
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Robotic process automation in
Hardware-in-the-Loop (HiL) SW testing

Karolína Sehnalová

Supervisor: Ing. Tomáš Haubert, Ph.D.
Field of study: Cybernetics and Robotics
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491904Personal ID number:Sehnalová KarolínaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Robotic process automation in Hardware-in-the-Loop (HiL) SW testing

Bachelor’s thesis title in Czech:

Robotická automatizace procesů v Hardware-in-the-Loop (HiL) testování software

Guidelines:

1) Analyze HiL testing process in selected project and its possibilities for process automation
2) Design platform and whole ecosystem for robots that interconnect already automated tools within new ecosystem
3) Integrate this solution into existing HiL testing process
4) Summarize the activity and usage of the robots compared with previous state

Bibliography / sources:

[1] Tauli Tom: The Robotic Process Automation Handbook, Apress, 2020
[2] Axelrod, Arnon: Complete Guide to Test Automation, Apress, 2018
[3] Bornet, Pascal: Intelligent Automation, 2021

Name and workplace of bachelor’s thesis supervisor:

Ing.Tomáš Haubert, Ph.D. Department of Electric Drives and Traction FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 22.09.2021

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Tomáš Haubert, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank to my family and close friends for their endless support during
all my studies. I would also like to thank to my supervisor Ing. Tomáš Haubert, Ph.D.
and my colleagues, especially Bc. Denis Helienek, Ing. Matěj Beránek and Ing. Martin
Novotný.

v

Declaration

I declare that I have written, developed and implemented this thesis by myself and
that I have listed all used sources according to the Guideline no. 1/2009 for adhering to
ethical principles when elaborating an academic final thesis.

In Prague,

date Karolína Sehnalová

vi

Abstract

This thesis elaborates the problematic of Robotic Process Automation in Hardware-in-
the-Loop testing. The main objective is design and implementation of a modular platform
for creating various automation software robots. The contents of the thesis are the
analysis of certain available tools for Robotic Process Automation and the environment
used in the implementation process, design and implementation of the platform and
finally, evaluation of thesis’s results.

The platform for automation tools which allows users to configure software robots to
perform various automation tasks had been implemented in the terms of the thesis. The
platform’s design and particular implementation is elaborated in detail. The platform’s
implementation also consists of design and implementation of database for the storage of
robot configurations. Lastly, the thesis also focuses on developing automation tool for
processing reports from Hardware-in-the-Loop testing.

Consequently, the whole platform and the developed automation tool are rated and
particular partial results are shown and described. There is a feedback from platfrom’s
users in the overall evaluation of the thesis.

Keywords: Robotic Process Automation, Hardware-in-the-Loop, Django, database,
robot, software engineering

Supervisor: Ing. Tomáš Haubert, Ph.D.
Department of Electric Drives and Traction FEE

vii

Abstrakt

V této bakalářské práci je rozvinuta problematika Robotické automatizace procesů s
použitím při Hardware-in-the-Loop testování. Hlavním cílem práce je návrh a implemen-
tace modulární platformy pro vytváření softwarových robotů pro automatizaci. Obsahem
práce je analýza vybraných dostupných nástrojů pro Robotickou automatizaci procesů a
použitých prostředků při samotné implementaci, návrh a implementace platformy a na
závěr zhodnocení výsledků práce.

V rámci práce byla implementována platforma pro automatizační nástroje, která
umožňuje uživateli konfigurovat softwarové roboty, které vykonávají různé automatizační
úkoly. Je rozebrán návrh této platformy i její konkrétní implementace. Součástí platformy
je také návrh a implementace databáze pro ukládání konfigurací robotů. Další součástí
práce je automatizační nástroj pro zpracovávání zpráv z Hardware-in-the-Loop testování.

Následně jsou tato platforma i automatizační nástroj v práci zhodnoceny a jednotlivé
dílčí výsledky jsou ukázány a popsány. V celkovém zhodnocení je zahrnuta zpětná vazba
od uživatelů této platformy.

Klíčová slova: Robotická automatizace procesů, Hardware-in-the-Loop, Django,
databáze, robot, softwarové inženýrství

Překlad názvu: Robotická automatizace procesů v Hardware-in-the-Loop (HiL)
testování software

viii

Contents
1 Introduction 1
1.1 The idea and motivation . 1
1.2 Main objective and partial tasks . 2
2 State of the art - Hardware-in-the-Loop and Robotic Process Automation 3
2.1 Hardware-in-the-Loop introduction . 3
2.2 Robotic Process Automation introduction . 4
2.2.1 A concern regarding Robotic Process Automation . 5

2.3 Open source softwares for RPA . 5
2.3.1 Robot Framework . 6
2.3.2 Robocorp . 6
2.3.3 UI Vision . 6

2.4 RPA vendors . 6
2.4.1 Automation Anywhere . 7
2.4.2 Blue Prism . 7
2.4.3 UI Path . 7

3 Analysis of current state and automation design 9
3.1 TIS (Tools Integration System) . 9
3.1.1 Django databases . 10
3.1.2 TIS internal storage . 11

3.2 Selected project . 11
3.2.1 General project workflow . 11
3.2.2 HCP1 Powertrain project workflow . 13

3.3 My suggested design . 14
3.3.1 Choosing the most suitable development software . 14
3.3.2 RPA platform design . 15
3.3.3 Robot TIS database . 16

4 Implementation 21
4.1 Robot TIS database implementation . 21
4.2 RPA platform implemenation . 22
4.2.1 Abstract classes . 24
4.2.2 Trigger class . 24
4.2.3 Robot class . 25
4.2.4 RpaTool class . 25
4.2.5 FinishTask class . 26

4.3 Proof of concept implementation . 27
4.3.1 Database trigger . 27
4.3.2 Report Processing tool . 28
4.3.3 Zip Files And Send Email . 30

4.4 User interfaces . 31
4.4.1 User interface for creating robots . 31
4.4.2 User interface for deleting robots . 33

5 Results 35
5.1 Report Processing results . 35
5.2 RPA platform results . 39
5.2.1 Configured robot to demonstrate the process . 40

ix

5.3 Comparison with the previous state in Porsche Engineering Services 40
5.3.1 Indicative lower estimate of time savings per week . 41
5.3.2 Faster report delivery to customers . 42
5.3.3 Overall employee’s comfort . 42

5.4 User experience questionnaire . 43
5.4.1 Positive feedback . 43
5.4.2 Negative feedback . 44
5.4.3 Suggested improvements . 44
5.4.4 Questionnaire contribution to the project . 45

6 Conclusion 47
6.1 Summary of results . 47
6.2 Fulfillment of partial tasks of the thesis . 47
6.3 Future work . 48
Bibliography 49
A Content of enclosed codes 51

x

Figures
2.1 HiL simulator - taken from [6] . 4

3.1 TIS welcome page . 9
3.2 TIS login page . 10
3.3 TIS organization diagram . 10
3.4 General project workflow . 12
3.5 HCP1 Powertrain project workflow . 13
3.6 Robot TIS database entity relationship diagram . 16

4.1 RPA class diagram . 23
4.2 Database trigger report state diagram . 27
4.3 Report Processing tool’s page . 29
4.4 Export TRG excel and attachments button in TIS . 30
4.5 RPA platform user interface for creating robots . 32
4.6 RPA platform user interface for deleting robots . 33

5.1 Overall report result in EXAM . 35
5.2 Each test of report shown in EXAM . 36
5.3 Overall report result in excel . 37
5.4 Excel file title page . 37
5.5 Each test of report shown in excel . 38
5.6 Report Processing log file . 39
5.7 Generated zipped folder in TIS permanent files storage . 40

xi

Tables
3.1 RPA tools comparison . 14

5.1 Performed tests before upload to production TIS . 39
5.2 Measured time of report generation before and after RPA 41

xii

Chapter 1
Introduction

Every control unit needs to be adequately tested before it is used in a real
car. A massive part of the testing is performed in Hardware-in-the-Loop
simulation systems that simulate these control units’ environment. The test-
ing process is becoming more and more automated to increase speed and
efficiency. This is precisely the primary goal of this thesis - designing a whole
automation platform to increase the speed and efficiency of the testing process.

This thesis was created in Porsche Engineering Services company. The
designed automation platform is currently being used in the HiL testing
process.

1.1 The idea and motivation

My motivation for this thesis was to create a software tool that will help
employees with the processing of reports created from tests. Similar tests
create a report which contains necessary information about the tests. The
processing of these reports was a very time-consuming task therefore the
automation is beneficial in this case.

This idea was then expanded to create not only a single tool for processing
these reports but a whole platform that can incorporate many different tools
and combine them arbitrarily while the platform provides all the management
of these tools. The idea went even further - the platform will contain some
triggers, which will activate these arbitrary combinations of tools (these
are called a robot). This means no human interaction is needed once the
robot is configured because the robot is executed automatically when one
of the configured triggers is triggered. These tools will save much-needed
time for the employees because they perform some necessary tasks instead of
the employees. Since the tasks meant to be performed by the platform are
Robotic Process Automation tasks, this platform is called the RPA platform.

1

1. Introduction
1.2 Main objective and partial tasks

The main objective of this thesis is to create the RPA platform. Partial tasks
of this thesis are:. analyze HiL testing process in selected project and its possibilities for

process automation,. design platform and whole ecosystem for robots that interconnect already
automated tools within new ecosystem,. integrate this solution into existing HiL testing process,. summarize the activity and usage of the robots compared with previous
state.

2

Chapter 2
State of the art - Hardware-in-the-Loop
and Robotic Process Automation

2.1 Hardware-in-the-Loop introduction

The need for testing electronic control units (ECU) is becoming more and
more important. ECUs which were not adequately tested cannot be used
in any industry branch. The testing procedure is very complex since every
possible state of ECU has to be verified. In order to perform a large number
of tests and tests in difficult real-time situations, Hardware-in-the-Loop simu-
lation is used. HiL simulates the whole environment of the ECU (i.e., the
car) and generates and computes signals which are then sent to the ECU.

There are various reasons for testing with HiL simulation:. all the tests and test conditions are pre-defined and repeatable,. error situations can be tested,. overall testing cost reduction,. it is possible to run tests in conditions that cannot be accomplished in
real systems,. tests can be run with multiple versions of ECU (e.g., ECU can be used
in HiL simulation even though it is not fully prepared to be used in the
real system),. shorter development cycle.

Essential components of every HiL simulation system are: DUT (device
under test), real-time processor and user PC. In this case, DUT is the ECU.
The ECU environment model is created and loaded into the HiL real-time
processor. The model communicates with the ECU by signal generation and
signal measurement. Signal generation sends signals (computed in real-time)
to ECU inputs, using analog and digital inputs and outputs and bus com-
munication. Signal measurement reads signals from ECU outputs. It can
then use these measured signals to compute the successive values of signals

3

2. State of the art - Hardware-in-the-Loop and Robotic Process Automation
connected to ECU inputs.

Modern ECUs are able to self-diagnose. They are checking if their in-
puts are credible. Those inputs are signals from various sensors and therefore,
the simulation has to be so accurate that the ECU is not able to detect that
these signals are not coming from real sensors. Suppose any unforeseen time
course or value of a signal is detected. In that case, it may enter emergency
mode (ECU has many error states and it enters one of them) and further
testing may not be possible. Signals from ECU outputs (and potentially other
variables) are being compared to expected values defined by testers and based
on that the test result is either fail or success. Tests are run and controlled
from the user’s PC via test automation software. One of the most used
automation softwares for testing is EXAM (EXtended Automation Method).

An example HiL simulator is shown in figure 2.1. This simulator is a
product of dSPACE company.

Figure 2.1: HiL simulator - taken from [6]

2.2 Robotic Process Automation introduction

Robotic Process Automation (RPA) is a modern approach to automation of
specific tasks. It is often utilized in companies where employees are overloaded
with repetitive tasks (usually containing passing data from one application
to another one). These tasks can take a significant amount of time and
can be very exhausting for the employees. The time spent with these tasks
could be dedicated to other more important things if software bots performed
these tasks. That is precisely what RPA (Robotic Process Automation) offers.

The term RPA was invented by Pat Geary in 2012. Pat Geary is the

4

.............................2.3. Open source softwares for RPA

chief marketing officer for a market-leading company in RPA softwares called
Blue Prism. According to Tom Taulii, RPA can be described as a set of
software bots that perform such tasks as listed below:. the cut-and-paste of information from one app to another,. the opening of a web site and login,. the opening of an e-mail and attachments,. the read/write of a database,. the extraction of content from forms and documents,. the use of calculations and workflows. [1, p. 3]

To sum up the information, these bots contribute to many business procedures
and disburden employees of many important tasks that have to be done. That
allows employees to focus on other tasks and therefore increase their efficiency.

2.2.1 A concern regarding Robotic Process Automation

With all these benefits mentioned in the RPA description it can seem that
RPA bots can replace human employees [15]. This is coming mainly from the
thing that RPA bots are intended to do tasks previously performed by humans.
Employees of the companies which are often using RPA are often overloaded
with tasks and therefore, it is beneficial even for them. In addition, RPA
can never replace humans entirely. After all, even with the usage of machine
learning and neural networks it will encounter problems because its cognitive
and learning abilities are not even comparable with humans. Furthermore,
RPA opens new working positions for new employees because every RPA
software has to be managed and developed constantly by employees.

2.3 Open source softwares for RPA

Open source softwares create a significant part of available software tools.
Many companies use it nowadays because it is free which can make the whole
development process much cheaper [8]. Since it is free it is possible to try
the software tool before the company starts using it. The majority of paid
software tools offer trial versions but these are often time-limited and do not
provide the full functionality. One of the main disadvantages of open source
software is that it is constantly changing because everyone can contribute to
it by adding some functionality and it is hard to keep track of these updates
and constant development. This characteristic of open source software can
also lead to no need to fixing bugs in the software. In contrast, since more
developers are involved in the implementation the source code can be higher
quality.

5

2. State of the art - Hardware-in-the-Loop and Robotic Process Automation
2.3.1 Robot Framework

Robot Framework [19] is written in Python (also runs on Jython and Iron-
Python) and behaves like any other Python library. That makes the in-
stallation process much simpler for programmers. Robot Framework is also
independent of an operating system. Its main advantage lies in allowing the
user to use many other Python libraries and modules. Robot Framework
is based on keyword-testing, which means its syntax consists of easy-to-use
keywords. More keywords for testing can be added by using additional Robot
Framework libraries. Robot Framework is easy to integrate with any other
Python code. Basic knowledge of Python is necessary for working with this
framework.

2.3.2 Robocorp

Robocorp is a cloud platform based on Robot Framework. It has identical
syntax as Robot Framework and the only difference between Robocorp and
Robot Framework is that Robocorp is extended by a cloud variant so that
users can share some codes and bots with each other.

2.3.3 UI Vision

UI Vision is an RPA software tool for the automation of web-based applica-
tions or desktop applications. UI Vision is built up as a superior structure of
a scripting language. Prior programming experience is not required. On the
other hand, UI Vision offers an option to implement scripts in programming
languages supported by UI Vision (e.g., Python, Visual Basic). This can
obviously be accomplished only with prior knowledge of those languages.

UI Vision differs from other RPA tools in one significant aspect - its
main principle - the ability to perform visual tests. Visual tests can be
performed thanks to the knowledge gained from computer vision’s field of
expertise (e.g., image recognition).

2.4 RPA vendors

Companies developing RPA software provide lots of courses and even have
academies for developers [1] [16]. These academies and courses offer quick
ways to learn how to work with their applications and environments. Another
advantage of paid software is that vendors always provide some support for
their customers. Customers can communicate about their problems with
vendors and some issues can be fixed by vendors themselves. The vast majority
of RPA vendors offer a trial version, which is often time limited and does
not provide the whole range of functionality. The purpose and goals of these
companies are very similar. Hence, customers have to choose which RPA
software they will use based on their own requirements for the final RPA
system, developer preferences and prior knowledge.

6

.....................................2.4. RPA vendors

2.4.1 Automation Anywhere

Automation Anywhere is targeted at people with none or minimal program-
ming experience. It has a user-friendly interface that enables its users to
create bots in an intuitive environment. Since the integration of AI into RPA
is becoming more significant these days, Automation Anywhere provides a
system called IQ bot which works with large datasets end provides modern
AI features (e.g., computer vision). IQ bot can be easily integrated into a
process. Another feature of Automation Anywhere is the bot store. Users
can download already developed bots and therefore save a lot of time during
the development process of the whole RPA system. One more advantage of
Automation Anywhere is its convenient mobile application from which the
user can control the bot easily and even provide it with additional data (e.g.,
for IQ bot).

2.4.2 Blue Prism

Blue Prism is an RPA development tool based on the programming language
C#. Prior programming experience is not required since the software in-
cludes a dashboard with drag and drop functionality. Despite that, prior
programming knowledge is advantageous because it helps understand Blue
Prism’s main principles. Blue Prism offers complete data security and it is
rated amongst the best RPA tools in this aspect. Data security is one of the
main reasons large corporations often use it.

2.4.3 UI Path

UI Path [18] is an RPA tool focused on Windows applications. UI Path
requires at least basic programming experience because its designing tool
called StudioX is not as user-friendly as for example Automation Anywhere.
The main difference between UI Path and any other RPA software is in its
architecture. UI Path works with a system called Orchestrator which manages
and links all the processes together, while the majority of other softwares
leaves the application’s architecture more to developers. Orchestrator provides
easy and convenient process management. UI Path provides complete data
security.

7

8

Chapter 3
Analysis of current state and automation
design

3.1 TIS (Tools Integration System)

Tools Integration System is a system in Porsche Engineering Services for
centralized integration and usage of various automation tools used in the HiL
testing process. Developers can easily add new automation tools to TIS. TIS
is developed in Django framework in Python. Django framework is a Python
module which enables fast and effective development of web applications.
TIS backend is mainly developed in python and it is stored in Git (version
system) which helps the TIS development and maintenance. TIS frontend is
mainly developed in javascript, HTML, CSS and jQuery with the usage of
Bootstrap, Vue.js and Charts.js.

TIS runs on Red Hat Enterprise Linux 7.6 (RHEL 7.6). RHEL 7.6 Linux
based opensource operating system which is used mainly for corporate and
commercial applications. TIS welcome page can be seen in the figure 3.1.

Figure 3.1: TIS welcome page

9

3. Analysis of current state and automation design......................
Every employee can use his company account to log in to TIS. Then he

can use all the available automation tools. TIS login page can be seen in the
figure 3.2.

Figure 3.2: TIS login page

TIS organization diagram can be seen in the figure 3.3.

application
frontend

application
backend

databases tis internal
storage

Figure 3.3: TIS organization diagram

3.1.1 Django databases

TIS has a default SQL database written in MariaDB. MariaDB is an open
source relational database. Django supports connection to the databases
written in database systems listed below [10]:. PostgreSQL,.MariaDB,.MySQL,

10

................................... 3.2. Selected project

.Oracle,. SQLite,

and it is possible to connect to these by adding the database with all relevant
information into the Django file settings.py. This file is present in every
Django application and is used for various application settings.

EXAM report databases

TIS also has an access to some EXAM report databases written in PostgreSQL.
These databases are used to store data from HiL testing. They are accesed via
Test Report Database (a graphical user interface in TIS for watching reports
and their results) which enables convenient report view. These databases
are also used in some automation tools. Currently TIS has an access to two
EXAM report databases.

3.1.2 TIS internal storage

TIS also provides internal storage for files. Every file is assigned to a specific
user and only the user assigned to the file can access it from TIS. This way
it is possible to store either files which are often used in TIS tools (so that
users do not have to upload them every time from their computer) or files
which were generated by some TIS automation tool. Three types of files can
be distinguished based on so called storage class. Storage class can be:. EPHERMAL (these files are created during a process and deleted imme-

diately after). LAST3DAYS (these files are accessible from TIS but are deleted three
days after they have been created). PERMANENT (user can access these files anytime, they can be deleted
only manually)

3.2 Selected project

This subsection describes the project workflow of project HCP1 Powertrain
(figure 3.5) in comparison with general project workflow (figure 3.4) in Porsche
Engineering Services. HCP1 Powertrain is the selected project for HiL testing
process RPA automation in this thesis. The general project workflow in our
company is described first, followed by HCP1 Powertrain project workflow
description.

3.2.1 General project workflow

Creating a testcase is a complicated procedure consisting of many steps. Tests
are created from test specification. Test specification can be created as an

11

3. Analysis of current state and automation design......................
output of the Test Specification Generator (TSG) or it can be manually
written. TSGs are available in Tools Integration System (TIS) and every
employee can use them. They generate the test specification from specific
files, however the majority of test specifications is written manually. The test
specification is a CSV file which can be imported into DOORS (Dynamic
Object Oriented Requirements System). From DOORS it can be imported
into EXAM (EXtended Automation Method). This can be done via DOORS
syncer GUI and CI plugin which enables automated DOORS to EXAM
synchronization. The usage of DOORS is optional and it depends on the
specific testcase and if the testcase needs to be stored in DOORS. EXAM is
a test automation software developed by the MicroNova company [7] and is
used for graphical development of testcases. EXAM contains libraries which
are necessary for running the tests. EXAM creates an executable file which
can be run and managed by PTD 2.0. PTD 2.0 prepares everything needed
for the experiment (e.g., HiL, signal measurement and signal generation tools,
HiL model). EXAM has its own report database which stores information
about evaluation (i.e., ERROR, SUCCES, PASS, FAIL) for every testcase
along with error or informational messages. This database can be accessed
via TIS which is very convenient because the TIS test report database GUI
is more user-friendly than the EXAM report database and furthermore, the
tester does not have to use EXAM at all to access the report database. The
only thing needed to access the EXAM reporting database via TIS is the
access credentials.

PTD 2.0DOORSTIS

TSG (Test specification
generator)

EXAM

Manually written tests

DXL script: csv import

Test case generator

Export execution file
(xml)

EXAM report database

TRG (test report generator)

TRD (test report database)

Execution helper

Figure 3.4: General project workflow

12

................................... 3.2. Selected project

3.2.2 HCP1 Powertrain project workflow

Every project differs in at least some aspects since it is impossible to unify
every step of the HiL testing project workflow in the whole company. Nev-
ertheless, Porsche Engineering Services tries to keep the project workflow
as similar as possible in every project. This improves the understanding of
other team’s work. In my selected project HCP1 Powertrain the workflow
is rather simple. Many steps described in the previous subsection about the
general workflow are missing mainly because the project is relatively new
and some functionalities have not been integrated into the project workflow
just yet. TSGs are not used at all and that means all the tests are manually
written. After that they are imported directly to EXAM (no DOORS to
EXAM automation is used). The usage of PTD 2.0 is not possible at the
moment but is scheduled to be set up in the near future.

PTD 2.0DOORSTIS EXAM

Manually written tests Test case generator

Export execution file
(xml)

EXAM report database

TRG (test report generator)

TRD (test report database)

Execution helper

Figure 3.5: HCP1 Powertrain project workflow

13

3. Analysis of current state and automation design......................
3.3 My suggested design

This section describes the RPA design in Porsche Engineering Services created
in this thesis. The overall design consists of the process of choosing the de-
velopment software for integrating RPA into the existing ecosystem, RPA
platform (specific usage and storage of RPA bots in Porsche Engineering
Services) and Robot TIS database (database for storage of the RPA bots
in Porsche Engineering Services). All these parts of the design are further
elaborated in the following subsections.

3.3.1 Choosing the most suitable development software

There are many software tools for Robotic Process Automation and it can be
really difficult to decide which one is the most suitable option for a specific
project. This is a very complex and nontrivial problem since many aspects
should be taken into consideration - the final decision depends on many
deciding factors. The main deciding factors can be:. programming experience and knowledge of developers,. the ease of integration into the existing ecosystem,. programming language for programming based tools,.minimization of expenses (e.g., software licenses, paid trainings).

The comparison of key factors necessary for deciding which software is the
most suitable one for a specific RPA project is listed in Table 3.1 below.

Requires
programming
experience

Programming
language Opensource Architecture

Robot
Framework yes Python yes undefined
Robocorp yes Python yes undefined

UI Vision no

Python,
Visual Basic,

other yes undefined
Automation
Anywhere no based on Java no client-server
Blue Prism yes C# no client-server
UI Path yes (a little) Visual Basic, C# no web based

Table 3.1: RPA tools comparison

There are many more development softwares which can be used for RPA.
The softwares which were described in the previous chapter are the most
common ones.

14

................................. 3.3. My suggested design

Chosen development software

Each one of the previously mentioned development softwares has its positives
and negatives which makes the development software decision extremely
difficult. It is important to have in mind that it is extremely difficult (might
be costly) to change the chosen development software during the development
process, which makes the decision even more crucial.

In all implementations mentioned in this thesis I will use Robot Framework.
The reasons for choosing this software tool are:. it has been used in the company before (coherence of used software tools

within the company),. the company has many good Python developers so it is logical to use a
framework based on Python language which is good for developers,. the company supports opensource software.

Robot Framework is a good option for RPA tasks discussed further in this
thesis.

3.3.2 RPA platform design

The RPA platform designed in this thesis is a modular platform for the
storage of RPA software bots. Every TIS developer in Porsche Engineering
Services company can create a new RPA tool and add it to the platform.
Every TIS user is then able to use the new RPA tool by creating a robot
consisting of this RPA tool. The robot creation and configuration can be
done via a user interface in TIS which was created solely for this purpose.

The integration of RPA robots into the existing ecosystem (TIS) is very
complex and needs to be planned in detail. It is crucial that the RPA platform
does not disrupt TIS and all the tools that are currently uploaded in TIS.
The RPA platform is designed with an emphasis on user comfort, focusing
on user-friendliness and the possibility to be easily extended to accommodate
more robots. The creation of the new software bots is intended to be fast
and user-friendly.

The essence of the platform is that the platform will contain triggers,
RPA tools and finish tasks. Trigger passes down an impulse to start a robot
execution, RPA tool is a specific RPA application and finish task is a simple
post-processing task that will process data provided by the RPA tool in a
standardized way (defined by the implementation of the finish task). The
robot consists of triggers, RPA tools and finish tasks. The main aim is the
possibility for the user to configure a robot with arbitrary triggers, RPA tools
and finish tasks via a user interface on TIS (mentioned in the beginning of
this section). This robot will then start the execution of all the selected RPA
tools followed by finish tasks when any of the triggers is triggered.

15

3. Analysis of current state and automation design......................
3.3.3 Robot TIS database

The idea is to store information about all available RPA Robots in the default
TIS database. New tables and relations have been created for this purpose
in the database. This part of the default TIS database is called Robot
TIS Database and was designed and then implemented solely for the RPA
platform.

The entity relationship diagram (ERD) for the Robot TIS database can be
seen in the figure 3.6.

robot
PK id int4
FK user_id int4

robot_name varchar(150)
created_at datetime
updated_at datetime

rpa_tool
PK id int4
FK robot_id int4

rpa_tool_name varchar(120)

rpa_tool_argument
PK id int4
FK rpa_tool_id int4

key varchar(120)
value varchar(150)

database_trigger
PK id int4

project_id int8
FK trigger_id int4

finish_task
PK id int4
FK robot_id int4

finish_task_name varchar(120)

1...N0...N

0...N 0...N

execution tool

1

1...N

post execution process

1

start on new database data

1

pass input

1

pass input

1

finish_task_argument
PK id int4
FK finish_task_id int4

key varchar(120)
value varchar(150)

Figure 3.6: Robot TIS database entity relationship diagram

The central thought behind the design of the Robot TIS database is to
minimize manual data insertion into this database for individual RPA tools
developers. For example, there is no need to access the database when creating
a new RPA tool or finish task. The Robot TIS database and the RPA platform
are modular and they prepare everything that is needed for successful robot
execution. All configured robots by users are being stored in the Robot TIS
database. All the data about the robots and their configurations are inserted
into the database through the user interface in TIS.

16

................................. 3.3. My suggested design

During the database design process (i.e., creating the ERD) it is essential
to try to cover all the possible situations that can occur when trying to
work with data stored in the database and foresee potential problems. The
design is a mentally exhausting process which takes some time and it leads to
problems if it is not designed correctly. The database had to be redesigned
many times, sometimes even fully reimplemented. Django documentation
[10] and MariaDB website [11] were helpful in the design process.

Robot TIS database organization

The head table is the robot table. Robot table has multiple records in specific
trigger tables (e.g., robot can have many database triggers and many other
triggers which have not been implemented yet and for each of them there
is a record in the corresponding specific trigger table). That means that
when a developer implements a new triggering script he has to create a
corresponding table in the Robot TIS database with all necessary information
for this new triggering script. Each specific trigger table (e.g., database
trigger) corresponds to one trigger script. The robot table also has multiple
records rpa tool and finish task tables. These tables (rpa tool and finish task)
can each have multiple records in argument table (rpa tool argument and
finish task argument). These relations are shown in figure 3.6. This database
arrangement contains all necessary information and allows convenient data
insertion and access.

database trigger

This table differs from other designed tables in one standpoint. It is not
general. Every other database table is designed to be general and universal
but database trigger is a special table. It is used for only one type of trigger
called Database trigger.

Database trigger is a triggering script that runs periodically in TIS. It has
a set of so-called watched projects and for each of them their corresponding
EXAM report database. These watched projects are folders in EXAM and
the database trigger script checks if there is a new report in one of these
projects (by searching in the corresponding EXAM report database). If
it detects a new report occurrence, the trigger is considered activated and
it passes down an impulse to execute a robot (or multiple robots). These
watched projects and their EXAM report databases are stored in the Robot
TIS database in the database trigger table. There is a separate triggering
script for each reporting database, although there is an access to only two
reporting databases at the moment. Database trigger triggering script is
elaborated in detail in subsection 4.3.1.

The triggering script needs to know the information which projects are
currently being watched. Therefore the script accesses both the Robot TIS
database (for the information which projects are being watched) and the

17

3. Analysis of current state and automation design......................
EXAM report database (for information about new reports) in its every
execution and reads necessary information from all database trigger tables.
To sum up the information, the database trigger contains all the required
information about which projects are currently being watched and which
robot they belong to.

Fields of the database trigger table are:. project_id −→ project id of watched project (the id refers to the corre-
sponding EXAM report database and not the TIS default database),. database −→ a field that specifies the reporting database that should be
watched by the database trigger (there are multiple reporting databases),. robot_id −→ a foreign key that refers to the robot table.

Each new triggering script is intended to have its own table in Robot
TIS database with relevant data for the specific triggering script as it was
mentioned earlier in this chapter.

robot

Robot is the head table of the Robot TIS database. Fields of this table are:. user_id −→ a foreign key that refers to the user table which is a
fundamental part of the default TIS database and connects the robot to
its user in TIS,. robot_name −→ a name of the robot inserted by the user,. created_at −→ a time of the record in the robot table creation,. updated_at −→ a time of the robot’s last update.

The robot has to have a name so that the user can name it and recognize
it by the name. This name can serve as an identifier of the robot for the user.

Robots cannot be updated at the moment but the robot update feature is
meant to be added to the RPA platform in the future.

rpa tool

Rpa tool is a table for relevant data for every tool. Fields of this table are:. rpa_tool_name −→ an RPA tool name that is needed in the implemen-
tation for deciding which tool is supposed to be executed,. robot_id −→ a foreign key that refers to the robot table,. gui_arguments −→ a field determinig if the tool should use arguments
inserted from graphical user interface (GUI) or arguments passed from
trigger or other tools.

18

................................. 3.3. My suggested design

One robot table can have multiple records in the rpa tool table (i.e., robot can
have multiple RPA tools). In the implementation all these tools belonging
to the robot are executed in the order they were inserted into the database.
(i.e., the order in which they were inserted into the graphical user interface
for creating robots).

rpa tool argument

Rpa tool argument is a table for storage of one argument belonging to one
rpa tool. Fields of this table are:. rpa_tool_id −→ a foreign key that refers to the rpa_tool table,. key −→ a name of the argument passed to the rpa tool,. value −→ a value (stored in a string type) corresponding to the argument

name.

The rpa tool argument table can be matched to one item in a python dictionary.
It has a key field representing the name of the argument and a value field
representing the value of the argument. One rpa tool table can have multiple
records in the rpa tool argument table. Arguments stored in this table
are "static" which means they are inserted into the database once during
the creation of the table. "Dynamic" arguments (mostly obtained from the
triggering script) can be passed as keyword arguments as it is mentioned in
section 4.2.

finish task

Finish task is a very similar table to the rpa tool table. The only difference
at the moment is in the names of the database tables. It is important that
these tables are kept separate because in the future RPA platform extensions
the finish tasks and rpa tools will probably differ in more aspects. Therefore
it will probably be necessary to have different fields in each table which
means there have to be separate tables. It is important to think about all
the possible future extensions and design the database from the beginning to
be as general as possible.

finish task argument

Finish task argument is a similar table to the rpa tool argument table. The
only difference is that the parent table of a finish task argument table is a
finish task table and the parent table of an rpa tool argument table is an rpa
tool table. These tables have the same purpose and they are both used as a
storage for arguments belonging to their parent table.

There could be one table called simply arguments which would be used to
store all arguments belonging to RPA tools and finish tasks together. This
would lead to a problem with primary keys and it would be necessary to store

19

3. Analysis of current state and automation design......................
the information if the arguments belong to RPA tools or finish tasks. The
solution with two separate tables avoids this problem and therefore I consider
it slightly better.

20

Chapter 4
Implementation

4.1 Robot TIS database implementation

The database was implemented with the Django framework. Django has a
class django.db.models.Model which can be used when creating a database
table. Each subclass of the django.db.models.Model class corresponds to ex-
actly one table in the database and each attribute of the subclass corresponds
to one database column. These tables then have to be added to the Django
settings.py file as mentioned in section 3.1.1 and then Django creates proper
tables in the database itself.

All relationships were implemented with Django as well and according
to the Django documentation [10]. The documentation has been extremely
helpful during the database implementation process.

As the database is implemented it contains separate tables for each trigger.
This can seem as a disadvantage for developers because they need to create
separate table in the database for every new trigger they implement. How-
ever, the developer inevitably needs to access the database when creating a
new trigger and there is no way around that. The reason for accessing the
database is that the developer needs to know the triggering condition (when
the trigger executes the robot) followed by the execution of the robot. All
data about triggering conditions are stored in the database. That means the
database knowledge is required from developers and they can create their
own tables for their trigger. At this point it becomes an advantage, because
the developer can specify his own custom table columns and adjust them to
his code which makes the trigger code more straightforward and faster (it is
crucial that the trigger script is fast so that it does not overload the server).
Last but not least, it is intended to have only a few triggers so the separate
table for each of them is adequate.

Implementation of the Robot table of the Robot TIS database is shown in
listing 4.1. Every other table was implemented similarly.

21

4. Implementation....................................
from django . db impor t models
from django . u t i l s impor t t imezone
from django . con f impor t s e t t i n g s

c l a s s Robot (models . Model) :
u s e r = models . Fore ignKey (s e t t i n g s .AUTH_USER_MODEL,

on_de l e t e=models .CASCADE,
n u l l=True)

robot_name = models . C h a r F i e l d (max_length =150)
models . DateTimeFie ld (d e f a u l t=t imezone . now)
c r ea t ed_at = models . DateTimeFie ld (auto_now_add=True)
updated_at = models . DateTimeFie ld (auto_now=True)

Code Listing 4.1: Robot table implementation

4.2 RPA platform implemenation

The RPA platform backend is entirely implemented in Python. The first step
in the implementation was to create a class diagram for the RPA platform
because the relationships of all implemented classes are very complicated and
create the core of the RPA platform. The inspiration for the class diagram
used in the RPA platform came from a book called Head First design patterns
[13] and a website called Refactoring.Guru [12]. Especially the Factory design
pattern and Abstract Factory design pattern were the main inspiration. The
class diagram designed for the RPA platform can be seen in the figure 4.1.

22

..............................4.2. RPA platform implemenation

Trigger

+ specific_trigger_id_list: list

+ specific_trigger_table: str

+ keyword_args: dict

+ find_and_run_robots()

RpaTool

+ workspace: str

+ keyword_args: dict

+ output_dir: str

+ output_dir_path: str

+ user: User

+ run()

FinishTask

+ workspace: str

+ user: User

+ output_dir_path: str

+ keyword_args: dict

+ run()

Robot

+ output_dir: str

+ output_dir_path: str

+ workspace: str

+ keyword_args: dict

+ robot_user_id: int

+ rpa_tools: list

+ finish_tasks: list

+ robot_id: int

+ trigger_keyword_args: dict

+ run()

+ init_tools()

+ init_finish_tasks()

+ add_tool_args_from_database()

+ add_finish_args_from_database()

Concrete RpaTool

+ run()

Concrete FinishTask

+ run()

Figure 4.1: RPA class diagram

23

4. Implementation....................................
4.2.1 Abstract classes

For detailed explanation of each class used in RPA platform implementation
(figure 4.1) it is essential to understand the concept of abstract classes fully.
An abstract class is a template for the declaration of other classes - called
the abstract class’s subclasses. The subclass inherits the abstract class’s
methods and attributes. Every abstract class contains at least one abstract
method. The abstract method differs from the standard method in a vital
aspect - it has a declaration but not a definition. The absence of the abstract
method’s body means the abstract class cannot be instantiated and can be
used exclusively as a superclass. Superclass is a term for a class from which
other classes inherit methods and attributes. The method’s body is intended
to be implemented in the subclass declaration. The correct usage of abstract
classes brings modularity and universality to standard programming.

Abstract classes are not implicitly supported by Python but they can
be implemented with the usage of Python’s standard module called ABC.
Abstract class can then be created as a subclass of the ABC class and abstract
method can be implemented with a decorator imported from the ABC module.
The abstract method’s body is left without implementation as mentioned in
the previous paragraph.

The following subsections contain a detailed description of each imple-
mented class.

4.2.2 Trigger class

Upon activation trigger script instantiates the Trigger class and runs the
find_and_run_robots() method. The arguments passed to the Trigger class
are:. id_list −→ a list of IDs from the specific_trigger table of the Robot TIS

database (section 3.3.3),. trigger_type −→ a type of the trigger script,. keyword_args −→ a dictionary of arguments from the trigger script.

The find_and_run_robots() method accesses the Robot TIS database and
reads the corresponding robot for each specific_trigger_id. The trigger_type is
needed for the selection of the correct specific_trigger table (e.g. database_trigger)
from the database. The Trigger class instantiates a Robot class and runs
Robot class’s run() method in separate thread for each robot found in the
Robot TIS database. That means Trigger class creates multiple Robot classes.

24

..............................4.2. RPA platform implemenation

4.2.3 Robot class

Robot class is instantiated in Trigger class’s method and arguments passed
to the Robot class are:. robot_db −→ a subclass of django.db.models.Model containing Robot

TIS Database information about the robot,. keyword_args −→ the dictionary of arguments from the trigger script.

Robot class has a run() method which calls more Robot class’s methods and
reads all additional information from the Robot TIS database. That incorpo-
rates reading information about relevant RPA tools and finish tasks and their
respective arguments from the Robot TIS database. All relevant arguments
are added to the keyword_args variable before the execution of the corre-
sponding RPA tool or finish task and are passed to their class initialization
method as **kwargs. The Robot class decides which arguments are used from
the triggering script (e.i. passed in kayword arguments from the Trigger class)
and which are added from the Robot TIS database. This decision depends
on the gui_argumnets field of the rpa tool (resp. finish_task) table.

Robot class performs one crucial task. Every robot needs a directory
in TIS internal storage to store important files and data structures. This
workspace is created in the Robot class. That means every robot has its own
workspace. Robot class also creates a separate directory in the workspace
passed to RPA tools.

The instantiation of RPA tool (resp. finish task) subclasses is compli-
cated since the class names differ for each RPA tool (resp. finish task).
Concrete subclass names are stored in the Robot TIS database. Every RPA
tool (resp. finish task) subclass is imported in the Robot class python file and
thus appears in the global scope of the program. That means the concrete
subclass can be called from the global scope of the program as it is shown in
listing 4.2.

c l a s s _ i m p o r t = g l o b a l s () [c lass_name]
c l a s s _ i n s t a n c e = c l a s s _ i m p o r t (∗ a r g s)

Code Listing 4.2: Concrete class instantiation from the global scope of a program

4.2.4 RpaTool class

RpaTool is an abstract class with an abstract method run(). Every subclass
of RpaTool class is a concrete implementation of one RPA tool. Every RPA
tool is intended to have its own implementation of RpaTool class and most
importantly a run() method. The run() method is an abstract method which
invokes the concrete RPA tool source code. The process of the robot initial-
ization and execution can differ from bot to bot and is meant to be written

25

4. Implementation....................................
by the RPA tool author to meet his requirements.

The arguments passed to a subclass of RpaTool are:. workspace −→ a path to a directory where all files and data structures
related to the robot are stored,. output_dir −→ a name of a directory where all files and data structures
related to the tool are stored,. output_dir_path −→ a path to a directory where all files and data
structures related to the tool are stored,. **kwargs −→ keyword arguments - a dictionary of arguments used for
modularity and universality of passed arguments; the arguments are
added to the dictionary during the run of the whole program.

4.2.5 FinishTask class

FinishTask is a very similar abstract class to the RpaTool class (subsection
4.2.4). It also has a run() abstract method which is left for the author of
the finish task to implement and it is meant to invoke the concrete finish
task implementation source code. Arguments passed to every subclass of the
FinishTask class are:. workspace −→ a path to a directory where all files and data structures

related to the robot are stored,. output_dir_path −→ a path to a directory where all files and data
structures related to the tool are stored,. **kwargs −→ keyword arguments - a dictionary of arguments used for
modularity and universality of passed arguments, the arguments are
added to the dictionary during the run of the whole program.

Some of the attributes of the FinishTask class are the same as in the RpaTool
class. It would be possible to implement the whole RPA platform as it is
at the moment with only one abstract class for both RPA tools and finish
tasks. However, for future development of the RPA platform it is important
that these classes are kept separated and there is a possibility to make their
implementations diverse in more aspects.

26

............................ 4.3. Proof of concept implementation

4.3 Proof of concept implementation

The implementation of the Robot TIS database and the RPA platform (men-
tioned earlier in this chapter) needs concrete triggers, RPA tools and finish
tasks for creating robots. For this purpose, I implemented the first trigger,
RPA tool and finish task.

The aim was to integrate the created implementations correctly into the
designed and implemented RPA platform. This process has two points of
view. Firstly, it is the proof of concept of the RPA platform design and
implementation. Secondly, it provides a functioning robot that can be used
by employees to accelerate workflow in HiL testing company projects.

Concrete implementations of the trigger, RPA tool and finish task are
elaborated in the following subsections.

4.3.1 Database trigger

A database trigger is a script that runs periodically and in each run it gets a
list of all the watched projects from the database_trigger table of the Robot
TIS database. Then it searches in the EXAM reporting database for any new
report occurrences in these watched projects. If it detects a new report which
is complete it executes the robot connected to that specific trigger as it was
mentioned in the section 4.2.

As it was mentioned before, the report has to be complete to fulfill the
triggering condition. Since there is no information about the report being
in the copying process in the reporting database, the triggering script itself
needs to determine if the newly occurred report is complete or not. The
copying process can take many hours (depending on the size of the report).
Database trigger checks the number of tests belonging to the new report
and when the number of tests stops increasing the robot is triggered. The
database trigger works as a finite automat and the states of the reports and
the transitions between them are shown in the figure 4.2.

IN
PROGRESS

REPORT
READY

new report
appeared

tests count did not
increase since last run

tests count increased
since last run

REPORT
STABLE

robot
triggered

Figure 4.2: Database trigger report state diagram

27

4. Implementation....................................
Database trigger execution

Database trigger in executed periodically as a cron job. It accepts an argument
from command-line which determines the EXAM report database which will
be searched by the Database trigger in the current run. This solution enables
an easy EXAM report database selection and addition. Database trigger is
scheduled to run every 30 minutes for both available EXAM report databases.
The run of the database trigger with different argument (EXAM report
database) is shifted by 15 minutes.

4.3.2 Report Processing tool

Reports are delivered to customers in an excel file. This excel file offers
complete and detailed information about the whole test suite and can be
generated via TRG (test report generator) tool in TIS. TRG is a tool that
a colleague had written prior to this thesis for generating excel files from
reports. TRG needs XML files generated from EXAM as its input. The XML
download from EXAM can take a very long time (it can be in the order of
hours) so it is not fast and convenient. The user then has to manually upload
these XML report files to the TRG tool and then generate the excel file. The
problem is that the amount of time spent with downloading report XML files
makes it often impossible to deliver excel reports to customers the day after
the tests have been executed.

Report Processing is an RPA tool concrete implementation written in
Robot Framework which skips the XML download part and gets all the
required data regarding the report directly from the EXAM report database.
Then the robot executes the TRG tool with data retrieved from the EXAM
report database and skips the XML loading part of TRG. Apart from gener-
ating the excel report, the Report Processing tool downloads all attachments
for the selected report (if there are any). These attachments are measurement
files (DAT files) and they contain information about every signal measure-
ment that has occurred during the test suite execution in HiL. Some test
suites use INCA measurement software and some use CANape measurement
software. Relevant attachments can be downloaded only for test suites using
INCA. These attachments are stored in the EXAM report database in 7-zip
compressed data. Report Processing tool saves every one of these compressed
attachments to the same folder as the excel report file generated from TRG.
The result of the Report Processing tool is this folder containing all the
relevant information about the report.

Report Processing tool execution

Report Processing tool is executed from a RpaTool subclass’s run() method
as it was mentioned in the section 4.2. In the run() method implementation of
Report Processing calls the tool written in Robot Framework in a subprocess.
The reason for this solution is that Robot Framework logs and reports work

28

............................ 4.3. Proof of concept implementation

correctly only when the program is called from the main thread. However,
this cannot be achieved in TIS (not in an easy way) and the subprocess has
its own main thread which is sufficient for correct Robot Framework logging
and reporting. This solution is easy and convenient.

Report Processing tool run directly from TIS

Report Processing tool does not have to be used exclusively from a configured
robot. It can be run directly from two places in TIS. Firstly it has its own
page in TIS which is shown in figure 4.3.

Figure 4.3: Report Processing tool’s page

Executing Report Processing from this page has one advantage - when
multiple reports are inserted (separated with a newline character) it will
process all these reports into one single excel file. This feature cannot be
achieved with the RPA platform from the nature of database trigger.

Second place in TIS where Report Processing tool can be run is in TRD
(test report database, mentioned in section 3.2). There is a button called
Export TRG excel and attachments connected to every report which executes
the Report Processing tool with the respective report upon clicking. The
report viewed in TRD with highlighted Export TRG excel and attachments
button in red color is shown in figure 4.4

29

4. Implementation....................................

Figure 4.4: Export TRG excel and attachments button in TIS

4.3.3 Zip Files And Send Email

Zip files And Send Email is a concrete implementation of finish task. It takes
the files generated by RPA tools (which were executed prior to the finish
task) from the current workspace, compresses them in a zip format and saves
them to the TIS permanent files storage. Then it sends an e-mail with the
link to the generated files to the robot owner (the user from the Robot table
of the Robot TIS database). The function to send an e-mail from TIS had
also previously been written in TIS backend.

30

.................................... 4.4. User interfaces

4.4 User interfaces

The user interface offers fast and convenient way to configure robots by users.
For this purpose, I created a simple user interface for creating robots which
writes the robot data into the Robot TIS database if the configuration is
considered valid. Implemented user interface for creating robots is shown in
figure 4.5.

Then there was also created a simple user interface for deleting robots.
This user interface shows the user all configured robots belonging to him from
the Robot TIS database and it provides the option to delete them. This user
interface is shown in figure 4.6.

Both user interfaces were implemented in javascript and HTML with
usage of Bootstrap.

4.4.1 User interface for creating robots

Layout

The first field to be filled by the user is the robot name. This is a required
field which is later used for robot identification. It does not have to be unique
for the user - it is left entirely for the user to choose. Then there is a specific
card for RPA tools, finish tasks and triggers. Each of these cards can contain
multiple RPA tools (resp. finish tasks, triggers). RPA tool and trigger have
three columns in their corresponding card. The first column is for input
arguments, the second one is for output arguments and the third one is for a
short description of the selected RPA tool (resp. finish task). Finish task has
only two columns - one for input arguments and second for the description
because finish tasks do not have output arguments. For every configured RPA
tool and finish task there is a checkbox that determines if the user prefers to
use his inserted input arguments even when they are provided by one of the
triggers. The screenshot of the user interface for creating robots is shown in
figure 4.5.

31

4. Implementation....................................

Figure 4.5: RPA platform user interface for creating robots

Implementation

These user interfaces were created in javascript and HTML. Javascript pro-
vides dynamic client-side communication and therefore allows the development
of complex and dynamic user interfaces and this is exactly the case for the
RPA platform.

I created a simple HTML template. Specific options for Robot config-
uration are dynamically loaded from a configuration file based on previously
selected options. For example when selecting a different RPA tool (resp.
finish task, trigger) the user interface will show different input argument

32

.................................... 4.4. User interfaces

options. Currently, there are no other RPA tools (resp. finish tasks, triggers)
but the user interface was created to be modular and is prepared and tested
to adapt the form to specific RPA tools (resp. finish tasks, triggers).

The configuration file is the only condition for the user interface to work
correctly. The configuration file is stored in TIS. When a developer develops
a new trigger, RPA tool or finish task he has to add it to the configuration
file so that it is shown correctly in the user interface. When a new RPA tool
(resp. finish task, trigger) is selected in the select field of the form, the page
will show corresponding input arguments, output arguments and description
to the newly selected RPA tool (resp. finish task, trigger). User can add
more RPA tools (resp. finish tasks, triggers) by clicking on the Add new RPA
Tool button (or corresponding buttons for finish tasks, triggers). The user
can then delete one of the selected RPA tools (resp. finish tasks, triggers) by
clicking on the little bin on the right side from the description.

HTML is very easy to change and thus the validity of the form has to be
verified. When the form is being processed (after submission) it has to be
reconstructed for these and more security reasons. Data is being written into
the database after overall validation of the form. Django framework has a
function for verifying these forms but it cannot be used in this case because
the form is dynamic and thus the fields of the form are not pre-defined.

4.4.2 User interface for deleting robots

The user interface for deleting robots shows the user all his configured robots
with their names and dates of creation. These robots can be sorted by their
name or the date of creation. Any robot can be deleted by clicking on the
bin located in the right column of the table. When clicking on this bin an
alert pops up to verify utter erasure. The screenshot of the user interface for
deleting robots is shown in figure 4.6.

Figure 4.6: RPA platform user interface for deleting robots

33

34

Chapter 5
Results

5.1 Report Processing results

For the purpose of the thesis I run three tests that together create a report
and this report is used in this thesis to show the functionality of the Report
Processing tool and the whole RPA platform. Production tests and reports
cannot be shown due to data confidentiality. The reports can be viewed in
EXAM and this created report viewed in EXAM is shown in the following
figures. Figure 5.1 shows the overall report result and the results of the tests.

Figure 5.1: Overall report result in EXAM

The next figures show the EXAM view of positive (5.2a), negative (5.2b)
and error (5.2c) test results. A positive test result means that everything in
the testing process went according to plan. A negative test result means that
the test failed and the result was not expected. An error test result means
something happened during the testrun that caused the test to crash.

35

5. Results

(a) : Positive test result in EXAM

(b) : Negative test result in EXAM

(c) : Error test result in EXAM

Figure 5.2: Each test of report shown in EXAM

EXAM contains more detailed information about each test.

The purpose of the robot using Report Processing tool is the automated
generation of an excel file containing all report relevant data from EXAM.
The result of the Report Processing robot (the excel file) is shown in the
following figures. Overall report result is shown in figure 5.3.

36

............................... 5.1. Report Processing results

Figure 5.3: Overall report result in excel

The title page is shown in figure 5.4 and it shows the overall test results in
a graph.

Figure 5.4: Excel file title page

The following figures show the same positive (5.5a), negative (5.5b) and
error (5.5c) test results as were shown in the beginning of this section in the
generated excel file.

37

5. Results

(a) : Positive test result in excel

(b) : Negative test result in excel

(c) : Error test result in excel

Figure 5.5: Each test of report shown in excel

Excel file also contains more detailed information about each test.

These tests did not contain attachments, so the Report Processing tool did
not generate them. Along with the generated excel files the Report Processing
tool also returns an HTML log file which shows the information about the
Report Processing program execution. This log file generation is a feature of
Robot Framework and is shown in figure 5.6. The log contains information
about every task and its result. The log file in the figure below shows that
every task had been executed successfully. Robot Framework also creates a
report from performed tasks. This report is similar to the Robot Framework
log file.

38

................................. 5.2. RPA platform results

Figure 5.6: Report Processing log file

5.2 RPA platform results

RPA platform was being tested for full two days before it was released to
production TIS and it works as expected. Various employees configured many
robots and when a new report appeared in the watched project configured by
the employee it started the robot execution. All the robots configured in the
testing process consisted of an arbitrary number of database triggers, Report
Processing RPA tools and Zip Files And Send Email finish tasks. Performed
tests are shown in table 5.1. The table shows that for various numbers of
triggers, RPA tools and finish tasks the robot execution was successful.

Number of
triggers

Number of
RPA tools

Number of
finish tasks Success

1 1 1 yes
1 1 2 yes
1 2 1 yes
2 1 1 yes
2 2 1 yes
2 2 2 yes
2 3 1 yes
4 1 1 yes
4 2 1 yes

Table 5.1: Performed tests before upload to production TIS

These tests were performed (as was said before) with only one type of
trigger, one type of RPA tool and one type of finish task. Robot configured
with more than one type of the same trigger may not make sense but it proved

39

5. Results
the modularity and universality of the whole RPA platform. It proves the
concept that the RPA platform can be used with multiple different triggers,
RPA tools and finish tasks which was one of the main goals to achieve.

5.2.1 Configured robot to demonstrate the process

To demonstrate the process I created a simple robot consisting of one database
trigger, one Report Processing RPA tool and Zip Files And Send Email finish
task. I configured the database trigger to watch one specific project. Then a
colleague copied the report into the watched project. After two runs of the
triggering script I received an e-mail with a link to the zipped folder with the
created report and the report also appeared in TIS permanent files storage
which is shown in figure 5.7. From TIS permanent files it can be downloaded
and the downloaded folder contains the generated excel file from the report
(described in section 5.1 in detail) and Robot Framework log and report.
There are no attachments since no attachments were belonging to the report.

Figure 5.7: Generated zipped folder in TIS permanent files storage

5.3 Comparison with the previous state in Porsche
Engineering Services

Report Processing saves an enourmous amount of time of the employees. I
compared the time needed to process reports before RPA automation tool
Report Processing and after to demonstrate that fact. The time needed
for processing necessary reports consisted of downloading XML files and
attachments from EXAM and then manual TRG execution. After RPA
automation it consists only of Report Processing execution. The comparison
of the times before and after RPA automation with the Report Processing
tool is shown in table 5.2. Each row of the table corresponds to one report. I
measured the time needed for downloading all necessary files from EXAM and
the time needed for TRG execution separately and the sum of these times (red
color column in the table) represents the overall time needed for processing
reports before RPA automation. The overall time for processing reports after
RPA automation consists of the execution time of Report Processing (green
color in the table).

40

.............5.3. Comparison with the previous state in Porsche Engineering Services

EXAM download
time [min]

TRG
time [min]

Overall time
before RPA [min]

Overall time
after RPA [min]

Saved
time [%]

7:22.14 2:23.15 9:45.29 4:12.71 56.82 %
0:16.35 0:50.83 1:07.18 0:13.27 80.25 %
1:03.30 0:51.92 1:55.22 0:45.75 60.30 %
2:22.53 1:40.94 4:03.47 1:18.89 67.60 %
1:59.62 1:30.21 3:29.83 1:50.86 47.17 %
3:08.78 1:03.97 4:12.75 0:34.46 86.37 %
22:35.47 4:21.97 26:57.44 2:33.64 90.50 %
23:11.08 4:51.36 28:02.44 2:42.85 90.32 %

Table 5.2: Measured time of report generation before and after RPA

Data in the table above are only indicative. All times presented in the
table depend on the TIS workload, EXAM workload, the speed of access to
databases and other factors. The time needed for processing reports before
usage of RPA automation additionally depends on the speed of the employee
clicking on the buttons needed to download XML files from EXAM and then
upload them to TRG. Furthermore, there may be a time lag between EXAM
XML files download and their upload to TRG.

The following subsections describe the advantages of using Report Process-
ing RPA automation.

5.3.1 Indicative lower estimate of time savings per week

The first advantage is that it saves time for employees. I found every report
generation via TIS in the TIS default database and there were 616 report
generations in 10-week interval (14.2.2022 - 22.4.2022). That means there is
an average of 61.6 report generations per week. The number is relatively
consistent every week. The average time of report generation is extremely
difficult to determine since these data are nowhere to be found, they are not
stable and they are changing from report to report.

To calculate overall time savings, only the time of downloading XML
files from EXAM is taken into consideration since this task eliminates the
employee’s ability to work and the employee cannot focus on other important
tasks until the downloading is finished. The time of TRG execution and Re-
port Processing execution does not block the employee because it is executed
in TIS and he can do other things while waiting for the report to generate.

The average time of downloading XML files from EXAM from measured
data in minutes is 7:44.91. This average time is only indicative since the report
sizes and the download times differ in wide range as was already mentioned.
There are some reports which were not measured because their download
time is in the order of hours and it would be a waste of time for employees to
measure these times. After consultation with employees 7 minutes seem like

41

5. Results
a reasonable lower estimate of average time spent with downloading XML
files from EXAM.

The lower estimate calculations of saved time per week is calculated as the
average count of report generations per week multiplied by the lower estimate
of average time spent with downloading XML files from EXAM. The lower
estimate calculations of saved time per week is:

7 hrs 11 min 12 sec.

5.3.2 Faster report delivery to customers

Another significant advantage is the ability to deliver reports to customers
faster than it was before RPA automation. The time difference displayed in
table 5.2 may not seem significant at first, however, for example when many
reports are finished during the weekend it may take hours to generate final
excel reports from all of them. Since employees have to focus on other tasks
as well, they are not able to generate all necessary reports for one customer
at once and the whole process may take several days. This leads to customers
dissatisfaction.

With the Report Processing RPA automation tool it is possible to process
all reports in parallel and it is faster in general. For example, before Report
Processing, some reports which were finished on weekend were being delivered
on Thursday and with the Report Processing tool it can be done on Monday
right after the weekend.

5.3.3 Overall employee’s comfort

Another advantage is that employees are satisfied with Report Processing
since it is a more user-friendly solution of generating reports. There is no
need to use EXAM when generating the reports which is very convenient
because EXAM sometimes stops responding and when it happens in the
middle of downloading XML files it is necessary to start the whole process
again which may be frustrating. Downloading XML files can take even longer
when performed from home office via VPN (virtual private net) because the
connection is a lot slower. For this reason, there is a computer in the office
used exclusively for generating reports by employees working from home
via remote connection. With Report Processing, there is no need for this
computer which is also a benefit. Furthermore, employees can focus on other
tasks while generating the report compared to the previous state without
RPA automation as was mentioned before. Employee’s satisfaction underlines
the importance of Report Processing.

42

............................. 5.4. User experience questionnaire

5.4 User experience questionnaire

For the evaluation of the whole RPA project I created a user experience
questionnaire. This questionnaire has been filled out by 10 employees from
Porsche Engineering Services and it provided a valuable both positive and
negative feedback for the whole RPA platform and Report Processing. In
addition, some employees also presented their opinions and ideas for possible
improvements.

The survey lasted from 11.4.2022 to 27.4.2022. Employees had enough time
to try out the RPA platform and the Report Processing tool. They could
have tried it out even before the user experience survey started since it was
put into production before the survey.

Important aspect to mention is that the user experience questionnaire
focuses mainly on what users can see - the graphical user interfaces. Imple-
mented graphical user interface was not a subject of thesis but still it had to
be made to prove the concept of the implemented platform’s functionality.

5.4.1 Positive feedback

Positive findings gathered from the questionnaire:. 9 out of 10 people were able to configure a robot,. every created robot worked according to user expectations,. 9 out of 10 people found the short documentation in user interface helpful,. 7 out of 10 people understood the functionality of checkbox present in
every RPA tool and finish task,. 8 out of 10 people found the Report Processing tool helpful; 2 remaining
people do not work with reports,. people rate the overall project highly - they gave it a grade 2.00 on scale
1-5 (perfect-awful) in average,. some users also shared their opinion in textfield and they wrote:. "Time saver, process simplifier tool. Thank you",. "UI(Colors used) and alignment of texts in Create robot page",. "nice option of configuring own robots", 1. "process acceleration",. "overall the tool works good".

1translation from Czech language

43

5. Results
5.4.2 Negative feedback

Negative findings gathered from the questionnaire:. only 4 out of 10 people understood the functionality of the triggers, RPA
Tools and Finish Tasks (mainly people who have not been informed
about the project before filling the questionnaire). people were not sufficiently satisfied with the user interface for creating
robots - they gave it a grade 2.30 on scale 1-5 (perfect-awful) in average. people were not sufficiently satisfied with the user interface for deleting
robots - they gave it a grade 2.30 on scale 1-5 (perfect-awful) in average. some users also shared their opinion in textfield and they wrote:. "I would suggest to change some words used to describe how to use

RPA Tools(RPA tools section) to make it very well undestandable.
+ once deleting configured robot, in the alert displayed that user
needs to confirm, I think was supposed to display created at ’date
when robot created’ but its showing undefined (maybe can be fixed.)",. "not sure what does the ’Use your argumnets from input’ mean", 2. "I think for the configuration, the interface could be more self-
explanatory, as well for the application, I did not really understand
how the robot works until I asked for further info.".

5.4.3 Suggested improvements

Some people also suggested some possible improvements:. "Copying the report to archive. Generate pdf Rename the report with SW
version and calendar week for example SW0551_b02__KW31 Frontend
should be redesign again",. "Would be mind blowing to have the option to create the RPA over the
context menu in EXAM, so user can create robot right after report was
checked by test engineer.",. "I would appreciate more specific illustrations what to insert to every
field with a more detailed description or an illustrative example.", 2

. "Time will show",. "I think just more information should be added so it would be more
understandable to use.".

2translation from Czech language

44

............................. 5.4. User experience questionnaire

5.4.4 Questionnaire contribution to the project

Named improvement suggestions, positive and negative feedback are very help-
ful and they can help with the improvement of the project a lot. Since this was
the platform’s first release and even the first release of such project in Porsche
Engineering Services, I consider the questionnaire outcome great and valuable.

The immense problem seems to be a misunderstanding of some features,
especially the specific functionality of implemented triggers, RPA tools and
finish tasks. Both user interfaces should be more intuitive since they both
achieved exactly the same rating 2.30 which is not satisfactory. The most
significant positive aspect of the whole project is that it is considered help-
ful amongst employees and it is working as expected, which was precisely
the main goal of the thesis in contrast with the user interfaces, which were not.

The importance of the user quentionnaire lies in one more aspect. The
programmer cannot know what is easily understandable for the users and
what is not. For example, I thought that everyone would understand the
functionality of each implemented trigger, RPA tool and finish task. It turned
out to be the opposite since only 4 out of 10 people understood that. Then I
anticipated that the functionality of checkbox for using custom arguments
would be misunderstood. Once again the users surprised me because the
majority of them interpreted the checkbox’s function accurately. The collected
feedback helps the programmers to focus on the aspects which represent real
problems for users.

45

46

Chapter 6
Conclusion

6.1 Summary of results

The main result of this thesis is the implemented RPA platform. This plat-
form provides a whole ecosystem which allows employees to create a software
robot that performs Robotic Process Automation tasks. The robot consists
of an arbitrary number of triggers (which start the robot execution), RPA
tools (which perform the specific task) and finish tasks (which do some post-
processing of the RPA tools results). The user makes his custom combination
of triggers, RPA tools and finish tasks during the robot configuration process.
After the configuration, if any of the robot’s configured triggers is triggered,
the robot is executed. This platform is currently in usage in Porsche Engi-
neering Services.

One trigger, one RPA tool and one finish task were implemented to prove
the concept of the platform’s functionality and to help employees with the
first RPA task - generating reports automatically after the report is ready to
be generated. This first automation tool turned out to save time and energy
of employees who were generating those reports manually before the RPA
integration.

6.2 Fulfillment of partial tasks of the thesis

The partial tasks of the thesis are:. analyze HiL testing process in selected project and its possibilities for
process automation - elaborated in section 3.2,. design platform and whole ecosystem for robots that interconnect already
automated tools within new ecosystem - elaborated in section 3.3,. integrate this solution into existing HiL testing process - elaborated in
chapter 4,. summarize the activity and usage of the robots compared with previous
state - elaborated in chapter 5.

47

6. Conclusion......................................
I consider all these partial tasks fulfilled and, therefore, the thesis in its

entirety.

6.3 Future work

There are many suggestions for future improvements to the designed RPA
platform. The platform is meant to be extended to contain more triggers, RPA
tools and finish tasks to be more general and to provide more functionality.
Therefore, future work can be implementing additional triggers, RPA tools,
and finish tasks and adding them correctly to the platform (the platform has
documentation with a guide to add new RPA tools and finish tasks). The
implemented user interface for creating robots (which was not a subject of
the thesis) could be improved to be more user-friendly and to have a more
appealing design. Another possible future improvement can be implementing
a feature to edit already configured robots and a feature to share robots with
more users (create groups for sharing robots).

48

Bibliography

[1] TAULLI, Tom. The Robotic Process Automation Handbook: A Guide to
Implementing RPA Systems. 1. Monrovia, CA, USA: Apress, 2020. ISBN
978-1-4842-5729-6.

[2] AXELROD, Arnon. Complete Guide to Test Automation: Techniques,
Practices, and Patterns for Building and Maintaining Effective Software
Projects. 1. Matan, Israel: Apress, 2018. ISBN 1484238311.

[3] BOOT, R., J. RICHERT, H. SCHUTTE and A. RUKGAUER. Auto-
mated test of ECUs in a hardware-in-the-loop simulation environment.
Proceedings of the 1999 IEEE International Symposium on Computer
Aided Control System Design (Cat. No.99TH8404). IEEE, 1999, 587-594.
ISBN 0-7803-5500-8. Available at: doi:10.1109/CACSD.1999.808713

[4] Design and implementation of HIL simulators for powertrain control
system software development. Proceedings of the 1999 American Control
Conference (Cat. No. 99CH36251). IEEE, 1999, 1999, 709-713 vol.1. ISBN
0-7803-4990-3. Available at: doi:10.1109/ACC.1999.782919

[5] JOSHI, A., Hardware-in-the-Loop (HIL) Implementation and Validation of
SAE Level 2 Autonomous Vehicle with Subsystem Fault Tolerant Fallback
Performance for Takeover Scenarios, SAE Technical Paper 2017-01-1994,
2017, Available at: doi:10.4271/2017-01-1994

[6] SCALEXIO [online]. dSPACE [cit. 2022-05-02]. Available at:
https://www.dspace.com/en/inc/home/products/hw/simulator_hardware/scalexio.cfm

[7] MicroNova - Sofware and Systems. MicroNova [online]. [cit. 2022-02-18].
Available at: https://www.micronova.de/en/home.html

[8] VEN, Kris, Jan VERELST and Herwig MANNAERT. Should You Adopt
Open Source Software?. IEEE Software. 2008, 25(3), 54-59. ISSN 0740-
7459. Available at: doi:10.1109/MS.2008.73

[9] LESHOB, Abderrahmane, Audrey BOURGOUIN and Laurent RENARD.
Towards a Process Analysis Approach to Adopt Robotic Process Automa-
tion. 2018 IEEE 15th International Conference on e-Business Engineering

49

6. Conclusion......................................
(ICEBE). IEEE, 2018, 2018, 46-53. ISBN 978-1-5386-7992-0. Available at:
doi:10.1109/ICEBE.2018.00018

[10] Django: The web framework for perfectionists with
deadlines [online]. 2022 [cit. 2022-03-04]. Available at:
https://docs.djangoproject.com/en/4.0/

[11] MariaDB. MariaDB [online]. Tekniikantie 12, 02150 Espoo, Finland,
2022 [cit. 2022-04-25]. Available at: https://mariadb.com/

[12] SHVETS, Alexander. Refactoring.Guru. Refactoring.Guru [online].
Khmelnitske shosse 19 / 27, Kamianets-Podilskyi, Ukraine, 32305, 2022
[cit. 2022-03-10]. Available at: https://refactoring.guru/

[13] FREEMAN, Eric, Elisabeth ROBSON, Kathy SIERRA and Bert BATES.
Head First design patterns. Beijing: O’Reilly, 2014. ISBN 978-0596007126.

[14] BISHT, Sumit. Robot Framework Test Automation: Create test suites
and automated acceptance tests from scratch. 1. Birmingham, UK: Packt
Publishing, 2013. ISBN 978-1-78328-303-3.

[15] GAMI, Manishkumar and JETLY, Parth and MEHTA, Nidhi and PATIL,
Sunita, Robotic Process Automation – Future of Business Organizations:
A Review (April 8, 2019). 2nd International Conference on Advances
in Science & Technology (ICAST) 2019 on 8th, 9th April 2019 by K
J Somaiya Institute of Engineering & Information Technology, Mum-
bai, India, Available at: SSRN: https://ssrn.com/abstract=3370211 or
http://dx.doi.org/10.2139/ssrn.3370211

[16] ISSAC, Ruchi, Riya MUNI and Kenali DESAI. Delineated Analysis
of Robotic Process Automation Tools. 2018 Second International Con-
ference on Advances in Electronics, Computers and Communications
(ICAECC). IEEE, 2018, 2018, 1-5. ISBN 978-1-5386-3785-2. Available at:
doi:10.1109/ICAECC.2018.8479511

[17] SIVAJI, Ashok, Rosnisa Abdul RAZAK, Nur Faezah MOHAMAD,
et al. Software Testing Automation: A Comparative Study on Pro-
ductivity Rate of Open Source Automated Software Testing Tools For
Smart Manufacturing. 2020 IEEE Conference on Open Systems (ICOS).
IEEE, 2020, 2020-11-17, 7-12. ISBN 978-1-7281-9020-4. Available at:
doi:10.1109/ICOS50156.2020.9293650

[18] Automation Platform - Leading RPA company: UiPath [online]. 2022
[cit. 2022-01-24]. Available at: https://www.uipath.com/

[19] Robot Framework [online]. Helsinki, Finland, 2022 [cit. 2022-02-12].
Available at: https://robotframework.org/

50

Appendix A
Content of enclosed codes

Enclosed codes are divided into 3 folders:. database_trigger_script - this folder contains only database trigger
script source code,. django_application_files - this folder contains user interfaces im-
plementation shown only for completion (since it was not the main
objective of the thesis),. robotic_process_automation_backend - this folder contains source
codes for the platform’s backend implementation.

All enclosed codes cannot be executed without TIS. TIS source codes are
confidential and cannot be enclosed. Some codes implemented as a part
of this thesis were not enclosed due to data confidentiality as well.

51

	Introduction
	The idea and motivation
	Main objective and partial tasks

	State of the art - Hardware-in-the-Loop and Robotic Process Automation
	Hardware-in-the-Loop introduction
	Robotic Process Automation introduction
	A concern regarding Robotic Process Automation

	Open source softwares for RPA
	Robot Framework
	Robocorp
	UI Vision

	RPA vendors
	Automation Anywhere
	Blue Prism
	UI Path

	Analysis of current state and automation design
	TIS (Tools Integration System)
	Django databases
	TIS internal storage

	Selected project
	General project workflow
	HCP1 Powertrain project workflow

	My suggested design
	Choosing the most suitable development software
	RPA platform design
	Robot TIS database

	Implementation
	Robot TIS database implementation
	RPA platform implemenation
	Abstract classes
	Trigger class
	Robot class
	RpaTool class
	FinishTask class

	Proof of concept implementation
	Database trigger
	Report Processing tool
	Zip Files And Send Email

	User interfaces
	User interface for creating robots
	User interface for deleting robots

	Results
	Report Processing results
	RPA platform results
	Configured robot to demonstrate the process

	Comparison with the previous state in Porsche Engineering Services
	Indicative lower estimate of time savings per week
	Faster report delivery to customers
	Overall employee's comfort

	User experience questionnaire
	Positive feedback
	Negative feedback
	Suggested improvements
	Questionnaire contribution to the project

	Conclusion
	Summary of results
	Fulfillment of partial tasks of the thesis
	Future work

	Bibliography
	Content of enclosed codes

