
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Quantification and visualization of optimum
residential area clusters

Ester Atlasová

Supervisor: RNDr. Ondřej Žára
Field of study: Software
Study programme: Open Informatics
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483621Osobní číslo:EsterJméno:AtlasováPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Kvantifikace a vizualizace optimalních clusterů residenčních oblastí

Název bakalářské práce anglicky:

Quantification and visualization of optimum residential area clusters

Pokyny pro vypracování:
Seznamte se s otevřenými daty z následujících zdrojů:
- uzly MHD Praha z GTFS dat ROPID
- soupis rezidenčních oblastí z RÚIAN a OpenStreetMap
- hustota zalidnění jednotlivých rezidenčních budov (ČSÚ)
Nad těmito daty naimplementujte model, který bude vyhledávat shluky (clustery) rezidenčních oblastí na základě
následujících vstupních a omezujících podmínek:
a) počet clusterů
b) minimum pěší vzdálenosti k nejbližší zastávce MHD
c) minimální dojezdové parametry (čas/vzdálenost) k nejbližší zastávce (automobilem)
Popište, jaké existují možnosti pro hledání trasy nutné v bodě c).
Pro implementaci vycházejte ze skriptů firmy Mileus (https://github.com/mileus/analytics-scripts), konkrétně:
- compute_nstop_stats, compute_stats_for_corridor, compute_cluster_scores, select_best_cluster_for_stop
- prepare_routes_and_stops
- compute_time_matrix_for_car, compute_distance_matrix_walk
Nad tímto modelem naimplementujte interaktivní webovou aplikaci, která bude umožňovat:
1) vstup zadaných parametrů pro model,
2) vizualizaci nalezených optimálních clusterů nad mapou,
3) zobrazení hodnot (získaných i dopočítaných) pro clustery
Více než na komfort uživatelského rozhraní aplikace se soustřeďte na korektnost a obecnost rozhraní mezi klientskou
částí (web) a samotným modelem (server).

Seznam doporučené literatury:
https://opendata.praha.eu/
https://github.com/mileus/analytics-scripts
https://www.geeksforgeeks.org/working-with-geospatial-data-in-python/
https://developer.mozilla.org/en-US/docs/Web

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

Jméno a pracoviště vedoucí(ho) bakalářské práce:

RNDr. Ondřej Žára Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 02.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryRNDr. Ondřej Žára

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank RNDr. Ondřej Žára
for his valuable advice and help through-
out the process of writing this thesis. Also,
I would like to thank my family, partner
and friends for their support during my
studies.

Declaration

I hereby declare that the thesis submitted
is my own unaided work. All direct or
indirect sources used are acknowledged as
references.

In Prague, 20. May 2022

v

Abstract

This bachelor thesis aims to create a
model for searching optimal residential
area clusters based on user-given con-
straining parameters and implement an
interactive web application that will take
input from the user, visualize the optimal
clusters on a map and visualize provided
and computed values. The main focus
of this work is on the communication be-
tween the web client and the model itself.
Emphasis was placed on how the data
will be saved and passed between the two
entities and how they will be formatted.

Keywords: clustering, web application,
geospatial data, GeoJSON, React, Flask

Supervisor: RNDr. Ondřej Žára

Abstrakt

Cílem této bakalářské práce je vytvořit
model pro vyhledávání optimálních shluků
rezidenčních oblastí podle zadaných ome-
zujících podmínek a naimplementovat in-
teraktivní webovou aplikaci, která dokáže
získat vstup od uživatele a vizualizovat
optimální shluky na mapě a vizualizovat
zadané a vypočítané hodnoty. Práce se
zaměřuje na komunikaci mezi webovým
klientem a samotným modelem. Důraz je
kladen na to, jakým způsobem jsou data
ukládaná a posílána mezi oběmi stranami
a na to, jak budou formátovaná.

Klíčová slova: shlukování, webová
aplikace, geoprostorová data, GeoJSON,
React, Flask

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 2

2 Analysis 5

2.1 Residential area analysis 5

2.2 Open data . 6

2.2.1 ROPID . 6

2.2.2 RÚIAN . 7

2.2.3 Open Street Map 8

2.2.4 ČSÚ . 9

2.3 Route planning types 9

2.4 Requirements 10

2.4.1 Business requirements 10

2.4.2 Qualitative requirements 11

3 Design 13

3.1 System components 13

3.2 Functional requirements 14

3.3 REST API 15

3.4 User interface design 16

3.4.1 Job overview page 16

3.4.2 Pages for creating new job . . 16

3.4.3 Visualization pages 19

3.4.4 High-level visualization page . 19

3.4.5 Detailed visualization page . . 20

3.5 Communication between the
application server and the client
application . 21

3.6 Communication between the
application server and the Mileus
server . 21

3.7 Data design 22

4 Implementation 25

4.1 Used technology and libraries . . 25

4.1.1 React.js 25

4.1.2 Leaflet . 26

4.1.3 Recharts 27

4.1.4 Material UI 27

4.1.5 Webpack 27

4.1.6 CORS . 27

4.1.7 Geojson 27

4.1.8 Flask . 28

4.1.9 Python libraries 28

4.1.10 MongoDB 29

4.2 User Interface implementation . . 29

4.2.1 Job overview page 29

4.2.2 City Picker page 29

4.2.3 Public Transport Routes Picker
Page . 31

vii

4.2.4 City Center Picker page 31

4.2.5 Numerical Parameters Form
Page . 32

4.2.6 High-level Visualization page 33

4.2.7 Detailed Visualization page . 35

4.3 Server implementation 37

4.3.1 GET /api/cities 38

4.3.2 GET
/api/city-model/{selectedCity} 38

4.3.3 GET /api/job-information 38

4.3.4 POST /api/job 38

4.3.5 GET and
POST/api/job/{jobId} 39

5 Testing 41

6 Conclusion 43

6.1 Future development 43

A Bibliography 45

B Testing scenarios 49

viii

Figures

3.1 Diagram showing components of
the system, designed using icons from
Flaticon.com 14

3.2 Job overview page 16

3.3 City picker page 17

3.4 Public transport routes picker page
design, designed using map tiles from
Mapbox and OpenStreetMap 18

3.5 City center picker page design,
designed using map tiles from
Mapbox and OpenStreetMap 18

3.6 Numerical parameters form page
design, designed using map tiles from
Mapbox and OpenStreetMap 19

3.7 High-level visualization page
design, designed using map tiles from
Mapbox and OpenStreetMap 20

3.8 Detailed visualization page design,
designed using map tiles from
Mapbox and OpenStreetMap 20

4.1 Job overview page implementation 30

4.2 Job details dialog implementation 30

4.3 City picker page implementation 30

4.4 City picker page implementation
with alert message 31

4.5 City picker page implementation
with chosen city 31

4.6 Public transport route picker page
implementation, without a selected
route . 32

4.7 Public transport route picker page
implementation, with all metro
routes selected 32

4.8 City center picker page
implementation with polygon being
drawn by the user 33

4.9 Numerical parameters form page
implementation, with an input left
unfilled . 33

4.10 Numerical parameters form page
implementation, with an input filled
in the wrong format 34

4.11 Numerical parameters form page
implementation, with all input filled
correctly . 34

4.12 Start job dialog implementation 34

4.13 High-level visualization page . . 35

4.14 High-level visualization page,
mouse hovered over cluster in map 35

4.15 High-level visualization page,
mouse hovered over cluster in
reached residents tab 36

4.16 Detailed visualization page 36

4.17 Detailed visualization page,
residential buildings colored
according to the distance from the
closes public transport stop 37

4.18 Detailed visualization page,
residential buildings colored yellow if
included, grey in excluded 37

4.19 Detailed visualization page, cursor
hovered over the 1.2 - 1.6km area
showing only the residential buildings
from this group on the map 38

ix

Chapter 1

Introduction

Public transportation has always played an essential role in the way cities were
formed and expanded. In 1998 an Italian physicist named Cesare Marchetti
defined what is now called the Marchetti Constant. The Marchetti Constant
represents the maximum time people are willing to spend commuting to work,
which is thirty minutes.[36]

In the beginning, the cities were tiny, usually with a radius of around 1.5
kilometers, and expanded to a little less than a 5 kilometer radius. This is
because the only way of transportation was on foot or alternatively horse-
driven omnibuses, although that did not make a big difference in terms of
speed. People that lived within the city borders were typically in co-living
tenement apartments that could fit up to eight people in one room. On top
of that, living in the center meant being exposed to various often-spread
diseases due to poor hygiene conditions. As we can see, the idea of escaping
into the countryside is far from new.[36]

Things changed with the invention of the steam locomotive. The first
public steam railway connecting two cities was the Liverpool And Manchester
Railroad, built in 1830 by George Stephenson. Not long after, cities in Europe
and the United States started building such steam railways. Steam trains
could carry large numbers of passengers at the speed of 16 kilometers per
hour. Because of their slow acceleration, they could not stop very often,
which led to building small villages around the railway stations outside of
the city. These were called railroad suburbs.[36, 41]

Steam railways did not solve the problem of transportation inside the city
center. Something more efficient than horse-lead omnibuses was needed. At
the turn of the 19th and 20th century, electric streetcars started replacing
the horse-powered ones. An alternative was the safety bicycle, available since
the 1870s. London built the first underground line in 1863.[40, 42, 36]

1

1. Introduction
Nowadays, we cannot imagine a world without cars, many households

own at least one. But they were not widely affordable until Ford’s Model-
T introduction in 1908. The car enabled people to be independent of the
established railroad suburbs. With the invention of cars came taxi services.[44]

As we can see, nowadays there is a variety of options for getting oneself
from point A to point B. There are advantages and disadvantages to each
mode of transportation.

The public transport services such as trains, buses, trams, etc., are cheaper,
and passengers do not have to think about parking. These services tend to
be very efficient in the city centers, however outside the center, they become
more sparse. Therefore it can take longer to commute to the center by public
transport compared to using one’s car.

1.1 Motivation

The assignment of this thesis was inspired by a company named Mileus. Their
goal is combining public transportation in the city center with taxi services
in the outskirts. The main motivation is that a lot of people drive cars to the
city not because of the ride in the morning, when public transport is very
efficient, but for a more comfortable ride home in the evening.

Mileus is creating a service which plans a trip for the customer, in which
they take a public transport vehicle from the center and somewhere along
the way they are guaranteed a transfer to a taxi along the way, which will
take them to the doorway of their home.[17]

1.2 Goals

For such intermodal service to be economically effective, it needs to start
operating in geographically bound residential clusters rather than in the whole
city at once. And therefore Mileus needs to analyze residential areas in order to
find out where is the largest business potential and also where is the potential
to increase transport serviceability by extending public transportation with
on-demand services.

The optimal area for this service is a cluster of residential areas, that are
not too close for walking from a public transport stop and not too far for
driving from the stop. People living in the proximity of a transport station

2

.. 1.2. Goals

will not use this service, because they can simply walk to their doorstep and
the service becomes too expensive for remote destinations.

3

4

Chapter 2

Analysis

In this chapter we will define the input and output for analysing residential
areas and introduce the open-source data used for the algorithm, available
route planning types, and the business and quantitative requirements for the
final application.

2.1 Residential area analysis

The algorithm for analysing residential areas was implemented by Mileus and
therefore its inner workings are not a part of this thesis.

The clustering algorithm takes these parameters as input:

.Analyzed city - defines the geography that will be analyzed.Analyzed public transport routes - defines a subset of public trans-
portation network routes that operate within the analyzed city.City center border polygon (optional) - Defines the area excluded
from the analysis, since network is dense in the urban center, intermodal
service does not make much sense there..Numerical parameters.Minimal walking distance from a public transportation stop

which is walkable and therefore residential areas located within such
distance will be excluded from analysis.Maximum driving distance from a public transport stop which
is yet reasonable for residents to pay the premium for taxi service
on frequent basis

5

2. Analysis
.Maximum driving time from public transportation stop, this is

for the same reason as previous parameters.Number of analyzed consecutive public transport stops in
the route corridor, different for each route type

The result of the algorithm is an array cluster sorted by the estimated number
of included residents. Each cluster includes:

.Geography - the convex hull of the included residential buildings. Included residential buildings - coordinates of all buildings in the
cluster border that satisfies the constraints. Excluded residential buildings - coordinates of all buildings contained
with the residential cluster that did not satisfy the constraints.Route id - identification of the route that is feeding the taxi service for
the residential cluster.Transit stops - the stops that are feeding the taxi service for the
residential cluster.Demographic data - demographic data about the population of the
residential cluster.Metrics - reached area, reached number of residents

2.2 Open data

Part of the assignment was to study the open-source data used for the analysis.
The data comes from four sources: ROPID, RÚIAN, Open Street Map, and
ČSÚ. ROPID provides public transportation data and RUIAN, Open Street
Map and ČSÚ provide data for the residentail areas and individual buildings.
In this section, we will introduce these data sources and formats.

2.2.1 ROPID

ROPID is the primary organizer for public transportation in Prague and its
surroundings. They provide open data, including regularly-updated timeta-
bles, real-time coordinates of transportation vehicles and statistical data.
The offered datasets are mainly for data analysts and software application
developers. [18, 21]

6

......................................2.2. Open data

The data is in the GTFS (or General Transit Feed Specification) format,
created by the company Google and used for its Transit trip planner. GTFS
lets public transport organizers publish data in a widely-used format for
software applications. The basic GTFS format, also known as GTFS static,
includes information regarding the timetables and geography. Many applica-
tions also use the real-time extension, consisting of arrival predictions, current
vehicle positions, and service advisories. GTFS data is a collection of text
files collected into a zip file. These files have information about a specific
aspect of public transportation. [32, 33, 35]

Files that are in the GTFS dataset for Prague are the following: [37]

. agency.txt - includes all the public transport companies operating in
Prague and its surroundings. stops.txt - consists of all the stops that are currently in use and their
geological location. stop_times.txt - contains the time of arrival and departure of each vehicle
at individual stops in its route. routes.txt - currently operating routes. trips.txt - all the trips planned on each currently operating route. calendar.txt - an array of ones and zeros for each service_id, the ser-
vice_id defines a group of trips and is referenced in trips.txt1

2.2.2 RÚIAN

RÚIAN is the territorial identification, address, and property registry of the
Czech Republic. It is a public list that does not include personal information
and is unique source of addresses not only for the public administration.[15]

RÚIAN provides this list in multiple ways and formats:

. VDP - an online application enabling users to look into and extract data
from the RÚIAN registry.GML2 format - a file format for expressing geographical features. CSV format3 - a data file, where each record is a separate row, and each
record may have one or multiple fields which are separated by a comma

1The array defines whether the service group is operating on given day of the week or
not, zero means the group is not operating, one means the group is operating

2Geography Markup Language https://www.ogc.org/standards/gml
3Comma-Separated Values https://datatracker.ietf.org/doc/html/rfc4180

7

https://www.ogc.org/standards/gml
https://datatracker.ietf.org/doc/html/rfc4180

2. Analysis
Each record consists of:

.municipality.municipal district - if the municipality is divided into these districts. street. house number. postal code. x-coordinate in the S-JTSK4 system. y-coordinate in the S-JTSK system. date from when this record is valid

2.2.3 Open Street Map

Open street map is an open-source map. Anyone can edit the map and
access the underlying map data. Data can be exported directly from the map.
However, this has a limit to the size of the exported area.[1]

For more extensive datasets, there are plenty of options to choose from:[14]

. BBBike - exports user-chosen bounding boxes. Geofabrik - exports specific administrative units. Planet OSM - can export the entire OSM dataset. Overpass API - convenient for querying the OSM dataset

OSM data is exported into an XML5 file, an image, or HTML code. We
will focus on the XML file format.[8]

XML is a file format based on tags used to store, search and share data.
The tags can be nested and create a tree-like structure. XML does not define
specific tags. The Open Street Map XML file has three tags at the top of
the tree structure called elements. These tags are node, defining a point in
space, way, defining linear features and area boundaries, and relation used to
explain how other elements work together.[6]

4Coordinate system for the Czech Republic and Slovakia https://epsg.io/2065
5Extensible Markup Language

8

https://epsg.io/2065

................................. 2.3. Route planning types

Buildings in OSM are defined as polygons using the way tag, this tag has
the polygon nodes as its children and information about the building, like
the type of building or number of levels and flats. This information is in a
tag consisting of a key and value. To filter the buildings that are residential,
the building key must have one of the following values: apartments, detached,
terrace, semi_detached house, hut, ger, houseboat, static_caravan or house.

2.2.4 ČSÚ

ČSU is the primary statistical office in the Czech Republic. It collects, ana-
lyzes, and publishes statistical information for the state and local authorities
and the public and foreign institutions. The ČSÚ organization compiles
information about the demographical and economic growth in the Czech
Republic, processes the results of local government council and national
government elections and European Parliament elections, and organizes the
Czech Republic Census every ten years.[46]

The important dataset for the clustering algorithm is the list of cadastral
municipalities in Prague and their corresponding population density. The
most recent one published is from the year 2014.[45] For each cadastral area
there are two items, the population number and the area size in hectares.

2.3 Route planning types

To decide, whether a building is close enough to satisfy the two numerical
parameters, maximal driving distance and maximal driving time, a route
planning service is necessary. This section describes available open-source
route planning services.

.Open Source Routing Machine is a router created to use data
from the Open Street Map project. It uses a technique called con-
traction hierarchies to find the shortest path, which is used mostly in
car-navigation systems, web-based route planners, traffic simulation, and
logistics optimization.[19, 3].Open Route Service provides multiple different service, all based on
the geographic data from Open Street Map. This service can compute
ono-to-one, one-to-many and many-to-many routes for supported modes
of transport. The Mileus Residential area analysis uses this service.[20]

9

2. Analysis
.GraphHopperis an efficient routing library and sever written in Java.

It can use different algorithms such as Dijkstra, A*, or Contraction
Hierarchies.[13].Valhalla is a routing engine used in the Mapzen and Mapbox services
and SDKs.[24]

2.4 Requirements

In this section, you will find business, functional and non-functional require-
ments. These requirements were defined based on the needs of Mileus. Some
were also added by the author.

2.4.1 Business requirements

Business requirements define what behavior is expected from the application
and why it is expected.

. BR01 - As a user, I need to be able to select the analyzed city to receive
its city model (coordinates, public transport network) and select which
city will be analyzed. BR02 - As a user, I need to be able to choose from the available routes
in the city’s public transportation network, to select the ones that will
be analyzed. BR03 - As a user, I need to be able to define the city center border, to
define which public transport stops will be excluded from the analysis. BR04 - As a user, I need to be able to enter the numerical parameters
to set constraints for the residential buildings. BR05 - As a user, I need to be able to assign the name of the created
analysis to identify it between multiple analysis’ tasks quickly. BR06 - As a user, I need to be able to pick which analysis results I want
to visualize. BR07 - As a user, I need to be able to choose which particular cluster
data I want to which particular cluster’s data and metrics I want to
visualize

10

.................................... 2.4. Requirements

2.4.2 Qualitative requirements

Qualitative requirements are based on the qualities and characteristics that
are desired from the system.

.QR01 - client application will be interactive. QR02 - client application will be functional in multiple modern browsers.QR03 - client application will be optimized for speed.QR04 - the system will be scalable for other cities

11

12

Chapter 3

Design

The design of the system was created based on the business and qualitative
requirements. This chapter will introduce all the components of the system,
set the functional requirements, present the data design, the REST API and
client application and look at how data is sent between components.

3.1 System components

The whole system includes five components:

.Client application - collects parameters from user and visualizes the
results.Application server (REST API) - includes classes and functions for
serving data to the client application, receiving requests from the client
application with data for the clustering analysis, and communicates with
the Mileus server to run the analysis.Mileus server (REST API) - includes classes and functions for running
the analysis and saving the results into the Mongo Database.Mongo Database - includes a list of available cities for analysis, city
models (coordinates, public transport routes), information about all
the previously ran analysis tasks (name, start time, end time, status,
numerical parameters) and the analysis results.PostgreSQL Database - includes the static city data used for the
analysis, used only by the Mileus server

13

3. Design..
The following diagram shows how data is send between the components.

The PostgreSQL database is not shown, as it is only used by the Mileus server
and therefore not part of this thesis.

Figure 3.1: Diagram showing components of the system, designed using icons
from Flaticon.com

3.2 Functional requirements

Functional requirements define what is expected from the implementation and
constrain the scope of the system. They are based on business requirements
and qualitative requirements.

. FR01 - The application server needs to send analysis input data to the
Mileus server. FR02 - The application server needs to provide analysis’ results data to
the client application. FR03 - application server needs to be connected to a database. FR04 - The application server needs to serve data for creating a new
analysis task to the client application. FR05 - The application server needs to serve data about previously
created analysis tasks to the client application. FR07 - The application server needs to receive analysis input data from
the client application

14

......................................3.3. REST API

. FR08 - The client application needs to provide a user interface for
choosing the analysis input parameters. FR09 - The client application needs to provide a user interface showing
a list of information about previously created analysis tasks. FR10 - The client application needs to provide a user interface for
visualizing the analysis results

3.3 REST API

The client application communicates with the application server through a
REST API.

An API1 is a set of definitions and protocols for building and integrating
application software.[27] An API serves as a mediator for requesting and
providing information. It defines what data is required from the information
consumer and what data is required from the information provider. It is a
great tool for organisations or other service providers to share information,
while maintaining control over security and authentication. [27]

REST2 is a set of constraints that define and architectural style. Data and
functionality are called resources and are connected to one United Resource
Identifier (also URI). Resource are accessed and modified in a consistent ap-
proach, most widely used are HTTP methods (POST, GET, PUT, DELETE)
which roughly correspond to CRUD operations (CREATE, READ, UPDATE,
DELETE).[34]

Our application uses REST API for creating and reading resources. The
resources of our application and their corresponding URIs are:

.City list - available cities for analysis. /api/city-list.City model - the center coordinates and routes of a city. /api/city-model. Job information - list with id, name, start and end time and status of
each analysis job. /api/job-information

1Application Programming Interface
2Representational State Transfer

15

3. Design..
. Job result - resulting clusters of clustering analysis. /api/job

3.4 User interface design

The user interface was designed into three parts, the job overview page, pages
for creating new job, and pages with job results visualization.

3.4.1 Job overview page

The job overview page serves as the application’s main page and gives the
user an option to look at the results of jobs that were already created or
create a new job. The already created jobs are shown in a table, and to go to
the job creation pages, the page includes a new job button.

Figure 3.2: Job overview page

3.4.2 Pages for creating new job

The clustering analysis input data (see section 2.1) is divided into four parts.
Based of these parts four pages were designed. The pages are in the order
in which they appear when the user is choosing parameters for the new job.
Each page has a back button taking the user to the previous page. The first

16

................................. 3.4. User interface design

three pages have a next button taking it to the following page and the fourth
page has a start job to start the job.

WireframePro was used to create the page designs3

City picker

As we can see in figure 3.3 this page includes only a drop down menu with
the available cities. The user must chose a city to go to the following page.

Figure 3.3: City picker page

Public transport routes picker

As we can see in figure 3.4 this page lets the user pick one or more routes
from accordions on the left. Each chosen route is visualized on the map. The
user must choose at least one route to go to the following page.

City center picker

As we can see in figure 3.5 this page contains a map with the routes chosen
in the previous page. This page lets the user draw a polygon representing
the city center. Since this parameter is optional, the user can go to the next
page without drawing the polygon.

3https://www.mockflow.com/apps/wireframepro/

17

3. Design..

Figure 3.4: Public transport routes picker page design, designed using map tiles
from Mapbox and OpenStreetMap

Figure 3.5: City center picker page design, designed using map tiles from Mapbox
and OpenStreetMap

Numerical parameters form

The last page in this section contains a form for the numerical parameters for
the analysis and job name and number of histograms, as seen in figure 3.6.
All the inputs except job name must be filled in with numerical values and
the job name input is not constrained. All the inputs must be filled in to let

18

................................. 3.4. User interface design

the user start the job. When the user clicks the start job button, a modal is
shown asking them if they want to proceed to start the job. After proceeding
the user is taken to the job overview page where the newly created job is
already in the table with the status RUNNING.

Figure 3.6: Numerical parameters form page design, designed using map tiles
from Mapbox and OpenStreetMap

3.4.3 Visualization pages

We designed two pages for the results’ visualization. The first is for visualizing
all the clusters, and the second page shows more details about a particu-
lar cluster. Further on, the first page will be referred to as the high-level
visualization page and the second as the detailed visualization page.

3.4.4 High-level visualization page

This page shows a map with all the clusters and two buttons, back and details.
The back button takes the user to the main page. The details button opens
a tab component showing the numerical parameters for the analysis and the
calculated reached residents and area of each cluster. The map also lets the
user choose the number of best clusters shown with an input control. The
page design is shown in figure 3.7

19

3. Design..

Figure 3.7: High-level visualization page design, designed using map tiles from
Mapbox and OpenStreetMap

3.4.5 Detailed visualization page

The detailed visualization page is similar to the high-level visualization page.
It also shows a map and a back and details button. The map shows the
visualization of one cluster, the back button takes the user to the high-level
visualization page and the details button opens a tab component with graphs
giving the user more information about this cluster. The page design is shown
in figure 3.8

Figure 3.8: Detailed visualization page design, designed using map tiles from
Mapbox and OpenStreetMap

20

.......... 3.5. Communication between the application server and the client application

3.5 Communication between the application server
and the client application

In this section describes how the client application communicates with the
application server through the REST API.

. GET /api/job-information called by the main page to receive informa-
tion about all the jobs that have been created. GET /api/cities called by the city picker page to receive a list of
available cities. GET /api/city-model/{selectedCity} called by the public transporta-
tion page to receive static data of a particular city identified by the
selectedCity parameter. POST /api/job called by the numerical parameters form page to create
a new analysis job. GET /api/job/{jobId} called by the high level visualization page to
receive the results of a particular analysis job identified by the jobId
parameter

3.6 Communication between the application server
and the Mileus server

There were more proposals for designing the process of creating a new analysis
job and saving the results. Since the calculations can last longer than a couple
of minutes, creating a new job and saving the results were separated into two
requests. First, application server sends a request for creating a new job to
the Mileus server. The Mileus server then replies with the job id. The results
data size could potentially be very big. To avoid sending large files through
a request, the Mileus server saves them to the Mongo database. After that,
the Mileus server sends a request to application server with the job id. This
request serves as a notification for the application server that the job has
finished. The application server replies to this request with the job id. As a
result, both servers need to be connected to the same Mongo database, as we
can see in figure 3.1. The interface for the Mileus server is also a REST API.
The URIs and their corresponding HTTP methods are the following:

. POST /v0/clusters/new-job (in the Mileus server REST API) creating
a new job

21

3. Design..
. POST /api/job/{job-id} (in the application REST API) notifying the

application server about a completion of a job, the job is identified by
the job-id parameter

3.7 Data design

The data used and created in this application is in the JSON format and
saved into a database. JSON is a standard text-based format for representing
structured data based on JavaScript object syntax.[26] There are 4 resources,
available cities, city models, job information and jobs. This section introduces
the structure of this data.

Available cities

. an array of strings, each string is a city name

City models - each city is one object which comprises of:

. name of the city. city model. center coordinates - latitude and longitude of the city. available public transport routes - grouped into route types, each
route is connected to its linestring

Job Information - each job is one object which comprises of:

. job id. start timestamp - time and date when the job started. end timestamp - time and date when the job ended. status - either RUNNING or FINISHED

Jobs - each job object contains:

. job id. job name

22

..................................... 3.7. Data design

. city name. center coordinates - latitude and longitude. numerical parameters - as seen here 2.1. number of bins in histograms. clusters - array of cluster object, the structure of the cluster object is
shown below

Cluster object:

. cluster id. boundary - a polygon in the GeoJSON format which will be introduced
in this section 4.1.7. included residential buildings - a set of points in the GeoJSON format. excluded residential buildings - a set of points in the GeoJSON format. route linestring - a linestring in the GeoJSON format. corresponding public transport stops - name, latitude and longitude. demographic data - productive age distribution.metrics - reached residents, reached area

23

24

Chapter 4

Implementation

This chapter will introduce the technology and libraries that were used
to develop the application and show how the implementation fulfilled the
business, functional and qualitative requirements.

The client application was written in the JavaScript programming language,
and the server in Python. JavaScript is a lightweight, interpreted, object-
oriented language[31]. Most people know JavaScript as the scripting language
for web pages. Therefore JavaScript enables a web page to have dynamic con-
tent, like interactive maps or videos. Apart from object-oriented programming,
JavaScript supports procedural and functional programming.[31]

Python is a interpreted, interactive, object-oriented programming lan-
guage[10] that also supports procedural and functional programming styles.
Python can solve various problems, such as machine learning, developing web
applications, and creating graphical user interfaces.[10]

4.1 Used technology and libraries

4.1.1 React.js

ReactJS is a popular open-source JavaScript library used for buildings user
interfaces[22]. Thanks to the popularity of React, many third-party libraries
are available to use. Instead of separating technologies, HTML and JavaScript,
React separates concerns by dividing the interface into loosely coupled com-
ponents. React uses JSX to create elements and renders them into the DOM.
JSX is a syntax extension that allows writing HTML in JavaScript.[22, 16]

25

4. Implementation....................................
DOM represents web documents with a logical tree. Each branch of the

tree ends with a node, and each node contains an object. DOM provides
methods allowing programs to change the document’s structure, style, and
content.[5]

Angular is another technology often used for web development, a Type-
Script_based programming framework. It includes an extensive collection
of well-integrated libraries and is an excellent tool for creating scalable web
applications.[25]

As the author did not have much experience with either of these technologies,
the documentation and learning time was the main factor in deciding which
one to choose. Angular solves many problems at once.[38] Therefore it has a
higher learning curve than React. Also, React has excellent documentation
with tutorials. That is why React was chosen for the development of the
client application.

4.1.2 Leaflet

Leaflet is the leading open-source JavaScript library for mobile-friendly in-
teractive maps. It has all the basic mapping features necessary for creating
interactive maps and can be extended with many plugins. Leaflet was chosen
as the mapping library for the client application because of its well-written
documentation and a large number of plugins. [28] The leaflet-draw plugin
was used for selecting the center border.

For using Leaflet in React, there is a library react-leaflet. This library
provides React components for Leaflet layers.[30] Both Leafet and React-
Leaflet were used in the application. At the beginning of the development,
maps were created using the Leaflet library, taking advantage of its great
documentation. React-Leaflet provided better tools for creating a control
form on the page for the detailed visualization page.

Leaflet includes:[43]

.Map element. UI elements - Marker, Popup, Tooltip. Raster layers - TileLayer, ImageOverlay. Vector layers - Polygon, Polyline, Rectangle, CircleMarker.Grouped types - GeoJSON, FeatureGroup, LayerGroup. Controls - Zoom, Layers

26

............................. 4.1. Used technology and libraries

4.1.3 Recharts

Recharts is one of React’s oldest and most reliable chart libraries. It was
built with React and D31. This library supports Scalable Vector Graphics
(or SVG) and uses declarative components.[23]

Recharts were used for visualizing the statistical data on the detailed visu-
alization page. The library needed to provide event listeners to handle mouse
events for the charts to be interactive. Recharts fulfilled this requirement.
Several other interactive chart libraries are available for React, for example,
Victory.js, visx, or react-vis.[29]

4.1.4 Material UI

Material UI is the React version of Google’s Material Design component
library. Material UI used it to create a unified design throughout the client
application. The library offers a complete set of tools for creating customizable
and reusable components, like buttons or accordions, for faster development.

4.1.5 Webpack

Webpack is used to prepare the application for running in the browser. It
takes all the application modules and bundles them into static assets, which
can be run in the browser. Webpack supports all browsers which are ES5-
compliant.[2, 7]

4.1.6 CORS

The application server and the client application both run on different ports
and thanks to CORS, they are able to share resources to one another. CORS
is an HTTP-header based mechanism that lets a server define for which
foreign origins a browser is permitted to load resources.[4]

4.1.7 Geojson

The cluster and center boundaries, route lines, residential buildings, and
public transport stops visualized in the maps are encoded as geometry types

1Data-Driven Document

27

4. Implementation....................................
in the GeoJSON format. GeoJSON is a JSON-based format for geospatial
data. Each geometry object is a feature and includes the geometry data
and other optional properties. A group of features is a FeatureCollection.
The supported geometry types are Point, LineString, Polygon, MultiPoint,
MultiLineString, and MultiPolygon. In our application, boundaries are
represented as Polygons, route lines as LineStrings, and buildings and stops
as Points.[11, 12]

An example of a GeoJSON object is the following.

{
"type": "FeatureCollection",
"Features":[{

"type": "Feature",
"geometry": {

"type": "Point",
"coordinates": [

50.071259750369975, 14.403881527676178
]

},
"properties": {

"name": "Anděl"
}

}]
}

4.1.8 Flask

The server developed at Mileus, runs code implemented in Flask. For future
purposes, it was appropriate to stay consistent and implement the application
server code also in Flask. Flask is a web framework for developing web
applications in python. It is a microframework. This means its core is
designed to stay simple and scalable. Flask does not include an abstraction
layer for database support but instead supports corresponding extensions.
Another popular web development framework in python is Django.[9]

4.1.9 Python libraries

When providing analysis results’ data, the application server needs to prepare
them for the client application. The application server used Python libraries
numpy, pandas, shapely and gtfsk. Shapely was used to add cluster center
and bounds to adjust the map in the detailed visualization page. Numpy and
pandas were used to calculate the cluster histograms. Lastly, the application

28

............................. 4.2. User Interface implementation

server used gtfsk, numpy, and pandas to prepare Prague’s static city model
data and add the route linestrings to the results.

4.1.10 MongoDB

The system data is in JSON format. Therefore the system required a document
database. MongoDB is a NoSQL document database that can store high
volumes of data. Mongo does not store data in tables, and rows like traditional
relational databases do. Instead, it stores data in collections and documents.
Documents consist of key-value pairs. Collections include sets of documents
and functions. The Python library pymongo was used To connect to our
database from the flask server.[39]

4.2 User Interface implementation

In section 3.4 we designed the appearance of the user interface pages. The final
pages were implemented based on these designs and technologies discussed in
section 4.1. The application has seven pages in total.

4.2.1 Job overview page

The JobOverview.js module implements the job overview page. It is divided
into three components, header, table, and dialog. The table includes job
information and details and shows buttons. The details button opens a dialog
component with the numerical parameters of the analysis job. When the job
status is RUNNING, then the show button is deactivated. The implementation
of this page can be seen in figure 4.1 and the dialog for showing the numerical
parameters in figure 4.2.

4.2.2 City Picker page

The City Picker page is implemented by the CityPicker.js module. It
includes a header and dropdown select. The next button is activated only
when a city has been chosen. If the select is closed without selecting a city, a
red alert shows up asking the user to select a city. The implementation of
this page is shown in figures 4.3, 4.4 and 4.5.

29

4. Implementation....................................

Figure 4.1: Job overview page implementation

Figure 4.2: Job details dialog implementation

Figure 4.3: City picker page implementation

30

............................. 4.2. User Interface implementation

Figure 4.4: City picker page implementation with alert message

Figure 4.5: City picker page implementation with chosen city

4.2.3 Public Transport Routes Picker Page

The public transport route picker page is provided by RoutePicker.js. This
page contains a header, an accordion group and a map. A route can by chosen
by opening one of the accordions and selecting the route checkbox. After
selecting the route its linestring appears on the map. The user must select at
least one route to activate the next button. The implementation of this page
can be seen in figures 4.6 and 4.7.

4.2.4 City Center Picker page

The city center picker page is implemented in the CenterPicker.js module.
It includes a map with the previously chosen routes and controls for drawing
a polygon, which will define the city center border. The controls include three

31

4. Implementation....................................

Figure 4.6: Public transport route picker page implementation, without a
selected route

Figure 4.7: Public transport route picker page implementation, with all metro
routes selected

buttons, one for drawing, one for editing and one for deleting the polygon.
The next button is always active, as this is an optional parameter. The page
implementation can be seen in this figure 4.8.

4.2.5 Numerical Parameters Form Page

The page for filling in the numerical parameters is implemented in the
ParametersFormPage.js module. As designed in 3.4.2, this page contains
text field inputs for the numerical parameters, the job name and the number
of bins in the histogram. All the inputs must be filled in according to the
constraints defined in the design. If a text field is left unfilled or in the wrong
format, a red alert message shows up. The implementation of this page is
shown in figures 4.9, 4.10, 4.11 and 4.12.

32

............................. 4.2. User Interface implementation

Figure 4.8: City center picker page implementation with polygon being drawn
by the user

Figure 4.9: Numerical parameters form page implementation, with an input left
unfilled

4.2.6 High-level Visualization page

Based on the design 3.4.4, this page includes a header with buttons back and
details, a map with the visualized cluster data, routes and transport stops,
and a tab component, which is opened when the details button is clicked.
When the back button is clicked, the user is taken to the job overview page.
The Map also includes a text field input control, which lets the user define
how many clusters will be visualized on the map. The clusters are sorted by
the number of reached residents.

When the cursor hovers over a cluster a tooltip with the cluster name shows
up and the cluster is highlighted. When the cursor hovers over the cluster in
the reached residents tab, only the corresponding cluster is shown on the map.
The high-level visualization page is implemented in the HighLevelViz.js

33

4. Implementation....................................

Figure 4.10: Numerical parameters form page implementation, with an input
filled in the wrong format

Figure 4.11: Numerical parameters form page implementation, with all input
filled correctly

Figure 4.12: Start job dialog implementation

34

............................. 4.2. User Interface implementation

module and is shown in figures 4.13, 4.14 and 4.15.

There are two ways the user can enter the detailed visualization page.
Either by clicking on the cluster in the map, or by clicking on the cluster in
the reached residents tab.

Figure 4.13: High-level visualization page

Figure 4.14: High-level visualization page, mouse hovered over cluster in map

4.2.7 Detailed Visualization page

Finally, the detailed visualization page is implemented by the DetailedViz.js
module. This page includes two maps with the visualized cluster, a header
with back and details button. The back button takes the user to the high
level visualization page and the details button opens a tab with histograms,
showing the distribution of residential buildings based on taxi ride distance
and duration, and a pie chart with the productive age ratio.

The first map visualizes the residential buildings in different colors depend-

35

4. Implementation....................................

Figure 4.15: High-level visualization page, mouse hovered over cluster in reached
residents tab

ing on how far they are from the closest public transport stop. The second
map visualizes the included buildings by yellow points and excluded buildings
by grey point. To switch between these maps there is a radio button control
in the left upper corner of the map.

The implementation of this page is shown in figures 4.16, 4.17, 4.18 and
4.19.

Figure 4.16: Detailed visualization page

36

................................ 4.3. Server implementation

Figure 4.17: Detailed visualization page, residential buildings colored according
to the distance from the closes public transport stop

Figure 4.18: Detailed visualization page, residential buildings colored yellow if
included, grey in excluded

4.3 Server implementation

The server side of this application was implemented based on the designed
REST API and data structure from chapter 3. All the classes and methods for
handling requests from the client application are implemented in app.py. The
functions for database operations are implemented in db_utils.py. Lastly,
the functions that handle preparing data for the client application and for
Mileus server are implemented in data_prepare.py. In this section, the
implementation of the http methods for each resource will be explained.

37

4. Implementation....................................

Figure 4.19: Detailed visualization page, cursor hovered over the 1.2 - 1.6km
area showing only the residential buildings from this group on the map

4.3.1 GET /api/cities

This request is handled by the AvailableCitiesController class. After the
request is received, the list of available cities is found in the database and
sent as the response.

4.3.2 GET /api/city-model/{selectedCity}

This request is handled by the CityModelController class. When the request
is received the city model of the selected city is found in the database and
sent as the response.

4.3.3 GET /api/job-information

The GET request for the job information resource is handled by the JobInfor-
mationController class. Because the parameters data is saved in the results
collection, both the job information list and results list have to be retrieved
from the database. The response is a list of object, each object including job
information and parameters of the corresponding job.

4.3.4 POST /api/job

The request to start a new job is handled by the JobListController class.
After receiving this request the controller:

38

................................ 4.3. Server implementation..1. Sends the necessary input data that came with the request to the Mileus
server, to start the calculation, which responds with the job id..2. Saves the job start timestamp..3. inserts the job id, job name, start timestamp and status, into the job
information database collection..4. inserts the job id, job name, job parameters, city name and city coordi-
nates into the job results database collection

4.3.5 GET and POST/api/job/{jobId}

These requests are handled by the JobController class.

After the GET request is received the the job data is found by job id,
processed and send as the response. The data is processed to add the name,
bounds, and center, histograms and route linestrings to each cluster.

When receiving the POST request, the job end timestamp is saved and the
corresponding job information end time and status is updated.

39

40

Chapter 5

Testing

The scope of this application was defined by the business and functional
requirements. To decide, whether the application fulfilled these requirements,
user inputs and expected application behaviour were defined and compared
with the implemented output. According to the testing scenarios, all the
business and functional requirements were met. The testing scenarios can be
found in Appendix B.

The qualitative requirements define the characteristics of the system. The
first qualitative requirement was having an interactive client application. The
interactive elements of our system are:

. a linestring is drawn on map after user selects a route. user can draw the city center polygon. user can define how many cluster they want to see on the map. when user hovers over a cluster it is highlighted and a tooltip with the
cluster name is shown. when user hovers over a cluster in the reached residents tab, only the
cluster is shown in the heat map. when user hovers over a residence distance group in the Taxi Ride
Distance histogram, the other groups are hidden

The second qualitative requirements was client application will be functional
in multiple modern browsers. The application was tested on these browsers:
Mozilla Firefox, Chromium, Brave and Google Chrome. It is functional on
all of them.

41

5. Testing
The third qualitative requirement was client application will be optimized

for speed. Unfortunately, the application is too slow because the data loading
speed is not optimized. Future development should focus on this drawback.

The last qualitative requirement was the system will be scalable for other
cities. To add a new city, data for the city model object for this city would
have to be processed and added to the database and the city name string
added to the cities resource.

42

Chapter 6

Conclusion

The goal of this bachelor thesis was to design and implement an application
for collecting user input and visualizing the result of a residential area clus-
tering analysis. The development went through all the software development
process steps. The application is aimed at providing an interactive tool for
Mileus’ clustering analysis. Therefore they were in the role of the client and
defined the requirements for this application. The system was designed and
implemented based on these requirements. All the defined functional and
business requirements were fulfilled and most of the qualitative as well.

An important part of this process was defining the structure of the input
and output data for the calculation, since the two servers were implemented
by different people. This enabled the two servers to develop independently.

The contribution of this bachelor thesis is creating an interactive tool, that
can help decide which residential areas have the biggest potential for services
that aim at connecting public transport networks with on-demand service
providers.

6.1 Future development

As discussed earlier in 5, the biggest drawback of this application is slow data
loading. This should be solved in the future. This application could also
allow the user to upload and download a file with analysis results.

The application has not been deployed, since the Mileus server is in a
private repository. For now it can be run locally. For the purposes of using
this application for making business decisions it would be better to deploy it,
as more people could open the results visualization and analyze them.

43

44

Appendix A

Bibliography

[1] About openstreetmap. https://wiki.openstreetmap.org/wiki/
About_OpenStreetMap. Accessed: 2022-12-05.

[2] Concepts. https://webpack.js.org/concepts/. Accessed: 2022-18-
05.

[3] Contraction hierarchies.

[4] Cross-origin resource sharing (cors). https://developer.mozilla.org/
en-US/docs/Web/HTTP/CORS. Accessed: 2022-18-05.

[5] Document object model (dom)ng jsx. https://developer.mozilla.
org/en-US/docs/Web/API/Document_Object_Model. Accessed: 2022-
18-05.

[6] Elements. https://wiki.openstreetmap.org/wiki/Elements. Ac-
cessed: 2022-12-05.

[7] Esmascript 5 compatiblity table. https://kangax.github.io/
compat-table/es5/. Accessed: 2022-18-05.

[8] Export. https://wiki.openstreetmap.org/wiki/Export. Accessed:
2022-12-05.

[9] Foreword. https://flask.palletsprojects.com/en/2.1.x/
foreword/. Accessed: 2022-18-05.

[10] General information. https://docs.python.org/3/faq/general.
html#what-is-python. Accessed: 2022-17-05.

[11] Geojson. https://geojson.org/. Accessed: 2022-18-05.

[12] The geojson format. https://datatracker.ietf.org/doc/html/
rfc7946. Accessed: 2022-18-05.

45

https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://webpack.js.org/concepts/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://wiki.openstreetmap.org/wiki/Elements
https://kangax.github.io/compat-table/es5/
https://kangax.github.io/compat-table/es5/
https://wiki.openstreetmap.org/wiki/Export
https://flask.palletsprojects.com/en/2.1.x/foreword/
https://flask.palletsprojects.com/en/2.1.x/foreword/
https://docs.python.org/3/faq/general.html#what-is-python
https://docs.python.org/3/faq/general.html#what-is-python
https://geojson.org/
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946

A. Bibliography.....................................
[13] Graphhopper. https://wiki.openstreetmap.org/wiki/GraphHopper.

Accessed: 2022-18-05.

[14] How to download dataset from open-
streetmap? https://towardsdatascience.com/
beginner-guide-to-download-the-openstreetmap-gis-data-24bbbba22a38.
Accessed: 2022-12-05.

[15] Informace o rÚian. https://www.cuzk.cz/ruian/RUIAN/
Informace-o-RUIAN.aspx. Accessed: 2022-12-05.

[16] Introducing jsx. https://reactjs.org/docs/introducing-jsx.html.
Accessed: 2022-18-05.

[17] Mileus, commuting home. comfortably. https://mileus.com/. Ac-
cessed: 2022-05-05.

[18] O organizaci ropid. https://pid.cz/o-organizaci/
o-organizaci-ropid/. Accessed: 2022-11-05.

[19] Open source routing machine. https://wiki.openstreetmap.org/
wiki/Open_Source_Routing_Machine. Accessed: 2022-18-05.

[20] Openrouteservice. https://github.com/GIScience/
openrouteservice. Accessed: 2022-18-05.

[21] Otevřená data pid. https://pid.cz/o-systemu/opendata/. Accessed:
2022-11-05.

[22] React. https://reactjs.org/. Accessed: 2022-18-05.

[23] Recharts. https://github.com/recharts/recharts. Accessed: 2022-
18-05.

[24] Valhalla. https://wiki.openstreetmap.org/wiki/Valhalla. Ac-
cessed: 2022-18-05.

[25] What is angular? https://angular.io/guide/what-is-angular. Ac-
cessed: 2022-18-05.

[26] Working with json. https://developer.mozilla.org/en-US/docs/
Learn/JavaScript/Objects/JSON. Accessed: 2022-18-05.

[27] What is a rest api? https://www.redhat.com/en/topics/api/
what-is-a-rest-api, 2020. Accessed: 2022-14-05.

[28] Vladimir Agafonkin. Leaflet, an open-source javascript library for mobile-
friendly interactive maps. https://leafletjs.com/index.html. Ac-
cessed: 2022-18-05.

[29] Ilana Brudo. Top 11 react chart libraries. https://www.tabnine.com/
blog/top-11-react-chart-libraries/, 2020. Accessed: 2022-18-05.

46

https://wiki.openstreetmap.org/wiki/GraphHopper
https://towardsdatascience.com/beginner-guide-to-download-the-openstreetmap-gis-data-24bbbba22a38
https://towardsdatascience.com/beginner-guide-to-download-the-openstreetmap-gis-data-24bbbba22a38
https://www.cuzk.cz/ruian/RUIAN/Informace-o-RUIAN.aspx
https://www.cuzk.cz/ruian/RUIAN/Informace-o-RUIAN.aspx
https://reactjs.org/docs/introducing-jsx.html
https://mileus.com/
https://pid.cz/o-organizaci/o-organizaci-ropid/
https://pid.cz/o-organizaci/o-organizaci-ropid/
https://wiki.openstreetmap.org/wiki/Open_Source_Routing_Machine
https://wiki.openstreetmap.org/wiki/Open_Source_Routing_Machine
https://github.com/GIScience/openrouteservice
https://github.com/GIScience/openrouteservice
https://pid.cz/o-systemu/opendata/
https://reactjs.org/
https://github.com/recharts/recharts
https://wiki.openstreetmap.org/wiki/Valhalla
https://angular.io/guide/what-is-angular
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://leafletjs.com/index.html
https://www.tabnine.com/blog/top-11-react-chart-libraries/
https://www.tabnine.com/blog/top-11-react-chart-libraries/

..................................... A. Bibliography

[30] Paul Le Cam and contributors. Introduction. https://react-leaflet.
js.org/docs/start-introduction/. Accessed: 2022-18-05.

[31] MDN contributors. About javascript. https://developer.
mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript. Ac-
cessed: 2022-17-05.

[32] Google. Gtfs realtime overview. https://developers.google.com/
transit/gtfs-realtime. Accessed: 2022-12-05.

[33] Google. Gtfs static overview. https://developers.google.com/
transit/gtfs. Accessed: 2022-12-05.

[34] Lokesh Gupta. Rest architectural constraints. https://restfulapi.
net/rest-architectural-constraints/, 2022. Accessed: 2022-14-05.

[35] Chris Harrelson. Happy trails with google transit. https://googleblog.
blogspot.com/2006/09/happy-trails-with-google-transit.html,
2006. Accessed: 2022-12-05.

[36] Jonathan English. The commuting principle that shaped urban
history. https://www.bloomberg.com/news/features/2019-08-29/
the-commuting-principle-that-shaped-urban-history, 2019. Ac-
cessed: 2022-05-05.

[37] Dopravní podnik hl. m. Prahy a.s. Praha gtfs. https://transitfeeds.
com/p/praha/801. Accessed: 2022-12-05.

[38] João Reis. Angular vs react: a comparison of both frameworks. https://
www.imaginarycloud.com/blog/angular-vs-react/, 2020. Accessed:
2022-18-05.

[39] David Taylor. What is mongodb? introduction, architecture, features ex-
ample. https://www.guru99.com/what-is-mongodb.html. Accessed:
2022-18-05.

[40] The Editors of Encyclopaedia Britannica. bicycle, vehicle. https:
//www.britannica.com/technology/bicycle. Accessed: 2022-05-05.

[41] The Editors of Encyclopaedia Britannica. George stephen-
son, british inventor. https://www.britannica.com/biography/
George-Stephenson. Accessed: 2022-05-05.

[42] The Editors of Encyclopaedia Britannica. streetcar. https://www.
britannica.com/technology/streetcar. Accessed: 2022-05-05.

[43] OpenStreetMaps contributors Vladimir Agafonkin. Leaflet api reference.
https://leafletjs.com/reference.html. Accessed: 2022-18-05.

[44] Wikipedia contributors. Ford model t. https://en.wikipedia.org/w/
index.php?title=Ford_Model_T&oldid=1088267980. Accessed: 2022-
05-05.

47

https://react-leaflet.js.org/docs/start-introduction/
https://react-leaflet.js.org/docs/start-introduction/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developers.google.com/transit/gtfs-realtime
https://developers.google.com/transit/gtfs-realtime
https://developers.google.com/transit/gtfs
https://developers.google.com/transit/gtfs
https://restfulapi.net/rest-architectural-constraints/
https://restfulapi.net/rest-architectural-constraints/
https://googleblog.blogspot.com/2006/09/happy-trails-with-google-transit.html
https://googleblog.blogspot.com/2006/09/happy-trails-with-google-transit.html
https://www.bloomberg.com/news/features/2019-08-29/the-commuting-principle-that-shaped-urban-history
https://www.bloomberg.com/news/features/2019-08-29/the-commuting-principle-that-shaped-urban-history
https://transitfeeds.com/p/praha/801
https://transitfeeds.com/p/praha/801
https://www.imaginarycloud.com/blog/angular-vs-react/
https://www.imaginarycloud.com/blog/angular-vs-react/
https://www.guru99.com/what-is-mongodb.html
https://www.britannica.com/technology/bicycle
https://www.britannica.com/technology/bicycle
https://www.britannica.com/biography/George-Stephenson
https://www.britannica.com/biography/George-Stephenson
https://www.britannica.com/technology/streetcar
https://www.britannica.com/technology/streetcar
https://leafletjs.com/reference.html
https://en.wikipedia.org/w/index.php?title=Ford_Model_T&oldid=1088267980
https://en.wikipedia.org/w/index.php?title=Ford_Model_T&oldid=1088267980

A. Bibliography.....................................
[45] Wikipedie. Obyvatelstvo podle 112 katastrálních území hl. m.

prahy. https://www.czso.cz/documents/11236/17812557/CR_L4_KU.
xlsx/231bacd8-d7c4-4ed2-83e5-d41d7e4a0e3f?version=1.5, 2014.
Accessed: 2022-13-05.

[46] Wikipedie. Český statistický úřad — wikipedie: Otevřená encyklo-
pedie. https://cs.wikipedia.org/w/index.php?title=%C4%8Cesk%
C3%BD_statistick%C3%BD_%C3%BA%C5%99ad&oldid=21240649, 2022.
Accessed: 2022-13-05.

48

https://www.czso.cz/documents/11236/17812557/CR_L4_KU.xlsx/231bacd8-d7c4-4ed2-83e5-d41d7e4a0e3f?version=1.5
https://www.czso.cz/documents/11236/17812557/CR_L4_KU.xlsx/231bacd8-d7c4-4ed2-83e5-d41d7e4a0e3f?version=1.5
https://cs.wikipedia.org/w/index.php?title=%C4%8Cesk%C3%BD_statistick%C3%BD_%C3%BA%C5%99ad&oldid=21240649
https://cs.wikipedia.org/w/index.php?title=%C4%8Cesk%C3%BD_statistick%C3%BD_%C3%BA%C5%99ad&oldid=21240649

Appendix B

Testing scenarios

Test ID 01
Prerequisites User is on the job overview page
User input User opens clicks on the "new job"

button
Expected output and be-
haviour

The city picker page is opened with
the next button deactivated

Result success

Test ID 02
Prerequisites User is on the city picker page
User input User opens the dropdown select and

closes it without selecting a city
Expected output and be-
haviour

A red alert shows up above the drop-
down select with the message Anal-
ysed city wasn’t selected! and the
next button remains deactivated

Result success

Test ID 03
Prerequisites User is on the city picker page
User input User opens the dropdown select and

selects "Prague"
Expected output and be-
haviour

The "Next" button is activated

Result success

49

B. Testing scenarios
Test ID 04
Prerequisites User is on the city picker page
User input User opens the dropdown select, se-

lects "Prague" and clicks on "Next"
Expected output and be-
haviour

The public transport route picker
page is opened with the "Next" but-
ton deactivated

Result success

Test ID 05
Prerequisites User chose the city "prague" and is

on the public transport route picker
page

User input User opens the "metro" accordion
and selects the checkbox labeled "A"

Expected output and be-
haviour

A green linestring is drawn on the
map and the "next" button is acti-
vated

Result success

Test ID 06
Prerequisites User chose the city "prague" and is

on the public transport route picker
page

User input User opens the "metro" accordion
and selects the checkbox labeled "Se-
lect All"

Expected output and be-
haviour

All three checkboxes "A", "B" and
"C" are checked and three linestrings,
one green, one red and one yellow,
are drawn on the map and the next
button is activated

Result success

50

................................... B. Testing scenarios

Test ID 06
Prerequisites User chose the city "prague" and is

on the public transport route picker
page

User input User opens the "tram" accordion, se-
lects the checkbox labeled "17" and
clicks on "next"

Expected output and be-
haviour

The city center picker page is opened
with a blue linestring drawn on the
map and the next button is active

Result success

Test ID 07
Prerequisites User chose the city "prague" and is

on the public transport route picker
page

User input User opens the "metro" accordion,
selects the checkbox labeled "Select
All" and then selects the check box
"Deselect All"

Expected output and be-
haviour

No checkboxes are checked, no
linestrings are drawn on the map and
the next button is deactivated

Result success

Test ID 08
Prerequisites User chose the city "prague", metro

"A" and is on the city center picker
page

User input User clicks on the "next" button
Expected output and be-
haviour

The numerical parameters form page
is opened with a green linestring and
without a polygon on the map, and
the "start job" button is deactivated

Result success

51

B. Testing scenarios
Test ID 09
Prerequisites User chose the city "prague", metro

"A" and is on the city center picker
page

User input User clicks on the draw control on
the left side of the map, draws a
polygon and clicks on "next"

Expected output and be-
haviour

The numerical parameters form page
is opened with a green linestring and
without a polygon on the map, and
the "start job" button is deactivated

Result success

Test ID 10
Prerequisites User chose the city "prague", metro

"A" and is on the numerical parame-
ters form page

User input User fills in these values into the text
fields: ["test", "200", "2000", "5", "7",
"3"]

Expected output and be-
haviour

The "start job" button is activated

Result success

Test ID 11
Prerequisites User chose the city "prague", metro

"A" and is on the numerical parame-
ters form page

User input User fills in these values into the text
fields: ["test", "a", "2000", "5", "7",
"3"]

Expected output and be-
haviour

The "start job" button is deactivated
and a red alert is shown above the
form with the message: Please fill
out all fields in correct format!

Result success

52

................................... B. Testing scenarios

Test ID 12
Prerequisites User chose the city "prague", metro

"A" and is on the numerical parame-
ters form page

User input User clicks on the "Maximal driv-
ing distance" texfield input and then
clicks outside

Expected output and be-
haviour

The "start job" button is deactivated
and a red alert is shown above the
form with the message: Please fill
out all fields in correct format!

Result success

Test ID 13
Prerequisites User chose the city "prague", metro

"A" and is on the numerical parame-
ters form page

User input User fills in these values into the text
fields: ["test", "200", "2000", "5", "7",
"3"] and clicks on "start job"

Expected output and be-
haviour

A dialog is opened with the message:
Are you sure want to start the job?
After starting the job the input data
will be deleted and you will be di-
rected to the main page. The calcu-
lation may take a few minutes. and
two buttons: "Cancel" and "Proceed"

Result success

53

B. Testing scenarios
Test ID 14
Prerequisites User chose the city "prague", metro

"A", filled in these values into the
numerical parameters form ["test",
"200", "2000", "5", "7", "3"], clicked
"Start job" and the start job dialog
is open

User input User clicks on "Proceed"
Expected output and be-
haviour

The overview page is opened and
the job with these values ["test", the
current time, with a small delay,
"NONE", "RUNNING"] is displayed
as the first row in the job overview
table and has the "show" button de-
activated

Result success

Test ID 15
Prerequisites User is in the job overview page
User input User clicks on "Show" button in

the row with the job name "Prague
Metro A"

Expected output and be-
haviour

The high level visualization page is
opened with 5 clusters on the map
and a control for selecting the shown
number of clusters

Result success

Test ID 16
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
User input User changes the "5" to "3" in the

control for changing the amount of
clusters shown

Expected output and be-
haviour

Only 3 clusters are shown on the
map

Result success

54

................................... B. Testing scenarios

Test ID 17
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
and filled in the number of shown
clusters control with "1"

User input User hovers over the cluster
Expected output and be-
haviour

A tool tip with "Cluster Hradčanská-
Dejvická-Bořislavka" is shown

Result success

Test ID 18
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
User input User clicks on "Details"
Expected output and be-
haviour

A tab component is shown on the
left with the values ["200m", "10 min-
utes", "2000m"]

Result success

Test ID 19
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
and clicked on "Details"

User input User clicks on the "Reached area" tab
Expected output and be-
haviour

The "Reached area" tab opens and
shows the values ["8.69 km2", "9.76
km2", "8.82 km2", "6.55 km2", "13.31
km2"]

Result success

55

B. Testing scenarios
Test ID 20
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
and clicked on "Details"

User input User clicks on the "Reached resi-
dents" tab

Expected output and be-
haviour

The "Reached residents" tab opens
and shows the values ["27106 resi-
dents", "25914 residents", "23972 res-
idents", "22391 residents", "18793 res-
idents"]

Result success

Test ID 21
Prerequisites User is in high level visualization

page of the "Prague Metro A" job
and filled in the number of shown
clusters control with "1"

User input User clicks on the cluster
Expected output and be-
haviour

The detailed visualization page is
opened with the cluster buildings
draw in different colors and in the
left upport corner there is a radio
button control with "Heat Map" se-
lected

Result success

Test ID 22
Prerequisites User is in detailed visualization

page of cluster "Dejvická-Bořislavka-
Nádraží Veleslavín" from the job
"Prague Metro A"

User input User clicks on "Included / Excluded
Map"

Expected output and be-
haviour

The radio button "Included / Ex-
cluded Map" is selected, the map
changes to buildings colored yellow
and grey

Result success

56

................................... B. Testing scenarios

Test ID 23
Prerequisites User is in detailed visualization

page of cluster "Dejvická-Bořislavka-
Nádraží Veleslavín" from the job
"Prague Metro A"

User input User clicks on "Details"
Expected output and be-
haviour

A tab opens on the right with 2 his-
tograms and 1 pie chart, the pie
chart values are [40, 59]

Result success

Test ID 24
Prerequisites User is in the job overview page
User input User clicks on "Details" in the row

job name "Prague - Tram 17"
Expected output and be-
haviour

A dialog opens up with a table and
these values [300, 1000, 5, 3]

Result success

57

	Introduction
	Motivation
	Goals

	Analysis
	Residential area analysis
	Open data
	ROPID
	RÚIAN
	Open Street Map
	ČSÚ

	Route planning types
	Requirements
	Business requirements
	Qualitative requirements

	Design
	System components
	Functional requirements
	REST API
	User interface design
	Job overview page
	Pages for creating new job
	Visualization pages
	High-level visualization page
	Detailed visualization page

	Communication between the application server and the client application
	Communication between the application server and the Mileus server
	Data design

	Implementation
	Used technology and libraries
	React.js
	Leaflet
	Recharts
	Material UI
	Webpack
	CORS
	Geojson
	Flask
	Python libraries
	MongoDB

	User Interface implementation
	Job overview page
	City Picker page
	Public Transport Routes Picker Page
	City Center Picker page
	Numerical Parameters Form Page
	High-level Visualization page
	Detailed Visualization page

	Server implementation
	GET /api/cities
	GET /api/city-model/{selectedCity}
	GET /api/job-information
	POST /api/job
	GET and POST/api/job/{jobId}

	Testing
	Conclusion
	Future development

	Bibliography
	Testing scenarios

