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Abstract

The thesis focuses on the use of Radon Transform in Computerized Tomography (CT).
After a brief technical description of CT, we turn to the Radon transform as the pri-
mary mathematical tool of CT. We state and prove the main results of the direct one-
dimensional Radon transform. Finally, we show how to reconstruct the original function
(i.e, how to obtain the Radon transform by using the Central slice theorem.)

Keywords: Computerized tomography, Radon transform, Fourier transform,
Central slice theorem.

Abstrakt

Práce se soustřeďuje na použit́ı Radonovy transformace v poč́ıtačové tomografii (CT). Po
krátkém technickém popisu CT je pozornost obrácena k Radonově transformaci, jakožto
hlavńıho matematického nástroje CT. Dokazujeme hlavńı výsledky teorie Radonovy trans-
formace v dimensi 1. Poté ukazujeme, jak rekonstruovat p̊uvodńı funkci pomoćı Central
slice theorem.

Kĺıčová slova:poč́ıtačová tomografie, Radonova transformace, Fourierova trans-
formace, Central slice theorem.
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Chapter 1

Introduction

Mathematics has many applications in our daily lives that we often are not even aware of.

It has been used in technologies such as cellular telephones, satellite positioning systems,

online banking, metal detectors [9] etc. Out of all its applications, it is certain that the

most beautiful and profound one is its ability to save our lives. The application of math-

ematics in medicine is a really powerful tool not only in disease diagnosis but also in their

treatment. One of these tools, necessary for modern medicine as we know it today, is

medical imaging. Back in times when we did not know much about medical imaging and

X-rays, every change/disease of our internal organs demanded invasive methods such as

operations, often leading to unwanted complications and difficulties. The problems with

such methods mainly occur in any brain examination because they are highly unsafe and

can cause permanent brain damage. Techniques used in medical imaging are not invasive

and can help us analyze our internal body and discover changes such as tumours, bone or

teeth fractures, etc [22]. Today, a variety of medical imaging techniques are being used.

Some of them use a source of radiation inside a body such as magnetic resonance imaging

(MRI), positron emission tomography (PET) and single photon emission computed tomog-

raphy (SPECT). The others use the source of radiation that is outside of a body, such as

X-rays and ultrasounds [20]. The technique that uses X-rays is called computerized axial

tomography (CAT or CT), whose main principles and ideas are going to be discussed in

this thesis. The basic idea behind a CT scanner is to collect a lot of two-dimensional slices

of a particular medium, and then use them to reconstruct a three-dimensional body. This

problem is known today as an inverse problem and was studied by an Austrian mathe-

matician Johann Radon back in 1917 [18]. After obtaining a body reconstruction, we can

readily determine whether there are any changes and, if so, where they are located inside

the body.

This thesis will discuss the main principles of tomography, the behavior of X-rays pass-
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2 Introduction

ing through the medium together with its mathematical model,the Radon transform, and

finally, the inverse Radon transform. Chapter 2 gives a sketchy overview how CT works.

We discuss the behaviour of human tissue when exposed to X-rays. The mathematical

description of this behaviour can be summarised in a differential equation called Beer’s

law. Since X-rays scan the tissue along lines in CT, we give a mathematical model that

will allow us to treat those lines correctly. This model, along with a recapitulation of line

integrals, is presented in Chapter 3. The basic properties of the Radon transform, the

main tool of CT, is given in Chapter 4. In Chapter 6 we come to the statement and

proof of The Central slice theorem, which says that the Radon transform is invertible.

This is a crucial result: it enables us to reconstruct the tissue from the slices obtained

along the lines. Since the proof lingers upon multidimensional Fourier transform, we give

necessary results on it in Chapter 5. Finally, in Chapter 7 we discuss an example of the

Central slice theorem. We indicate that even a simple function may involve non-trivial

functions (the so-called Bessel functions). Thus, in practice, the reconstruction is mostly

done by approximative numerical analysis methods.



Chapter 2

X-rays behaviour and tomography

In this chapter, we will say something about the tomography and the nature of X-rays as

they pass through a medium such as human tissue.

We know that light is a form of electromagnetic radiation with different wavelengths.

Some of those wavelengths appear to us as visible light, while others appear as radiation

that we cannot see. Examples of those radiations are ultra-violet and infra-red radiation

or X-rays. X-ray is a type of electromagnetic radiation with extremely short wavelengths

(10−8 to 10−12 m) and high frequency (3 · 1016 to 3 · 1018 Hz [8]). Their shortwave lengths
make them invisible to the human eye, whereas their high energy allows them to pass

through different kinds of media such as muscle, bone, or brain tissue. Because of this

property, they are used in CT scanners.

2.1 CT scanners

CT scanner is a standard device used in medicine—it has a source (the point from where

the X-rays are emitted) and a detector, which is usually some sensitive material, like a

piece of film or a digital sensor. We can see an example of a CT scanner principle in

Figure 2.1. The main idea behind a CT is to measure energy at the source (initial energy)

and one at the detector (final energy) and then compute the difference between these two

energies. This process is done for thousands of X-ray beams at loads of different angles,

which means that the source is being rotated around a full circle. Let us explain this with

a simple example: if we place a hand in front of a flashlight, it will cast a shadow on the

wall behind us. In the same manner, the X-ray beam will cast a shadow on the detector,

giving us a picture from the shadow.

When a single beam passes through the medium, part of its energy is absorbed by the

medium and the other part passes through it. Knowing the differences between initial and

final energy gives us information about the medium. This information is an important

3



4 X-rays behaviour and tomography

Figure 2.1: CT scanner principle [4]

property and we call it attenuation coefficient—it can be observed as a density of an

object. Let us take an example of a bone fracture. Suppose that a CT scanner emits X-

ray beams to the broken bone. The beam that passes through the part that is broken will

be exposed by the digital sensor (detector), creating the picture of the medium, whereas

the bone itself will absorb all others.

For a better understanding of this principle, let us represent a CT scanner as a simple

grid model of black and white squares.

Example 2.1.1 (Simple model of a CT principle [10]). Suppose we have a medium

represented as a 3-by-3 grid of black and white squares (see Figure 2.2), such that each

white square absorbs one unit of energy, and the black square absorbs none. Hence, the

black and white squares have different attenuation coefficients.

Figure 2.2: Medium represented as a grid of black and white squares
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Our ultimate goal is to figure out the configuration of the grid by measuring the level

of energy absorption by an X-ray passing through it. Let us assume that in the first

measurement the family of parallel beams is perpendicular to the columns of the grid.

One beam will lose two units of energy when passing through the first row, two units

when passing through the second and one unit when passing through the third row. If we

consider only the first row where X-ray loses two units of energy, we get three possible

configurations, as shown in Figure 2.3

Figure 2.3: Possible configurations of the first row

In our second measurement, we will change the angle of the source to get some additional

information about the medium. Let us choose an angle such that the beams are perpen-

dicular to the rows of the grid. The X-ray will lose one unit of energy as it passes through

the first column and two units through the second and the third column. We will use

all of the information we gained to find all possible configurations of the first row and

first column together. Knowing that the first row absorbs two units and the first column

absorbs only one unit, we get four different possible solutions, as shown in Figure 2.4.

Figure 2.4: Possible configurations for first row and first column

Although we managed to reduce the initial 29 possible solutions to only 4, we still

do not have all the information we require. Let us look at this from a slightly different

point of view. Suppose we index the grid from x1 to x9. As pointed out above, the

measurements of the loss in the intensity do not tell us the exact configuration of any

row/column; it only tells us the overall loss of energy along them. We can represent this

as a system with the matrix M such that it describes the loss of energy over every row
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and every column. We can write it as follows:



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 1 0 0 0

0 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1 0





x1

x2

x3

x4

x5

x6

x7

x8

x9



=



2

2

1

1

2

2


(2.1)

where the matrix above is our six by nine real matrix of the system, vector x ∈ R9 is

the unknown vector, and the vector on the right side tells us how the energies add up (it

is, therefore, the information that we obtain by measuring). We see that the matrix M

is not invertible, thus the system can not have a unique solution. We need three more

beams at different angle, chosen as shown in Figure 2.5, where different colours represent

different angles.

Figure 2.5: Three different beams represented as lines of three different colours
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Writing these equations, we will have:

(
1 0 0 0 0 1 0 1 0

)



x1

x2

x3

x4

x5

x6

x7

x8

x9



= 3 (2.2)

(
0 1 0 1 0 0 0 0 1

)



x1

x2

x3

x4

x5

x6

x7

x8

x9



= 1 (2.3)

(
0 1 0 0 1 0 1 0 0

)



x1

x2

x3

x4

x5

x6

x7

x8

x9



= 0 (2.4)

By adding these equations to the initial system (2.1), we get the real nine-by-nine

matrix with the rank of 9, which has an inverse, and thus our solution for x is unique.

This way we managed to find out the exact configuration of the grid by measuring the

energy at several different angles.

The function in the example above was given as a discrete function. We had valuesM(x1),

M(x2), . . . , M(x9) from which we have found values of x1, . . . , x9. In general, we want

to solve this problem continuously, which is impossible since our number of given samples
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will always be finite. That is why we need a wide range of samples at different angles,

which will give us an accurate approximation.

2.2 Tomography

Tomography is a common technique used in medical imaging. The word comes from the

Greek word tomos which means cut or slice [20]. The term slice describes the recon-

struction of a three-dimensional object such as an organ, given its two-dimensional slices

that we measure externally with our CT scanner. As we have already mentioned in Sec-

tion 2.1, the attenuation coefficient is a characteristic of a medium describing its ability

to absorb energy. It is rather apparent that if we observe it as a density function, a bone

will have a much higher coefficient than a muscle. In general, the value of the mentioned

coefficient is non-negative. However, in tomography it is often expressed in Hounsfield1

units, which compares the attenuation coefficient of medium and water. It is expressed

by the following formula [10]:

Hmedium =
Amedium − Awater

Awater

where A is the true attenuation coefficient. In the table below, we can observe the values

of attenuation coefficients for different human organs, expressed in Hounsfield units [10].

substance Hounsfield units
bone 1000
liver 40 to 60

white matter 20 to 30
grey matter 37 to 45

blood 40
muscle 10 to 40
kidney 30

celebrospinal fluid 15
water 0
fat -100 to -50
air -1000

Table 2.1: Hounsfield units for some materials

Not only do different kinds of tissues have different coefficients. The coefficient differs,

for example, in healthy and cancerous tissues as well [9] which is why it is a highly relevant

factor in medical diagnosis.

1Godfrey Newbold Hounsfield and Allan McLeod Cormack were the first two engineers who developed
CT scans, back in the 1960s [10].
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Therefore, our goal is to find the values of the attenuation coefficient along the line path

of an X-ray beam. In the later section, we are going to explain this in detail.

2.3 Beer’s law

All definitions in this section can be found, with slightly different notation, in the book [9],

unless stated otherwise.

Before we start to make a mathematical model of X-rays passing through the medium,

we need to make certain assumptions about the nature of an X-ray. We think of X-rays

as composed of particles called photons, and we assume that:

1. All X-ray beams are monochromatic, meaning that each photon propagates at the

same frequency and has the same energy.

2. The width of an X-ray beam is zero.

3. Diffraction and refraction are not present — X-rays do not bend nor scatter when

they come into contact with the medium.

It is important to mention that the assumptions stated above do not entirely correspond

to reality. Since we are making a linear model, assumption 1. is necessary, but the conse-

quences of its imprecision can cause different errors that are not going to be discussed in

this thesis. When it comes to assumption 2., CT scanners often have corrective algorithms

that deal with diffraction/refraction. As we have already mentioned, a beam is composed

of photons, each having the same level of energy. Let us denote the energy at a point x

as E(x) and the number of photons per time unit passing through x as N(x). Then the

intensity I(x) is

I(x) = N(x) · E(x)

Considering a one-dimensional world, the intensity of the beam at point x would be I(x),

and the intensity at a point x+∆x will be I(x+∆x). Our interest is to find out the overall

loss in intensity between these two points, which corresponds to the following formula:

I(x+∆x)− I(x) ≈ −A(x) · I(x) ·∆x (2.5)

Let us consider a two-dimensional or a three-dimensional world, where X-rays are trav-

elling along one-dimensional straight lines. For simplicity, we will consider only one line

denoted by ℓ, that is given parametrically.

ℓ = {x0 + s · v | s ∈ R} (2.6)
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Then the intensity and the attenuation coefficient along this line are given as

i(s) = I(x0 + s · v) (2.7)

a(s) = A(x0 + s · v) (2.8)

Analogously to the equation (2.5) we get

i(s+∆s)− i(s) ≈ −a(s) · i(s) ·∆s (2.9)

∆i(s) ≈ −a(s) · i(s) ·∆s (2.10)

∆i(s)

∆s
≈ −a(s) · i(s) (2.11)

Let ∆s→ 0 and we get a differential equation known as Beer’s law:

d i(s)

ds
= −a(s) · i(s) (2.12)

Since (2.12) is a separable differential equation, we can write it as:

d i(s)

i(s)
= −a(s) · ds (2.13)

Assume we are measuring the intensity of an X-ray between the points x0 + b · v and

x0 + c · v of the line ℓ where b, c ∈ R. Integrating (2.13) from s = b to s = c we get:∫ c

b

d i(s)

i(s)
= −

∫ c

b

a(s) ds (2.14)

ln(i(c))− ln(i(b)) = −
∫ c

b

a(s) ds (2.15)

which gives

i(c) = i(b) · e−
∫ b
a a(s) ds

We will denote i0 = i(b) as the initial energy of the beam and if = i(c) as the final

energy, where both of them are known. What is unknown is the a(s) — the attenuation

coefficient, therefore, as we have concluded in (2.15), we can find the integral of the

attenuation coefficient, but not the coefficient itself. The question about our ability to

reconstruct the function within some constrictions (for example, some body), knowing the
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values of integral along every line that passes through that body was Radon’s motivation

for his work.

Example 2.3.1 (Example of Beer’s law). Suppose we have a body in the Cartesian

coordinate system whose attenuation coefficient we want to find. Let us say that our

detector is in such a position that it emits X-rays perpendicularly to the y-axis, i.e., an

X-ray beam is traveling along the x-axis from point (1, 2) to point (6, 2). Our measured

intensities of the beam are the following:

i0 = i(1) = 1

if = i(6) = e−1

From (2.15) we have:

1 =

∫ 6

1

a(x) dx (2.16)

If we suppose that a(x) is a constant function, we can solve given integral and get the

attenuation coefficient a = 1
5
. In reality, a(x) is not a constant function, which makes it

difficult for us to find out what shape a(x) has.
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Chapter 3

Geometry of medical imaging

Since our main focus of interest will be to “collect information“ along straight lines, we

need a good representation of lines in the plane. Therefore, in section 3.1 we introduce

such representation. Since by “collecting information” we mean integration, in section 3.2

we recall how line integrals are computed in general.

The material presented here is fairly standard. Our treatment of the space of lines is

inspired by the book [6], and for the line integral, we refer to [1].

3.1 The space of lines in plane

As we saw in Chapter 2, our mathematical model of CT will be represented by measuring

along lines, which are the paths of X-rays. In this section, we, therefore, introduce a

convenient representation of those lines.

Every line ℓ in R2 can be described using Cartesian coordinate system by the following

equation :

ax+ by = c (3.1)

where a, b, c ∈ R and a2 + b2 ̸= 0. Rewriting (3.1) we get:

a√
a2 + b2

x+
b√

a2 + b2
y =

c√
a2 + b2

. (3.2)

We can write (3.2) as a dot product of vectors (a, b) and (x, y), which yields

⟨ (a, b)

∥(a, b)∥
, (x, y)⟩ = c

∥(a, b)∥
(3.3)

Firstly, let us define t as c
∥(a,b)∥ = t.

The point ( a
∥(a,b)∥ ,

b
∥(a,b)∥) lies on the unit circle and can be represented as a unit vector

ω = (ω1, ω2), which implies that ω = (cos θ, sin θ), for θ ∈ [0, 2π). We are now able to

13



14 Geometry of medical imaging

describe a line in the plane parametrised by t and θ as follows:

ℓt,θ = {(x, y) ∈ R2 : ⟨(x, y),ω⟩ = t} (3.4)

For a better understanding, we are going show this graphically (see Figure 3.1). Our unit

x

y

ω̂

ω

m
ℓ

θ t

Figure 3.1: The parametrization of line ℓt,θ

vector ω = (cos θ, sin θ) is perpendicular to the line ℓt,θ, as is the vector tω. We notice

that the point of intersection of the line m = {ωk : k ∈ R} and the line ℓ is a point

(t cos θ, t sin θ), where t is an affine parameter, i.e. it is a distance of the line ℓ from the

origin. Let us define a unit vector ω̂ = (− sin θ, cos θ) which is perpendicular to ω and

parallel to ℓ. Now we can describe our line only by t and θ as follows:

ℓt,θ = tω + sω̂ = (t cos θ, t sin θ) + (−s sin θ, s cos θ), for s ∈ R (3.5)

Each t and θ uniquely determine a line in the plane, which means that now we can

represent any line in terms of these two parameters. We notice that ℓt,θ+2π = ℓt,θ and

ℓt,θ+π = ℓ−t,θ for all t, θ. This tells us that for θ ∈ [π, 2π) we will get the same lines that

we have already got for θ ∈ [0, π), where the only difference is the opposite sign of ω̂

vector. Therefore, it is sufficient to choose only one of those lines—we can limit ourselves

to θ ∈ [0, π). Note that we can either describe our lines in the terms of the pair θ, t or

ω, t. Throughout the thesis we will use both of them, depending on which one suits us

better in the given situation.

Example 3.1.1 (Parametrization in the terms of angle θ and affine parameter t). Con-

sider a line in Cartesian coordinates given by the equation y = 1. From equation (3.1) we

get:

a = 0, b = 1, c = 1
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Let us now find our vectors ω and ω̂:

ω = (0, 1) = (cos θ, sin θ)

Considering that θ ∈ [0, π), we get θ = π/2. Further on, we get: ω̂ = (−1, 0) and t = 1

Now we can write our parametrized line as:

ℓt,θ = (0, 1) + (−s, 0), s ∈ R

If we represent this graphically, it is clear that our obtained line is exactly the same as

the initial one y = 1, shown in Figure 3.2.

x

y

ω̂

ω
θ

Figure 3.2: Representation of parametrized line ℓ1,π/2

3.2 Line integral of a scalar-valued function

Before we start talking about the Radon transform and its inverse, we have to define a

line integral which is a necessary tool for the abovementioned transformations.

In general, we can think of line integral as a one-variable function integral over an interval,

except that we do not integrate over an interval but over a curve [15]. Suppose we have a

function r(t) that represents a parametrisation of a curve, where t ∈ [a, b] and a, b ∈ R.
Firstly, we will introduce a necessary term that will be used—arclength of a parametrised

curve.

Arclength of the parametrised curve Since calculating the length of a curve is

slightly more complicated than calculating the length of a straight line, we will assume

our curve is made up of a series of straight line segments, which we can put together

to acquire the desired arclength. We are going to split the interval [a, b] into n equal

subintervals [t0, t1], [t1, t2], . . . , [tn−1, tn], such that a = t0 < t1 < t2 < · · · < tn = b.
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Further, we say that the length of every subinterval is:

∆ti = ti − ti−1 (3.6)

i ∈ {1, 2, 3, . . . , n}

Obviously, as we increase the number of line segments n, the length of subintervals ∆t

decreases, and our curve approximation gets more accurate1.

The length of i-th line segment of a curve is ∥r(ti)− r(ti−1)∥, because the i-th line segment

can be observed as a vector that goes from point r(ti) to r(ti−1). To get the total arclength

L̂, we add up all of the segments, which gives us:

L̂(r(t), n) =
n∑
i=1

∥r(ti)− r(ti−1)∥ (3.7)

Using (3.6) we get:

L̂(r(t), n) =
n∑
i=1

∥r(ti +∆ti)− r(ti−1)∥ =
n∑
i=1

∥r(ti−1 +∆ti)− r(ti−1)

∆ti
∥ ·∆ti (3.8)

Using the definition of derivative and Riemann sum for an integral, as n → ∞ in (3.8),

we have:

L(r(t)) = lim
n→∞

L̂(r(t), n) (3.9)

which yields

L(r(t)) =
∫ b

a

∥r′(t)∥ dt. (3.10)

Line integral over parametrised curve To take an integral of a scalar-valued func-

tion f over a parametrized curve r(t) means to sum up the values at every point of this

function and multiply it by the arc length of the curve. For example, we have a spring

and we want to compute its mass [15]. Values of the function f(r(t)) would, in this case,

represent the density of the spring, so its mass at some point would be computed as a

product of the density and the curve length “at that point”. Accordingly, to find the

whole mass of the spring would mean to sum up masses at “all of its points”.

Using the same principle as above, we say that the length of i-th line segment is ∥r(ti)− r(ti−1)∥
and the density of this line segment is f(r(ti)). Previously mentioned mass of the spring

1Provided that the curve is sufficiently “well-behaved”. We will not go into details here, for more
details, see the book [1].
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would in that case be written as:

M(r(t), n) =
n∑
i=1

f(r(ti))∥r(ti)− r(ti−1)∥ (3.11)

and the mass of the spring curve that is given parametrically by r(t), t ∈ [a, b] is given by

lim
n→∞

M(r(t), n) =

∫ b

a

f(r(t))∥r′(t)∥ dt

Thus, we get the following definition of the line integral.

Definition 3.2.1 (Line integral). For some scalar function f : U → R, U ⊆ Rn the line

integral along a smooth curve C ⊆ U is defined as:∫
C
f ds =

∫ b

a

f(r(t))∥r′(t)∥ dt

where r : [a, b] → C is a parametrization of the curve C, such that r(a) and r(b) are the

endpoints of C and a < b.

Example 3.2.2 (Line integral of a function along the circle).

Let us find an integral
∫
C

√
x2 + y2 ds, if C is a circle with center (1

2
, 0) and radius 1

2
.

We will firstly find the parametrisation of the given line, then we are going to compute

the arc length of the circle. After that, we can easily compute the line integral.

r(t) = (
1

2
+

1

2
cos t,

1

2
sin t)

r′(t) = (−1

2
sin t,

1

2
cos t)

∥r′(t)∥ =

√
1

4
sin2 t+

1

4
cos2 t =

1

2∫
C

√
x2 + y2 ds =

∫ 2π

0

√
(
1

2
+

1

2
cos2 t) + (

1

2
sin2 t)

1

2
dt =

1

2

In the conclusion of this chapter, it is important to mention that line integral does not

depend on the parametrisation of the curve, i.e., whatever parametrisation we choose, the

value of the integral remains the same.
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Chapter 4

The Radon transform

The main theoretical tool of CT is an integral transform discovered by Johann Radon in

1917. Radon proved that one can reconstruct a function defined on a region of a plane by

knowing “sufficiently many” integrals along the lines of this function. In this chapter, we

state the definition of the transform in Section 4.1 and, at its end, we will briefly indicate

the problem of inverting the Radon transform.

4.1 The Radon transform

When we say that f is a function with bounded support, we say that its value is zero

anywhere outside of some bounded area. If we have a body whose CT scan we want to

measure, that body represents the bounded area and the attenuation coefficients within

it have non-zero values, whereas the attenuation coefficients outside of the body are

considered to be zero. As we have already concluded, the equation of our interest is the

Beer’s law (2.15). We want to solve this equation in order to find out what the value of

a(s) is, and we are going to need the definition of the Radon transform to do so.

Definition 4.1.1 (The Radon transform [9]). Suppose that f is a function defined in the

plane, which, for simplicity, we assume is continuous with bounded support. The integral

of f along the line ℓt,ω is denoted by1

Rf(t,ω) =

∫
ℓt,ω

f ds (4.1)

The Radon transform is the collection of line integrals of function f , that are described

in parametrised form in terms of affine parameter t and angle θ (See Chapter 3).

Let us now say something about some important properties of the Radon transform [9].

1Recall the notation of Section 3.1

19
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Proposition 4.1.2. The following three conditions hold:

1.

R(af + bg) = aRf + bRg

2.

Rf(t,ω) = Rf(−t,−ω)

.

3.

Rf(t, θ) =

∫ ∞

−∞
f(t cos θ − s sin θ, t sin θ + s cos θ) ds

for a, b ∈ R, f, g in the domain of the Radon transform, and s ∈ R.

Proof. (See the book [9]).

1. Line integral is linear, hence so is the Radon transform:∫
ℓt,ω

(af + bg) ds = a

∫
ℓt,ω

f ds+ b

∫
ℓt,ω

g ds.

2. We know that

(−ω) = (− cos θ,− sin θ)(−ω̂) = (sin θ,− cos θ) = −(− sin θ, cos θ)

which yields

ℓ−t,−ω = {(−t)(−ω) + s(−ω̂) = tω + (−s)ω̂ : s ∈ R} = ℓt,ω.

3. This follows directly from the representation of parametrised line that we have

derived in Chapter 3.

■

Throughout the rest of the thesis, we will mostly use the Radon transform written in

the form stated in Property 3, so we will briefly explain the practical meaning of it. The

values of θ and t are predefined, while the variable s gets integrated over. For a fixed

value of θ, our CT scanner sends a family of parallel X-ray beams that we observe as

different lines, each of them having its own different value of t. We can describe this as

a cutting the two-dimensional object to slices; one slice is obtained for one fixed angle

θ and many different afinne parameters t. This process is repeated, giving us many dif-

ferent slices which are “merged together” to produce the initial two-dimensional object.
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The process of ”merging” the slices actually represents the reconstruction of the object

whereas the slices are denoted as the Radon transform or sometimes as projections. For a

better understanding of this idea, look at Figure 4.1. In this figure, where we can think of

x

y

x1

y1

θ

ti

Rf(t, θ)
f(x, y)

Figure 4.1: The projection/slice for a fixed angle θ

the red object in the middle as the tumor and observe how parallel X-ray beams make the

one projection(slice) for a fixed angle of θ. The projection is represented by red color in

the upper left-hand corner of the image. In medical examination, both two-dimensional

and three-dimensional scans are used. The real-life equivalent to the Figure 4.1 is shown

in Figure 4.3 whereas the real example of a three-dimensional CT scan is shown in Fig-

ure 4.2.

Figure 4.2: Real example of 3D CT scan [3]



22 The Radon transform

Figure 4.3: Real example of 2D CT scan [3]

On the other hand, if we look at the definition of the Radon transform (4.1), on the

right-hand side, we have an integral of the function f along multiple lines ℓt,ω, and on the

left-hand side, we have the Radon transform. Our function of interest f is the attenuation

coefficient a(s). This means that the Radon transform represents the known, measured

intensities [5], more precisely ln(
if
i0
).

Only now it does get completely clear why our initial goal was to find the inverse of the

Radon transform. The Radon transform of a(s) is known, while the function f (that is,

in our case a(s)) on the right-hand side of equation (4.1) is unknown. What gives us the

desired function a(s) is exactly the inversion of the Radon transform.

We can conclude that the Radon transform f 7→ Rf is linear in f , as proved in

Section 4.1. However, the linear spaces, where f and Rf live, have infinite dimensions.

Thus, one has to apply more subtle methods than just linear algebra to find the inverse

of the mapping f 7→ Rf . In particular, one has to be quite precise in defining the linear

spaces to where f and Rf belong. Under these conditions, the inverse indeed exists, but

its derivation is not straightforward, and it requires an explanation of a few more things.

The so-called Central slice theorem is one of the techniques for a function reconstruction,

and to prove it, we will require a Fourier analysis, which will be explored in-depth in the

following chapter.



Chapter 5

Fourier analysis

Joseph Fourier was a French mathematician who found something that would become

one of the most fundamental ideas in mathematics. While he was working on the heat

equation, he showed that every signal can be represented as a sum of certain sines and

cosines and had represented this idea in his work The Analytical Theory of Heat from

1822 [11]. For example, if we have some musical wave, we can decompose it into its high

and low notes (frequencies). The other example would be radio signals in which we often

encounter some noise. This noise represents high frequencies that we wish to eliminate,

which is much easier to do when the signal is decomposed into multiple frequencies. To

begin our exploration of the Fourier analysis, we will start with the Fourier series, which

is where Fourier himself began. Further on, we will show how the idea of the Fourier series

can be extended to a more general case—the Fourier transform and its inverse and how

these two are related to each other. The last-mentioned fact is of particular significance

to us because we exploit the relationship between the two to recover the initial function,

shown in the known Inversion Theorem, discussed in Section 5.4.

5.1 Fourier Series

Before we start talking about the definition of the Fourier series, let us recall some basic

facts and interpretations of the complex exponential function since it makes computations

simpler and more clear. The inspiration for this chapter that concerns the Fourier series

and Fourier transform (with its properties) is mainly found in books [21],[10] and [13].

The complex exponential function The relationship between the sine, cosine and

the exponential function is given by the Euler’s formula [10]:

eiθ = cos θ + i sin θ (5.1)

23
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From the above-given formula, it is clear that the number eiθ ∈ C represents a point

in the plane that can be described by polar coordinates r (in this case, r = 1) and θ, so we

can think of t 7→ eiθt as of a rotating vector. For example, e2πit is a vector rotating around

a unit circle, with a frequency of one cycle per second in a counter-clockwise direction.

Similarly, e−2πit rotates with the same frequency only in the opposite direction. A vector

described by e2·2πit rotates at the rate of two cycles per second, so it makes two rotations

around a full circle for one second as it needs to cover a distance of 4π in one second. By

multiplying our vector with some constant c ∈ C, we obtain different initial magnitude

and direction of our rotating vector. For example, the vector given by 2e2πit is going to

rotate around the circle with radius of 2 instead of radius of 1 as in the previous case. If

we want our vector to start rotating from the angle of 30◦, we would multiply it by e(π/6)i.

Fourier series

Definition 5.1.1 (The Fourier series). Every continuous, periodic function f with the

period of T can be expressed as follows:

f(t) =
∞∑

n=−∞

cne
i2πn
T

t (5.2)

where n ∈ Z and the coefficient cn is given by

cn =
1

T

∫ T/2

−T/2
f(t)e−

i2πn
T

t dt (5.3)

Let us explain the above formulas rather intuitively. We can think of our function

f(t) as a sum of different rotating vectors. To get a good approximation of the function,

we need to find corresponding coefficients cn. Consider, for example, a constant term c0.

To find c0, we are integrating our function over the period, which we then divide by the

length of that period. This process is nothing but taking an average value of the function:

c0 =
1

T

∫ T/2

−T/2
f(t) dt =

1

T

∫ T/2

−T/2
(. . . c−1e

− i2π·(−1)
T

t + c0e
− i2π·0

T
t + c1e

− i2π·1
T

t . . . ) dt (5.4)

The reason for getting exactly the c0 in this process is that the only “steady” vector is

the one that corresponds to the coefficient c0, and at the same time, it is the only one

that has a non-zero average value since the average value of all the rotating vectors in the

sum in equation (5.4) is going to be zero. Every other coefficient is obtained in the same

way—exactly this is where the element e−
i2πn
T comes into play. For example, if we wish

to get c3, we can do so by multiplying a function with the term e−
i2π·3
T , which makes our
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desired vector “stationary” rather than rotating, and then taking its average value.

5.2 Fourier transform

Now when we know and understand the basic principle of the Fourier series, we can extend

the same idea to the functions that are not necessarily periodic. First of all, we want to

derive an equivalent to the Fourier series for the non-periodic functions. After that, we

will provide an official definition with some important properties of the Fourier transform.

Let us rewrite our equations (5.2) and (5.3) in the following manner. We put

αn =
2πn

T

h(αn) =
T

2π
cn

which yields

h(αn) =
1

2π

∫ T/2

−T/2
f(t)e−itαn dt (5.5)

f(t) =
∞∑

n=−∞

h(αn)e
itαn

2π

T
=

∞∑
n=−∞

h(αn)e
itαn(αn − αn−1) =

∞∑
n=−∞

h(αn)e
itαn∆αn (5.6)

In equation (5.6) we have used the fact that:

2π

T
=

2πn

T
− 2π(n− 1)

T
= αn − αn−1

As T → ∞ then ∆αn → 0, and we get

h(α) =
1

2π

∫ ∞

−∞
f(t)e−itα dt (5.7)

f(t) =

∫ ∞

−∞
h(α)eitα dα (5.8)

The formula (5.7) is known as the Fourier transform, whereas (5.8) is the Fourier

inversion formula. We can now see the equivalence between the Fourier series and Fourier

transform; the Fourier transform formula is equivalent to the coefficient formula (5.3), and

the inverse Fourier transform is equivalent to the Fourier series decomposition (5.2).

While deriving the above formulas, we have not indicated any requirements that f must

meet in order for them to be valid. Even though we are not going to go into a detailed

explanation of this, let us mention a few key points.
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The precise description of the class of functions to which the Fourier transform can be

applied is not easy. A common “space” of functions that one meets in the literature is

the so-called Schwartz space.

Remark 5.2.1 (The Schwartz space S). A function f(x) = f(x1, x2 . . . xn) belongs to

the Schwartz space S(Rn) if all its partial derivatives are rapidly decreasing. By saying

rapidly decreasing, we mean that by multiplying the function f(x) by any polynomial

p(x), as x→ ∞, p(x)f(x) will go to zero. This property is important because whenever a

function f belongs to the Schwartz space, its Fourier transform belongs to the Schwartz

space too. Hence, in order to talk about the Fourier transform of the function, we need

to ensure that it belongs to the Schwartz space. Although the functions that we meet

in practice of CT often do not belong to S(Rn), there are methods to overcome this

problem. We will not go into technical details here, for more information on this topic,

see the book [21].

5.3 Fourier transform in n dimensions and its prop-

erties

Definition 5.3.1 (The Fourier transform and its inverse). For a given function f ∈
S(Rn), the Fourier transform of f is defined as:

{Ff(t)} =
1

(2π)
n
2

∫
Rn

f(t)e−i⟨t,α⟩ dt = f̂(α) (5.9)

where Ff(t) represents the Fourier transform of the function f(t), which will more often

be denoted as f̂(α), since the variable t gets integrated out, so the new function is a

function that depends only on α. The inverse Fourier transform of f is defined as:

{F−1f(α)} =
1

(2π)
n
2

∫
Rn

f(α)ei⟨t,α⟩ dα = f̌(t) (5.10)

Remark 5.3.2. One may ask, what exactly is the reason for putting a minus in the

exponent in the Fourier transform and the plus sign in the inversion. The truth is—it is

just a convention. If we recall our explanation of the complex exponential in the term of

rotating vectors, the sign only represents the direction of the rotation (and minus is, by

convention, a counter-clockwise direction). Another question one may ask is, why have

we put the ( 1
2π
)
n
2 with both formulas, since in some literature it can be found written

differently. The answer is that it is up to our choice if we are going to put the ( 1
2π
)n with

the inverse or split it so that we have ( 1
2π
)
n
2 along with both formulas, or we can even put

it in the exponential so we would not have any factor that multiplies the integral.
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Let us now say something about several properties of the Fourier transform. We will

show their validity in general case (for n dimensions), although we will be using only one

and two dimensions in the further work.

Theorem 5.3.3 (Properties of the Fourier transform). For all the properties that follow,

we assume that both functions f ∈ S(Rn) and g ∈ S(Rn) and t,α,m ∈ Rn.

1. Additivity

F{(f + g)(t)} = F{f(t)}+ F{g(t)}

2. Constant multiples

F{cf(t)} = cF{f(t)}

for c ∈ R.

3. Linearity

F{(af + bg)(t)} = aF{f(t)}+ bF{g(t)}

for a, b ∈ R.

4. Shifting—Translation

F{f(t − m)} = e−i⟨α,m⟩f̂(α)

5. Shifting—Modulation

F{ei⟨α,m⟩f(t)} = f̂(α−m)

6. Scaling

F{f(kt)} =
1

|a|
f̂(

α

k
)

for k ∈ R \ {0}.

Proof. 1. Additivity

F{(f + g)(t)} =

∫
Rn

(f(t) + g(t))e−i⟨t,α⟩ dt =

∫
Rn

f(t)e−i⟨t,α⟩ dt+

∫
Rn

g(t)e−i⟨t,α⟩ dt

= F{f(t)}+ F{g(t)}

2. Constant multiplies

F{cf(t)} = c

∫
Rn

f(t)e−i⟨t,α⟩ dt = cF{f(t)}

for c ∈ R.

3. Linearity follows from properties 1 and 2.



28 Fourier analysis

4. Shifting—Translation

F{f(t − m)} =

∫
Rn

f(t − m)e−i⟨t,α⟩ dt = e−i⟨α,m⟩f̂(α)

We can make a simple substitution:

t−m = u

dt = du

u+m = t

Further, we obtain∫
Rn

f(u)e−i⟨α,u+m⟩ du = e−i⟨α,m⟩
∫
Rn

f(u)e−i⟨u,α⟩ dt = e−i⟨α,m⟩f̂(α)

5. Shifting—Modulation

F{ei⟨α,m⟩f(t)} =

∫
Rn

ei⟨α,m⟩g(t)e−i⟨α,t⟩ dt =

∫
Rn

f(t)e−i⟨t,(α−m)⟩ dt = f̂(α−m)

6. Scaling

For k > 0:

F{f(kt)} =

∫
Rn

f(kt)e−i⟨t,α⟩ dt

Again, we make a substitution:

u = kt

t =
u

k

du = k dt

We get
1

k

∫
Rn

f(ku)e−
i⟨u,α⟩

k dt =
1

k
f̂(

α

k
)

Similarly, for k < 0, we would get the same result with the opposite sign, which is

why the general result is written using an absolute value.

■
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5.4 The inversion theorem

Generally, loads of different approaches to the proof of this theorem can be found in

the literature. Before proving the theorem itself, we need to say something about the

Dirac delta function, which is not actually a function in the way of the mathematical

definition of the function, but a distribution. Nonetheless, it is frequently referred to as a

function, but we will not go into the distributions in-depth here. More information about

the distributions and their properties can be found, for example, in Appendix B of the

book [7]. For the Inversion theorem proof, we mainly refer to [19].

The Dirac Delta function Suppose we need a function δ : Rn → R that satisfies the

following two properties:

1. δ(t) = 0 for all t ̸= 0

2.
∫
Rn δ(t)dt = 1

Clearly, no such function can exist in reality, but we can seek to approximate δ by a

sequence of functions {δk(t)}∞k=1 with the following properties:

(1.1) ∫
Rn

δk(t)dt = 1 for all k ≥ 1

(1.2) There exists M such that for all k ≥ 1∫
Rn

|δk(t)|dt ≤M

(1.3) For all K > 0 we have

lim
k→∞

∫
{t|∥t∥≥K}

|δk(t)| dt = 0

where we define ∥t∥ = max
i=1,...,n

|ti|

Proposition 5.4.1. Let us choose the approximation of our function δ as follows:

δk(t) = δk(t1, t2, . . . , tn) =
k
π

1 + (kt1)2
·

k
π

1 + (kt2)2
· . . .

k
π

1 + (ktn)2

for k ≥ 1. First of all, we need to show that properties (1.1)-(1.3) are indeed fulfilled.

Proof. (1.1) ∫
Rn

δk(t)dt =

∫
R
· · ·
∫
R

k
π

1 + (kt1)2
· · · · ·

k
π

1 + (ktn)2
dtn . . . dt1
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By making a substitution, we get

kti = ui

k dti = dui

for i = 1, 2, . . . , n, which gives us∫
R
· · ·
∫
R

1
π

1 + u21
. . .

1
π

1 + u2n
dun . . . du1 =

1

π

[
lim
u→∞

arctan(u)− lim
u→−∞

arctan(u)

]n
=
(π
π

)n
= 1

(1.2) By (1.1), we know that the value of the integral is 1, so choose, for example, M = 2.

(1.3) We want to compute

lim
k→∞

∫
{t|∥t∥≥K}

δk(t) dt = lim
k→∞

∫
{t|∥t∥≥K}

k
π

1 + (kt1)2
· · · · ·

k
π

1 + (ktn)2
dtn . . . dt1

As in previous case, we can make a substitution:

kti = ui

dti = dui

Additionaly, we say that:

Ai = {


a1

a2
...

an

 | |ai| ≥ K}

which yields

n⋃
i=1

Ai = {


a1

a2
...

an

 | max
i=1,...,n

|ai| ≥ K}
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We get

0 ≤
∫

n⋃
i=1

Ai

1

1 + u21
. . .

1

1 + u2n
dan . . . da1 ≤

n∑
i=1

∫
Ai

1

1 + u21
. . .

1

1 + u2n
dan . . . da1

=
n∑
i=1

(
(2

∫
{ai||ai|≥K}

1

1 + a2i
dai)

∫ ∞

−∞
· · ·
∫ ∞

−∞

∏
j ̸=i

1

1 + a2j
daj . . . dan

)
= πn−1

n∑
i=1

2

∫ ∞

K

1

1 + a2i
dai = 2 · n · πn−1(

π

2
− arctanK)

K→∞−−−→ 0.

■

Remark 5.4.2. In the above proof, we have used the fact that for any f ≥ 0 we have:∫
n⋃

i=1
Ai

f ≤
n∑
i=1

∫
Ai

f

We can additionally observe that, for every K > 0 and every {t | ∥t∥ ≥ K} and every

k ≥ 1 we have

δk(t) =
k
π

1 + (kt1)2
· . . . ·

k
π

1 + (ktn)2
= (

1

k
)n

k2

π

1 + (kt1)2
· · · · ·

k2

π

1 + (ktn)2

≤ (
1

k
)n

1

π(t21 + · · ·+ t2n)
≤ (

1

k
)n

1

πK2
(5.11)

For ∥t∥ ≥ K we can rewrite (5.11) as:

|δk(t)| ≤ Bk · (
1

k
)n (5.12)

where

Bk =
1

πK2

.

Theorem 5.4.3 (Sifting theorem). If h : Rn → R is an integrable function, continuous

at t ∈ Rn, and δk is our approximation of the Dirac delta function, then

lim
k→∞

∫
Rn

h(t− τ )δk(τ ) dτ = h(t)

Proof. Let us say that

ek = h(t)−
∫
Rn

h(t− τ )δk(τ ) dτ
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and observe that

h(t) = h(t) ·
∫
Rn

δk(τ )dτ =

∫
Rn

h(t)δk(τ )dτ

Hence,

ek =

∫
Rn

(h(t)− h(t − τ ))δk(τ )dτ

Let us now choose ε ∈ R, ε > 0. Since h is continuous at t, there exists K ∈ R, K > 0

such that

|h(t)− h(t− τ ))| < ε

for all ∥τ∥ < K. Thus,

|ek| = |
∫
Rn

(h(t)− h(t − τ ))δk(τ )dτ | ≤
∫
Rn

|h(t)− h(τ − t)|δk(τ )dτ

=

∫
{t|∥t∥<K}

|h(t)− h(τ − t)|δk(τ ) dτ +

∫
{t|∥t∥≥K}

|h(t)− h(τ − t)|δk(τ ) dτ

For clarity, we will denote the left-hand side of the last line of the above equation by Ik

and the right-hand side by Jk Further on, we have

Ik =

∫
{t|∥t∥<K}

|h(t)− h(τ − t)|δk(τ ) dτ ≤ ε

∫
{t|∥t∥<K}

δk(τ ) dτ

≤ ε

∫
Rn

dτ ≤ εM

Where we have used Property (1.2). As for the Jk, we have:

Jk =

∫
{t|∥t∥≥K}

|h(t)− h(τ − t)|δk(τ ) dτ

≤
∫
{t|∥t∥≥K}

|h(t)|δk(τ ) dτ −
∫
{t|∥t∥≥K}

|h(t− τ )|δk(τ ) dτ

≤ |h(t)|
∫
{t|∥t∥≥K}

δk(τ ) dτ − Bk

kn

∫
{t|∥t∥≥K}

|h(t− τ )| dτ

By Property (1.3), the left-hand side of the given equation goes to 0 as k goes to ∞. As

for the right-hand side, we can write it as:

Bk

kn

∫
Rn

|h(τ )|dτ

which goes to 0 as k → ∞. Hence, we get that |ek| ≤ Ik + Jk, with the right-hand side

tending to zero. This proves the theorem. ■

Theorem 5.4.4. Suppose h and ĝ are integrable functions. We define1 ĥ(ω) as the

1Recall the convention mentioned in Remark 5.3.2. For convenience of computations we use the
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Fourier transform of h and g(t) as an inverse Fourier transform of ĝ:

ĥ(ω) =
1

(2π)
n
2

∫
Rn

h(t)e−i⟨ω,t⟩dt

g(t) =
1

(2π)
n
2

∫
Rn

ei⟨ω,t⟩dω

Then the following equality holds for all t ∈ Rn:∫
Rn

h(t− τ )g(τ )dτ =

∫
Rn

ĥ(ω)ei⟨ω,t⟩dω

Proof. By changing the variables t− τ = θ we get:∫
Rn

h(t− τ )g(τ )dτ =

∫
Rn

h(θ)g(t− θ)dθ

From the definition of g(t), it follows that

g(t− θ) =
1

(2π)
n
2

∫
Rn

ei⟨ω,(t−θ)⟩dω

Furthermore, we have∫
Rn

h(t− τ )g(τ )dτ =

∫
Rn

h(θ)

(
1

(2π)
n
2

∫
Rn

ei⟨ω,(t−θ)⟩dω

)
dθ

=
1

(2π)
n
2

∫
Rn

(∫
Rn

h(θ)e−i⟨ω,θ⟩dθ

)
ei⟨ω,t⟩dω

From the definition of ĥ(ω), we see that middle integral is (2π)
n
2 · ĥ(ω) which yields∫

Rn

h(t− τ )g(τ )dτ =

∫
Rn

ĥ(ω)ei⟨ω,t⟩dω

which is exactly what we wanted to prove. ■

Before actually coming to the proof of the inversion theorem, we need one more thing—

the Fourier transform of δk(t), which will be denoted by ∆k(ω).

∆k(ω) =
1

(2π)
n
2

∫
Rn

δk(t)e
−i⟨ω,t⟩dt =

1

(2π)
n
2

e−
∥ω∥
k

Additionally, we observe that:

lim
k→∞

∆k(ω) =
1

(2π)
n
2

lim
k→∞

e−
∥ω∥
k = 1.

“symmetric” distribution of 1
(2π)n here.
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Theorem 5.4.5 (Consequence of Theorem 5.4.4). For an integrable function h : Rn → R,
whose Fourier transform is denoted by ĥ(ω), we state that

h(t) = lim
k→∞

1

(2π)
n
2

∫
Rn

ĥ(ω)∆k(ω)ei⟨ω,t⟩dω

Proof. By using Theorem 5.4.4 we have∫
Rn

ĥ(ω)∆k(ω)ei⟨ω,t⟩dω =

∫
Rn

h(t− τ )δk(τ )dτ

Further on, we can apply Sifting theorem 5.4.3 and prove that indeed

lim
k→∞

∫
Rn

h(t− τ )δk(τ )dτ = h(t)

. ■

Finally, we have everything we need to prove that by applying the inverse Fourier

transform on a Fourier transform of a given function, we actually get our initial function.

This is exactly what the Inversion theorem states.

Theorem 5.4.6 (The inversion theorem). For an integrable function h : Rn → R whose

Fourier transform ĥ we define as:

ĥ(ω) =
1

(2π)
n
2

∫
Rn

h(t)e−i⟨ω,t⟩dt

we claim that

h(t) =
1

(2π)
n
2

∫
Rn

ĥ(ω)ei⟨ω,t⟩dω

holds for all t ∈ Rn.

Proof. As we have already concluded in Theorem 5.4.5

h(t) = lim
k→∞

1

(2π)
n
2

∫
Rn

ĥ(ω)∆k(ω)ei⟨ω,t⟩dω

By using the fact that

lim
k→∞

∆k(ω) = 1

we prove that

h(t) =
1

(2π)
n
2

∫
Rn

ĥ(ω)ei⟨ω,t⟩dω

does indeed hold. ■



Chapter 6

Central slice theorem

In this chapter, we have finally arrived at the point where we will apply everything we have

learned so far to demonstrate how to complete our desired reconstruction. The central

slice theorem is a theorem that connects the Radon transform, and the Fourier transform

in a way that greatly simplifies our reconstruction procedure, and it is the basis for some

other reconstruction methods that are being used in this field. The inspiration for the

proof of this theorem can mainly be found in books [5], [13] and [7].

6.1 The proof of the Central slice theorem

Theorem 6.1.1 (The Central slice theorem). If f is a function that has defined both the

Radon and the Fourier transform, r ∈ R and θ ∈ [0, 2π) then

(F2f)(r cos θ, r sin θ) =
(
F1(Rf)

)
(r, θ)

where by F2, F1 we denote the two and one-dimensional Fourier transform, respectively.

Remark 6.1.2. Essentially, what we are saying by this is that if we take the one di-

mensional Fourier transform of the Radon transform of f with respect to t, we get the

same result as when we take a two-dimensional Fourier transform of the initial function

f . Figure 6.1 explains this situation.

Proof. Let us start from the right-hand side of the equation.

F1Rf(r, θ) =

∫
R

Rf(t, θ)e−itr dt =

∫
R
(

∫
R
f(t cos θ − s sin θ, t sin θ + s cos θ) ds)e−itr dt

35
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f(x, y) Rf(t, θ)

F2f(r cos θ, r sin θ) F1(Rf)(r, θ)

R

F2 F2
−1 F1

=

Figure 6.1: The idea of the Central Slice theorem

We are going to change the coordinates to the Cartesian ones and make a substitution.

We know that (
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)(
t

s

)
By calculus substitution theorem, we need to compute the determinant of our Jacobi

matrix, which is given by

J =

(
∂x
∂t

∂x
∂s

∂y
∂t

∂y
∂t

)
=

(
cos θ − sin θ

sin θ cos θ

)

We observe that the Jacobi matrix is the known rotation matrix, whose determinant

is 1 so we have

dx dy = ds dt

Moreover, we can use the fact that the inverse of the rotation matrix is equal to its

transpose, which yields (
t

s

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
and we see that

t = x cos θ + y sin θ

Going back to the integral, we get∫
R2

f(x, y)e−i(x cos θ+y sin θ)r dx dy

On the other hand, if we look at the definition of the two-dimensional Fourier transform
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of f , for some α = (α1, α2), we have

(F2f)(α1, α2) =

∫
R2

f(x, y)e−i(xα1+yα1) dx dy

Since we want our two-dimensional Fourier transform evaluated at (r cos θ, r sin θ), we put

α1 = r cos θ

α2 = r sin θ

which proves the equality. ■

6.2 The meaning of the Central slice theorem

Let us now explain this in greater detail. As we have already stated in the definition of

the Radon transform in Chapter 4, the Radon transform is actually a slice that we get

for a fixed angle θ and many values of t; often being called projection. When we do the

one-dimensional Fourier transform of this projection with respect to t, we get the function

that depends on r and θ. This value is denoted as F1(Rf)(r, θ), it is the same as the

value of slice of a two-dimensional Fourier transform of our initial function taken at angle

θ and different values of r. Since the F2 is being evaluated at (r cos θ, r cos θ), which are

well-known polar coordinates, we observe that, for a fixed angle θ, as we move with the

radius r in the space where our F2f lives, we get the same value for a fixed θ by varying

the r in the space where our F1(Rf) live [17]. For a better understanding of this idea,

see Figure 6.2.

We take some fixed angle θi, then get the projection (marked red in the upper left corner),

do the Fourier transform of this projection, and get the result marked by a red line to the

right. On the other side, we take the function, do its two-dimensional Fourier transform

(marked pink on the right side), and ”slice it” under the angle of θi. The result is again

the red line on the right.

The theorem is, for obvious reasons stated above, often called Fourier-slice theorem

and Projection-slice theorem too.
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x

y

x1

y1

θi

ti

Rf(t, θi)
f(x, y)

F1

F2

α1

α2

θi

(F2f)(α1, α2)

slice of F2f at angle θi

Figure 6.2: Illustration of the Central slice theorem
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Example

Now that we finally know how to compute the inversion of the Radon transform, we will

show all of the facts stated earlier on a simple example.

Reconstruction of the cylinder Assume we have a two-dimensional cylinder function,

that is, we have the following information:

a(x, y) =

1, x2 + y2 ≤ 1

0, otherwise

where a(x, y) is our attenuation coefficient. To have a better idea what our function

looks like, see Figure 7.1. For plotting all of the graphs that follow, we will use Wolfram

Mathematica software.

Figure 7.1: The Cylinder function

39
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Our first step is to compute the Radon transform of the given function. From the notation

of Chapter 4, we have

x2 + y2 = (t cos θ − s sin θ)2 + (t sin θ + s cos θ)2 = t2 + s2

Therefore, we have

a(s) =

1, −
√
1− t2 ≤ s ≤

√
1− t2

0, otherwise

Ra(t, θ) =

∫ √
1−t2

−
√
1−t2

ds = 2
√
1− t2

The Radon transform is

Ra(t, θ) =

2
√
1− t2 |t| ≤ 1

0 |t| ≥ 1

We notice right at the beginning that the Radon transform does not depend on the angle.

That means that the function has a certain symmetry and it looks “the same” for any

value of θ.

On Figure 7.2 we can see the Radon transform Ra(t, θ) of a(x, y).

Figure 7.2: The Radon transform of the cylinder function

Next step is to compute the one-dimensional Fourier transform of the obtained Radon

transform. We compute the Fourier transform with respect to t for a fixed angle θ. From



Example 41

the definition of the Fourier transform, we get the following:

F1{Ra(t, θ)} =
1

2π

∫ 1

−1

2
√
1− t2 · e−itr dt

Unfortunately, the above obtained integral is slightly complicated, as it requires the in-

troduction of some non-trivial integrals in its solution. Because of this, we have used the

software Wolfram Mathematica to evaluate it. It gave us following results:

F1(Ra)(r, θ) =
J1(r)

r
(7.1)

Observe that the software had introduced a new special function J1, called the first

Bessel function of the first kind. We now see that even the simplest function requires

non-trivial computations. In fact, Bessel functions arise whenever the body we scan has

a rotational symmetry, which our cylinder certainly does have (we can observe this from

the graph). Another way then using software for this computation, we can look at the

integral table of Fourier transform, which can be found in Appendix A of the book [23].

In Figure 7.3 we have plotted the one-dimensional Fourier transform. Additionally, on

Figure 7.3: The one-dimensional Fourier transform of the Radon transform

Figure 7.4 we can see how the “slices” of the Radon and the Fourier transform transform

look in the plane, for some arbitrary value of θ.

In the Central slice theorem, we have proved that, by taking a two-dimensional Fourier

transform of the initial function a(x, y), we should get the result obtained in the equa-
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Figure 7.4: Radon Transform and 1D Fourier transform in plane

tion (7.1). Let us show that this indeed does hold for our function.

First of all, we will pass from Cartesian to the polar coordinates1:

x = r̂ cosφ

y = r̂ sinφ

r̂ ∈ R φ ∈ |0, 2π)

Our function will then be

a(r̂, φ) =

1, 0 ≤ r̂ ≤ 1

0, otherwise

Now we will compute the Fourier transform of a(r̂, φ). We observe that the above stated

function is so-called separable function,which is a function of two variables that can be

represented as a product of two functions that depend on one variable only [12]. Therefore,

we can write it as follows:

a(r̂, φ) = a1(r̂) · a2(φ)

A general form of two-dimensional Fourier transform of our function in Cartesian coordi-

nates

{F2a(x, y)}(α1, α2) =
1

2π

∫
R2

a(x, y)e−i(xα1+yα2) dx dy

can be rewritten as follows:

x = r̂ cosφ α1 = ρ cosψ

y = r̂ sinφ α2 = ρ sinψ

r̂, ρ ∈ R φ, ψ ∈ |0, 2π)

1By passing to the polar coordinates, the circular symmetry that we have mentioned earlier gets more
obvious.
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hence

xα1 + yα2 = r̂ρ(cosφ cosψ + sinφ sinψ) = r̂ρ cos (φ− ψ)

Moreover, we have

dx dy = r̂ dr̂ dφ

We obtain

1

2π

∫
R2

a(x, y)e−i(xα1+yα2) dx dy =
1

2π

∫ 2π

0

∫ ∞

0

a(r̂, φ)e−ir̂ρ cos (φ−ψ)r̂ dr̂ dφ

=
1

2π

∫ ∞

0

r̂a1(r̂)
(∫ 2π

0

a2(φ)e
−ir̂φ cos (φ−ψ) dφ

)
dr̂

Since our function depends only on r̂, a2(φ) = 1 for all φ ∈ R. Further on, we have:∫ ∞

0

r̂a1(r̂)
( 1

2π

∫ 2π

0

e−ir̂ρ cos (φ−ψ) dφ
)
dr̂

Since cosine is a periodic function, and we are integrating over one period only the value

of the middle integral is:

1

2π

∫ 2π

0

e−ir̂ρ cosφ dφ =
1

2π

∫ π

−π
e−ir̂ρ sinφ dφ = J0(r̂ρ)

where J0(r̂ρ) is by the definition the 0-th Bessel function of the first kind (See [14]).

Further on, we have ∫ ∞

0

r̂a1(r̂)J0(r̂φ) dr̂ =

∫ 1

0

r̂J0(r̂ρ) dr̂

where we have used the fact that

a1(r̂) = a(r̂) =

1, 0 ≤ r̂ ≤ 1

0, otherwise

Now we will make a substitution

r̂ρ = u

ρ dr̂ = du

∫ ρ

0

u

ρ
J0(u)

du

ρ
=

1

ρ2

∫ ρ

0

uJ0(u) du =
1

ρ2
· ρ · J1(ρ) =

J1(ρ)

ρ
(7.2)

where we have used the recurrence relation for Bessel functions (See [23]):

d

dx
(xnJn(x)) = xnJn−1(x)
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If we look at the Central slice theorem again, we want to evaluate the result obtained in

equation (7.2) at (α1, α2) = (r cos θ, r sin θ). However, the function does not depend on

the angle, so we will have:

{F2a(x, y)}(r, θ) = {F2a(x, y)}(r) =
J1(ρ)

ρ

∣∣∣∣
ρ=r

=
J1(r)

r

which is exactly the result we obtained in the equation (7.1).

We can conclude that the approach to the reconstruction process that the Central slice

theorem gives us produces complicated computations even for the most straightforward

functions. Nevertheless, the theorem results represented an important starting point for

other image reconstruction techniques, that we mention briefly in Conclusion.
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Conclusion

This thesis aimed to explain the fundamental mathematical principles used in image re-

construction. Although we primarily focused on medical image reconstruction, more pre-

cisely, on X-ray tomography, there are other medical imaging techniques that use those

principles as well, such as SPECT (single photon emission tomography), PET (positron

emission tomography), or MRI (magnetic resonance imaging) [13]. Even though tomog-

raphy and the use of Radon transform have the most prominent significance in medicine,

they are important and valuable in other fields too.

In Chapter 2, we discussed how a CT scanner works and what tomography is, and we

gave a mathematical model that explains X-rays traveling through an object (such as a

bone), which we created using Beer’s law.

After having an adequate mathematical model, we had to describe our coordinate system

in a suitable way, which is what we have done in the Chapter 3. The so-called Space of

lines in plane describes lines in terms of an angle and afine parameter, which significantly

simplifies the whole reconstruction problem.

After making the mathematical model and proper representation of lines in plane, we

were finally able to define the Radon transform and see exactly why the inverse Radon

transform is our goal when it comes to function reconstruction. We described this in

Chapter 4.

Since the inversion of the Radon transform is neither straightforward nor somewhat triv-

ial, in Chapter 5 have we talked about Fourier analysis which plays a central role in the

reconstruction process that we are explaining in the thesis.

In Chapter 6, we have come to the main goal of the thesis, which is to prove the Central

slice theorem. This theorem shows us one of the ways to recover the initial function and

reconstruct the body. After proving the theorem, we built all of the essential theoretical

knowledge, which we then applied in the simple example in Chapter 7. In this example,

we have seen that even for a relatively simple function, the reconstruction process done

45



46 Conclusion

through the Central slice theorem gives us some complicated integrals that we can not

solve without integral tables or some mathematical software. At the end of the reconstruc-

tion process, we got the two-dimensional slices as our wanted result (the ones showed in

the Figure 4.3), but one may ask, how do we get the three-dimensional reconstruction (as

one showed in Figure 4.2)? One way to do this is to stack the 2D slices at many different

heights in the three-dimensional space. The other way is to extend the two-dimensional

technique only to a higher dimension. Instead of measuring an X-ray beam along the

line, the X-ray flux is being measured on the plane. The three-dimensional projection is

obtained as the intersection of two planes. Because the beams are recreated in a cone

form, the method is called Cone beam reconstruction [16].

Throughout the thesis, we are talking only about the “continuous world”, which gives us

the exact results in theory but is not feasible in real-life situations. To talk about the

real-life applications means to talk about the “discrete world”. Some methods used in

the “discrete world” are developed analogously to the continuous ones, such as the Di-

rect Fourier method (the Central slice method we are talking about in the thesis). More

information about the algorithm that describes this method numerically can be found in

the book [24]. Considering the complexity of computations of the Central slice theorem

method, it is rarely used. Other techniques that give better results are developed, such as

Signal space convolution and frequency space filtering, Iterative methods or Series methods

and orthogonal functions [7]. More information about more efficient numerical methods

can be found in, for example, the book [2].

Even though none of the theoretical techniques that we have explained in the thesis

are used practically in the same form, they are of enormous significance because they

represent a basis and one of the starting points for image reconstruction processing. If we

want to have a complete picture and completely understand the numerical methods being

used, we first need to understand the mathematical theory behind it. Accordingly, our

plans for future research can be based on numerical algorithms that are used in practice.
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