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Abstract

Large language models based on neural
networks have recently achieved remark-
able results across a wide range of NLP
tasks. However, they still struggle with
deeper understanding of semantics and
reasoning about entities and their rela-
tionships. To address these shortcomings,
in this thesis we examine alternative deep
machine learning architectures with the
intent of testing their logical reasoning
and systematic generalization capabilities.
We propose and implement several deep
learning models, mainly from the deep
relational learning category, and evaluate
the proposed models on a textual bench-
mark selected from the NLU domain. In
the empirical part, we manage to demon-
strate the substantial performance gap be-
tween the standard NLU models that work
with unstructured text data and more ad-
vanced models, mainly graph and recur-
rent neural networks, that allow to process
more structured inputs. Finally, we pro-
pose suitable relational model biases to
address the particular forms of relational
reasoning in the selected benchmark and
manage to achieve results comparable to
state-of-the-art.

Keywords: natural language processing,
natural language understanding, deep
relational learning, graph neural
networks, text classification
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Abstrakt

Velké jazykové modely zalozené na neu-
ronovych sitich dosahly v neddvné dobé
pozoruhodnych vysledki naptfi¢ mnoha
ukoly z oblasti zpracovani prirozeného ja-
zyka (NLP). Pfesto se ukazalo, ze je pro
tyto modely problematické vyvozovat z
textu logické zavéry vyzadujici jeho hlubsi
porozumeéni. V této bakalarské praci se po-
kusime adresovat tyto nedostatky tim, ze
prozkoumame ruzné architektury z oblasti
hlubokého strojového uceni se specidlnim
zamérenim na jejich schopnost logické de-
dukce a prenaseni naucenych poznatki.
Navrhneme a implementujeme nékolik
neuronovych modelt, véetné architektur
z kategorie hlubokého rela¢niho uceni, a
vSechny nasledné otestujeme na vybraném
tkolu z oblasti porozuméni prirozeného
jazyka (NLU). Dosazené vysledky ndm po-
mohou demonstrovat vyznamné rozdily ve
vykonu standardnich NLP modeli, které
na vstupu pracuji s ¢istym textem, a po-
krocilejsich modelu — obzvlasté grafovych
a rekurentnich neuronovych siti — které do-
ké&zi zpracovat vstupni data ve vhodnéjsi
strukturované formé. Kromé toho imple-
mentujeme vhodné formy predzpracovani
vstupnich dat, coz ndm pomuze dosahnout
vysledki srovnatelnych se state-of-the-art
na daném datasetu.

Klicova slova: zpracovani prirozeného
jazyka, porozuméni prirozeného jazyka,
hluboké relac¢ni uceni, grafové neurénové
sité, klasifikace textu

Pteklad nazvu: Uceni slozitych
zavislosti v textu pomoci rela¢nich
neurdlnich modeli
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Chapter 1

Introduction

In the first chapter, we outline the overall structure of the bachelor thesis and
provide a detailed definition of the problem that this work will be concerned
with. We also introduce the motivation behind the topic and briefly describe
the approaches will be taken to achieve the laid out goals.

. 1.1 Motivation

In recent years, the advances in natural language processing (NLP) discipline
have sparked a wave of interest in its applications across a wide range of
tasks. At the core of many of these tasks there is the issue of natural language
understanding (NLU) - a branch of NLP that deals with machine reading
comprehension. Thanks to the emergence of large-scale datasets and deep
learning, many reading comprehension models have already surpassed the
human performance on various benchmarks [1]. However, there are concerns
regarding the ability of state-of-the-art language models to understand deeper
semantics and reason about the entities in text and their relations. To
this date, several approaches were proposed to address this issue, including
variations of neural models that use inductive priors to accommodate graph-
structured and relational data. In this work, we will explore several such deep
learning architectures, with a special focus on their use in the NLU domain.
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1. Introduction

. 1.2 Problem definition

The aim of this thesis is to explore the application of different neural archi-
tectures, especially from the deep relational learning domain, on a specific
natural language understanding problem. The carefully selected dataset
introduced in later sections - CLUTRR - will serve as a benchmark that will
be used to test the relational reasoning capabilities of different deep learning
models. Throughout the thesis, we explain the necessary theoretical aspects
and describe the practical considerations that motivated the decisions taken
in the experimental part. We will seek to utilize various inductive priors that
correctly address the particular structure of the input data, with the aim to
maximize the accuracy of models on the given text classification task.

. 1.3 Thesis outline

In Chapter [2, we introduce the fundamental theoretical concepts that will be
built upon in the following chapters. More specifically, we get acquainted with
basic topics from the natural language processing and deep learning domains.
In this chapter, we devote special attention to the different neural architectures
that were chosen to be implemented and evaluated in the experimental part
of this work.

We follow this in Chapter 3| by reviewing the relevant work that has
been done on the subject to date and analyzing existing datasets that were
considered to be used in the experimental part. Then, we enumerate the
different criteria that drove the selection process and present in detail the
final selected benchmark.

In Chapter |4, we proceed to experiment with different deep learning models
and input preprocessing methods. In total, 12 different experiments will be
described and carried out, followed by an analysis of the obtained results.

We conclude this work in Chapter [5] by reflecting on the achieved results
and pinpointing the future research directions in this area.



Chapter 2

Theoretical foundations

This chapter introduces several fundamental areas that compose the theo-
retical background of this thesis. Mainly, we introduce the natural language
processing, standard deep learning and deep relational learning disciplines,
with special focus on the deep neural architectures that will be used in the
forthcoming experiments. The goal of this part is to provide the reader with
a basic knowledge of certain topics that will be referenced in the following
chapters of this thesis.

B 2.1 Natural language processing

Natural language processing (NLP) refers to a branch of artificial intelligence
(AI) that explores how computers can be used to achieve human-like language
processing abilities. The historical development of NLP is rooted in a range
of disciplines, including computer science, linguistics, mathematics, electrical
engineering and robotics. Today, NLP is one of the fastest-growing Al research
field, with vast array of innovative publications being released every year. It
is used to solve a multitude of tasks in the modern world. Some of the more
relevant to the purpose of this thesis include information extraction, text
tokenization, part of speech tagging or dependency parsing. On a more general
level, the applications of NLP include spam detection, machine translation,
question answering, social media sentiment analysis and speech recognition.
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2. Theoretical foundations

B 2.1.1 Evolution

In the beginning, most of the NLP systems were based on complex sets of hand-
coded rules. However, this was not sufficient to accommodate the increasing
volumes of voice and text data that needed to be processed. Therefore, in
the beginning of the 21st century, hand-coded rules were replaced by new
statistical methods powered by more sophisticated computer algorithms. The
emerging statistical methods could, nevertheless, still not equip the machines
with significant language understanding capabilities. The major breakthrough
arrived in the 2010s with the increase of computational power and subsequent
rapid spike in the popularity of neural networks in machine learning.

In present, large deep learning models and architectures based on neural
networks achieve state-of-the-art results in many natural language problems.
Thanks to the advances in deep learning, we are able to efficiently process
huge amounts of raw, unstructured text and voice data, extracting accurate
meaning representations to be used on downstream tasks. Today, the models
of choice in many NLP applications are large, pre-trained language models
called transformers that will be introduced in Section [2.2.3] Other popular
techniques used in the NLP pipeline include word embeddings introduced in
Section [2.1.2]

B 2.1.2 Topicsin NLP

This section presents a selection of topics from the NLP domain that were
deemed essential for the experimental part of this thesis.

B Dependency parsing

Dependency parsing, along with similar techniques such as constituency
parsing, refers to a process of extracting the dependencies among words in
a sentence. The result of the dependency parsing process is a dependency
tree, where the nodes correspond to words and the edges represent binary
syntactical relations between them. The edge types are drawn from a fixed
set of grammatical relations such as nominal subject, direct object, adjectival
modifier, and others. For a complete listing of possible relations along with
their explanation, we refer the reader to chapter 14 of the comprehensive

6



2.1. Natural language processing

7N 7N

Lilian loves her generous mom.

ADJ VEREB PRON ADJ NOUMN

Figure 2.1: Dependency graph of an example sentence Lilian loves her generous
mom. Image was generated using spacy python library.

book written on the subject of NLP - Speech and Language Processing'. In
simple terms, a directed edge in the dependency tree of a sentence that starts
in wy (head word) and ends in we (dependent word) means that we directly
modifies wy. Figure [2.1] illustrates one such dependency graph of an example
sentence.

B Word embeddings

An embedding is a contextual vector representation of a word (or other unit
of speech) that captures its meaning. The idea of encoding words as fixed-size
vectors in some finite linear space has brought a revolution to the field of
NLP. Since then, several algorithms to create such vector representations
were invented, most notably word2vec [3] and Glove [4]. In practice, machine
learning practitioners often utilize word embeddings that are already trained
and are available for download on the internet. These pre-trained embeddings
usually vary in two main aspects - the dimensionality of the word vectors, that
typically ranges from 50 to 500, and the size of the vocabulary for which the
embeddings are available. One of the desired properties of word embeddings
is that vectors corresponding to similar words are close to each other with
respect to a metric defined on the linear space. This property is illustrated
for a group of selected words on Figure [2.2.

The embeddings usually represent individual words, however, one can easily
derive a vector representation of longer passages of text, such as sentences

"https://web.stanford.edu/~jurafsky /slp3/
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2. Theoretical foundations
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Figure 2.2: Selected word embeddings projected to 2D space using a dimension-
ality reduction technique. Image was taken from |[2].

or an entire article. This can be achieved either by summing or averaging
the embeddings of individual tokens from the sequence. This dense vector
representation of longer text passages often replaces less effective techniques
used in past, such as simple one-hot or bag-of-words representations that
produce sparse vectors (vectors with large number of zeros). Later, we will
describe how to obtain a numeric representation of a sequence of tokens in
an even more effective way - using recurrent neural networks.

B 2.2 standard deep learning

Deep learning is a special type of machine learning that aspires to imitate the
way humans learn knowledge and gain intelligence. It differs from traditional
machine learning methods in two significant ways. Firstly, it learns the
representation of the raw input progressively, in multiple layers stacked on
top of each other. For example in image recognition, the lower layers might
learn to identify subtle features of the input, such as edges, while the higher
layers might take up representations that are close to how humans discern
images, such as digits, letters or even faces. Secondly, it removes the need for
manually engineering input features. This is a significant leap from previous
machine learning methods where the input for the model often had to be
hand-crafted by experts with extensive domain knowledge - a process that
could take significant amounts of time. In contrast, deep neural networks can
process any kind of raw data, as long as it is preprocessed to numeric format.

8



2.2. Standard deep learning

This includes images, speech, or texts. The neural network is then able to
learn the important hidden features of the input automatically.

In the rest of the chapter, we introduce several specific deep learning
architectures that will be referenced in the experimental part of the work.
We expect the reader to be familiar with basic concepts that govern the
functioning of artificial neural networks, such as neuron layers, activation
and loss functions, back-propagation, dot product, regularization and others.
Detailed explanations of these concepts will be omitted, and we will rather
focus on the more advanced topics that are directly relevant to the problem
that we will be solving. Reader without prior knowledge of these topics is
encouraged to study appropriate literature, for example a book titled Deep
Learning?| written by Goodfellow, Bengio and Courville, in order to get a full
understanding of the rest of this chapter.

B 2.2.1 Feed-forward neural networks

A feed-forward neural network is the first invented and simplest kind of
artificial neural network. In feed-forward networks, the information moves
only in the forward direction as the network learns a hidden representation
of the input through a series of hidden layers. Typically, the input to these
networks is constrained to fixed-size numeric tensors.

As any other kind of neural network, the feed-forward network is composed
of layers that are in turn composed of computational units called neurons.
As the inputs from previous layer enter the next layer, they are multiplied
by the weights associated with each neuron of the new layer. The results of
this multiplication are then summed, incremented by a scalar value called
bias, and finally, passed to a non-linear activation function. The activation
functions are what allows the network to approximate all kinds of complex,
non-linear functions. The network parameters - neuron weights and biases
- are then optimized during the training process using the backpropagation
algorithm.

In the simplest case, the neural networks consists only of a single layer of
output nodes. This simple architecture is known as a single-layer perceptron
and is usually not used in deep learning, as it is only capable of learning
linearly separable patterns. In practice, feed-forward networks consist of
multiple stacked layers of neurons where the neurons between each two
successive layers are connected together.

Zhttps:/ /www.deeplearningbook.org/



2. Theoretical foundations

The computation that takes place at the first neuron in one layer of a
feed-forward network can be described using the following formula:

n
Yy =0 (w1,0$0 +wiirr + ..o F W pTs + b)) =0 (Z w1 T + b1>
=1

where o is an activation function (usually sigmoid, tanh or ReLU), w; ;
are the scalar weights of the first neuron and x; are the activations (outputs)
of previous layer.

The computation that takes place in an entire feed-forward layer can be
described using a matrix form of the previous formula:

y=o0(Wz+b)

B 2.2.2 Recurrent neural networks

Recurrent neural network (RNN) is a descendant of feed forward network
where the connections between certain neurons form loops (also referred to
as cycles or feedback connections in other literature). The rise of RNNs
was driven by the shortcomings of existing neural architectures, mainly by
their inability to process variable-length inputs. The core benefit that comes
with RNNs is that they allow us to operate on sequences - sequences as the
input, as the output, or both. In the recent years, different variations of
recurrent networks were used to achieve state-of-the-art results in a variety of
disciplines, including speech recognition, language modeling, image captioning
or translation.

Essentially, RNNs operate similarly to feed-forward networks introduced in
the previous section - they accept an input vector  and produce an output
vector y. The crucial difference is that the output vector is also influenced by
all the inputs that were passed to the network prior to it. This is achieved
by maintaining an internal hidden state that is updated progressively as
new inputs enter the recurrent network, and then using this hidden state to
compute the output given the input vector.

10



2.2. Standard deep learning

Internally, a simple recurrent neural network stores its learnable parameters
in three matrices Wyp,, W, and Wy, and its hidden state in vector h. One
step of computation that the network performs can be characterized using
the following formulas:

h; = tanh(Wyphi_1 + W)
Y = Whymt

Where x;, h; and y, are the input, hidden state and output of the network
at step t, respectively, and the tanh non-linearity is applied element-wise.

In theory, there is no limit on the length of the sequence that a RNN
can process. In practice, however, the performance of classic RNNs tends to
decrease with increasing length of the input. Similarly to standard neural
networks, RNNs are also trained using the back-propagation algorithm, which
is based on partial derivatives and gradient computation. Applying partial
derivation to the parameters of the memory cells further from the end of the
network causes the gradient values to be too small and thus have little effect
on the parameter updates, which in turn diminishes the learning capacity
of the network. This is mainly caused by the back-propagation dynamics -
as the gradients flow back from the output layers, they get multiplied with
gradients of the non-liner activation functions, whose outputs are relatively
close to zero. This problem is termed the vanishing gradient problem and is
the main reason why networks such as LSTM [5], described in the following
section, were devised.

B Long short-term memory networks

Simple recurrent networks work well for short input sequences, but there
are often cases where the gaps between the pieces of relevant information
and the point at which it is needed become large. Long short-term memory
network is a more complex kind RNN architecture that is capable of learning
long-term dependencies in the input. This structure allows it to solve the
vanishing gradient problem that arises with longer input sequences.

The control flow in a LSTM network is similar to that of basic RNNs - it
processes data sequentially and stores a hidden state as it propagates forward.
The difference is in the operations that take place within the LSTM cells

11



2. Theoretical foundations

and that allow the network to selectively keep or discard information. To
achieve this, LSTM networks use the concept of gates - small and usually
shallow feed-forward layers that decide what information is relevant and thus
should added or removed from the cell state. There are three different gates
that regulate the information flow - input gate, forget gate and output gate.
Following is a very simplistic explanation of the internal LSTM dynamics
governed by the three gates:

m forget gate - decides what information to discard from the previous
hidden state

B input gate - decides what new information should be stored in the hidden
state

B output gate - decides what information the network is going to output

The specific update equations that take place in a LSTM cell are rather
complicated and not necessary to grasp a basic understanding of the internal
workings of the network. Therefore, they will be omitted from this section.

B 2.2.3 Transformers

A transformer is a deep learning model that is designed, similarly to recurrent
neural networks, to handle sequential input data such as text or speech.
Transformer models are large language models trained on vast amounts of
data in an unsupervised fashion and can be fine-tuned to achieve state-of-the-
art performance on lots of popular NLP benchmarks. The rise of transformers
has led to development of enormous language models such as Generative
Pre-trained Transformer (GPT) and Bidirectional Encoder Representations
from Transformers (BERT) [7]. In contrast to recurrent neural networks,
transformers do not contain any recurrent connections. Instead, they make
use of a mechanism called attention to selectively attend to all parts of the
input sequence, contrary to recurrent networks that process the sequences in
their original order.

B Attention mechanism

Attention is relatively new and powerful concept that was introduced by
Vaswani et al. in a very influential paper titled Attention Is All You Need [6).

12



2.2. Standard deep learning
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Figure 2.3: Transformer model architecture with the encoder on the left and
decoder on the right. Image was taken from [6].

The attention mechanism has revolutionised the way many NLP tasks such
as translation, text summarization or question answering are solved today.

In essence, attention is a mechanism that is able to capture the relative
interdependence between all pairs of tokens from the input sequence. While
recurrent networks store their hidden state in a single fixed-size vector and
thus have limited access to the information provided in different parts of input
sequence, the attention mechanism allows the model to draw richer information
about any single part of the input sequence at any point. Transformers make
use of multiple attention components at different stages. Mainly, they benefit
from a specific kind of attention called self-attention. While generic attention
is often applied to transfer information between different components of the
architecture, self-attention is used to model dependencies of different parts of
the sequence within the same layer.

In general, there are three different learnable weight matrices used to
capture the state in an attention layer of a model. They are usually called
key (K), value (V') and query (Q). The computations that take place at the
attention layers can be described using the following formula:

13



2. Theoretical foundations

KT
attention(Q, K, V') = softmax QK \%
Vg

The concept of attention was further built upon to create a multi-head
attention mechanism. The multi-head attention with size h linearly projects
the query, key and value h times, each time using a different learnable
projection W. Then, it applies the basic attention mechanism to each of
these projections, concatenates the results and computes the final attention
using another learnable projection W:

multihead(Q, K, V) = concat(heady, ..., head,)Wo
head; = attention(QW?, KWX VW)

B Architecture overview

Generally, transformer models are built from two components - encoder and
decoder. The first component - encoder - takes a sequence of variable length
(for example a sentence in English) and iteratively feeds it to a number of
layers of different kinds to transform it to a hidden representation of a fixed
shape. The second component - decoder - then receives the output of the
encoder and maps it to a new variable-length sequence (for example the
Spanish translation of the input sentence). Each of the two components
is itself composed of multiple layers of different types and purposes. The
graphical overview of the entire transformer architecture is displayed on figure
2.3l

While the full encoder-decoder architecture is indispensable for a number
of tasks, there are also many tasks that only require either the encoder or
the decoder part to be present. The decoder block is crucial mainly for tasks
that involve generation of any kind, such as generative question answering or
language translation. On the opposite side, encoder-only models are suitable
for tasks such as extractive text summarization or text classification. As we
will deal explicitly with the text classification task in this work, we will further
shift our focus specifically toward the encoder-only architecture. Note that
we intentionally omit some complex specifics of the transformer architecture
to reduce the overall complexity and length of the text that would otherwise
be required.
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2.2. Standard deep learning

Internally, the encoder block is composed of the following modules:

1. Embedding layer - The input to the encoder block is first passed through
a learnable embedding layer, which embeds the input tokens to a linear
space of certain dimension. The dimensionality of the input is a hyper-
parameter and is selected with respect to the task at hand.

2. Positional encoding - Next, there is a positional encoding layer that
enriches the input embeddings with information about the relative posi-
tions of the tokens in the input sentence. Note that this step is crucial
because unlike recurrent networks, transformers process the entire input
sequence at the same time and thus inherently lose the ability to capture
information about the positions of the individual tokens. Internally, the
positional encoding layer increments the input by a vector computed us-
ing sine and cosine functions of different frequencies for different positions
of the tokens.

3. Encoder layers - The encoder block, as presented originally, consists
of a stack of several identical layers. Each layer is composed of two
main components - multi-head self-attention and and a fully connected
feed-forward neural network with ReLLU activations.

4. Normalization layer - After each of the layers, there is a normaliza-
tion layer used to stabilize the hidden state dynamics using various
computational tricks.

5. Transformer head - Usually, the output of the previously described layers
is fed as an input for the decoder block. However, in the case of encoder-
only model, the decoder is not used and the final step depends on the
specific task. In case of classification, it is usually a small number of
feed-forward layers that project the output to the desired dimension
followed by a softmax layer to generate a probability distribution over
the classes.

The last step described above - head layers - are trained using the standard
back-propagation algorithm and are essential for making the model work
on the specific down-stream tasks. Optionally, one can also decide whether
he wants to fine-tune the pre-trained parameters of the transformer itself.
This is usually done using much finer learning rate than the one used for the
head layers and it usually augments the performance of the model on the
down-stream task even more.

In the forthcoming experiments, we will be working with a special kind
of encoder-only transformer known as BERT (more precisely, its distilled
version called DistilBERT).
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2. Theoretical foundations

B 23 Deep relational learning

Traditional deep learning methods work on grid-like tensor data such as
images and in many cases, this can be a sufficiently expressive representa-
tion. However, lots of learning tasks require dealing with input data that is
generated from non-Euclidean domains and contains complex relationships
and interdependencies between entities [8]. Extending deep neural models to
irregular domains has been an emerging research area.

Recently, more structured neural architectures that use inductive priors to
accommodate the extra relational information in such inputs have emerged.
These architectures are believed to augment the expressive capabilities of a
neural network by exploiting the connections between different entities in the
input [9).

Examples of these include Graph neural networks and Lifted relational
neural networks. The following sections will introduce both while the rest of
the work, including the experimental part, will mainly focus on the former.

B 2.3.1 Graph neural networks

In computer science, a graph is an abstract data type that consists of a set
of vertices (nodes) and a set of edges between them. More formally, a graph
is defined as an ordered pair G = (V, E), comprising of a set of vertices V
and a set of vertex pairs E = {(u1,v1), ..., (un,vn)},ui,v; € V called edges.
Graph G is said to be directed if the pairs in FE are ordered. A graph may
also assign a numerical attribute or a symbolic label to each edge, in which
case it is referred to as a weighted graph.

A complete graph is a graph in which any two distinct vertices are
connected by a unique edge. The number of edges in a complete graph is
thus equal to W

A tree is a special kind of graph in which any two vertices are connected
by exactly one path. The number of edges in a tree is equal to |V| — 1.

Graphs provide a natural way of representing irregular structures that
appear everywhere around us, whether it is chemistry, biology, or social
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2.3. Deep relational learning

networks. The structure of real-world graph datasets can vary widely in terms
of number of nodes and edges. The complexity and heterogeneous nature of
these structures has proven to be challenging for traditional machine learning
algorithms. As a response to this setback, a specific kind of neural network
architecture was introduced.

Graph neural network (GNN) is a modification of standard neural
network that operates on graph-structured data and captures the relational
information via a neighborhood aggregation mechanism. In the recent years,
GNNSs have become very useful for a range of task from the machine learning
domain. The applications of GNNs include antibacterial discovery, traffic
prediction, physics simulations, fake news detection, complex recommendation
systems and many more. Most of the problems that GNNs can solve can be
classified into one of the following categories:

node-level classification

graph-level classification

edge-level classification

B graph visualization

graph clustering

As an input, the GNN requires the representation to be permutation
invariant, which in other words means that the representation should not
depend on the order of nodes. Therefore, one cannot simply use the adjacency
matrix of a graph, since we can find a whole group of adjacency matrices
can encode the same connectivity. In practice, the most common way of
representing a graph is to map individual graph attributes (nodes, edges)
to their fixed-size real-valued vector representations called embeddings. If
the nodes correspond for example to words, one can use word embeddings
introduced in the previous sections and set them fixed. However, it is more
often that the pre-trained embeddings are not available, in which case the
embeddings are initialized randomly and optimized during the training process
jointly with the rest of the network.

During the training process, GNNs perform a differentiable transformation
of the input graph called message passing. This operation is the backbone
of all graph neural architectures today. Many different variations of message
passing exist, however, they all conform to some general constraints. Mainly,
the message passing operation must preserve the graph permutation invariance
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Figure 2.4: Illustration of the node representation update during the message
passing. It shows how the new representation h of node on the right is computed
aggregating the representations of its neighbours. Image was taken from [10].

and the connectivity of its edges. In each message passing step k, a new

(%)

representation x;’ € R™ is computed for each node ¢ from its previous

(k1)

representation x;
the following formula

and all its neighboring edge features e;; € R? using

where N (i) is the set of nodes adjacent to node i, v and ¢ denote some
learnable functions (e.g. multi-layer perceptrons), ¢ denotes an aggregation
function (usually mean or sum), and m and d are the dimensionalities of
node embeddings and edge embeddings, respectively. In essence, the message
passing works in three steps:

1. for each node, gather the embeddings of its neighbors
2. use an aggregation function to aggregate these embeddings

3. pass the result to the update function that performs the final computation

For a visual illustration of a node representation update we refer the reader
to figure [2.4.

As with standard neural architectures, we can stack an arbitrary number
of message passing layers on top of each other. An overview of a simple
graph neural network is shown on figure [2.5. Naturally, after performing n
steps of message passing, each node contains information from all nodes at
most n steps away from it. In practice, there are different types of message
passing rules, distinguished by the specific functions v, ¢, ¢ that are used.
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Figure 2.5: Overview of a simple graph neural network. Image was taken from
[11].

This, together with the number of layers and the dimensionality of input
embeddings, are the key choices to make when training a graph neural
network.

There are additional steps needed after obtaining the latent representations
of graph attributes in order to perform the final classification task. For
node-level classification, we simply apply a linear classifier as the output layer,
mapping each node to the dimension corresponding to the number of classes.
In graph-level prediction task, we need a way of aggregating the node-level
information before applying the linear transformation. This aggregation is
usually achieved by summing or averaging the learned node embeddings.

Since the rise of deep learning on graphs, different variants of GNNs were
established in the deep learning community. These variants are mainly
distinguished by different forms of the general message passing rule used to
update the node representations. We will consider two concrete modifications,
namely the graph convolutional networks and graph attention networks, as
in the recent years they have both outperformed many of the state-of-the-art
models on various tasks.

Graph convolutional network (GCN) was first introduced in a paper by
Bruna et al. [12] where the authors explore possible generalizations of convo-
lutional neural networks to inputs coming from more general domains. The
key idea behind this variant of GNN is that the message passing rule can be
viewed as a generalization of the operation performed by convolutional neural
networks. In the essence, both are operations that aggregate the neighboring
nodes’ information and update the current element’s value according to some
rule. The important distinction is that in images, the number of neighbors
is based on spatial locality and is always constant whereas in graphs, the
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number of neighbors varies and is based on the topology of the graph. During
the update step, GCNs update the representation of the current node by
convolving the representations of its direct neighbors. The exact convolutional
operator is, however, not defined explicitly and can take on many different
forms.

Graph attention network (GAT') further builds upon the GCN architecture.
It uses a special kind of convolutional operator that includes the self-attention
mechanism already described in Section [2.2.3] Thanks to the self-attentional
layers, the GAT is able to implicitly learn different weights for different nodes
in a neighborhood of the currently updated node. This is believed to address
the shortcomings of prior methods based on graph convolutions without the
attention mechanism [13].

An interesting analogy can be drawn between graph attention networks
and transformer models introduced in Section 2.2.3. As explained earlier,
transformers use the attention mechanism to figure out how important are all
the other words with respect to each word in the sequence. This is similar to
the operation that takes place during message passing in a GAT layer, where
each node gathers the information from its neighboring nodes and applies the
learnt pair-wises attention to update its representation. Transformers can
thus be seen as graph attention networks that operate on a complete graph
where the nodes correspond to all words in the input sequence.

B 2.3.2 Lifted relational neural networks

In Lifted relational neural network (LRNN) introduced by Sourek et al. [14],
various problems can be encoded as parametrized logic programs. They are
devised to boost the traditional neural learning by combining it with the
interpretability and expressive power of relational logic. In their framework,
clauses in first-order logic, either hand-crafted by domain experts or learned
using inductive logic programming, are used to describe the structure of
the task at hand. Then, several different neural networks are constructed,
each corresponding to a training or testing example. The weights are shared
among the networks and trained using the standard stochastic gradient descent
algorithm.

LRRNs draw inspiration from the field of inductive logic programming, in
a sense that they use rules and facts to define a problem. In practice, a user
of a LRNN framework first creates a template, which is a sequence of clauses
(rules) written in the first-order logic extended with numeric parameters.
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Loosely speaking, we can say that these templates define the architecture of a
model. The user then provides a set of input examples that are also viewed as
a set of weighted clauses (facts). These inputs analogical to standard training
samples to any deep learning model, with the exception that in LRNNs, they
are not inputted to the model, but rather merged with the set of rules. The
resulting set of logical representations is then unfolded into a grounded model
by obtaining all the valid groundings of the set of rules in the template - a
step that is achieved using an inference engine such as Prolog. This grounded
logical model is then mapped to a neural model which can be trained using a
stochastic gradient descent algorithm, optimizing the parameters that were
associated with the rules during the creation of a template.

B 2.4 Generalization and robustness of deep learning
models

Contemporary deep learning models have undergone a series of developments
and successes, however, they still suffer from a number of shortcomings.
Garnello and Shanahan [15] emphasize the following main drawbacks:

1. Data inefficiency - contemporary neural networks require large amounts
of data to be successful. For example, the training process of large
language models that emerged in recent past, such as GPT-2 [16], required
enormous volumes of data and computational resources.

2. Poor generalisation - today’s neural networks are very prone to data
distribution shifts - they usually perform very poor when exposed to data
that come from distribution different to what they have been trained on.
This is where humans excel - we are able to re-use the intelligence and
expertise acquired on some task and transfer it onto challenges that we
have not seen before. In contrast, even small and invisible changes to the
inputs can significantly derail the predictions of a deep neural model.

3. Lack of interpretability - the computations and reasoning steps performed
at different layers generally lack human-interpretable semantics. This
black-box nature of today’s deep neural networks have become one of the
largest obstacles in their wide-scale adoption in various mission-critical
applications, such as medicine.

Later in this work, we will try to address primarily the second mentioned
issue - poor generalization. The ability of NLU models to generalize system-
atically and robustly is being questioned by many researchers in past years.
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The research has shown that large language models tend to exploit spurious
correlations and other shortcuts in the data and thus exhibit poor robustness
and systematic generalization capabilities |[17]. It appears that many deep
networks capture the wrong patterns in data and fail to understand the
true content. Oftentimes, this also renders the deep learning models very
exploitable and susceptible to adversarial attacks.

B 25 Graph neural networks and NLP

For some years, deep learning has been a dominant approach for solving
various tasks in the NLP domain. In these tasks, we often need to work with
data in the form of text. Since text is a sequence of tokens, the natural choice
when it comes to deep learning are models that work well with sequential
inputs, such as recurrent neural networks or transformers. However, recently
there has been an increasing interest in applying GNNs to a large number
of problems from the NLP domain, including text classification and relation
extraction, or generative tasks like machine translation and question answering.
The intersection of these two research areas - NLP and deep relational learning
- has triggered interesting developments on both sides. In deep relational
learning, special variants of GNNs are being developed to better accommodate
the nature of textual inputs. On the other hand, the ability to process graphs
as an input has allowed to incorporate task-specific knowledge and augment
the original textual data in many ways, for example by building dependency
or constituency parse trees for the input sentences. In the following sections,
we will briefly introduce the most common ways of creating a graph structure
from text.

Bl 25.1 Text to graph construction

The most simple way of representing a natural language is a bag of words
or one-hot encoded vector. With these approaches, however, one completely
loses the positional information about individual tokens, since the same initial
sequence could be sorted in any order and still produce the same vector.
Therefore, these representations are rarely used as inputs to deep learning
models. In deep learning, the text is typically represented as a sequence of
words or, more generally, tokens. But there is also another alternative that
can be used to encode text - graph structures. A variety of NLP problems
can benefit from being represented as a graph. Compared to the previous two
approaches, graph representations often allow for capturing richer information
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from the input text. Naturally, being able to construct a graph from text is
necessary to be able to use GNNs on NLP problems. This challenge has been
profoundly studied in past and many fundamentally different ways have been
proposed to solve it. In this section, we will look at the most effective ones,
with special focus on those that will be directly used later in this thesis.

Essentially, graph construction techniques can be classified into two main
categories - static and dynamic.

Static construction methods usually construct the graph during the
preprocessing phase. Typically, they do so by using existing relation parsing
tools or other manually constructed static rules. Some results of static
graph construction are dependency graphs, constituency graphs or knowledge
graphs. For example in dependency graph construction, one first need to
obtain the dependency parse tree of the input sentence. This is done using
the dependency parsing technique which was already introduced in previous
sections. The relations in the dependency tree are then extracted and edges
in the graph are formed between the head and the dependent word of a
relation. Additionally, it is a common practice to add also a second group of
edges between pairs of successive words in order to preserve the positional
information from the sentence. Another naive approach that is feasible only
for relatively short texts is to connect all pairs of two words with an edge,
forming a complete graph. One common disadvantage of these methods is
that they require extensive domain expertise in order to construct an effective
graph topology. Another problem is that the graph construction step is
disconnected from the rest of the training and cannot be optimized with
the rest of the architecture. It is therefore crucial to choose the optimal
construction technique for the particular downstream task at hand.

Contrary to static construction, dynamic construction methods usually
require only minimal manual human effort or domain expertise. Instead, they
try to learn the graph structure dynamically, and this step is often optimized
in an end-to-end fashion with the rest of the graph network. While a lot of the
methods in this category are useful in practice, they are more suited to longer
passages of text. Since we will be working on relatively short text samples,
we will utilize mainly the static construction approaches in our experiments.
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Chapter 3

Benchmark selection

In this chapter, we will provide some context for the problem that the rest of
the thesis will be concerned with. First, we present an overview of relevant
benchmarks that were considered to be used in the experimental part. We
also explain the key factors that drove the final decision and provide a detailed
description of the selected dataset.

. 3.1 Relevant benchmarks

In the past years, many publications concerned with the issue of machine
reading comprehension have emerged. However, only a small subset of them
deals with the ability of models to exhibit ¢rue reasoning and generalization
capabilities. These were the focus of research while searching for a benchmark
eligible to test the ability of a model to reason about deeper semantics and
relations in text.

Below is a comprehensive list of candidate datasets that were considered,
along with a short description of each of them.

® bAbi - Weston et al. presented a set of prerequisite tasks used to test
the ability of models to answer questions via chaining facts, induction,
deduction and more . The questions in these task are generated
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synthetically using different templates. Further research pointed out
that these tasks might not be as sufficient of a measure of Al-complete
question answering as it was initially perceived [19).

®# CLUTRR - Compositional Language Understanding and Text-based
Relational Reasoning is a synthetically generated benchmark suite pro-
posed to address some of the key issues related to the robustness and
systematicity of NLU systems [20]. The goal is to predict kinship rela-
tions between pairs of entities whose relationships are indirectly described
in the short generated stories.

® BoolQ - In their paper, Clark et al. have introduced a reading compre-
hension QA dataset containing only yes/no questions [21]. Answering
these questions should require difficult entailment-like inferences and
thus provide a new challenge for state-of-the-art models.

#® SNLI - The Stanford Natural Language Inference corpus tries to address
the lack of large-scale benchmarks in the natural language inference
domain. It is a collection of over 500 thousand labeled sentence pairs
that can be used as a testing ground for the ability of a model to develop
semantic representations of text [22].

# ReClor - Reading Comprehension dataset requiring logical reasoning
aims to enhance the logical reasoning ability of current models by provid-
ing a more challenging benchmark [23]. In this benchmark, the authors
identify biased data points and based on their findings separate the
dataset into an easy and hard part.

# FewRel - In parallel to previous works, in Few-Shot Relation Clas-
sification Dataset the authors test the reasoning ability of models on
the relation classification task. The whole benchmark consists of 70K
sentences and 100 relations derived from Wikipedia [24].

# ROPES - In Reasoning Over Paragraph Effects in Situations, the aim
is to apply knowledge from reading paragraphs [25]. The models are
challenged to utilize the implications of a passage of text in order to
answer questions about novel situations.

® QuaRel - The QuaRel benchmark consists of over 2500 questions involv-
ing 19 different types of quantitative relationship. Many of the questions
come from the field of science, economics and medicine |26].

# LogiQA - LogiQA is a comprehensive dataset intended to test the
logical reasoning capabilities of models. It consists of questions written
by experts with the aim to test human deductive reasoning [27].

® Rule reasoning dataset - In a paper titled Transformers as Soft
Reasoners over Language 28], the authors explore the ability of various
transformer-based models to draw conclusions from provided rules in
a question-answering task. To do this, they introduce a synthetically
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created dataset, where each sample contains a set of rules, a set of facts
and a query, all transformed to natural language narratives.

] BenchmarkH Task Size \ Used models \ Best accuracy
20 tasks, 2K
bAbi QA questions STM, LSTM 100% (STM)
per task
limited Bi-LSTM,RN,
CLUTRR || classification Em lﬁlte. ) | BERT, GAT, | 95% (CTP)
synthetic CPTs
binary clas-
BoolQ sification :i?)lrfs ques- ?‘rﬁljssfjo?jeii 1o 91% (T5)
(T/F)
SNLI NLI 570K pairs | Transformers 90% (DeBERTa)
6K  ques- | RoBERTa, XL-| 78% (Knowledge
ReClor QA tions Net, transformers | model)
2.7K ques- | Bi-LSTM, Neural | 75% (Neural Se-
QuaRel QA tions Semantic Parser mantic Parser)
. 8K ques- | Rule-based,
LogiQA 11 QA tions BERT, RoBERTa | 5/ ¢ (ROBERTa)
binary clas- .
Rul‘e rea- || e ot unhrmtgd RoBERTa, BERT, 99% (RoBERTa)
soning (T/F) (synthetic) | LSTM

Table 3.1: Overview of different properties of the examined benchmarks. QA
stands for Question answering and NLI for natural language inference.

B 3.2 Selection process

All of the above benchmarks were carefully examined to select the most
appropriate one on which our experiments will be performed. Ideally, we
wanted to find benchmarks that contain rich relational information so that
we can test the ability of deep learning models to make inferences using these
relations. The following criteria have been considered during the selection,
with decreasing level of importance:

® level of difficulty of the relational inference that the benchmark requires

®m overall size of the benchmark

® the best achieved performance on the benchmark so far
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® type of the best-performing model

Following the above criteria, we selected one dataset from the above
candidates - CLUTRR. It will be described more in detail in the following
section.

B 3.3 CLUTRR dataset

’ Relation ‘ Index
aunt 0
brother 1
brother in law 2
daughter 3
daughter in law 4
father 5
father in law 6
granddaughter 7
grandfather 8
grandmother 9
grandson 10
husband 11
mother 12
mother in law 13
nephew 14
niece 15
sister 16
sister in law 17
son 18
son in law 19
uncle 20
wife 21

Table 3.2: List of CLUTRR relations along with their corresponding indices.

After careful consideration, we decided to select the Compositional Lan-
guage Understanding and Text-based Relational Reasoning (CLUTRR) bench-
mark suite. CLUTRR is a synthetically generated dataset in English language
intended to test the systematic generalization and inductive reasoning capa-
bilities of NLU models. Given a text story describing hypothetical family
relationships of different entities, the goal is to classify the kinship relation of
two people whose relationship is not explicitly mentioned in the story. It is
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I daughter |
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daughter daughter parent. parent
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TRAIN (k=2): TEST (k=10):

A asked his son, B, A's daughter, B, made a dinner for her sister, C. C enjoyed a homemade

to go grocery dinner with her son D. D and his aunt E flew first class. E had picked her
shopping for him. B daughter F out the cutest new dress to wear on her birthday. G was having
was busy and sent trouble with his divorce because he only got to see his daughter F a few times
his wife, C, instead. a week. G and his sister H went out for ice cream. J went to eat with her

parents, I and H. J's sister, K, was n't able to join them.

Figure 3.1: Example of CLUTRR train and test instances. Train instance (left)
is of length k = 2 and test (right) is of length k£ = 10. Image was taken from

[29).

thus an R-way supervised classification task, where R is the size of the set of
known relations, such as parent or grandchild. To predict the correct relation,
the model must perform reasoning over the implicit knowledge graph that
represents the underlying story. Each sample in the CLUTRR dataset consists
of a few sentences (story) and a query pair (target). As an illustration, given
the sentences Marry is John’s sister and John is Monica’s father and query
(Marry, Monica), the model should correctly infer the relation as aunt, as
Marry would be Monica’s aunt in this example. In total, there are R = 22
relations that will serve as labels in our classification task. Their names,
along with the corresponding indices that will be used to refer to the them
from now, are depicted in Table

This benchmark is also devised to test the systematic generalization and
inductive reasoning capability of machine learning models. It achieves this by
including in the test set stories that contain previously unseen combinations
of kinship relations. Naturally, the model has to induce the logical regularities
that govern the kinship relations (e.g. the parent of a sibling is a parent), and
learn to compose these induced rules. The difficulty of this task is further
augmented by training the model only on samples with certain number of
necessary reasoning steps - kyrqin - and testing it on samples that require
more reasoning steps kiest > Ktrain. In other words, k represents the number
of reasoning steps that the model must make in order to be able to answer
the target query. This number corresponds to the number of edges in the
kinship graph of the input story that it has to traverse in order to induce the
true relationship of the two entities. Furthermore, CLUTRR can also test the
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Dataset file Reasoning | Number of Target relations
steps samples

1.2,1.3,1.4 train.csv | 2, 3, 4 15083 None

1.2 test.csv 2 38 7, 10

1.3 test.csv 3 107 1,5,7, 12, 13, 16, 18
1,3,5,6,7, 8,9, 10, 12, 13,

1.4 test.csv 4 77 16, 18
0,1,3,4,5,7,8,9, 10, 12, 13,

1.5 test.csv 5 185 14, 15, 16, 18, 19, 20
0,1,3,4,5,7,8,9, 10, 12, 14,

1.6 test.csv 6 105 15, 16, 19, 20
0,1,3,4,5,6,7,8,9, 10, 12,

1.7 test.csv 7 155 13, 14, 15, 16, 18, 20
0,1,3,5,7,8,9, 10, 12, 14,

1.8 test.csv 8 135 15, 16, 18, 20
0,1,3,5,7,8,9, 10, 12, 14,

1.9 test.csv 9 124 15, 16, 18, 20
0,1,3,5,7,8,9, 10, 14, 15,

1.10__test.csv 10 122 16, 18, 20

Table 3.3: Overview of different properties of the train and a set of test CLUTRR
datasets. The last column contains the indices of all the target relations (labels)
contained in the test set.

robustness of different models by including noisy or unrelated relationships in
the generated story. In this case, the difficulty of the task naturally increases,
as the model must select the relationships that are relevant to the given query
and disregard the rest.

Since CLUTRR is a synthetic dataset, one could in theory generate datasets
with samples of arbitrary length by passing different hyper-parameters to the
script developed by Sinha et al. [20]. In our experiments, we will work with a
set of already generated datasets, which consists of one dataset used to train
the model and 9 different test datasets to evaluate the model’s performance.
The different properties of the used datasets are summarized in Table |3.3.

In summary, we will train our models on dataset with reasoning depth
k € {2,3,4} and test on multiple datasets with their reasoning depths in the
range k € [4,10]. The graph structure of one such train and test instance is
illustrated on Figure 3.1, This setup will allow us to evaluate not only the
learning capacity of the models, but also their generalization abilities and
robustness.
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The highly relational nature of this dataset, together with its other proper-
ties, makes it suitable for the forthcoming experimental part.
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Chapter 4

Experiments

The following chapter will be devoted to the experimental part of the thesis.
We begin this chapter by briefly summarizing the problem that we will
be solving. Then, we proceed to describe the programming language and
accompanying tools and libraries that were used to carry out the experiments.
Next, we describe the proposed data preprocessing methods and deep learning
models with special focus on their adaptations to our task. Finally, we
conclude the chapter by summarizing and discussing the empirical results
that were achieved.

. 4.1 Problem definition

The CLUTRR dataset was already introduced in detail in Chapter 3. We
will be using it to perform a single-label multi-class supervised classification
task using different neural architectures from the deep learning spectrum.
In multi-class classification task, the goal is to classify given samples into
one of R predefined classes. A special kind of multi-class classification is
binary classification, where the number of classes R is equal to two. In the
following experiments, we will be classifying the short stories into one of
R = 22 classes according to the relation of the two queried entities. The goal
is to train machine learning models to correctly predict the class based on
the given input features. The ability of a model to succeed in this task is
usually measured using the accuracy metric, characterized as a ratio of the
number of correctly predicted samples to the total number of samples in the
given dataset.
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B a2 Languages and tools

The whole code base is written in the Python programming language, which is
a standard choice among many machine learning practitioners, mainly due to
its relative simplicity and a wide range of libraries and frameworks available.
To carry out most of the experiments, we used the Pytorch framework and
its Pytorch Geometric (PyG) extension.

Pytorch is an open-source machine learning framework written in Python
with core parts written in Cython (language for writing Python extensions in
C programming language). It is used by engineers from all over the world
to build end-to-end machine learning pipelines, from prototyping to actual
production deployment. It offers many excellent materials and tutorials and a
large community willing to help with any inquiries. It also has a well-developed
ecosystem of other tools and extensions, which made it the framework of
choice for the experimental part of our work. Pytorch Geometric is a library
built on top of Pytorch that allows to easily transform unstructured data to
graphs and use them to train various kinds of graph neural networks.

We also utilized the Hugging Face transformers library, which provided
us with a programming interface to easily download and use state-of-the-art
pre-trained transformer models.

For natural language related tasks, such as tokenization, normalization,
dependency parsing, and relation extraction, we used the Natural Language
Toolkit (NLTK), spacy and Stanford Open Information Extraction (OpenlE)
libraries.

All the experiments, except the one using BERT transformer, were con-
ducted in a local development environment and the models were trained using
CPU only. Since most of the neural architectures used throughout the exper-
iments were fairly lightweight as to the number of layers and their weights,
the computational power of CPU was sufficient to handle the training process
in reasonable time and no GPU support was necessary. The only exception -
training BERT transformer - has shown to be very computationally intensive,
mainly due to the amount of hidden layers and parameters that had to be
fine-tuned. In this experiment, we therefore resorted to using a Google Colab
notebook and fine-tuning the model in a remote environment with access to
the GPUs provided free of charge by Google.
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. 4.3 Proposed graph construction methods

The most common approaches to text-to-graph conversion were already
presented in Chapter 2l In this work, we developed three different graph
construction methods that will be described more in detail below. The input
to each of the methods is a CLUTRR instance consisting of a (story, target)
pair and the output is a tuple of size two. The first entry in the output
tuple is a PyG Data object that holds information about the created graph
corresponding to the input story. The second entry is an encoded query pair
(e1,e2) where e; and eg are integer indices used to identify which nodes in
the graph correspond to the two entities from the query.

In addition to the methods listed below, we also experimented with one
dynamic graph construction method - using attention-based edge selection on
complete graph, where the graph construction step would be optimized jointly
with the rest of the network. However, this experiment was not successful
due to implementation obstacles that were not overcome, so we decided not
to include it here for the sake of brevity.

Complete graph. The first and simplest way to construct a graph from an
input story is to create a complete graph on all of its words. In this approach,
we consider each word as a node in the graph and connect all possible pairs of
nodes with a unique edge. Undoubtedly, this method is not feasible for larger
passages of texts, since it produces graphs with quadratic number of edges.
However, stories in CLUTRR are relatively short and thus we can utilize this
approach as a very simple baseline for the more elaborate methods that follow.
We also managed to reduce the overall graph size by removing stop-words
from the input sentence. A list of most common English stop-words was
imported from the NLTK library.

To make this method a bit more robust, we embedded the words to 300-
dimensional vectors using pre-trained Glove embeddings that were used as
node features in the graph. Alternatively, we could use a trainable embedding
layer to learn the embeddings jointly with the model parameters, but we
decided to take advantage of the fact that the nodes correspond directly to
words for which we already have existing embeddings. Edge features were not
used in this part. We utilized the spacy python library to handle tokenization
of the raw input stories, as it produces much more accurate results than
naively splitting the input string by spaces. This library was also used to
normalize the words - for example transforming the plural forms to singular,
transforming verbs to their infinitive forms and handling other syntactical
specifics of English.
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Dependency graph. The second proposed construction method uses depen-
dency parsing introduced in Section [2.1.2| to parse the input story into its
dependency tree. It uses the dependency parser provided by the spacy library,
which is based on the non-monotonic arc-eager transition-system described
by Honnibal and et al. |[30]. We refer the reader to the original paper in case
he wants to learn more details about this algorithm. With the help of the
library, we constructed a graph where the nodes are represented by token IDs
and there is a directed edge, annotated with the type of dependency relation,
between all (head, dependent) pairs from the output of the dependency parser.

Kinship graph. The most advanced method that will prove to reflect the
nature of the dataset the best is inspired by the CLUTRR generation process.
During the dataset generation, developers of CLUTRR first generate triplets
or facts that always contain two entities and the relationship between them.
Only then they paraphrase these facts into a textual narrative using different
natural language templates developed by Amazon Mechanical Turk crowd-
workers. As an illustration, we will use the following input story: Ashley’s
daughter, Lillian, asked her mom to read her a story. Nicholas’s sister Lillian
asked him for some help planting her garden.. The original triplets for this
sentence would look as follows:

(Ashley, daughter, Lillian), (Nicholas, sister, Lilian)

Essentially, we want to reverse-engineer this process to obtain the triplets
from the text of the story and then use them to construct a kinship graph,
where the nodes will correspond to entities in text and the directed edges,
annotated with the type of relation, will connect the entities that are on
the two sides of the original relation. It is worth noting that the triplets
from which the stories were generated are included as part of all CLUTRR
datasets for the users’ convenience. Nevertheless, using the original triplets
directly could negatively affect the objectivity of the results when comparing
the performance of models, since it could benefit graph models that use this
special form of input at the expense of others that work directly on the
raw text. Therefore, we deemed necessary to ensure that it was possible to
reconstruct these triplets from the original story. We managed to accomplish
this adapting an already existing script found in a GitHub repository |'. This
script uses an annotator module implemented in the OpenlE library, which
extracts open-domain relation triples that consist of a subject, a relation, and
an object of the relation. Using this approach combined with some heuristics,
it was possible to successfully reconstruct the original ground-truth triplets
and thus their use in the forthcoming experiments is justified.

"https://github.com/Wesley12138/clutrr-baselines
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B aa Proposed model architectures

This section provides the reader with an enumeration of all the different models
that were proposed to solve the classification task. It explains in detail how
the architectures were adapted to be used on the CLUTRR dataset, taking
into account the input pre-processing and all the modifications, improvements
and specific parameters that were introduced to accommodate the model
to our problem. The theory behind the models and details of their inner
architecture were already introduced in Chapter [2, so we will only focus on
the parts specific to the experiments here.

The actual experiments differ along two dimensions - the input pre-
processing method and the actual model architecture that was used. We
devised multiple different variations of input pre-processing, using various
NLP tools and graph construction methods, most of which are relevant only
for a certain subset of the proposed models. For example, graph-based archi-
tectures expect the input to be a graph, while the sequence-based architectures
expect a sequence of encoded tokens. Therefore, we divide the models into
three parts roughly corresponding to the input they can process - text-based
models, sequence-based models and graph-based models.

B 4.4.1 Text-based models

The text-based models process the entire input stories as a raw text. The texts
are then tokenized and encoded to their numeric representations suitable for
the model. In this part, we evaluated two different variants of a feed-forward
neural network and a BERT transformer.

B Basic feed-forward network

In the first variant, we constructed a simple feed-forward module with one
input layer followed by a ReLU activation and one hidden layer with 32
neurons. We used a very simple approach to construct the numeric input for
this network - we encoded the input story as a bag of relations contained in
the story. This technique, commonly referred to in NLP as bag of tokens,
builds a representation of the input sequences in two steps:
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1. First, it builds a vocabulary of size N from all known tokens and creates
a mapping to their unique IDs. In our case, this vocabulary is not formed
from all words, but limited only to all possible 22 relation words that
can occur in a story.

2. Then, it constructs a vector v € RY for each story s, where vj is equal
to the number of occurrences of the token with ID ¢ in s.

The bag of relations vectors constructed for each sample using the described
approach are then used as an input for the network. The main drawback
of this method is that it does not take into account the relative positional
information of the individual relations in the story. Therefore, we do not
expect it to perform particularly well - its purpose is rather to serve as a
baseline for other, more advanced architectures introduced in the following
sections.

In the following text, we will refer to the this experiment using the notation
text-ff-base.

B Feed-forward network with embeddings and positional encoding

In the second variation, we tried to partially alleviate the lack of positional
information in the previous experiment. To do this, we altered the input
pre-processing method and introduced two special modules on top of the
layers described in the previous section:

® embedding layer - works as a lookup table that stores unique learnable
embeddings of a fixed size for all tokens in the vocabulary.

® positional encoding layer - injects information about the relative positions
of the tokens in the input. This concept is adapted from the transformer
architecture and was explained more in detail in Section 2.2.3.

We set the same number of dimensions d = 40 for both the embeddings
and positional encoding. The ordered sequences of tokens IDs corresponding
to relation words are passed to the embedding layer. The output embeddings
are then summed with the respective positional embeddings to form the final
input vector for the subsequent feed-forward layers.

We will assign the notation text-ff-pos to this experiment.
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M DistilBERT Transformer

DistilBERT is a special version of the well-known BERT transformer. Both
BERT and DistilBERT are special cases of encoder-only transformer architec-
ture that was introduced in Section [2.2.3l We opted for DistilBERT because
it is a smaller, faster and more light-weight transformer model trained by
distillation of the base BERT transformer. Its performance is very close to the
performance of the much larger BERT model, but it has 40% less parameters
and has proven to run 60% faster, which allowed us to iterate the training and
hyper-parameter fine-tuning process much more efficiently. In this experiment,
we will use the pre-trained version of the transformer, since training such
a large model from scratch would require significant computational power
and long training time. In practice, it is usually sufficient to attach just few
additional head layers that transform the output of the pre-trained encoder
module to the desired dimension.

In this experiment, we will be optimizing both, the DistilBERT’s pre-
trained parameters and two additional hidden layers that were used as the
classification head to transform the 768-dimensional output of the encoder to
the desired dimension equal to the number of CLUTRR classes. The custom
transformer head uses one extra hidden layer of size 512 before the final
output layer. We will use two different values of learning rate - Ir; = 1% 1073
to optimize the transformer head and Iro = 1 % 107° to fine-tune the pre-
trained BERT parameters. Since all BERT models come with its own specific
tokenizer that is used during their training, we will use it to tokenize the raw
input stories into tokens.

Furthermore, we also need a way to provide the model with information
about the query pair for a given story. While this can be done in multiple
ways, we decided to employ a special [SEP/ token that BERT uses internally
to separate different logical parts of the input sequence (for example, it is
used to separate a question and answer pair in question answering tasks).
Below is an example of one such input sequence for story ’Ashley’s daughter,
Lillian, asked her mom to read her a story. Nicholas’s sister Lillian asked
him for some help planting her garden.” and query pair (Ashley, Nicholas)
before encoding the tokens to their IDs and padding the sequence with special
[PAD] tokens. Note that [CLS] and [PAD] are another special tokens that
BERT uses internally to store different information.

[[CLS], ashley, nicholas, [SEP], ashley, ’, s, daughter, , ’, lillian, , ’, asked,

her, mom, to, read, her, a, story, ., nicholas, ’, s, sister, lillian, asked, him,
for, some, help, planting, her, garden, .]
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We will further refer to this experiment using the notation text-bert.

B 4.4.2 Graph-based models

In this part, we will describe in detail the graph neural architectures that we
designed to solve the CLUTRR prediction task.

Throughout these experiments, we made heavy use of the already mentioned
PyG library that implements many different GNN layers. It also provides
toolkit for transforming all kinds of unstructured data to graphs and the
further manipulation of these graphs. A single graph in PyG is described by
an instance of Data class that holds the list of nodes (more precisely, their
indices), node and optional edge features, information about edge connectivity
and target labels used for training. PyG also allows us to conveniently create
batches of Data objects and feed them to different GNN modules.

Before we proceed to describe the actual architectures, there is one part
of architecture that is shared among all graph-based models. While the
models in this category differ in the way they process the input graphs
during the message passing phase, the output of this phase is always still
a graph. The node representations in this graph are updated as a result of
progressively applying the message passing rule, however, at this point we
still need a way to somehow include also the information about the actual
query pair corresponding to this graph. Otherwise, the model would simply
not know what question it is trying to answer and would not be able to
learn anything useful. There are multiple different ways of incorporating
the query into the prediction. In our graph-based experiments, we chose
the following approach - first, we retrieve the updated representation of the
nodes originally corresponding to the two query entities, resulting in two
distinct vectors of size n. Then, we compute an aggregated representation
of the whole graph by averaging the updated feature vectors of all its nodes.
Finally, these three vectors are concatenated to form a vector of size 3 x n,
and this aggregated vector is passed through a learnable feed-forward layer
whose output dimension is equal to the number of classes in the prediction
problem. We will refer to these final aggregation step as decoder layer. The
graph encoding part that actually distinguishes the models will be described
in the following subsections.

We will append the following suffixes to the names of different graph-based
experiments depending on which graph construction method they use - -com
for complete, -dep for dependency -kin for kinship.
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B Graph convolutional network

In the beginning, we developed a baseline GCN which only considers node
features and disregards the edge features. Due to the highly relational nature
of the CLUTRR dataset, the information carried in edges of certain graphs
might be important and its absence will prove to be disadvantageous. During
the forward pass, we perform three message passing rounds that progressively
transform the graph representation, where in each round, the inputs pass
through two GCN layers with hidden size n = 100. We use ReLU activation
between the two layers. After the message passing, we end up with an updated
graph representation where the dimensionality of the node embeddings is equal
to the hidden size n of the last GCN layer. If the input is one-dimensional, as
it is the case with some graph construction methods, it additionally passes the
input to a learnable embedding layer of 100 before performing the message
passing.

This model will be evaluated with all three graph construction methods
and the individual experiments will be titled as graph-gcn-com, graph-gcn-dep,
and graph-gcn-kin.

B Graph edge convolutional network

Next, we developed a more sophisticated variant of the GCN that takes
into account also the edge features of the input graphs. It uses a special
convolutional operator that was inspired by the one used in the experiments
% conducted on CLUTRR by Minervini et al. in their recent paper [31].
The first step in the forward pass consists of two distinct embedding layers
- the first projects the input nodes into dimension n = 100 and the second
projects the input edges to a dimension e = 20. Similarly to the baseline
GCN, the model then performs three rounds of message passing. In each
round, following operations are applied in order:

1. dropout layer with probability p = 0.6
2. first convolutional layer of size n
3. ReLU activation

4. dropout layer with probability p = 0.6

Zhttps://github.com/uclnlp/ctp/blob/master /ctp/geometric/gen.py
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5. second convolutional layer of size n

The dropout layers were used as a means of regularization and have proven
to be very beneficial for the overall model’s performance. After the message
passing, we pass the graph to the decoder layer to obtain the final embeddings.

We evaluated the model using two different graph construction methods -
dependency graph and kinship graph. The experiments will be denoted as
graph-egcen-dep and graph-egen-kin.

B Graph edge attention network

Following the previous experiments, we developed another advanced variant
of the generic graph neural network - graph attention network with edge
embeddings. Again, the graph attention layers that are used during the three
message passing steps are adapted from the already existing experiments .
This architecture is very similar to the previous edge GCN variant and it
differs mainly in the exact form of the convolutional operator used. In this
case, it uses the attention mechanism described in Section [2.2.3| that allows
each node to gradually learn which of its neighbors are important and should
have larger effect in the computation of the updated node representation. The
steps in the message passing phase are very similar to the previous model:

1. dropout layer with probability p = 0.6
2. first graph attention layer of size n

3. ReLU activation

4. dropout layer with probability p = 0.6

5. second graph attention layer of size n

The experiments conducted using this architecture will be denoted as
graph-egat-dep and graph-egat-kin.

3https://github.com/uclnlp/ctp/blob/master/ctp/geometric/gat.py

42



4.5. Training process

B 4.4.3 Sequence-based models

In this part we selected an approach that is very specific to the nature of
the CLUTRR dataset and therefore expected to perform well. Unlike the
previous part, where the input to the model contains the sequence of all words
from the original story, here we employed a more sophistical approach and
only considered words that are actually relevant to the classification task - we
extracted only words corresponding to the 22 kinship relations from the text.
To achieve this, we used the logical graph structure underlying the stories
described in the previous section. Since the order of the relations is important
in this case (inference using ordered edges mother - sister - daughter yields
different result than mother - daughter - sister), we ensured that the relations
are ordered according to the path from the first entity of the query edge to
the second entity of the query edge. In some of the CLUTRR datasets, this
is guaranteed as one of the properties of the dataset generation process. The
sequence of relation tokens was then encoded to their unique IDs.

In our experiments, we used both the basic RNN and an LSTM modules
implemented in the Pytorch library and evaluated them on the CLUTRR
datasets. After experimenting with different dimensionalities of the hidden
states, we selected value d = 64 for both the networks. We will refer to the
basic recurrent network and the more advanced LSTM variant as seg-rnn and
seq-lstm, respectively.

. 4.5 Training process

This section will be concerned with the remaining implementation details,
mainly the model training and evaluation process.

In all cases, the models were trained and evaluated using 1 train and 9 test
datasets described in chapter [3. Furthermore, all the models were trained
in a batch-wise fashion, as it allows for better parallelization of the matrix
multiplications that take place during forward and backward passes and
therefore speeds up the overall training process.

The objective function that was optimized during the training is the cross
entropy loss. Cross entropy first applies softmax function on the output vector
of the model in order to get a probability distribution over the classes and then
computes the final loss using negative log likelihood between the predicted
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’ Category ‘ Experiment Batch size | Epochs | Learning rate
text-based text-ff-base 100 64 0.001
text-based text-ff-pos 60 64 0.001
text-based text-bert 64 20 0.001

graph-based graph-gcn-com 100 64 0.001
graph-based graph-gen-dep 100 64 0.001
graph-based graph-gen-kin 100 64 0.001
graph-based graph-egen-dep 100 40 0.001
graph-based graph-egen-kin 100 64 0.001
graph-based graph-egat-dep 100 32 0.0015
graph-based graph-egat-kin 100 64 0.001
sequence-based seq-rnn 100 40 0.001
sequence-based seq-lstm 100 64 0.001

Table 4.1: List of used hyper-parameter values for all the experiments.

and the actual probability distributions. The model parameter updates were
performed using the Adaptive Moment Estimation (Adam) optimization
algorithm. Adam is an extension to the standard stochastic gradient descent
that was recently adopted as the primary choice by many deep learning
and NLP practitioners. We also experimented with different optimization
algorithms but they did not seem to yield any significant performance boost.

The hyper-parameters for all the experiments, namely the size of a batch,
the number of epochs and the learning rate, were chosen using an initial grid
search. The selected values have proven to work relatively well for most of
the models, which is the reason why they are roughly the same across most
of the experiments. The exact selected values are listed in Table |4.1].

In the evaluation part, we focused specifically on the accuracy metric that
can be expressed as the ratio between the number of samples that the model
has predicted correctly and the total number of samples. This is also the
metric that will be reported for all the trained models in the results section.

. 4.6 Results and discussion

This section will summarize the empirical results and provide a short discus-
sion, highlighting the strengths and weaknesses of individual models.
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Figure 4.1: Plots of accuracy on all test sets for all model categories - text-based,
graph-based and sequence-based. The values on the x axis correspond to the
relation lengths in individual test datasets. The fourth plot on the bottom-right
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shows additional comparison of one selected experiment from each category.
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In total, we conducted 12 different experiments on the CLUTRR dataset.
The overall results are shown in multiple plots on Figure 4.1. Table |4.2| then
shows these results in a tabular format, and contains also the final training
accuracy of the models.

If we inspect these outputs, we can clearly observe a decreasing trend in
the accuracy of most of the models as the number of necessary reasoning
steps increases. Naturally, the more reasoning steps the model is required to
perform on the test samples, the higher is the overall difficulty of the test set.
In almost all cases, the models perform best on the easiest set, (1.2_test.csv),
and worst on the most difficult one (1.10_test.csv). There are special cases
when a certain model performs slightly better on some test set with reasoning
depth k; than on some other test set with reasoning depth k2 > k;. These
fluctuations might be attributed to the ability of a model to predict some
types of relationships better than others, since not all datasets contain all
relation classes.

The empirical results also provide an overview of how the individual
categories of models (text-based, sequence-based, graph-based) compare
against each other. We can observe that the best overall performance was
achieved by the sequence-based models - recurrent neural network and its
LSTM variant - that achieved nearly 100% on all test datasets. The sequence-
based models clearly benefit from their ability to process an arbitrary sequence
as an input. In our case, this allowed them to process the CLUTRR instances
in their cleanest possible form - as sequences of the relation words. Since
the ordered sequence of relation words unambiguously determines the target
relationship, it was informative enough for the model to learn to generalize
the rules learned on sequences of lengths k € {2, 3,4} to longer sequences up
to length £ = 10. Arguably, this is a relatively easy task for a model with
enough learnable parameters and given enough training time.

On the other hand, the text-based models that treat the input as raw text
and do not have any inductive bias exhibited the lowest overall performance.
We can observe that models that work on natural language stories have
difficulty learning a robust mapping from the narratives to the underlying
logical facts. While they work relatively well on test sets with reasoning
steps k < 4, there is a significant drop in their accuracy on samples with
previously unseen values of k. Specifically, it is interesting to study the
sudden performance drop of the text-bert transformer model. The results
of this experiment support the hypothesis from the beginning of this thesis,
stating that the large pre-trained language models do not really learn to
understand the content and are not capable of generalizing to previously
unseen combinations in a systematic and robust way.
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The same sudden decrease in performance was detected in some of the
graph-based experiments, mainly graph-gcn-com, graph-gcn-dep, graph-egen-
dep, graph-egat-dep. However, in this case, the low performance of models is
most likely caused by the two graph construction methods - dependency and
complete graph construction - whose output might not be informative enough
for the model to be able to identify the correct signal. On the other hand,
the poor results in the graph-gcn-kin experiment are almost certainly caused
by the inability of the baseline GCN architecture to consider edge features.
Since graphs created using kinship graph construction store the important
relational information in edges, without the edge features, the model simply
does not have the necessary signal to learn anything useful.

In contrast, the other two experiments that use the kinship graph con-
struction were more successful. This was expected, since unlike the previous
two methods, the kinship graph very closely reflects the underlying nature
of the CLUTRR dataset. The more advanced architectures from the deep
relational learning domain that consider edge features - graph convolutional
network and graph attention network - outperformed almost all the other
graph and text-based models by a large margin. Their success can be ascribed
mainly to the underlying relational graph structure to which they had access.
The rich relational information stored in the kinship graphs of stories have
proven to be very helpful for these advanced variants of GNN. It allowed
them to not only to learn to induce the logical regularities that govern the
kinship relations, but also to compose and generalize these rules to much
more difficult stories with previously unseen combinations of relations. For
instance, the accuracy of the edge GAT network dropped only by 39% (from
100% to 61%) between the easiest and the most difficult test dataset.

All in all, the empirical results highlight the gap between both recurrent
and graph models that work on structured symbolic inputs and those that
work on unstructured texts. While the recurrent neural networks that worked
on sequences of relations undeniably outperformed all other models, the price
was paid in the simplifying assumptions that were made while building the
input for their architecture. Undoubtedly, the methods used to preprocess the
input in these two experiments were highly specific to the CLUTRR dataset
and could only hardly be generalized to real-world applications. On the other
hand, the GNN-based models have exhibited lower, but still comparable
reasoning capabilities without overly sacrificing their practical reusability.
We can see a clear trade-off between the amount of inductive assumptions
that the model makes about its data and its ability to generalize beyond the
training scenarios.
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Chapter 5

Conclusion

In this bachelor thesis, we have presented the state of affairs in the NLU
discipline, including the problems that it is currently facing and the solutions
that were proposed to address them. We have conducted a detailed survey
of the relevant literature and identified over 10 existing benchmarks that
test the relational reasoning ability of machine learning models. From this
set, we have selected the most appropriate benchmark - CLUTRR - for the
experimental part.

In the experimental part, we have devised 12 distinct experiments, dis-
tinguished by both the data preprocessing methods and the specific deep
learning models that were used. We trained and evaluated the proposed
models on a text classification task in 9 testing scenarios with increasing level
of difficulty. Along the line, we proposed suitable inductive biases to address
the highly relational nature of the dataset, which helped us to train models of
increasing expressiveness and power that achieve state-of-the-art performance
on part of the CLUTRR benchmark suite.

Finally, we compared the models with relational priors against the trans-
former architecture and demonstrated the disparity in their reasoning abilities.
We found that large NLU language models, such as BERT, might indeed
exhibit poor generalization and inductive reasoning capability when compared
graph and recurrent neural networks that work directly on symbolic inputs.
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5. Conclusion

. 5.1 Future work

At last, let us identify some future research directions.

Firstly, we could further study the interplay between different hyper-
parameters used to train the models and fine-tune them to achieve even
better results. Another research direction would be to develop more advanced
dynamic graph construction methods and optimize the construction step
jointly with the rest of the network. There is also space for a more detailed
analysis of the reasons behind the poor generalization capabilities of large
language models.

Naturally, another compelling next step would be to evaluate the successful
models on different benchmarks from the NLU domain and test their ability
to extrapolate beyond the CLUTRR dataset.

In spite of all the remarkable progress in deep learning made in recent
years, there is still a lot of work to be made by those of us who aspire to
build truly intelligent systems.
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Appendix B

Attachments
Name ‘ Description
clutrr/ code related to the preprocessing of the CLUTRR dataset
experiments/ | model training and evaluation of experiments
graph/ implementation of different graph construction methods
models/ implementation of different deep neural networks
nlp/ NLP-related utilities such as tokenization and word embeddings
notebooks/ | a collection of notebooks mainly exported from Google Colab
outputs/ generated figures and plots used in the thesis
scripts/ a miscellaneous collection of scripts for different purposes
main.py the entrypoint for running experiments
utils.py miscellaneous utility functions

Table B.1: Thesis source code repository structure.

This thesis has one attachment - a compressed archive that contains the
source code for all of the experiments. Table B.1|lists the directories and files
in the root directory of the archive along with their short description. Dataset
files and pretrained word embeddings were not included in submission due to
their excessive size.
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