
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

No-code platform for web pages hosting

Nikita Dvoriadkin

Supervisor: Ing. Karel Frajták Ph.D.
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

487601Osobní číslo:NikitaJméno:DvoriadkinPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Architektura pro serverovou část no-code platformy pro vývoj a hosting webových aplikací

Název bakalářské práce anglicky:

No-code platform for web pages hosting (server side)

Pokyny pro vypracování:
Navrhněte vhodnou architekturu pro serverovou část no-code platformy pro vývoj a hosting webových aplikací. Uživatel
systému bude moci vytvářet své stránky bez znalosti HTML, JS, apod. (frontend část ale není součást projektu). Systém
by měl být navržen modulárně s maximální rozšířitelností a dynamičností.
Systém by měl umožnit spravovat uživatelské účty včetně možnosti příhlašování se přes OAuth servery třetích stran (např.
Google, Github, Facebook, apod.). Dále si vytvořit strukturu stránek a stránky upravovat (obsah, tagy, URL, apod.).
Systém dostatečně otestujte.
Součástí práce bude rešerše stávajích řešení.

Seznam doporučené literatury:
Moskal, Monika. "No-Code Application Development on the Example of Logotec App Studio Platform." Informatyka,
Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 11.1 (2021): 54-57.
Schötteler, Sebastian, et al. "A No-Code Platform for Tie Prediction Analysis in Social Media Networks." International
Conference on Wirtschaftsinformatik. Springer, Cham, 2021.
Ang, Raymund John. "Building Applications Using Low-Code and No-Code Platforms." Canadian Journal of Nursing
Informatics 16.3/4 (2021).

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Karel Frajták, Ph.D. laboratoř inteligentního testování systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 11.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Karel Frajták, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I want to thank all the teachers who

invested their time in me and shared pre-
cious knowledge with me during my bach-
elor’s studies. Also, I want to thank my
supervisor, Ing. Karel Frajták Ph.D., for
helping and giving me helpful advice while
working on this project. Finally, I want
to thank my parents for constantly sup-
porting me during my studies.

Declaration
I hereby declare that this thesis repre-

sents my own work which has been done
after registration for the Bachelor’s de-
gree at Czech Technical University, and
has not been previously included in a the-
sis or dissertation submitted to this or any
other institution for a degree, diploma or
other qualifications.

Prague, May 20, 2022

v

Abstract
This thesis deals with design of an archi-
tecture and implementation of prototype
of a server-side application for no-code
web pages creation. The main feature of
this application is a high modularity in
terms of both data and display elements.
First, the analysis of similar platforms
is performed with an emphasis on their
weak sides in order to improve them in
my application. Then, the following chap-
ters describe the concept of a solution and
architecture design along with analysis of
technologies which are used during the so-
lution implementation. Next, the develop-
ment process of a prototype is described.
At the end, there is a reflection on the
future of the product, things needed to
improve and further product extension.

Keywords: No-Code, small business,
web application, development, REST,
Kotlin, Spring Framework

Supervisor: Ing. Karel Frajták Ph.D.
Department of Computer Science
FEE CTU in Prague,
Karlovo náměstí 13,
12135 Praha 2

Abstrakt
Tato práce se zabývá návrhem architek-
tury a implementací prototypu serverové
aplikace pro tvorbu nekódovaných webo-
vých stránek. Hlavním rysem této apli-
kace je vysoká modularita datových i zob-
razovacích prvků. Nejprve je provedena
analýza podobných platforem s důrazem
na jejich slabé stránky za účelem jejich
vylepšení v mé aplikaci. Následně je v ná-
sledujících kapitolách popsán koncept ře-
šení a návrh architektury spolu s analýzou
technologií, které jsou při implementaci ře-
šení použity. Dále je popsán proces vývoje
prototypu. Na závěr je zamyšlení nad bu-
doucností produktu, věcmi potřebnými ke
zlepšení a dalšímu rozšiřování produktu.

Klíčová slova: No-Code, malý podnik,
webová aplikace, vývoj, REST, Kotlin,
Spring Framework

Překlad názvu: Architektura pro
serverovou část no-code platformy pro
vývoj a hosting webových aplikací

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
2 Problem definition 3
2.1 No-code platforms 3

2.1.1 Benefits . 4
2.2 Analysis of existing solutions 4

2.2.1 What can be improved 5
2.3 Potential customers 6

2.3.1 Individual solutions 6
2.3.2 Box solutions 6
2.3.3 Corporate clientele 6

2.4 Summary . 7
3 Analysis of requirements 9
3.1 Functional requirements 9
3.2 Non-functional requirements . . . 10
4 Application concept 11
4.1 Inspiration 11
4.2 Solution . 12
4.3 User . 13
4.4 Site . 13

4.4.1 Entity . 13
4.4.2 Entity Instance 13
4.4.3 Block . 13
4.4.4 Page . 14

5 Application design 15
5.1 Application Architecture 15
5.2 Layered architecture 15
5.3 Security . 16
6 Technologies 19
6.1 Language and Framework 19

6.1.1 Kotlin . 19
Language null6.1.2 Spring

Framework 20
6.2 Interaction with the application 22

6.2.1 REST . 22
6.2.2 SOAP . 23
6.2.3 GraphQL 23
6.2.4 Chosen approach 24
6.2.5 HATEOAS 24

6.3 Database . 24
6.4 Caching . 26
7 Implementation 27
7.1 REST endpoints definition 27

7.2 Application Initialization 28
7.3 Application Development 29

7.3.1 Environment configuration . . 29
7.4 Business Logic implementation . 29
7.5 Authorization 30
8 Testing 31
8.1 Unit Testing 31
8.2 Integration testing 32
8.3 Detected problems 32
9 Further steps 35
9.1 Linking Entities together 35
9.2 Front-end integration 35
9.3 Predefined Entities and templates 37
9.4 Websites statistics 37
9.5 E-commerce support 37
9.6 Localization 37
9.7 Team collaboration 37
10 Conclusion 39
Bibliography 41

vii

Figures
2.1 Example of creating a website on a

no-code platform Wix.com 4

4.1 Instagram interface built from
components [5] 11

4.2 Class diagram of the application 12
4.3 Representation of creating HTML

element through entities 14

5.1 Layered application architecture
diagram . 16

5.2 OAuth2 workflow [12] 17

6.1 Spring IoC Container 21
6.2 Spring Boot project generation . 21
6.3 Example of POST REST request

and response for storing Entity data 22
6.4 Example of SOAP request and

response for the user data retrieval 23
6.5 Example of HATEOAS in the

application . 24

7.1 Example of rendered API
documentation in Swagger UI 28

7.2 Example of Block rendering from a
complex Entity Instance 30

8.1 Example of test for testing the
return of non-existing entity 32

8.2 Example of test for response for
invalid request of entity creation . . 33

9.1 Wireframe of Entity Builder on
front-end . 36

Tables

viii

Chapter 1
Introduction

At the beginning of my last year of bachelor’s studies I was obsessed by
the idea of creating my own startup and releasing own software product.
Although creating software projects from scratch could seem like a great
thing, the main problem I encountered was lack of ideas.

Few days later, one of my friends called me with a problem. This person
started a real-estate company and wanted to attract new clients to his
business. As Bill Gates stated: "If your business is not on the Internet then
your business will be out of business", my friend needed a website for his
company. The main problem he faced was that he did not possess much
money for outsourcing this task to any software company, nor he liked the
solutions popular website constructors offered. His business required some
specific data to be represented on a web page regarding to the real estate
information.

Looking deeper, I found out that the vast majority of existing website
constructors do not provide a user with flexibility of web pages creation.
Thus, the same problem as my friend can have other small businesses, which
can potentially lead to the loss of their clients and profit.

1.1 Motivation

Motivation for this bachelor’s thesis was to design and implement a web
application which would allow users to create their own web pages without
having any programming skills. One of the main features of such a platform
would be unlimited functionality in terms of web pages creation.

Currently there are lots of no-code or low-code existing solutions for website
creation. The vast majority of them only allow creating web pages using
already prepared blueprints or templates, which do not offer users flexibility
in their website creation.

1.2 Goals

The main goal of this bachelor’s thesis is to analyze and design the architec-
ture of server-side no-code application for web page creation and hosting. This

1

1. Introduction
paper describes the process of creating a new product prototype, including
analysis, design, and implementation of a new no-code platform prototype.

First, in Chapter 2, I will analyze existing solutions for no- or low-code
website creation available on the Internet. I will describe their disadvantages
and explore the points that can be improved. After analyzing the existing
solutions, I will determine the functional and non-functional requirements
for the system in Chapter 3. Next, in Chapter 4, I will describe the concept
of my application. This section will give details about my idea of a solution
with the help of a UML diagram and images. Further, in the 5th chapter, I
will define the application architecture and describe it in detail.

After analyzing both business and technical, I will talk about the imple-
mentation itself. Chapter 6 will discuss the technologies I have used in my
application. There will be some comparisons of them and my reflection
on why I have chosen them. Next, in the 7th chapter, I will describe my
implementation process of the application along with some notes on what has
worked for me and what problems I have encountered while programming.
After that, in the following 8th section, I will talk about the testing process
of my application.

In Chapter 9, I will reflect on the future of my project. I will especially
pay attention to technical improvements of my product and what should be
done for scaling, and I will define the next steps for further extension of my
application.

Finally, in the last chapter, I will summarize the result of my thesis. It
will include my personal feelings about the project, whether it was successful
or not, and also, I will describe what I have learned during my work on the
thesis.

2

Chapter 2
Problem definition

The Internet has become an essential part of life for the majority of people
in the world. By May 2022, there are more than 1.600.000.000 web pages on
the Internet. Over 250.000 web pages are created everyday and 10.500 new
websites are created per hour [1].

As the Internet grows, the number of active digital buyers is also increasing
year by year. In year 2020 approximately two billion of people made online
purchases and in the same year online sales surpassed 4.2 trillion U.S. dollars
worldwide [2]. All these facts bring small business a huge opportunity to
grow. Having a website not only helps to sell the products, but also it can
attract new customers which leads to great potential to expand.

Year by year, there is a growing demand for website creation which comes
from businesses. Usually, small companies do not possess the resources
(including money or software engineers) to create websites for selling their
products online. There are services that allow to create web pages relatively
fast and cost-effectively without any software development skills.

2.1 No-code platforms

No-code platforms are the type of visual software development environ-
ments that allow developers and regular people to create web pages without
writing any code quickly. Users build their products in a visual editor using
customizable components. All the corresponding code for these components
is created automatically. [3].

3

2. Problem definition

Figure 2.1: Example of creating a website on a no-code platform Wix.com

2.1.1 Benefits. Since it does not require any programming experience, it makes no-code
platforms incredibly easy to use.. No-code platforms accelerate application development because users do
not need to write code. It may lead to a decrease in the delivery time of
a product to the market.. No-code platforms are cost-effective. They mainly do not require any
additional payments for any application changes. Also, the vast majority
of all services work under the subscription model pricing.

2.2 Analysis of existing solutions

In this section, I analyzed existing no-code solutions. It describes popular
services for website creation with their disadvantages, and further, there
would be some reflection on what my product should have to be successful.

Solid Pixels

Solid Pixels1is a platform for different types of website creation without any
code skills. (landing, multi-page, e-shop). Analyzing this product, I found
out that it has lots of disadvantages. From the first opening, it was hard for
me to navigate through their web page builder because the user interface they
have is not much intuitive. Next, this platform offers minimal functionality
without any additional payments. The other problem I faced was that I could
not log in to my account after the first try. This system does not offer the
functionality to have multiple projects for one user and does not support
login via third-party services like Facebook, Google and others.

1https://www.solidpixels.com/en

4

https://www.solidpixels.com/en

..............................2.2. Analysis of existing solutions

Shoptet

Shoplet2is a platform for e-commerce system creation and hosting. Their
primary goal is to let users create their online shops. This product seemed
to me as a good tool for own e-commerce system creation, since it provides
a great variety of plugins and other different tools. However, some of this
functionality is available after additional payments. Some parts of websites
cannot be customized without basic knowledge of front-end development. It
also does not support login via other services.

WIX

Wix3is an online drag-and-drop platform allowing users to create different
types of web pages. Although it offers a lot of advanced features, sites
created using WIX still have to fall into predetermined categories. Another
disadvantage is the hidden fees, the large learning curve.

WordPress

WordPress4is a popular open-source content management system that has
been on the market for a long time. Although it is a proven technology for
website creation, it still has disadvantages. Typically, users of this system need
to purchase different templates or plugins to customize their web pages. Also,
plugins and themes are frequently updated, so the user needs to keep them
up-to-date constantly. Unfortunately, it is a highly complex tool for website
creation with a significant learning curve. Also, to make minor customization,
users typically need to insert HTML code.

2.2.1 What can be improved

After the research and competitor analysis I would like to highlight the
points that will make out solution better and more effective over the com-
petitors ones:. Fully customizable website creation and editing. Competitors’ solutions

mostly allow for creating "cookie-cutter" websites. These are the websites
that fit already prepared by platform templates. My solution needs to
support the functionality that enables users to create and modify the
structure of any interface components. It will bring unlimited modularity
of data and display elements.. Pricing without any additional charges. Most of the competitors’ solu-
tions charge for some additional features. For instance, a user needs to
pay for plugins that extend some functionality of their website.

2https://www.shoptet.cz/
3https://www.wix.com/
4https://wordpress.com/

5

https://www.shoptet.cz/
https://www.wix.com/
https://wordpress.com/

2. Problem definition
. The simplicity of use and small learning curve. A client needs to work

with an intuitive and easy system to use. Unfortunately, some of the
solutions mentioned above have great functionality, but, on the other
hand, it takes a long time to learn how to use them..Multiple projects for a user. A user will be able to create multiple
websites under his account in my product.

2.3 Potential customers

I introduced the idea of a no-code platform to some of my friends who have
their businesses and, at the same time, need a website to sell and promote
their services. In the following section, I am going to introduce the potential
customers of the platform. They are divided into three primary groups. For
each group, there is a real example of a user and his problem, which would
be solved thanks to this platform.

2.3.1 Individual solutions

Target group: Individual entrepreneurs and small businesses
The users of this group would mostly like to have fully customizable and
individual solutions to the specificity of their business and desires.

Real Example: A person wants to create a catalog website for his real estate
business. The problem is that website creation for such a business as real
estate is specific because of the data, so there is no such platform like WIX
or Squarespace which would allow one to build a website using an existing
blueprint/template.

2.3.2 Box solutions

Target group: Individual entrepreneurs and small businesses
The users of this group do not possess any big resources to purchase complete
solutions developed by outsourced IT companies. At the same time they
realize that some sort of ‘box solution’ would be enough for them.

Real Example: A person makes minimalistic furniture and sells it via In-
stagram account. In order to have a comfortable e-commerce platform for
selling his goods and to reach more customers, he would like to have his own
e-shop website.

2.3.3 Corporate clientele

Target group: Medium and larger businesses
The users of this group do potentially possess resources to purchase a complete
solution but at the same time they realize that outsourcing the creation of

6

...................................... 2.4. Summary

their websites would be more financially beneficial. Users of this group want
a turnkey solution.

Real Example: A person organizes IT-related summits and wants to fo-
cus 100% of his attention on his organization. He would therefore like to
completely outsource web issues.

2.4 Summary

Currently, there is a growing popularity of no-code services because of the
high demand for website creation. Comparing the existing solutions and
improving their shortcomings within this project, I believe that my product
will benefit potential clients from businesses.

7

8

Chapter 3
Analysis of requirements

The output of this bachelor’s thesis is the implemented base of a future
no-code platform for web page creation and hosting. This base, also called a
prototype, is a minimal product with a limited amount of functionality used
to demonstrate the key features.

I defined functional and non-functional requirements which should be
present in my application prototype.

3.1 Functional requirements

Functional requirements define the functionality that the resulting appli-
cation must provide. The functional requirements are usually in form: "A
system must do <requirement>." For my application I identified the following
functional requirements:..1. User login: A system must provide a login functionality...2. Website creation: A user can create one or more websites...3. Website deletion: A user can delete their websites...4. Website name setting: A user can set or edit their website name...5. Page creation: A user can create a web page and assign it to his website...6. Page no-code editing: A user can edit his web page without any code

writing...7. Page deletion: A user can delete his web page...8. Page URL setting: A user can set URL of his web page...9. Page name setting: A user can set or edit their web page name.

9

3. Analysis of requirements................................
3.2 Non-functional requirements

Non-functional requirements define the properties of the system. The
non-functional requirements are usually in form: "A system must be <re-
quirement>". I identified the following non-functional requirements:..1. Integrability: Because the output of my bachelors work is a server-side

application, it is important to ensure that the server can communicate
with the client-side application, send data and receive data...2. Security: The application should provide limited access to some func-
tionality depending on the user currently logged in...3. Extensibility: Because the goal of this thesis is to implement a prototype
of server-side application, the application itself must be extensible, that
is, it must provide the ability to easily add new features or extend current
ones.

10

Chapter 4
Application concept

4.1 Inspiration

The goal of the resulting application is to give users functionality for
creating their websites without any restrictions. To achieve this goal, it was
necessary to look at the common web pages more closely and do research on
them.

The idea of the solution lies in an observation of popular web pages. As
an example, I looked through the design of popular websites like YouTube,
Google, Instagram, and others. I noticed that each web page’s interface is
built from smaller components, which can be combined to make up a bigger
UI pattern. Further, I came across an article where the author reflects on
a similar problem of creating web pages. In it, he draws a parallel with
chemistry, saying that every substance is essentially composed of smaller
components: molecules and atoms. It looks like an application interface can
be built from small components (atoms) that eventually assemble into large
parts of the interface and finally form a web page [4].

Figure 4.1: Instagram interface built from components [5]

11

4. Application concept..................................
Thinking this way, I noticed that the front-end development library for

JavaScript React, with which I had some work experience before, exposes
the same philosophy. A developer first creates some UI components with
their implemented logic, combined to form a web page. This methodology is
called Component Driven Development [6]. The benefit of such an approach
is that it allows building web pages fast and with better reusability. Also,
this concept is easy to understand as it reminds of building something from
Lego.

Unfortunately, building web applications within this methodology requires
some programming skills, which can be problematic for people coming from
other than software development industries. For that reason, I decided to
build an application that would allow the creation of web pages without any
programming experience.

4.2 Solution

Analyzing the functional and non-functional requirements and also adopting
some concepts from the previous section 4.1, I created a class diagram for
the back-end application prototype, and identified necessary entities for the
implementation.

Figure 4.2: Class diagram of the application

12

.. 4.3. User

4.3 User

A user of this system is a person who can manage their websites. The user
is authorized via OAuth2 protocol through their existing Google account,
thus it is not required to store user’s credentials but just an email, name and
surname. As soon as the user was authorized, the application will check if
their profile already exists in the database. If not, it will create one.

4.4 Site

A site is a user’s website in this system. It is possible for a user to create
multiple sites. Each website must have unique subdomain. Later, in a
complete application, a user will be able to access the websites with a url in
the format:

https://[subdomain].droprr.com

4.4.1 Entity

Entity is a core of the whole system. This unit can be understood as a
data type for a component on a web page. Entity defines what type of user’s
data should be presented. In it’s configuration a user declares fields, their
constraints and how should they be organized among with their styling.

4.4.2 Entity Instance

While Entity answers the question "What data structure should be dis-
played", the Entity Instance answers the question "What data should be
displayed".

An Entity Instance is a specific instance of an Entity with specific user
data that needs to be rendered. For simplicity, we can draw a parallel with
object-oriented programming languages. In this case, the Entity can be
considered a class, and the Entity Instance, in turn, is an instance of this
class. Entity can have multiple Entity Instances.

4.4.3 Block

Further, a Block can be considered as a concrete representation of an Entity
Instance on a web page. Since the Entity and Entity Instance describe the
data that should be displayed and how it should be displayed, the Block
stores the specific HTML code generated from the Instance.

13

4. Application concept..................................

Figure 4.3: Representation of creating HTML element through entities

4.4.4 Page

Each user’s website consists of web pages. Each page stores Blocks, from
which it will be rendered into a regular HTML page later. Also, to make it
possible to get to this page, this entity has a unique url attribute within one
site.

14

Chapter 5
Application design

5.1 Application Architecture

Software architecture is a set of rules and constraints that allow building a
software system for a specific task. Software architecture plays an essential
role in application performance, sustainability, and ability to scale. Choosing
the right software architecture pattern is a significant parameter in software
systems development [7].

Currently there are lots of existing architecture patterns which have their
concrete use cases along with their advantages and disadvantages.

5.2 Layered architecture

The application within this project is built using Layered Architecture.
The idea behind the Layered Architecture is to separate the application into
logical parts called ’Layers’, where each of these layers is responsible for one
specific task. Every layer here is isolated from another, which means that
editing the components of one layer will not affect components of another
layer [8].

Layered architecture is the best choice for this project, because. the application prototype built within this project is relatively small and
development under this approach is fast thanks to the simplicity of the
architecture. each layer is responsible for only one exact task. each layer is isolated which prevents from mutability of one part of
application caused by changes in another one.. testing is easier because of the separation of application components.
Each component can be tested separately

There will be three layers: Database Layer, Persistence Layer and Business
Layer.

15

5. Application design

Figure 5.1: Layered application architecture diagram

. Database Layer

This is the layer of my application where all needed data is stored.. Persistence Layer

This is the intermediate layer between the database and business logic.
It isolates the application logic from the specific database engine. Per-
sistence Layer uses the technique called Object Relational Mapping for
mapping the raw database data to understandable for programming
language objects.. Business Layer

This is the level of my application where all business logic is concentrated.
Business Layer contains a set of rules and logic which are used to
implement functional requirements. It also includes API for front-end
communication.

5.3 Security

In order to secure users’ data it is necessary to provide an application
with some mechanism which will prevent from unauthorized access to them.
Currently, there are lots of authentication and authorization protocols which
can be used for securing data. The application within this thesis is going to
have the OAuth2 authorization protocol.

The OAuth2 is currently the industry-standard authorization protocol [9],
which was designed to allow an application to access user’s data resources
hosted on the other application. It grants access to and restricts some of the
actions that a client application can take with resources on behalf of a user
without sharing user credentials.

16

.......................................5.3. Security

This protocol works with Access Token, a piece of data (typically a char
sequence) used for accessing API. Users receive the access token after they
successfully authorize, and then this token is sent with each API request as a
credential. [10].

OAuth2 defines 4 roles [11]:. Resource Owner - it is a user who has the resources that can be granted
to from them.. Client - an application which requires access to the resources.. Resource Server - a system which receives and validates Access Tokens
from a client and then sends the resources a user can access to.. Authorization Server - a server which verifies the identity of a user and
then issues the Access Tokens.

Figure 5.2: OAuth2 workflow [12]

17

18

Chapter 6
Technologies

6.1 Language and Framework

There are lots of existing programming languages available for the server-
side application development.

During my bachelor’s studies I learned a few of them: C, C++, Python,
JavaScript and Java. All these programming languages can be used to develop
server-side applications.

I have most experience in Java and I find it as a good programming language
for server-side application development. However, it has such disadvantages
as. verbose code. no null safety supported by language

which sometimes negatively affects my application development process.
After doing some research, I found the Kotlin Programming language,

which seemed to me truly interesting, because one of its developers stated it
was designed to be ‘A better Java’ [13]. For my bachelor’s project I chose it,
since it has small learning curve and it solves some Java problems.

6.1.1 Kotlin

Kotlin is a statically-type object oriented programming language running
on Java Virtual Machine. It was designed and developed to be a “better
language” than Java, but it is also fully compatible with Java code. It has
few advantages over Java, which has also influenced my choice in favor of
Kotlin.

Language null-safety

Unlike Java, Kotlin has embedded null-safety. It makes a distinction
between nullable and non-nullable data types. All nullable variables must be
declared with “?” postfix after the type name.
The following code snippet demonstrates an assignment of null value to a
nullable variable and to non-nullable one.

19

6. Technologies
val nullable: String? = null // ok
val nonNullable: String = null // compilation error

Extension functions

Kotlin allows developers to create extensions of functions without a need of
class inheritance. In order to extend functions in Java, it is needed to create
a new class and implement new functionality.
The following code snippet demonstrates the creation of an extension function
to String class. The function adds " :)" to a string.

fun String.addSmile(): String {
return "$this :)"

}

val stringWithSmile = "something".addSmile() // "something :)"

Functional Programming

Kotlin supports both Object Oriented and Functional Programming paradigms
whereas Java is just Object Oriented Programming language. It brings a
developer convenience to use features from Functional Programming when it
comes to operation and mapping of huge data coming from different sources.

6.1.2 Spring Framework

Building an application without any tooling is a truly hard task. A developer
should care about low-level functionality as handling user’s requests or even
application boot process. Framework lets a developer focus on the application
logic implementation while building the web is framework’s task.

There are several Java/Kotlin frameworks available to build web applica-
tions such as Spring Framework, Micronaut, Struts and others. During my
studies I had a chance to only work with Spring Framework, so it was a the
only candidate for my project.

Spring Framework is the most popular and open source framework for
Java applications development. It gives Java developers more design freedom.
In addition, it provides well-documented and easy-to-use tools for solving
problems that arise when creating enterprise applications. Although Spring
does not provide any specific programming model, it has spread in the Java
community primarily as an alternative and replacement to the Enterprise
JavaBeans model.

The key feature of Spring Framework is that most of the objects of an
application are not created by a developer but by Spring itself. A developer
configures the classes using Java Annotations or XML configurations to let
Spring know which objects should be created for a developer. The feature

20

............................... 6.1. Language and Framework

responsible for this task is called the Inversion of Control Container. All the
objects which were created and managed by it are called beans [14].

Figure 6.1: Spring IoC Container

Spring Boot

Spring Boot is an extension of Spring Framework. It allows the devel-
opers to create standalone applications with minimal configuration. The
main advantage of Spring Boot is the automatic configuration based on the
requirements. Spring Boot reduces the amount of code needed to perform
simple tasks or configuration. It ships with Jetty or Apache Tomcat web
servers without the need for explicit server settings [15].

Spring Boot project with all needed dependencies can be easily generated
on https://start.spring.io/

Figure 6.2: Spring Boot project generation

21

https://start.spring.io/

6. Technologies
6.2 Interaction with the application

In order to interact with server-side application a developer should imple-
ment Application Programming Interface (API) for it.

Every web application requires their API to be stable and reliable. For these
reasons a developer has to define the architecture of it and their endpoints.
There are different approaches for the implementation:. REST - Representational State Transfer. SOAP - Simple Object Access Protocol.GraphQL

6.2.1 REST

REST or Representational State Transfer stands for a set of architectural
principles and approaches on how to build a web-application API. Just because
it is a set of guidelines, developers are flexible in their implementation.

REST works over HTTP protocol, which means that the communication
server-client is done by sending hypertext messages. A response from the
server is received in various formats: HTML, XML, JSON, or plain text.
Mainly messages are transmitted to the server in XML or JSON format. [16]

Figure 6.3: Example of POST REST request and response for storing Entity data

22

............................ 6.2. Interaction with the application

6.2.2 SOAP

SOAP or Simple Object Access Protocol is a messaging protocol which
was designed so that applications written in different programming languages
could communicate in decentralized and distributed environment using XML
[17]. Requests to the SOAP API can be handled through different protocols:
HTTP, SMTP, FTP and others. However, the response to this request must
be returned as XML documents.

Figure 6.4: Example of SOAP request and response for the user data retrieval

6.2.3 GraphQL

GraphQL is an open-source data query and manipulation language devel-
oped by Facebook[18]. HTTP is the most common choice for client-server pro-
tocol when using GraphQL. It allows clients to define data required to receive
from the server and thus eliminating scenarios of data over-fetching1and under-
fetching2. The main disadvantage of GraphQL is that it is not cacheable[19]
and does not provide error reporting (always returns HTTP Status 200).

1A scenario, when there is too much unused data received from the server
2A scenario, when there is not enough data received from the server and thus forcing a

user to make another endpoint call

23

6. Technologies
6.2.4 Chosen approach

The application within this project will expose REST API. It is a proven
technology that has been on the market for a long time. Also REST is easy
to learn and implement.

6.2.5 HATEOAS

HATEOAS stands for Hypertext As The Engine Of Application State. It
is a constraint used for building RESTful API [20] in order to provide some
notion of actions that can be performed on the data received from REST
endpoints. Usually a developer who wants to implement some logic using
someone’s API has no clue on what action can be performed on received data
from one endpoint. HATEOAS is a great tool for solving this exact problem.
It allows not only to send data to a requester but also enables to specify the
actions that can be performed on this data.

For example, response to HTTP GET request to /entities/N9pvPhlf instead
of just sending rough data will also send _links object with hypermedia links
that a user of this API can traverse.

Figure 6.5: Example of HATEOAS in the application

6.3 Database

The application built in this project is highly dependent on user’s data and
thus it needs to store it in a database. Currently, there are different types
of databases available on the market including relational and NoSQL ones.
Relational databases have strict data structure, every piece of data must be
stored in tables having predifined constraints. NoSQL, on the other hand,
does not have such strict data organization, which makes their usage very
flexible, since the data stored there can be constantly changed.

The output application requires storing data in tables to have relations
between them. For instance, it would be required to store tables for Entities,
Entity Instances, Sites, Pages, and Blocks. This data structure is already
predefined, and it would be easier to work with relations between these tables.
On the other hand, the application would need to store Entity and Entity
Instance configuration information. This data structure is considered to be

24

...................................... 6.3. Database

highly changeable, and the table constraints of relational databases would
decrease productivity. For example, a Form Field of Entity may consist of
multiple inputs. Storing each input as a row in a strict table may become a
problem because each "feature" of input will need its column, which means
many columns, which can become messy. In this case, storing Forms and
their Inputs is much easier in JSON-like objects, which NoSQL databases
like MongoDB can provide.

I have chosen MySQL and MongoDB databases for this project.

25

6. Technologies
6.4 Caching

With each API request, excluding endpoints for Site creation, users need
to include X-Droprr-Host header with their website domain to make changes
within this website. Each time server receives this header, it looks into a
database in order to check whether this domain is present among the user’s
websites. This operation can be costly because of frequent database requests
and their validations. For this reason, it would make sense to cache the
website data to ease the load off the database.

In order to achieve caching, I have chosen Redis. It is an open-source
key-value data store [21]. Redis stores the data in memory, which means it
does not require a trip do disc, thus reducing latency to microseconds [22].

26

Chapter 7
Implementation

This chapter aims to describe the thesis application development process.
All the skills acquired during the bachelor’s studies concerning software
development, including design, implementation, and testing, were applied
during the implementation.

7.1 REST endpoints definition

After the requirements and system analysis, it was needed to design and
document REST API endpoints.

First, it was necessary to identify the resources on which an API consumer
would perform the actions. In this application, the resources are Sites, Pages,
Entities, Entity Instances, and Blocks. Next, it was necessary to define the
URLs for the resources and HTTP methods that can be applied to them.
After all these steps, things like resource representations, required HTTP
headers, error responses, and HTTP response stats codes were needed to
resolve.

To specify the REST API endpoints, a tool Swagger was used. It is an
open-source tool which allows developers to describe the structure of API.
It uses JSON or YAML strurture to write an API definition, which can be
further rendered to interactive API documentation [23].

27

7. Implementation....................................

Figure 7.1: Example of rendered API documentation in Swagger UI

7.2 Application Initialization

After the endpoints definition, the application base was created with the help
of Spring Initializr. This tool generates Spring Boot projects with chosen
by a developer dependencies. The pre-configured project is saved on a local
machine afterwards.

The application was created as a Gradle project with Kotlin as a main
language. The application also includes the following dependencies:

. Spring Web - includes configurations for building RESTful API.. Spring HATEOAS - eases the RESTful API creation that follow HA-
TEOAS principle.. Spring Data JPA - enables data persistence in SQL stores.. H2 Database - Provides in-memory database, which would be used for
testing..MySQL Driver - provides JDBC driver for MySQL database to the
application.. Spring Data MongoDB - provides MongoDB database connection..OAuth2 Client - adds OAuth2 Client features

28

............................... 7.3. Application Development

7.3 Application Development

7.3.1 Environment configuration

The first step after the project initialization was to configure the local
development environment. First, it was necessary to set up a version control
system in order to track the code changes. Such systems have become as one of
the most popular tool in today’s development [24], since they make the process
of software development easier. Although such systems are commonly used
while developing software in teams, they can also be beneficial in development
alone. Sometimes comes the situation when a developer wants to abort their
code changes because it is causing some software bugs. In this case, reverting
the last change (or ’commit’) can solve this problem. The most popular
version control system is Git, which was used in this project.

Next, the databases MySQL and MongoDB used in this project were set
up and run inside Docker containers. Docker is a platform for software
development that provides the ability to package and run an application in
an isolated environment called a ’container’ [25]. It is a very powerful tool,
especially when it comes to running different services on one machine. It was
convenient to configure and run containers with desired databases and their
configurations instead of installing these programs and their environments on
a machine. Further, Docker makes the deployment process easier since it is
only required to run a single container with an application instead of setting
up the whole environment.

7.4 Business Logic implementation

The business logic implementation has started from the implementation of
REST controller and Service class for Entity and Entity Instance.

First, in order to operate with these structures and their data, it was
necessary to implement the logic for CRUD operations and save them to
the database. Also, it was required to implement a service class with the
logic of the Entity and Entity Instance Configurations. When creating an
Entity, it is required to send a config object inside the request body with
all necessary Entity Fields declaration, their constraints (for example, a
restriction in amount of characters for the heading text) and styling. Because
the application needs to operate with invalid inputs, it was necessary to
implement the logic for the request object validation and the user’s error
handling.

Next, for Entity instantiating, it was essential to verify if the user’s config-
uration object with specific data has the same field types and if the data in
these fields comply with the constraints declared during entity creation.

A Block service had to be implemented for a user’s data display. The logic
of Blocks is straightforward: It takes the user’s data from Entity Instance,
the styling from Entities, and renders it all as an HTML block. Also, it is

29

7. Implementation....................................
important to mention that since each Entity can contain other Entities, and
thus Entity Instances contain other instances, it is also necessary to render
them. In this fashion, Blocks rendering can be considered as a tree traversal.

Figure 7.2: Example of Block rendering from a complex Entity Instance

After implementing the Entities, their Instances, and Blocks logic, comes
the implementation of Page and Site services. Fortunately, the development
of these components was easier and faster. A web page must be renderable,
and to achieve this, a service combines all its blocks and inserts the result
inside body block of an HTML. A page must have a unique url attribute
within one Site.

In order for users to edit their websites, a X-Droprr-Host header must be
present. It contains the current site domain for which a user wants to make
changes.

7.5 Authorization

As soon as the business logic of the application was implemented, there
was left a final step towards the complete prototype - authorization. As it
was mentioned in Section 5, the OAuth2 authorization protocol was used in
this application. Since the whole protocol implementation from scratch would
take a big amount of time, dependency OAuth2-Client for Spring Boot was
there. The application was developed as a Client in the OAuth2 workflow,
which was accessing users’ profile data from their Google accounts. Google
Services, on the other hand, was granted access to these resources and issued
Access Tokens. This extension OAuth2-Client made it possible to implement
all this functionality by just implementing a few Kotlin classes.

30

Chapter 8
Testing

Program testing is an essential part of any software project. It is a process
of executing a program with different inputs in order to find errors of the
system.

There are four main stages of software testing[26]:. Unit testing - testing of small components of a program.. Integration testing - testing of units, components and modules as a
combined entity.. System testing - testing of a whole application if it meets Quality Stan-
dards. Acceptance testing - testing if an application is ready to release.

8.1 Unit Testing

Unit testing is one of the software testing method in which small parts of
application (called ‘units’) are being tested. The goal of it is to test isolated
parts of a program in order to verify that these individual parts work correctly
and as expected. Also the biggest advantage of unit testing is that it allows
to find potential problems earlier in software development life-cycle.

In my application I wrote several test cases which check whether the
required features are present in code and the individual parts of program
work correctly. Within this part I tested CRUD operations with repositories
and some business behaviour of my application with use of mocks1 and stub
methods2. Unit testing helped me to find errors and potential vulnerabilities
in my code.

In my application I used JUnit 5 as a Unit Testing framework for Java
and Kotlin programming languages. For object mocking I used the MockK
library, which was developed mainly for Kotlin Programming language. Since
each class is final by default in Kotlin, it can cause some problems in testing,
especially mocking of objects. The MockK library solves this problem by
creating proxies for mocking classes.

1Mock object is an object which simulates the behaviour of real object
2Method stub is a piece of code simulating the behaviour of existing code.

31

8. Testing

Figure 8.1: Example of test for testing the return of non-existing entity

8.2 Integration testing

Integration testing is a phase of software testing, where all the units are
tested as a group. The reason for the integration testing is to find defects
and problems which can arise between modules or functions. This testing was
mainly focused on performing HTTP request and thus testing different parts
of the application: Controllers, Services, Error Handlers and Repositories.

8.3 Detected problems

During testing, I found problems regarding the invalidity of user input,
and because of this, I created separate objects that validate user data. Also,
by writing tests, I found defects in my program regarding the interaction of
several services, which I also successfully corrected.

32

.................................. 8.3. Detected problems

Figure 8.2: Example of test for response for invalid request of entity creation

33

34

Chapter 9
Further steps

The application prototype provides some basic functionality in order to
represent the key-features of the system. This chapter describes the next
steps for the development of this product along with their future features.

9.1 Linking Entities together

Currently, each Entity can be instantiated and rendered as an HTML block
to form a web page. Unfortunately, due to lack of time, I did not manage
to add a mechanism for linking multiple entities together so that actions
performed on the first Entity can affect the second one. In order to achieve
that, it is necessary to extend the Entity’s Config and add new fields which
will implement the logic of association between the Entities.

9.2 Front-end integration

In this project, I created a server-side application of a no-code platform for
web-pages creation and hosting. Although it is possible to communicate with
this application via REST endpoints, it is still unusable for end users. The
obvious next step would be to develop a client-side application that would
allow users to interact with the application and create their own websites.

35

9. Further steps.....................................

Figure 9.1: Wireframe of Entity Builder on front-end

36

........................... 9.3. Predefined Entities and templates

9.3 Predefined Entities and templates

In order not to build a site from scratch, a user could choose a ready-made
template with prepared Entities and configure them as needed. It would
accelerate users’ website creation as they only will need to configure fewer
things.

9.4 Websites statistics

As a next step, the system would provide a user with their website statistics.

9.5 E-commerce support

As some of the users would want to make e-commerce systems for their
business, the application will provide a functionality of cards and checkout
process.

9.6 Localization

Application will allow users to have their websites in different languages.

9.7 Team collaboration

At the moment, only one user can make changes to his website. The
application will make it possible to collaborate on the same project in the
future.

37

38

Chapter 10
Conclusion

This bachelor’s thesis aimed to design an architecture of the server-side of
a no-code application for web page creation and hosting. First, I stated the
motivation for this project, devoted to the issue definition and the analysis of
existing solutions on the market, and the definition of prototype requirements.

Next, I described the process of the stated problem solution. In this part, I
designed the concept and the architecture of a prototype. I also described my
reasons to choose the particular technologies for the application development
and further described the software implementation process. During my work
on the thesis, I applied the knowledge about software development and the
tools gained during my bachelor’s studies. I also learned new technologies
during the process of implementation. These were, for example, Docker,
Redis, and MongoDB, with which I had no work experience before.

My work results are a working prototype, which will be possible to expand
with new features. I believe that this solution will be commercially successful
in the future, and, more importantly, it will make the process of website
creation more straightforward and faster.

39

40

Bibliography

[1] N. Huss How Many Websites Are There in the World?,
[online]. [Cit. 7.04.2022] URL: https://siteefy.com/
how-many-websites-are-there

[2] Daniela Coppola E-commerce worldwide - statistics facts, [on-
line]. [Cit 23.02.2022] URL: https://www.statista.com/topics/871/
online-shopping/

[3] Avishay Cohen No-code vs low-code vs developers, [online]. [Cit.
17.01.2022] URL: https://www.animaapp.com/blog/industry/
will-no-code-replace-developers/#what-is-low-code

[4] Brad Frost Atomic Design, [online]. [Cit. 10.06.2013] URL: https://
bradfrost.com/blog/post/atomic-web-design/

[5] Brad Frost Atomic Design Methodology. Chapter 2, [online]. URL: https:
//atomicdesign.bradfrost.com/chapter-2/

[6] Jack Pritchard Component Driven Development (CDD) In React, [online].
[Cit. 14.11.2019]

[7] Babu, D.K., Rajulu, G. P., Reddy R. A., Kumari A. A. N. Selection of
Architecture Styles using Analytic Network Process for the Optimization
of Software Architecture [International Journal of Computer Science and
Information Security, Vol. 8, No. 1]. [Cit. 04.2010]

[8] Chavan, Pramod and Mahalingam, Murugan and Chavan, Prajakta. A
Review on Software Architecture Styles with Layered Robotic Software
Architecture [DOI: 10.1109/ICCUBEA.2015.165] [Cit. 07.2015]

[9] OAuth 2.0 [online]. URL: https://oauth.net/2/

[10] Access Tokens [online]. URL: https://auth0.com/docs/secure/
tokens/access-tokens

[11] What is OAuth 2.0? [online]. URL: https://auth0.com/
intro-to-iam/what-is-oauth-2/

41

https://siteefy.com/how-many-websites-are-there
https://siteefy.com/how-many-websites-are-there
https://www.statista.com/topics/871/online-shopping/
https://www.statista.com/topics/871/online-shopping/
https://www.animaapp.com/blog/industry/will-no-code-replace-developers/#what-is-low-code
https://www.animaapp.com/blog/industry/will-no-code-replace-developers/#what-is-low-code
https://bradfrost.com/blog/post/atomic-web-design/
https://bradfrost.com/blog/post/atomic-web-design/
https://atomicdesign.bradfrost.com/chapter-2/
https://atomicdesign.bradfrost.com/chapter-2/
https://oauth.net/2/
https://auth0.com/docs/secure/tokens/access-tokens
https://auth0.com/docs/secure/tokens/access-tokens
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://auth0.com/intro-to-iam/what-is-oauth-2/

10. Conclusion
[12] An Introduction to OAuth 2 [online]. URL: https://www.digitalocean.

com/community/tutorials/an-introduction-to-oauth-2

[13] JVM Languages Report: Extended Interview With Kotlin Cre-
ator Andrey Breslav, [online]. URL: https://www.jrebel.com/blog/
interview-with-kotlin-creator-andrey-breslav

[14] Spring Framework Documentation 5.3.20 [online]. URL:
https://docs.spring.io/spring-framework/docs/current/
reference/html/core.html#spring-core

[15] Spring Boot [online]. URL: https://spring.io/projects/
spring-boot

[16] Red Hat REST vs. SOAP [online]. URL: https://www.redhat.com/en/
topics/integration/whats-the-difference-between-soap-rest

[17] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer Simple
Object Access Protocol (SOAP) 1.1 [online]. [Cit. 08.05.2000] URL: https:
//www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383487

[18] Red Hat What is GraphQL? [online]. URL: https://www.redhat.com/
en/topics/api/what-is-graphql

[19] GraphQL Documentation: Caching [online]. URL: https://graphql.
org/learn/caching/

[20] HATEOAS Driven REST APIs [online]. URL: https://restfulapi.
net/hateoas/

[21] Introduction to Redis [online]. URL: https://redis.io/docs/about/

[22] Redis [online]. URL: https://aws.amazon.com/redis/

[23] Swagger Documentation - What Is OpenAPI? [online]. URL: https:
//swagger.io/docs/specification/about/

[24] Programming/development tools used by software
developers worldwide from 2018 to 2021 [online].
URL: https://www.statista.com/statistics/869106/
worldwide-software-developer-survey-tools-in-use/

[25] Docker docs [online]. URL: https://docs.docker.com/get-started/
overview/

[26] LaTonya Pearson The Four Levels of Software Testing, [on-
line]. [Cit. 11.09.2015] URL: https://www.seguetech.com/
the-four-levels-of-software-testing/

42

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.jrebel.com/blog/interview-with-kotlin-creator-andrey-breslav
https://www.jrebel.com/blog/interview-with-kotlin-creator-andrey-breslav
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#spring-core
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#spring-core
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.redhat.com/en/topics/integration/whats-the-difference-between-soap-rest
https://www.redhat.com/en/topics/integration/whats-the-difference-between-soap-rest
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383487
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383487
https://www.redhat.com/en/topics/api/what-is-graphql
https://www.redhat.com/en/topics/api/what-is-graphql
https://graphql.org/learn/caching/
https://graphql.org/learn/caching/
https://restfulapi.net/hateoas/
https://restfulapi.net/hateoas/
https://redis.io/docs/about/
https://aws.amazon.com/redis/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://www.statista.com/statistics/869106/worldwide-software-developer-survey-tools-in-use/
https://www.statista.com/statistics/869106/worldwide-software-developer-survey-tools-in-use/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.seguetech.com/the-four-levels-of-software-testing/
https://www.seguetech.com/the-four-levels-of-software-testing/

	Introduction
	Motivation
	Goals

	Problem definition
	No-code platforms
	Benefits

	Analysis of existing solutions
	What can be improved

	Potential customers
	Individual solutions
	Box solutions
	Corporate clientele

	Summary

	Analysis of requirements
	Functional requirements
	Non-functional requirements

	Application concept
	Inspiration
	Solution
	User
	Site
	Entity
	Entity Instance
	Block
	Page

	Application design
	Application Architecture
	Layered architecture
	Security

	Technologies
	Language and Framework
	Kotlin
	Spring Framework

	Interaction with the application
	REST
	SOAP
	GraphQL
	Chosen approach
	HATEOAS

	Database
	Caching

	Implementation
	REST endpoints definition
	Application Initialization
	Application Development
	Environment configuration

	Business Logic implementation
	Authorization

	Testing
	Unit Testing
	Integration testing
	Detected problems

	Further steps
	Linking Entities together
	Front-end integration
	Predefined Entities and templates
	Websites statistics
	E-commerce support
	Localization
	Team collaboration

	Conclusion
	Bibliography

