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Abstract
This bachelor thesis is dedicated towards
optimization of a critical combinational
path in a low power and low die area
digital system that contains a RISC-V
processor. The critical path is located in
the instruction memory interface of the
mentioned processor.

This thesis proposes several solution ar-
chitectures; the chosen mechanism then
works on the principle of speculative in-
struction prefetching. The first design is
a simple static branching predictor. The
second, more refined design is a modified
branch predictor with either one-level or
two-level prediction.

The second design was in different
configurations tested with the CoreMark
benchmark so that we could optimize the
design parameters such as memory size,
prediction mechanism, etc.

Our IP was verified throughout the de-
sign process on the RTL level in a sim-
ple System Verilog testbench. Next, the
design was implemented in the Artix-7
xc7a100tcsg324-2 FPGA. Here, we suc-
cessfully ran logic synthesis and static
timing analysis. Lastly, we simulated the
design at the gate-level.

Keywords: RISC-V, RI5CY, VDHL,
FPGA, branch prediction, hardware
cache, instruction prefetching, CoreMark,
embedded system

Supervisor: doc. Ing. Jíří Jakovenko,
Ph.D.

Abstrakt
Tato bakalářská práce se zabývá optima-
lizací kritické kombinační cesty v digital-
ním systému s nízkým příkonem a malou
plochou, který obsahuje RISC-V procesor.
Kritická cesta existuje v rámci rozhraní
instrukční paměti zmíněného procesoru.

Práce podává několik návrhů řešení,
vybraný mechanismus poté funguje na
bázi spekulativního přednačítání instrukcí.
První návrh je jednoduché statické vět-
vení. Druhý, pokročilejší návrh byl imple-
mentován jako upravený prediktor větvení
na bázi jednoúrovňové nebo dvouúrovňové
predikce.

Druhý návrh byl v různých konfigu-
racích podroben zátěžovému testu Core-
Mark za účelem optimalizace parametrů
jako je velikost paměti, mechanismus pre-
dikce apod.

Naše IP bylo v průběhu návrhového
procesu verifikováno na RTL úrovni v jed-
noduchém testovacím prostředí na bázi
jazyku System Verilog. Dále byl návrh im-
plementován v Artix-7 xc7a100tcsg324-2
FPGA. Zde proběhla úspěšně logická syn-
téza a statická časová analýza. Na závěr
byl návrh simulován na hradlové úrovni.

Klíčová slova: RISC-V, RI5CY, VDHL,
FPGA, predikce větvení, hardwarová
mezipaměť, přednačtení instrukcí,
CoreMark, vestavěný systém

Překlad názvu: Implementace
instrukční sady pro RISC-V procesor
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Chapter 1
Abbreviations

. SoC - System on Chip.CPU - Central Processing Unit.NVM - Non-Volatile Memory. IP - Intellectual Property.RAM - Random Access Memory. IAS - Instruction Address Stream. ISA - Instruction Set Architecture. IF - Instruction Fetch. ID - Instruction Decoding. EX - Execute. EM - External Master.WB - Write Back. LRU - Least Recently Used. FIFO - First In, First Out. FSM - Finite State Machine. IPS - Instruction Per Second.CP - Critical (Combinational) Path.MSB - Most Significant Bits. LSB - Least Significant Bits.HRT - HistoRy Table.PT - Pattern Table
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1. Abbreviations.....................................
.DPLL - Digital Phase Locked Loop. SDF - Standard Delay Format.DUT - Design Under Test.ASIC - Application-Specific Integrated Circuit
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Chapter 2
Introduction

2.1 Motivation

In a digital logic system, the use of an asynchronous read Non-Volatile Memory
(NVM) can easily bottleneck the system maximum clock frequency because
of its long read delay. In our case, we deal with a small-sized low-power
embedded System on Chip (SoC) which at its core contains a 32-bit RISC-V
CPU based on the open-source RI5CY from the PULP platform [1]. This
4-stage pipeline core is used in ASICentrum s.r.o. in many low-power designs
because of its small die area and good efficiency.

The asynchronous NVM is used here as the CPU instruction memory, thus
creating a Critical (Combinational) Path (CP) with respect to the CPU clock.
The path may be broken down into the following (see Figure 2.1):..1. Logic between the CPU registers and its instruction fetch address port,..2. spatial signal propagation delay,..3. NVM controller delay,..4. memory read time.

All of the delays are constant and characteristic of our design, except for
spatial signal propagation delay, which is a result of the place-and-route
process.

CPU NVM

RISE prefetch
logic

controller logic
signal propagation

delay
read delay

1 2 33 4

Figure 2.1: Critical combinational path
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2. Introduction .....................................
2.2 Objective

Our goal is to shorten this CP, thus removing the maximum clock frequency
bottleneck and allowing the system to run faster. A major design constraint
is that we can not modify the CPU microarchitecture — our solution shall
be a self-contained entity. This is advantageous as it spares us from difficult
integration of our solution within the CPU. Especially the verification effort
would be far more intensive as it would require re-testing all of the complex
CPU functionalities.

Another advantage of a self-contained solution is that it is partially or fully
independent of the CPU internal structure and can therefore be easily reused.
Also, we will not have to redesign our solution if the CPU microarchitecture
is modified later on.

A disadvantage of this approach is that since we have only the external
signals of the CPU and NVM at our disposal and we cannot influence any of
the internal signals directly, our design might have to be a lot more complex
than if we were to modify the CPU directly. This means higher chip area
usage and more power consumed. Furthermore, our solution must comply
with the system low-power and low die area design paradigm. We will have
to make a trade-off between the efficiency of our solution with its power and
chip area resource usage.

4



Chapter 3
Solution methods

3.1 Instruction fetch protocol

Our CPU inherits from RI5CY its Instruction Fetch (IF) data bus interface,
which complies to the OBI (Open Bus Interface) protocol [2]. OBI is a simple,
request-grant based protocol used for point-to-point on-chip communication.
In our case, the protocol is used in a single master, single slave topology with
many of its optional OBI signals left unused. A simplified OBI transfer is as
follows:. Address phase starts and master asserts request signal, the address is

valid,. slave responds with asserting grant signal, indicating readiness to accept
the address,. on a rising clock edge, the address phase is completed, response phase
starts,. slave asserts rvalid signal when the data are valid, the response phase is
completed.

In the Figure 3.1 we can see an example of a typical transaction compliant
with our modified version of the OBI protocol. The CPU supports a RISC-V
compressed instructions extension, but the instruction fetches are strictly
word-aligned and half-word fetches are handled internally.

clk

instr_req

instr_addr 0x00 0x04 0x08 0x0C 0x10

instr_gnt

instr_rdata @0x00 @0x04 @0x08 @0x0C

instr_rvalid

Figure 3.1: Typical bus transaction

5



3. Solution methods...................................
3.2 Pipelining

A naive solution to our problem would be to pipeline the address channel
(request and instruction address signals) of the instruction fetch interface
simply by making the signals registered. This would then remove the instruc-
tion address logic and signal propagation delay from the CP. However, such
a modification would result in two clock cycles per instruction needed — a
serious decrease in instruction throughput. The effect of this modification
on a typical transaction is shown in Figure 3.2. Such a solution would be
extremely efficient in terms of power consumed per clock edge and chip area
used. However, because of the dramatic decrease in code execution latency,
we deem it as non-viable for our system.

clk

instr_req

instr_addr 0x00 0x04 0x08

instr_req_i

instr_addr_i 0x00 0x04 0x08

instr_gnt

instr_rdata @0x00 @0x04

instr_rvalid

Figure 3.2: Pipelined bus transaction

3.3 Prefetcher

3.3.1 Theory of operation

A different approach is to design a custom prefetcher IP, a so-called RISE
(RISc-v prEfetch), that would be placed in between the CPU and the NVM.
A system-level view of this modification is shown in Figure 3.3

CPU RISE NVM
address channel signals address channel signals

response channel signalsresponse channel signals

Figure 3.3: Modified system block diagram

The purpose of this digital logic block would be to speculatively fetch an
instruction one clock cycle ahead and then compare it in the next cycle to
the actual IF request. Its function would be simple: If the prefetched and
requested instruction addresses match, then forward the instruction data to
the CPU, else stall the CPU and meanwhile fetch the requested instruction.

6



......................................3.3. Prefetcher

The IP block can achieve this by mimicking the address and response channel
signals coming from the NVM so that the CPU sees the RISE IP as a part
of the NVM. We can then stall the CPU by simply dropping the grant and
rvalid signals for a given number of cycles. The interface-level view of this
mechanism is shown in Figure 3.4

clk

instr_req

instr_addr 0x00 0x04 0x1C 0x20 0x24

rise_pref_instr_addr 0x00 0x04 0x08 0x1C 0x20 0x24

rise_instr_gnt

rise_instr_rdata @0x00 @0x04 @0x1C @0x20

rise_instr_rvalid

RISE operation PREFETCH STALL PREFETCH

mismatch

a

b

c

d

Figure 3.4: RISE IP operation

By introducing RISE into our system, we will eliminate instruction address
logic and signal propagation delay (if we place the RISE sufficiently close
to the NVM) from the critical path as illustrated in Figure 3.5. The
former is determined solely by the CPU microarchitecture and therefore its
combinational delay is fixed. The latter is dependent on the place-and-route
process result and can vary from negligible to dominant. We have to take
into account that we inadvertently introduce some additional logic into the
critical path. This logic sits between the RISE’s internal registers and its
address port, similar to the CPU instruction address logic. Therefore, we
have to design the RISE IP so that this nuisance delay is minimal.

CPU

RISE NVM

RISE prefetch

logic
NVM logic

Figure 3.5: Critical path with RISE modification

Such a modification would increase the Instructions Per Second (IPS) by
allowing us to raise maximum clock frequency and not by decreasing the
number of clock cycles spent evaluating some task. If our IP could predict
perfectly every IF address, we would need precisely the same number of
clock cycles for a given workload. RISE therefore does not interfere with
the instruction execution flow, serving instead as a sort of one-instruction
lookahead prefetcher.

7



3. Solution methods...................................
3.3.2 Performance analysis

Next, we wish to deduce how efficient our prefetcher IP must be to achieve a
system speed-up. We view the Instruction Address Stream (IAS) purely as a
series of numbers; e.g., we do not consider the underlying instructions here.
Let us also define a continuous address stream as a sequence of addresses
that are successively incremented by four, e.g., 4, 8, 12, ...; otherwise, we say
that the stream is discontinuous. We call the address immediately preceding
the discontinuity the source and the following one the destination. Next, we
define these parameters for a sufficiently long sequence of addresses:. h — IP’s hit rate: number of successfully predicted discontinuities divided

by total number of discontinuities,. k — penalty of a miss: how many clock cycles we need to fetch an
instruction that we mispredicted. Shall be no less than two,. nb, ns — number of discontinuous and continuous addresses respectively. fo, fn — old and new system clock frequency respectively.

Then we say, that the time spent evaluating the task must be shorter after
the introduction of RISE IP, i.e.:

1
fo

(nb + ns) >
1
fn

(hnb + (1 − h)knb + ns). (3.1)

This is a simple inequality, linear in h, and after some simple manipulation
we get following:

h >
k − fn

fo

k − 1 + ns

nb

1 − fn

fo

k − 1 (3.2)

This gives us a lower bound for h if our goal is an execution speed up.
Now, ns

nb
is dependent on the software that is running on the CPU, and we

therefore cannot influence it. Examining 3.2, it is clear that the higher the
ratio ns

nb
, the lower is our demand on the hit rate h — this is logical as the

best discontinuity is the one that does not exist, as we cannot mispredict it.
It is also apparent, that as h −→ 1 the maximum system speed up ap-

proaches fn

fo
. This places a fundamental limit on the system IPS gain. In

Figure 3.6 the different values of the lower bound are shown for h as a
function of the ratio fn

fo
with ns

nb
= 10

3 . A significant increase in lower bound h
between k = 2 and k > 2 is apparent. This implies much higher requirements
for predictor performance if k > 2 and we therefore wish to avoid this and
keep k = 2.

The ratio fn

fo
is ultimately dependent on the place-and-route result. Still,

we have to be careful as we could decrease this value by introducing too much
of RISE prefetch logic into the critical path (as discussed in Section 3.3.1).

8



......................................3.3. Prefetcher

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 2

k = 3

k = 4

Figure 3.6: Different values for h, ns

nb
= 10

3

3.3.3 Instruction execution flow

In a typical CPU execution task, we can expect the majority of instructions to
be spatially local, i.e., their addresses are sequentially incremented by a fixed
constant (in our case by 4). These instructions do the actual computations —
arithmetic and logic operations, storing and loading main memory data, etc.
The rest are branching instructions, which command the CPU to jump to
program counter relative (in the case of RISC-V Instruction Set Architecture
(ISA)) instruction addresses, thus beginning a different execution sequence.
These branching instructions can be further divided into unconditional, which
always jump, and conditional, where the branch outcome depends on the
CPU state (its internal registers).

We can expect a similar behavior at the IF interface — the instruction
address stream is mostly continuous with a few discontinuities caused by
branching instructions. However, we will not see a one-to-one mapping
between the assembler-level and IF-level instruction addresses flow. We have
to consider the underlying CPU instruction pipelining. This behavior is
shown in Figure 3.7: first, a branching instruction is fetched (enters the
IF stage of CPU pipeline). Some number of cycles later, the branching
instruction outcome is resolved in the execution stage. If taken, the branch
destination address is fetched, else we continue to fetch sequentially [3]. Thus,
the corresponding discontinuity in the IAS will occur some number of cycles
later, after the branching instruction passes through the RISE IP. The number
of additional instructions being fetched between the fetching and resolving of

9



3. Solution methods...................................
the branching instruction depends on the specific instruction. This delay is
also dependent on the current CPU state, e.g., how full is the instructions
prefetching buffer? Have we fetched a compressed instruction or not? Is the
branching instruction execution dependent on some other instruction already
in the pipeline? Etc.

clk

instr_req

instr_addr 0x04 0x08 0x1C 0x4C 0x50

instr_gnt

a

Figure 3.7: Effects of pipelining for a 4-stage pipelined CPU

In general, a single branching instruction causes two discontinuities in the
IAS — when the instruction enters the IF stage, the CPU branch predictor
decides to either continue fetching sequentially or it branches. Some num-
ber of cycles later, the branch is resolved, and depending on the outcome,
another discontinuity can occur. All the possible scenarios are illustrated in
Figure 3.8

Our CPU, fortunately, has a static branch prediction, in our case meaning
that conditional branches are always not taken. The IAS will be therefore
significantly less discontinuous (no discontinuities induced by CPU predic-
tion) and we expect that this will make our efforts easier, as explained in
Section 3.3.2. We will use IAS discontinuities and the underlying branching
instructions somewhat interchangeably below in this text. It is important to
remember that although in our case one branching instruction will usually
induce one IAS discontinuity, the source address will not correspond to the
branching instruction address.

3.3.4 Static Prefetching

The most straightforward prefetching mechanism is a static one — it always
fetches the next sequential instruction. In a sufficiently long program with a
diverse range of branch patterns, we can expect a hit rate of around 60% [4].
Even though this performance may not be sufficient for overall system speed
up as derived in Section 3.3.2, we can use this scheme as a comparison to

10



......................................3.3. Prefetcher

0x04 0x08

0x1C

0x4C 0x50

0x20

0x4C 0x50

0x24 0x28

0x1C 0x20

0x54 0x58

speculative IF

Taken

Not Taken

Hit

Miss

Hit

Miss

t

Figure 3.8: All possible branching

a more sophisticated one. We also expect this solution to have a low power
consumption and a low die area usage. This design will also be very easy to
verify thanks to its low complexity.

3.3.5 Dynamic Prefetching w/o ID

The prefetching mechanism we propose is as follows: (See Figure 3.9):. A table indexed by the instruction address contains in each line a branch
address and branch prediction data,. at the start of the execution, all instruction addresses are assumed to be
continuous and we simply fetch the next sequential address,. if a discontinuity occurs somewhere during the task execution, we record
the destination address in the table line indexed by the source address
and initialize prediction data,. if we then encounter the source address later on, we can now estimate
based on the prediction data if we are to fetch the destination or sequential
address,. based on the branch outcome, we update the prediction data to hopefully
increase the probability of a successful future prediction.

It can also happen that the destination address corresponding to a source
address changes, i.e., we observe a discontinuity but with a different desti-
nation address than we have recorded in our table. This can happen when
the clock cycle delay between the instruction being fetched and induced IAS
discontinuity changes. Also, we may observe this effect when two compressed
branching instructions share the same instruction address. We solve this

11



3. Solution methods...................................
by reinitializing the table line with the new destination address and new
prediction data.

clk

instr_addr 0x000x040x1C0x200x24

rise_pref_instr_addr 0x000x040x080x1C0x200x24

RISE operation PREFETCHSTALLPREFETCH

mismatch

a

b

Figure 3.9: Table based prefetching mechanism

We will use the algorithms used in a classical dynamic predictor for the
discontinuity prediction. Considering our low die area and low power consump-
tion requirements, we will focus on simple one-level and two-level prediction
schemes utilizing a saturating counter. This will be discussed below in
Section 4.3.2.

3.3.6 Dynamic Prefetching Mechanism With ID

In this mechanism, we decode the prefetched instruction to check whether
it is an unconditional or conditional branch. If we have an unconditional
branch, we compute the target address as
target address = branch address + 2·imm, where the imm is the immediate
field in the instruction data. Next, we store the target address in a buffer
and after the IF-EX delay (discussed in Section 3.3.3), we present it to the
CPU. In the case of a conditional branch, we do the same, but we additionally
decide if the branch is to be taken or not. Branch prediction would be
done in the same fashion as we would with the mechanism w\o instruction
prefetching, i.e., a table-based dynamic approach. If the instruction is neither
an unconditional nor a conditional branch, we fetch sequentially.

To figure out the IF-EX delay, we can either deduce it by looking at some
internal signals of the CPU, or we take some sort of a statistical approach.
For example, we could record this delay in our table, hoping that it does not
change much for a given instruction.

12



......................................3.3. Prefetcher

3.3.7 Mechanism comparison

The static mechanism is undoubtedly the one that will be the most efficient
in terms of power consumed per clock edge and die area used. However,
its poor hit rate can lead to an overall system slow down. We will design
this mechanism first to keep it as a benchmark, comparing it to other, more
sophisticated methods.

In the dynamic approach w\o instruction decoding (ID) there is, as the name
implies, no decoding of the underlying instructions and we treat it purely as a
problem of predicting values with strong spatial locality. This way, we do not
have to consider all the difficulties mentioned in Section 3.3.3 — especially
the problem of determining the delay between the branch instruction being
fetched and resolved. However, this way, we lose the included information
about the target address, which can be reconstructed from the immediate
field of the branching instruction and its own address. Instead, we have to
save the destination address in the table, which means a significant increase
in the table resource usage. Another disadvantage of this approach is the
possibly less efficient table usage — if the IF-EX delay varies for a given
instruction in time, more than one discontinuity can be induced. For example,
for a branching instruction with an address 0x04, in time, we can observe
these sequences: 0x04, 0x08, 0x1C, 0x4C, ... or 0x04, 0x08, 0x1C, 0x20, 0x4C,
...

This will induce two entries in our table, one 0x1C - 0x4C and the other
0x20 - 0x4C, even though both are caused by the same instruction.

Without instruction decoding, we also can not tell which instructions are
branching and which are not. This means we will mispredict all discontinuities
induced by unconditional branches at least once. The induced discontinuities
will also occupy space in our table even though we could have predicted them
perfectly every time if we had decoded the underlying instructions.

We can also be sure that our design will be self-contained with this approach,
dependent only on the CPU IF protocol (even ISA independent).

The approach using instruction decoding will be dependent on the CPU
microarchitecture (number of stages of pipeline, internal signals, ISA depen-
dent) but it is the best candidate for the most efficient prefetcher in terms of
prediction hit rate. The corresponding table will also be much smaller and
more efficiently used than in the case of no instruction decoding. Lastly, in
terms of design complexity, we shall rank these approaches in the same order
in which they were presented.

The advantages and disadvantages of the proposed mechanisms are sum-
marized in Table 3.1
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3. Solution methods...................................

Static Dynamic w\o ID Dynamic with ID
ISA independent Yes Yes No

Die area Low Highest Higher
Power per cycle Low Higher Higher

Design complexity Low Higher Highest
Hit rate Low Higher Highest

Table size X Higher Lower
Table use efficiency X Lower Higher

Table 3.1: Comparison of different prefetcher mechanisms
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Chapter 4
Implementation

Based on the discussion in the previous section, we have decided to implement
the RISE IP prefetcher solution both with the static and dynamic mechanisms
(no ID). The corresponding hardware will be described in the VHDL hardware
description language. The pipelining solution will not be implemented, as
its negative impact on the CPU IPS makes this approach non-viable for our
intents and purposes.

When designing the dynamic prefetching mechanism, we will implement
the table as a hardware cache with parameterized properties (size, degree of
associativity). For different sets of parameter configurations, we will then
evaluate the cache performance, choosing the most optimal setting with
respect to die area, power consumed, and predictor hit rate.

As for the prediction mechanism itself, we will implement a one-level and
a two-level 4-state saturating counter scheme.

If our design is to succeed in speeding up our system, we have to ensure
that we do not waste any cycles while prefetching the CPU instructions. We
have a maximum budget of one cycle per successful prefetch and ideally no
more than two cycles for an unsuccessful one. We thus have to make sure
that our design will not go through any unnecessary states. Furthermore,
when considering the table-based dynamic approach, we will not be able to
simultaneously update and read from our table and therefore we will have to
choose which of these operations to prioritize.

4.1 System Level Design

The RISE IP prefetcher has to support these features:

. Compliant to the CPU IF interface (OBI protocol),

. speculative prefetching of the CPU instructions,

. seamless integration into an existing RISC-V based SoC.
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4. Implementation....................................
4.2 Block Level Design

The basic block level design common to all mechanisms is shown in
Figure 4.1:

Prefetcher

Finite

State

Machine

instruction address

CPU IF handshake NVM controller handshake

prefetched instruction address

NVM read data

instruction data

controlCPU NVM

Predictor

predicted address

Figure 4.1: Block diagram of RISE IP

The Prefetcher block is responsible for providing the NVM with a prefetched
instruction address based on the CPU requested instruction address. It
also signals to the FSM if the prefetched and requested addresses match.
The Predictor block provides the Prefetcher with the predicted address. For
the static mechanism, this block is void, as we always fetch sequentially.
The Finite State Machine (FSM) provides control signals to all other RISE IP
blocks and is also responsible for OBI-compliant communication with CPU
and NVM. All RISE IP blocks share the same clock with the CPU and the
NVM controller.

4.3 RTL design

4.3.1 Static mechanism

The RTL structure of the Prefetcher block, together with the NVM abstraction,
is shown in the Figure 4.2. We essentially choose between three options for
the prefetched address:
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instruction data

?=

0x4

control

hit or miss

instruction address

sequential address

prefetched address
NVM logic

RISE NVM

Figure 4.2: RTL design of the Prefetcher block with a highlighted CP..1. The current CPU requested instruction address — we have mispredicted
and must recover, or the RISE has been just initialized,..2. the sequential address — RISE is prefetching,..3. the last prefetched address — RISE is waiting for the request signal from
the CPU or grant signal from the NVM.

In the case of a miss, we have to drop the grant signal to the CPU in the
same cycle to signal to the CPU that its request has not been granted. We
have chosen to implement our FSM as a Mealy-type state machine to achieve
this. Its state transition diagram is described in Figure 4.3.

In Figure 4.4 and Figure 4.5 we have shown typical scenarios of RISE
operation.

As is apparent from the Figure 4.2 a feature of this design is a minimal
combinational nuisance delay (as discussed in Section 3.3.1) because the
prefetched instruction address is registered.

4.3.2 Dynamic mechanism w\o ID

The prefetcher block of the dynamic mechanism with no ID will be the same
as in the static approach, except that the multiplexer now has an additional
input — the predicted address. We can thus be sure that the nuisance delay
will be minimal, as the prefetched address is registered. However, we wish
to implement most of the predictor table memory as a synchronous-read,
synchronous-write RAM, and therefore we can not provide the predicted
address stored in the RAM in the same cycle in which the CPU requested
instruction address (which serves as RAM address) arrives in the RISE IP.
To solve this, we use the immediately sequential address to read the table.
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’x0x’ ’x10’

’x11’

’x0x’
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MUX out = instruction address

MUX out = prefetched address

MUX out = sequential address

input = (instruction request, flash grant, hit or miss)

Figure 4.3: FSM state transition

clk

FSM state SLEEP INIC WAIT RUN

instruction request

NVM grant

instruction address 0x04 0x08 0x1C

MUX out 0x00 0x04 0x08 0x1C 0x4C

prefetched instruction 0x00 0x04 0x08 0x1C

instruction grant

instruction data @0x04 @0x08

instruction valid

Figure 4.4: RISE initialization

Therefore, for a given instruction, we will have the table data ready almost
immediately at the time the address arrives in RISE because the table access
control signals have been figured out in the previous cycle. This only works
provided that the current requested address is the immediately sequential in
relation to the previous one. If it is not, then a discontinuity occurred and
we will not have the correct data to make a prediction in this cycle. This
should not be detrimental to the prefetcher performance as we expect these
immediately following discontinuities to be rare.

An alternative approach is to insert a second multiplexing stage in the
prefetcher block, which would choose between the first stage and the predicted
address. This would, however, mean some added nuisance delay in the CP.
The RTL design of such a block is shown in Figure 4.6. The predictor
table provides the predicted destination address based on the sequential
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clk

FSM state RUN MISS RUN STALL

instruction request

NVM grant

instruction address 0x1C 0x4C 0x50

MUX out 0x20 0x4C 0x50 0x54

prefetched instruction 0x1C 0x20 0x4C 0x50 0x54

hit or miss

instruction grant

instruction data @0x08 @0x1C @0x4C @0x50

instruction valid

Figure 4.5: RISE miss and stall function

predicted address

?=

0x4

control

instruction address

sequential address

prefetched address

control

taken or
not taken

taken or
not taken

hit or
miss

Figure 4.6: RTL design of the alternative Prefetcher block

address, while the predictor FSM decides if the branch is to be taken or not.
Then, when the branch is resolved, the predictor FSM computes the updated
prediction data as a function of the current data and branch being hit or not.

For the FSM, we use the same Mealy-type state machine as in the static
approach, the state transitions being the same. We only have to modify the
control signals so that we can distinguish if the table line’s data are to be
initialized, updated, or reinitialized in the case of a miss.

The block diagram view of the predictor block is shown in Figure 4.7.

Cache theory

When designing the table for our predictor, we have to deal with the problem
of storage size — we cannot map every single instruction to a unique table line
as that would require an immense memory size. We can take advantage of the
fact that the instructions exhibit a temporal and spatial locality. Temporal
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prediction

data
current

prediction

data

updated

sequential
address

taken or
not taken

predicted
destination address controlcontrol

Table
Saturating

counter
FSM

Figure 4.7: Block diagram of the predictor block

locality means locality in time — if a branch instruction is fetched, it is
highly likely to be fetched in the near future again. Consider this pseudocode
snippet:

for i in 1 to N do
for j in 1 to M do

<some calculation>
end for

end for
The compiler will map these two for loops to two branching instructions,

each fetched repeatedly in a short span of time when the CPU starts executing
this task. Spatial locality means that these two instructions will be close in
the instruction address space, i.e., the difference between their addresses will
be small relative to the address space scope.

Therefore, we will implement our table as a hardware cache, a small
amount of memory that temporarily holds data with a high probability of
being referenced in the near future. The goal of this design is to:.Maximize the probability of the cache storing the data being referenced

next,.minimize the size of the cache.

A typical CPU cache that has one-cycle associative search is shown in
Figure 4.8. The atomic unit of data is called a cache line. The address
space is partitioned into S number of sets (S is also alternatively called the
degree of cache associativity), each containing N number of lines, which is
the smallest unit of data in the cache. The set size is N = 2m so that each
set can be implemented as a RAM addressed by the set index. The number
of sets is arbitrary. To identify the correct data in the cache, we append to
every line a tag index so that the mapping address 7→ {tag index, set index}
is unique (address bits are partitioned to tag and set index), which is then
compared to the tag index. A typical read operation is as follows:

20



..................................... 4.3. RTL design..1. Read S cache lines, addressing with the set index,..2. compare the tags of the read lines with the tag index,..3. if a hit, then forward the correct line to the CPU, if miss allocate a new
line with the correct data from the main memory, then forward it to
CPU.

The cache starts out empty and is gradually filled. As the address space is
limited, later in the future, we have to decide which lines we keep and which
we overwrite. The algorithm in charge of this is called a replacement policy
and several options are available such as First In, First Out (FIFO), Least
Recently Used (LRU), or random replacement [6].

tag 0 data 0
tag 1
tag 2
tag 3

data 1
data 2
data 3

tag 0 data 0
tag 1
tag 2
tag 3

data 1
data 2
data 3

address

set indextag index

?=

?=

data out

Figure 4.8: CPU cache structure

As [6] notes, for a given memory budget of B = S · N lines, as N increases,
the probability of finding the correct line decreases, as does the cache’s
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4. Implementation....................................
complexity. The first can be seen clearly from the fact that the

address 7→ set index is a many-to-one mapping. The latter is also evident:
we need fewer comparators and less multiplexing logic.

The nature of the cache in relation to N and S can be best understood
by looking at its limits: if we set S = 1 we have a direct-mapped cache,
the least complex, the smallest hit probability. For N = 1 we get a fully
associative cache, the most complex, the best hit probability. In between is a
set-associative cache, providing a compromise between the two corner cases.

Cache implementation

When implementing the cache design, we will have to tweak it to suit our
needs. First of all, our cache has to have a maximum of one clock cycle
latency when doing a read operation (write operation can be longer, but we
prefer it not to). A parallel tag comparison is therefore needed, implying a
need for S comparators. We could also solve this by pipelining our cache,
partitioning its operation into stages. We will not implement our table this
way as it would make the design needlessly complex and it would result in a
higher k value as discussed in Section 3.3.2.

Second, the output of our cache has to be directly the output of a syn-
chronous logic in order to minimize the nuisance delay as described earlier in
this section.

Third, the cache design shall comply with the low die area and low power
paradigm. One compromise we can do is to make the address 7→ tag index
also a many-to-one mapping, therefore making the tags smaller and saving
some space.

This is possible because we do not mind if we occasionally fetch the incorrect
cache line, as it will simply lead to a lower chance (on average) of a prediction
hit. Whereas in a CPU cache, it is imperative that we fetch the correct line,
else we feed the CPU the incorrect data or address value, possibly leading to
a critical failure.

However, we have to be careful, as lowering the tag bit length could lead
to a higher dynamic memory power consumption. Consider this: if we have a
very small tag bit length and all the cache lines have been initialized, then on
every fetch, there is a high probability of a cache hit, resulting in the table
memory being read. We therefore have to optimize between die area (tag
bits) and power consumption (table being read).

Fourth, we need to choose a replacement policy with an implementation
that has a good balance between power and die area used versus efficiency.
The most efficient replacement policy would be a one that replaces the line
that will not be accessed for the longest time relative to all other lines, a
so-called clairvoyant replacement algorithm [7].

Now we will discuss the shortcomings of our cache memory. In a traditional
CPU cache, an important metric of cache performance is its hit rate — how
often do we find the data we need in the cache relative to all cache fetches.
A miss results in the cache having to fetch the data from the main memory,
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..................................... 4.3. RTL design

possibly stalling the CPU execution. Our cache, however, will not store the
full tag value of the address because of memory size considerations. We will
thus observe the phenomenon of colliding addresses. This happens when we
read a cache line onto which a different address was mapped in the past —
thus, two or more instructions share the same prediction data, leading to a
lower prediction hit probability.

Initially, when the CPU starts executing, the cache will perform poorly
simply by not having any data available yet. Then, when the cache is filled, so
long as the CPU task is executed roughly sequentially (discontinuities in IAS,
but small in comparison to address space scope) we will see a slow but steady
rise in the number of collisions as the addresses wrap around the tag and set
index scope. If the task execution makes a big leap in the address space, we
will see a sudden spike in the number of collisions before the prediction data
is recomputed. Therefore the cache will yield the worst results if the task
execution jumps often in the address space, not giving the prediction data
the time to settle.

In Figure 4.9 we can see our RTL implementation of the direct mapped
cache (S = 1, N = 2m, where m is the bit length of set index)

To satisfy the read latency of one cycle, we first read an asynchronous-read
memory which tells us if the corresponding cache line has been activated and
also the tag is compared. Then, based on the comparison result, FSM control
signals, and cache line being set or not, we provide the corresponding enable
signal level to a RAM which will read the predicted destination address and
the prediction bits on the next rising clock edge. The asynchronous-read
memory also has to be reset at the start of the RISE IP operation; we will
therefore construct it from D-type flip-flops. Such storage is expensive in
terms of transistors per bit [8], but since this memory is very small, we can
afford this.

When we write to the cache when we want to either. Initialize a new line,. reinitialize a new line,. update prediction data.

All of these operations occur in the next cycle after a prefetch miss. Therefore,
we have to use a registered (delayed) instruction address to address the cache.

We now discuss some power and die area optimizations used in this design.
First of all, we can expect that the range of most jumps is fairly small
compared to the address space scope and thus the source and destination
address will be relatively close to each other in the address space. We can then
save some of our memory budget by not saving the full destination address
but only a given number of lower order bits. When we read the clipped
destination address based on some source address, we attempt to reconstruct
the original destination address by concatenating the stored value with the
complementary higher order bits of the source address. This will inevitably
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Figure 4.9: Table RTL structure, direct mapped cache

lead to some discontinuities being unpredictable — their destination and
source address are too far apart in the address space. The relative number
of such discontinuities and their impact on the predictor performance is
highly dependent on the workload and we will try to optimize the clipped
destination length based on simulation results. To prevent these unpredictable
discontinuities from polluting the cache, we always compare the source and
destination the bits complementary to the clipped least significant ones before
an initialization, to prevent them from being written into the cache.

We can also save some power by partitioning the RAM into two — one
containing the destination address and the other the prediction data. We
expect that the intent of updating a cache line will mostly be to update the
prediction data. Since an SRAM dynamic power consumption is proportional
to its size, we would waste energy by overwriting the SRAM line by mostly
the same bits (destination address bits).

Since we are using a saturated counter branch prediction (described in
4.3.2), we expect that for some cache lines, the updated prediction data will
often match the current data. These updates are redundant — they consume
extra power and provide no additional information. Since we prioritize
updates over reads, they also degrade the predictor performance by needlessly
occupying the cache. We get rid of them by comparing the updated and
current prediction data; if they match, we do not update the cache.

The line active table is itself a sort of a power optimization because it
lowers cold start power consumption, limiting the cache accesses only to
addresses that have been already set. For a sufficiently long task however,
this effect should vanish.

In Figure 4.10 we see the implementation of the full associative cache.
We use the FIFO replacement policy implemented by a mod S counter. This
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Figure 4.10: Table RTL structure, full associative cache

means that we always replace the line that has been added the least recently
(not to confuse with Least Recently Used replacement policy). We choose
this policy because it is easy to implement, costing us only log2 S bits. We
expect it to perform well (performance being defined in Section 3.3.2) if
the task execution is sufficiently sequential.

In Figure 3.10 there is the n-way associative cache. For the replacement
policy, we choose a random replacement policy.

From here, a pattern emerges for a general cache — first, we read out S
tag values addressed by the set index, then make S comparisons with the
fetched tag index. Then convert the S bit, one hot encoded comparison result
to binary, which yields the hit set number. Then concatenate this with the
set index to obtain the line address.

Prediction mechanism

Before designing the prediction mechanism itself, we have to consider the
typical behavior of the underlying branching instructions. We categorize the
branching patterns into three categories:. Loop branches,. repeating pattern branches,. pseudo-random branches.
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We have already encountered an example of a loop branch:
for i in 1 to N do

for j in 1 to M do
<some calculation>

end for
end for

The branch pattern of the nested instruction is (T — Taken, NT — Not
Taken) {T, T, T, ..., NT, T, T, ...}. Looping behavior is nicely predictable and
also very common; we should therefore pay attention to the way our proposed
branch prediction mechanism handles them.

The repeating pattern branches, as the name implies, exhibit a repeating
pattern, that is sufficiently short in length. A loop branch is therefore a
special case of a repeating pattern. Here, every third branch is not taken:
{T, T, NT, T, T, NT, T, T, ...} Such a behavior arises for example when exe-
cuting short loops or when branching instructions are somehow coupled:

for i in 1 to N do ▷ N » 4
if i mod 4 == 0 then

<some calculation>
end if
<some calculation>

end for

Predicting these branches will be much more difficult, as the prediction
scheme has to somehow adapt to the branching pattern. We also expect the
prediction to be more and more difficult as the pattern length increases.
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The pseudo-random branches either exhibit a pattern that is impractically
long or the branch outcome is determined by some random or pseudo-random
data (such as user input). When evaluating these branches, the performance
of our predictor will be highly dependent on the ratio of branch outcomes and
also on the conditional probability P (T |NT ) and P (NT |T ), e.g., we expect
different performance for branch histories {T, T, T, T, NT, NT, NT, NT} and
{T, NT, NT, T, T, NT, T, NT} — same ratio of branch outcomes, different
conditional probabilities.

An elementary prediction mechanism is the so-called saturating counter.
It is a finite state machine that based on the current state determines if the
branch is to be taken or not. The next state is then determined when the
branch is resolved. We assume that when a branch is resolved, there is a
high probability that the outcome will repeat when the branch is evaluated
again in the future. The simplest two-state predictor is in Figure 4.12. Its
prediction saturates after only one Taken or Not Taken evaluated branch
outcome.

TAKENNOT
TAKEN

taken

taken

not
taken

not
taken

Figure 4.12: Two-state saturating counter

A four-state predictor is shown in Figure 4.13. It assumes one of 4
states — Strongly Not Taken (SNT), Weakly Not Taken (WNT), Weakly
Taken (WT) and Strongly Taken (ST), the default state is the WT. Other
state transition schemes are possible, but [9] showed empirically that the one
presented performs the best for a wide range of branching patterns.

Here, if the predictor is saturated, we must deviate twice to switch the
prediction outcome. This is beneficial when evaluating a nested loop branch

— with the four-state counter, we make only one misprediction (on the closing
loop) rather than two (on the closing loop and then on the opening one) with
the two-state counter.
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NOT NOT
STRONGLY
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Figure 4.13: Four-state saturating counter
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In general, when it comes to sensitivity to changes in branch patterns, the

four-state counter is a good compromise between two-state predictor (too
sensitive) and more-state predictors (not sensitive enough). The saturating
counter predictor performance significantly degrades when presented with
branch patterns with high probabilities P (T |NT ) and P (NT |T ). For example
a pattern {T, NT, T, NT, T, NT, ...} will cause a saturated/unsaturated four-
state predictor to have a 50% and 0% hit rate respectively. This type of
predictor performs well when evaluating a task containing long loops, or
more generally branches, where one outcome is statistically much more likely.
Advantages of this scheme are easy implementation, relatively low die area,
and power costs.

To improve on the idea of saturating counters, we can make our predictor
take into account the branch history that we have observed so far. This
scheme is then called two-level prediction — the first level is some kind of
memory that utilizes the branch histories of the currently executed task.
The second level is a table of predictors that we index by combining the
cache address and the branch histories. The mechanism that we discussed
previously is then called a one-level prediction. The motivation is to be
able to better predict short repetitive patterns that the previously described
4-state saturating counter struggles with.

In its simplest form, this history can be either global, meaning that as the
task executes, we keep a shared record of previous branch outcomes, or it is
local and we therefore have the same record, but for every branch individually.

Now we will discuss the case of the local branch history mechanism.
Paper [9] defines the local history as a branch HistoRy Table (HRT) —

a memory that contains the branch histories of every cache line. One such
history keeps track of the last M branch outcomes for that particular cache
line. That means that the history can assume one of 2M patterns. This
history is then used as an index to select one of 2M 4-state saturating counters
stored in a global branch history Pattern Table (PT), see Figure 4.14 . This
scheme allocates different branch predictors to different branch patterns, thus
allowing us to predict (after the predictor values settle) any repeating pattern
with a period less than M + 1. If the pattern period length is greater than
M + 1 but less than 2M , then we can also predict it correctly, provided that
all the sub-sequences are unique [10].

In Figure 4.14 we illustrate the fact that the historyi 7→ predictork is a
many-to-one mapping — multiple matching histories (cache lines) share one
predictor. These collisions are similar to cache collisions discussed in Section
4.3.2 and can be detrimental to the performance of our predictor.

Let us now explore this phenomenon. We expect that the longer the history
length M , the fewer collisions we will observe (with the number of lines B
kept constant). However, we cannot hope to avoid them altogether — if we
approximate that the probability distribution of history values for any given
cache line is uniform (histories are independent), then the probability that
not all histories in a given cycle are unique is
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Figure 4.14: Local two-level prediction scheme

P (not all unique) = 1 − P (all unique) = 1 − 2M !
(2M − B)!

1
(2M )B

, 2M > B

(4.1)
Thus for any cache of a reasonable size for our intents and purposes

(64 < B < 1024, 2 < M < 10) the probability P (not all unique) −→ 1 as the
term 1

(2M )B (all possible outcomes) dominates the 2M !
(2M −B)! (all favourable

outcomes).
We can gain further insight into how MandB influence the number of

collisions. First, let us define a collision as an event when a PT entry is
updated that is shared between two histories in HRT (we can have multiple
collisions per one PT entry update). The expected value of collisions when a
random cache line is updated is equal to

E[Xcount] =
B∑

k=0
xkP (xk) = 0 · (2M − 1

2M
)B + 1 ·

(
B

1

)
· (2M − 1

2M
)B−1( 1

2M
) + . . .

(4.2)
This corresponds to the mean of the binomial distribution (provided that

E[Xcount] >> 1) where B is the number of trials and 1
2M is the probability
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of success. Therefore E[Xcount] = N

2M . This model thus makes a simple
prediction — for a twice as large PT, we get half as many collisions. Although
this is only an approximation (the HRT values are generally dependent and
their distribution is not uniform), it hints at something — for small values of
M we expect a large number of collisions that will degrade the performance
significantly and as we make M larger and larger, the benefit (with respect
to E[Xcount]) of plateaus.

We will now discuss the case of using the global branch history. The HRT
now reduces to a single history shared between all the branches (we should
probably call it HR now, but we keep the name for consistency reasons). The
PT, however, is now local — it is indexed by concatenating the cache address
and the HRT, see Figure 4.15.
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cache

&

cache

line 0
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Figure 4.15: Global two-level prediction scheme

We thus allocate to every cache line 2M 4-state predictors. We therefore do
not experience the problem of collisions as we did in the local scheme. We can
also now successfully predict coupled patterns because their dependency is
now captured in the HRT. This works, provided that the branch history length
is long enough and the underlying branches are temporally local. However,
the branch history can therefore be also polluted with branching patterns
that are easy to predict anyways.
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..................................... 4.3. RTL design

Consider this snippet:

for i in 1 to N do ▷ N » 4
if i mod 4 == 0 then

<some calculation>
end if
<some calculation>

end for

The for loop pattern is {T, T, T, T, T, ...}, the if statement pattern is
{NT, NT, NT, T, NT, NT, ...}. The HRT will then record this sequence
{T, NT, T, NT, T, NT, T, T, T, NT...} and we would therefore need M = 7 to
perfectly predict the if statement branch, while the local prediction scheme
would need only M = 3, provided that no collisions occur.

For the RISE IP we have decided to implement the one-level scheme and
the two-level global history scheme. For the one-level scheme we do not show
the implementation, as it is only a simple Moore FSM. The two-level scheme
RTL implementation of the PT and HRT is shown in Figure 4.16.
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line address

prediction data
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data

current

hit or miss

prediction data
default

control
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Figure 4.16: Global two-level prediction RTL

Instead of concatenating the line address and the HRT, we keep all the
predictors corresponding to a single cache line as a single RAM word and
then use HRT to multiplex the desired predictor for w/r operations. We do
this so that we can initialize all of the predictors in a single cycle. The HRT
is implemented as a simple shift register. Otherwise, the RISE cache and
predictor FSM look the same.
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4. Implementation....................................
The two-level predictors described were local HRT, global PT (lHRT-gPT)

and global HRT, local PT (gHRT-lPT). There also exist other schemes —
a local HRT and a local PT (lHRT-lPR) and global HRT and a global PT
(gHRT-gPT) [11]. In high-performance computing, these basic schemes are
combined to create even better-performing predictors, a well-known example
are the gshare and gselect predictors [12]. Because these more advanced
schemes have high die area usage and high power consumption, we will not
discuss them in this text further.

4.4 System Integration

Finally, when the standalone IP is designed then comes the task of integrating
it in the system. In Figure 4.17 we show the the preliminary solution.

RISE

CPU outputs

NVM outputs
CPU inputs

NVM inputs

enable

enable

enable

Figure 4.17: Integration of RISE into the SoC

The RISE IP can be disabled or enabled by multiplexing the input and
output signals of the CPU and the NVM. In addition, we AND all the RISE
input signals with the registered enable signal to reduce signal transitions
at the inputs of RISE logic, thus reducing the power consumption when the
IP is disabled. Right now, the IP can be disabled or enabled only at the
power-up of the system. In the future, to allow greater flexibility, we propose
that RISE be dynamically enabled or disabled programmatically by the CPU.
This would require designing a RISE slave interface compliant to the internal
bus protocol of the CPU, similar to other peripherals. This would be useful
when the SoC clock frequency changes on the fly as there is no need for RISE
to be enabled when 1

fclock
= Tclock < Tcrit
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Chapter 5
Parameter Optimization

The described branch prediction mechanisms are mostly heuristic and not
much can be said about the predictor performance prior to executing some
benchmark software. The same applies for the different combinations of
the table parameters. In the previous sections, we have tried to make some
educated guesses about the effects of the different RISE parameters on
its prediction performance. However, to at least provide an estimate of
the optimal values for these parameters with respect to hit rate, die area,
and power consumption, we will have to benchmark our IP using different
configurations and choose the optimum based on the benchmark results.

As for the code itself, we will use a modified version of the CoreMark
benchmark that is intended for testing CPUs used in embedded systems [13].
CoreMark comprises of simple algorithms such as matrix multiplication, list
sorting, and state machine transitions. At the end of its operation, it also
performs a cyclic redundancy check on the algorithm data to validate the
results. With the data structures and algorithms used, CoreMark provides
a workload quite common in the space of embedded CPUs. Nonetheless,
the benchmark results are only an estimate of the RISE performance when
presented with the intended software. We use these results primarily to
compare the different parameter configurations and we should not be overly
pessimistic or optimistic about the yielded absolute values of the performance
statistics.

We ran the benchmark as a waveform simulation. Alternatively, we could
run the design on a physical FPGA. That would enable us to benchmark
with more test vectors in a fraction of the time. However, the simulated
benchmark can be automated with a simple script and also the run statistics
outputting is much easier, so we chose the former.

While we were benchmarking our design it became clear, that
the h = hits

misses+hits is a poor indicator of RISE performance. This is due
to collisions (described in Section 4.3.2) which can induce false hits. This
happens when a non branching instruction which maps onto a cache lines
invokes a ’correct’ Not Taken prediction. We have thus replaced the h with
the tnorm = trun

tideal
— simulation run time normalized to the run time of

the DUT with RISE disabled. This metric is also convenient because it is
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5. Parameter Optimization ................................
immediately apparent what the required frequency gain for overall speed up
is, i.e. fn

fo
> tnorm.

In Figure 5.1 we show the benchmark results for different values of tag
index size tsize. The used configuration was a two-way associative cache with
128 cache lines (S = 2, N = 64) and a clipped address size of 10 bits. We will
use this basic configuration in other tests if not said otherwise. We can see
that the associated run time improvement is small relative to the die area
cost — the tag index bits have to be implemented as D flip flops which are
high in transistor count per bit. We therefore think that for a cache with a
number of sets equal to S a tsize = log2 S is sufficient (accuracy-wise).

1 2 3 4 5 6 7 8

1.035

1.036

1.037

1.038

1.039

1.04

1.041

1.042

Figure 5.1: Benchmark results for different tag index sizes

Figure 5.2 shows the effects of different clipped destination address size
cd. We see a noticeable increase in performance for cd > 8. Generally, we
think that the cd should be at least 10 bits, which saves us a third of the
destination address memory.

Next, we tested different cache types, specifically direct-mapped, full asso-
ciative, two-way associative and four-way associative cache. All had cd = 10
and tsize = log2 S. Surprisingly, as a function of total cache lines, the different
cache performances were nearly identical. We think that this is because the
number of cache lines was fairly small in comparison to large-scale predictors
used in modern CPUs. Most RISE misses were then caused by the inherently
limited capabilities of the one-level predictor and not because of collisions
or cache misses. In Figure 5.3 we show the benchmark results only for the
direct-mapped cache. For comparison, we also show the performance of the
full-sized (every instruction address maps to a unique line) prefetcher. We
think that for a number of lines smaller than 29 the direct-mapped cache is
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Figure 5.2: Benchmark results for different clipped address sizes

optimal, as it requires the least amount of logic and consumes the least power
per clock edge while performing nearly just as well as other types.

Since the RISE main memory is the IP’s largest block of logic, its power
consumption will be a strong factor when determining the total power con-
sumption. We benchmarked our IP, using different cache sizes and tag index
sizes tsize, and we counted the number of main memory accesses multiplied by
the size of the memory (SRAM dynamic power consumption is proportional
to its size). The result is a number Ri that should be proportional to the
dynamic energy consumed by the SRAM. In Figure 5.4 we show these
results.

We use Rnorm = Ri
Rmax

because the purpose of this benchmark is only to
compare different configurations and not give any meaningful absolute values.
We can see from the results that, as predicted in Section 4.3.2, the higher
tsize leads to a lower number of RAM accesses. However, the added benefit
of adding more tag index bits largely disappears for tsize > 2 (for tsize = 4
and tsize = 8 the data were so similar that we displayed them as one curve).
If we were to use a cache of a smaller size, then choosing 1 < tsize < 4 should
be beneficial in terms of power consumption, even if it does not improve
accuracy that much.

One must not forget that these results are only illustrative and to obtain
a reliable estimate of the power consumption of different configurations, we
would have to use a specific tool, such as the Xilinx Power Estimator. This is
out of the scope of this thesis.

We have also tested the two-level prediction (same configuration as in tag
index testing), and in Figure 5.5 it is shown that this scheme performs
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Figure 5.3: Benchmark results for various cache sizes

very poorly indeed. The larger we make the branch history, the less accurate
the predictor is — the exact opposite of what we are trying to achieve.
Our explanation is that a large history register will contain a lot of noise
information, making it difficult to select the correct predictor for a given
branch instruction. The one-level scheme therefore decisively beats the
two-level scheme with global history.

Based on these benchmark results, we estimate that the cache collisions
and cache misses influence the RISE performance only slightly — tag index of
size log2 S seems sufficient, number of cache lines is satisfactory in the 32-128
range and all cache types perform very similarly. Most of the prefetcher
misses are caused by the limitations of the one-level prediction scheme. The
ratio of misses inherent to the dynamic prefetching without ID (initializations,
reinitializations) is very much dependent on the workload being run and
is usually in the 5% − 20% range. This was measured by comparing the
CoreMark benchmark and our internal benchmark. We therefore think that
if a higher speed up is required, the dynamic prefetcher with ID is needed.

We also benchmarked the static prefetcher with resulting tnorm = 1.082.
As predicted, this makes the static approach inferior (accuracy-wise) to the
dynamic one in most configurations.

The fn

fo
is estimated to be around 10% and we can thus say that most

dynamic prefetcher configurations should result in an overall system speed up.
However, the uncertainty of this value is considerable and if we wish to obtain
a better estimate we would have to run an Application-Specific Integrated
Circuit (ASIC) synthesis of our SoC which is out of the scope of this work.
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Figure 5.4: Benchmark results RAM accesses
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Figure 5.5: Benchmark results two-level prediction
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Chapter 6
Verification

6.1 System Verilog testbench

We have verified the RISE IP throughout the design process using a simple
System Verilog testbench. The Design Under Test (DUT) was comprised of
the RI5CY based CPU, RISE IP, code flash, and data RAM. The purpose of
this test was to verify the compliance of our design to these requirements:..1. The CPU shall receive all instructions that it requests in the correct

order...2. All of the IF transactions shall be compliant to the OBI bus protocol...3. The RISE IP shall correctly execute the given prediction mechanism...4. The RISE IP cache shall correctly execute the following operations: line
update, line read, line initialize, and line reinitialize...5. Line update (non-redundant) shall have higher priority than line read.

The testbench thus implements a following simple testcase:..1. The External Master (EM) resets the DUT and disables RISE,..2. CPU runs a simple benchmark code — matrix multiplication, Fast
Fourier transform, and insert sorting. The CPU then outputs a single
result value (XOR of all the mathematical operations result) to the EM,..3. EM resets the DUT and enables RISE,..4. same benchmark runs again, the result value is read,..5. compare the result values.

Example of the simulation waveform is shown in Figure 6.1.
Simultaneously, we have also embedded PSL and VHDL assertions into

this testbench which help us to verify the requirements. One of them checks
whether the CPU requested instruction address matches the one that the
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6. Verification .....................................

Figure 6.1: RTL simulation waveform

RISE IP fetches from the code memory — if not, then the whole simulation
is aborted.

The described test only verifies the first requirement. This is a necessary
but not sufficient condition for a proper RISE function. Consider the dynamic
prefetching mechanism — even if a design error causes RISE to have a subpar
hit rate, then the described test returns no errors. During the test, the CPU
runs a moderately long code with non-trivial branching patterns. We were
therefore able to visually spot from the simulated waveform an error in the
predictor design because it would cause a noticeable degradation of predictor
performance. However, some corner case errors influence the hit rate only
slightly and we cannot rely on visual checks to detect them. We have therefore
integrated additional PSL and VHDL assertions into the RISE IP to monitor
the proper function of the table cache and prediction FSM. All of the design
errors were fixed and the RISE IP is working properly on the RTL level.

6.2 Physical design verification

After the RISE RTL had been verified, we moved ahead in the verification
process and started doing synthesis and physical implementation. We chose
the Artix-7 xc7a100tcsg324-2 FPGA. The integration of our IP and the
resulting DUT is shown in Figure 6.2. The CPU communicates with the
peripherals using the AHB lite protocol via the Memory Crossbar. The JTAG
is connected to the CPU for debugging purposes. The Clock Reset Manager
provides the clock and reset signals to all other blocks based on the main
system clock. It also allows us to change the clock frequency on the fly. We
also have a set of timers and GPIO registers. External hardware interrupts
are handled by the Interrupt ReQuest (IRQ) controller.

We generated the system clock using a Digital Phased Locked Loop (DPLL)
hardwired into the FPGA fabric. The input to the DPLL is the board main
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Figure 6.2: Block diagram of the DUT

clock operating at 100MHz and the output is a 12MHz clock which was then
used as the system clock. The clock sources were specified in the timing
constraints

In Figure 6.3 we show the results of the timing analysis after the design
implementation.

Figure 6.3: Results of timing analysis

Physical constraints were written to specify the FPGA pad mapping, reset
signal, Rise enable signal, and I/O standards.

The synthesis and implementation was run for three cache configurations:
4-way associative (S = 4, N = 32), full associative (S = 64, N = 1) and direct
mapped (S = 1, N = 256) respectively. All configurations have 6-bit wide
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6. Verification .....................................
tag index, use one level prediction and save 10 lower order bits of the source
address. The FPGA resource utilization is reported in Table 6.1.

Apart from the absolute number of LUTs and Register slices, we also show
the slice ratio relative to the CPU so that the trade-off between CPU speed
up and additional logic is better apparent.

We also list the size of the main predictor RAM which stores the source
address and prediction bits.

Resource S = 4, N = 32 S = 64, N = 1 S = 1, N = 256
Slice LUTs [-] 681 483 1032

Slice LUTs ratio [%] 6.7 4.7 10.2
Slice Registers [-] 999 544 1934

Slice Registers ratio [%] 28.0 15.1 53.9
main RAM [bits] 1536 768 3072

Table 6.1: Comparison of resource usage for different cache configurations

In Vivado, using the provided SIMPRIM primitive cells, we have generated
a Verilog wrapper of our design and an SDF file (Standard Delay Format)
which specifies the delay of the primitives. We then used these two generated
files to run a gate-level simulation of our design. The example waveform is
shown in Figure 6.4. The same simple test 6.1 was run successfully and the
waveform was reviewed visually.

Figure 6.4: Gate level simulation waveform
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Chapter 7
Conclusions

The main goal of this thesis was to design an optimization of a CP in a
low-power, low die area digital system containing a RISC-V CPU based on
the open-source RI5CY core. The CP is part of the IF interface connecting
the CPU and the instruction memory.

Number of possible power and die area aware design architectures for our
RISE IP were proposed and compared. Among them the prefetcher solution
was chosen for implementation, specifically the static mechanism and the
dynamic mechanism without ID.

When implementing the latter, we had chosen to design the table memory
as a cache and we studied extensively the possible effects of its parameters
on the prefetcher performance. We have provided a similar study on the
one-level and two-level branch prediction mechanisms.

The two prefetcher solutions were described in VHDL language with em-
phasis on making as many of the design parameters reconfigurable, so that
they could be then optimized based on benchmark results. This approach
was needed, because the prediction algorithms are heuristic in nature and no
satisfactory estimate of the prefetcher performance could be made based on
the theoretical analysis alone.

We benchmarked our IP in different configurations using the CoreMark
software to obtain an estimate of the optimal parameter set. In summary:. Cache collisions and cache misses degrade the performance only slightly

— cache with 24 lines performed quite similarly to a 215-line cache,. a more noticeable effect had the number of saved destination address
bits with 10 bits being the minimum recommended length,. the one-level scheme outperforms the two-level scheme (with global
history length) easily,. we assume that the main memory power consumption is reduced by
using more tag index bits but for a large number of cache lines and tag
index bits, the added benefit vanishes,. as expected, the dynamic prefetcher without ID outperforms the static
prefetcher in just about any configuration,
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7. Conclusions .....................................
. the dynamic prefetcher with ID could be 5% − 20% more accurate that

the one without ID.

Based on the simulation results, we estimate that the use of the dynamic
prefetcher without ID (in most configurations) will result in an overall system
speed-up of around 5%. The exact performance gain is not given in this thesis
as it would require doing ASIC synthesis and place-and-route of our SoC.

In the future, we propose designing the dynamic prefetcher with ID. We
could also benchmark our system with a workload more similar to the software
that is intended to be run on the SoC to obtain more accurate data.

Our IP was verified with a simple System Verilog testbench to ensure basic
functionality. When the design process had finished and the IP microar-
chitecture had become stable, we implemented the prefetcher in an Artix-7
xc7a100tcsg324-2 FPGA. Also, as a part of the physical design verification,
we ran a gate-level simulation of our design.

The thesis goals were accomplished and the RISE IP is ready for further
development as a part of the Integrated Circuit design efforts in ASICentrum
s.r.o. The next goal is to integrate the IP into an ASIC. Prior to that, we
would desire a more thorough verification of our design, possibly by exploring
the code coverage or by using formal verification methods. ASIC synthesis of
our IP would also be needed.

The future use-cases of the RISE IP are not limited to our RI5CY based
CPU. If we were to redesign the interfacing of the IP with the CPU and the
NVM so that it is compliant to a different bus protocol, we could use our
design for any other CPU which suffers from the same CP problem.

More generally, in any master-slave topology where we have a CP as part
of the master-to-slave addressing (as illustrated in Figure 2.1), we could
use the RISE IP to optimize the CP as long as the addresses exhibit the
spatial locality as discussed in Section 3.3.3. However, to ensure that the
performance that results in overall speed-up (discussed in Section 3.3.2) is
achieved, we would have to consider the characteristics of the address stream
specific to that system.
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