managing product catalogue, handling orders, and other
functions needed to run an online shop. The application runs a web server,
that handles HTTP requests, so we can create a microservice setup for it
5.1.2. The database is a PostgreSQL running in a RDS instance.

A preview of the Admin UI component is shown in figures 6.1, 6.3, 6.2.

1https://www.vendure.io/
2https://graphql.org/
3https://github.com/vendure-ecommerce/storefront

70

https://www.vendure.io/
https://graphql.org/
https://github.com/vendure-ecommerce/storefront

................................. 6.1. Vendure E-commerce

Figure 6.1: Orders tab

Figure 6.2: Catalogue tab

Figure 6.3: System monitor tab

71

6. Example Project
The backend application exposes only a GraphQL interface, which can be

accessed through a playground4.

6.2 Demo storefront

The storefront application is the final web page, that customers access. It
provides product listings, filtering, searching, and then adding items to cart
and proceeds with checkout to create orders. Again for illustration figures
6.4 and 6.5

Figure 6.4: Homepage top sellers

4https://github.com/graphql/graphql-playground

72

https://github.com/graphql/graphql-playground

............................... 6.3. CI/CD and Infrastructure

Figure 6.5: Product Listings

6.3 CI/CD and Infrastructure

In figure 6.6 we demonstrate the pipeline stages for the system, that get
created after a tagged commit is pushed to GitLab.

Figure 6.6: CI/CD Pipeline

73

6. Example Project
We tested the system by creating dev and stage environments. In figure

6.7 we can see two ECS clusters for these stages. From the figure we can see,
that we scaled the backend service to run three tasks, and the load balancer
in front of it will distribute work among these tasks evenly.

Figure 6.7: Dev and Stage ECS clusters

74

Chapter 7
Conclusion

The goal of this thesis was to design and implement an easy to use system
of configuration files that provide software development teams with out of
the box Continuous Integration and Continuous Delivery pipelines, as well
as a convenient way of creating infrastructure for cloud applications. Before
we started the implementation, we analysed the challenges the development
teams face while implementing applications. We also discussed ways to solve
these issues with automation by introducing Infrastructure as a Code and
CI/CD to the process.

We introduced the technology stack used in the system and some of the
benefits of using tools like Terraform, Terragrunt or GitLab CI/CD. In the
second half of the thesis we proposed a design of the implemented system,
and went through the implementation, describing some of the challenges we
faced in the process. To validate functionality of our system, we also tested
the system on a example E-commerce project.

The result of this thesis is a reusable system consisting of two parts: IaC
implemented in Terraform with the Terragrunt wrapper, and the CI/CD part
of the system which leverages from the GitLab CI/CD tool configured by
YAML files.

As of May 2022 the system is already being used in practice to support
development of a web application for 3D modelling of workshop furniture.
As the development process continues, we get valuable feedback from actual
software developers, which we can address in the future 7.1. Another milestone
for our system will be the deployment to production environment, when the
application will be served to end users.

7.1 Further work

Throughout chapter 4 we already mentioned some nice to have features for
the system including automatic creation of metrics, automatic creation of
parameters from version control, and more generic CI/CD jobs that rely
on the definition in Dockerfile. However the most requested feature from
developers was to create alerts for situations such as successful or failed
deployment of new application version.

75

Bibliography

[AN20] Using ansible to configure nginx on ubuntu and host a static website
https: // graspingtech. com/ ansible-nginx-static-site/ ,
August 2020.

[Awa] Rahul Awati, How load balancers work.
https: // www. techtarget. com/ searchaws/ definition/
application-load-balancer .

[BKH21] Florian Beetz, Anja Kammer, and Simon Harrer, Gitops - cloud-
native continuous deployment https: // leanpub. com/ gitops/ ,
July 2021.

[Lou12] Mike Loukides, What is devops? http: // radar. oreilly. com/
2012/ 06/ what-is-devops. html , June 2012.

[NEU16] NEUVECTOR, Difference between east-west and north-south
traffic.
https: // blog. neuvector. com/ article/
securing-east-west-traffic-in-container-based-data-center ,
October 2016.

[Ora] Oracle, Managing user sessions.
https: // docs. oracle. com/ cd/ E19683-01/ 817-2172-10/
dwsessn. html .

[Sta20] John Starmer, Difference between horizontal and vertical scaling.
https: // opsani. com/ blog/ scale-up-vs-scale-out-whats-the-difference/ ,
July 2020.

[Tea16] Nginx Team, What is nginx? https: // www. nginx. com/
resources/ glossary/ nginx/ , May 2016.

76

https://graspingtech.com/ansible-nginx-static-site/
https://www.techtarget.com/searchaws/definition/application-load-balancer
https://www.techtarget.com/searchaws/definition/application-load-balancer
https://leanpub.com/gitops/
http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
https://blog.neuvector.com/article/securing-east-west-traffic-in-container-based-data-center
https://blog.neuvector.com/article/securing-east-west-traffic-in-container-based-data-center
https://docs.oracle.com/cd/E19683-01/817-2172-10/dwsessn.html
https://docs.oracle.com/cd/E19683-01/817-2172-10/dwsessn.html
https://opsani.com/blog/scale-up-vs-scale-out-whats-the-difference/
https://www.nginx.com/resources/glossary/nginx/
https://www.nginx.com/resources/glossary/nginx/

Appendix A
Attachment Content

We split the attachment into infrastructure and project directories, how-
ever in practice they should be separate Git repositories.

root/
infrastructure/

.gitlab/
scripts/ - bash scripts that execute build, code lint,
testing and other tasks
templates/ - Gitlab CI/CD yaml files which are extended
in the final repository

project-templates/ - Example Dockerfile and CI/CD extension
to use in projects
provisioning/

environments/ - Terragrunt configuration files for each
environment
global/ - global Terraform modules that are shared among
environments
modules/ - environment specific modules, that are used
in Terragrunt configurations

.gitlab-ci.yml - pipeline configuration for this repository
project/

example-app/
src/ - server side source code and configuration
static/ - static files for admin user interface
.gitlab-ci.yml - Pipeline configuration for this repository
Dockerfile - Dockerfile definition for this app

storefront/
.gitlab-ci.yml - Pipeline configuration for this repository
Dockerfile - Dockerfile definition for this app

77

	Project Specification
	Introduction
	Objectives
	Thesis Outline.

	DevOps (as a Service)
	Challenges to Solve
	Networking
	Scalability
	Infrastructure Provisioning and Configuration
	Automation of Continuous Integration and Delivery
	Environment Variables and Secrets

	Infrastructure as a Code (IaC)
	Ad-Hoc Scripts
	Configuration Management Tools
	Server Templating Tools
	Orchestration Tools
	Provisioning Tools
	The Benefits of Infrastructure as a Code

	Technology Stack
	Cloud Provider
	Orchestration
	Provisioning and Environments management
	Terraform
	Pulumi

	Continuous Integration and Delivery

	System Design
	Web UI
	Authorisation
	Microservices
	Data storage
	Logging and Monitoring
	Environment variables storage
	Continuous Integration and Delivery

	Implementation Process
	Infrastructure Provisioning
	Global Modules
	Environment Specific Modules
	Environments

	GitLab CI/CD pipelines
	Extending Pipeline Jobs
	Creating Docker Images
	Docker Images in pipelines
	Code Quality and Linting
	Automated Testing
	Deploying to Cloud Environment and Launching New Tasks

	Example Project
	Vendure E-commerce
	Demo storefront
	CI/CD and Infrastructure

	Conclusion
	Further work

	Bibliography
	Attachment Content

