
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Single View Depth Completion of Sparse
3D Reconstructions

Rakshith Madhavan

Supervisor: doc. Ing. Tomáš Pajdla, Ph.D.
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

497835Personal ID number:Madhavan RakshithStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Single View Depth Completion of Sparse 3D Reconstructions

Master’s thesis title in Czech:

Hloubkový obraz z jednoho pohledu a řídké 3D rekonstrukce

Guidelines:

1. Study the approach to single view depth completion [1], 3D reconstruction from multiple images related to visual odometry
[2].
2. Suggest an approach to generating dense depth from single images and sparse 3D reconstructions [3, 4].
3. Implement the approach and demonstrate on real data.

Bibliography / sources:

[1] ChaoQiang Zhao, QiYu Sun, ChongZhen Zhang, Yang Tang, Feng Qian Monocular depth estimation based on deep
learning: An overview, 2020, Science China Technological Sciences.
[2] Raul Mur-Artal, Juan D. Tardos ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D
Cameras, 2016, IEEE Transactions on Robotics.
[3] Alex Wong, Stefano Soatto Unsupervised Depth Completion with Calibrated Backprojection Layers, ICCV 2021.
[4] Alex Wong, Xiaohan Fei, Stephanie Tsuei, Stefano Soatto, Unsupervised Depth Completion from Visual Inertial Odometry
RA-L January 2020, ICRA 2020.

Name and workplace of master’s thesis supervisor:

doc. Ing.Tomáš Pajdla, Ph.D. Applied Algebra and Geometry, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 15.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Ing. Tomáš Pajdla, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my supervisor
doc.Ing. Tomáš Pajdla PhD., for point-
ing towards the topic of depth completion,
and for guiding me in familiarizing myself
with the topic.

I would also like to thank my family
who have supported me to get me to where
I am today. I am grateful for my time
in Czech Technical University in Prague,
Faculty of Electrical Engineering, and all
my endlessly patient lecturers who went
out of their way in ensuring that any of
my doubts were cleared.

This research was supported by EU
H2020 No. 871245 SPRING Project.

Declaration
I hereby declare that I wrote the presented
thesis:’Single View Depth Completion of
Sparse 3D Reconstructions’ on my own
and that I cited all the used information
sources in compliance with the Methodical
instructions about the ethical principles
for writing an academic thesis.

In Prague, 20 May 2022.

v

Abstract
This work outlines a methodology to
infer dense depth of a scene from an
RGB image, and it’s corresponding sparse
point cloud using an unsupervised train-
ing paradigm and combining it with a
visual odometry algorithm such as ORB
SLAM [2] in an offline step, to densify the
sparse point clouds from its sparse map-
ping. The network consists of a sparse
to dense module, and an encoder to cre-
ate a 3D positional encoding of the image
with a Calibrated Backprojection layer,
and the decoder produces the dense depth
map. This network is trained without
supervision on the data from SLAM by
minimizing the photometric reprojection
error between frames. Inference is then
run on the SLAM Keyframes and sparse
depth from its corresponding keypoints to
produce dense depth. With thed depth es-
timate, points from these Key-frames are
then back-projected to the point cloud,
thus resulting in a denser representation
of the scene, especially in low-textured ar-
eas where the reconstruction from SLAM
ususally fails.

Keywords: densification, sparse,
depth-completion, SLAM

Supervisor: doc. Ing. Tomáš Pajdla,
Ph.D.
Office B-638 CIIRC Building B,
Jugoslavskych partyzanu 3,
16000 Prague, Czechia

Abstrakt
Klíčová slova:

vi

Contents
Terminology and Notation 1
1 Introduction 3
1.1 Contributions 4
1.2 Structure . 4
2 Overview and Related Work 5
2.1 Datasets, and common evaluation
metrics . 7
2.1.1 Datasets 7
2.1.2 Evaluation Metrics 8

2.2 Supervised Methods 9
2.3 Unsupervised & Semi-supervised
Methods . 12

2.4 Combination with SLAM 15
3 Network Architecture 17
3.1 Sparse-to-Dense Module(S2D) . . 18
3.2 KBNet Architecture 18
3.3 Loss function and Training 20
3.3.1 Loss function 21
3.3.2 Training 22

4 ORB SLAM 25
4.1 Overview . 25
4.2 Image Retrieval with BoW 26
4.3 Tracking . 27
4.3.1 ORB Features 27
4.3.2 Covisibility, and Essential
Graphs . 27

4.3.3 Stereo points 28
4.3.4 Pose tracking 29
4.3.5 Relocalization if tracking is
lost . 29

4.3.6 Local map tracking 29
4.4 Local Mapping 30
4.4.1 KeyFrame Insertion 30
4.4.2 Map Points Culling 30
4.4.3 New point creation 30
4.4.4 Local Bundle Adjustment . . . 30
4.4.5 Local Keyframe Culling 31

4.5 Loop Closing 31
4.5.1 Loop Candidate Detection . . 31
4.5.2 Transformation Computation 31
4.5.3 Loop Fusion 31
4.5.4 Graph Optimization 32

4.6 Optimization Problems 32
4.6.1 Motion-only Bundle
Adjustment 32

4.6.2 Local Bundle Adjustment . . . 33
4.6.3 Pose-Graph Optimization . . . 33

5 Modifications to couple the
network with ORB SLAM 35
5.1 Modifications to the Network . . . 35
5.2 ORB SLAM modifications 36
5.2.1 Frames 37
5.2.2 KeyFrames 38
5.2.3 KeyFrame Database 39
5.2.4 Map Point 39
5.2.5 Map . 39
5.2.6 Main program 40

5.3 Combining ORB SLAM data with
KBNET network 41
5.3.1 Dense depth back-projection . 41

6 Data collection and Dataset
creation 43
7 Implementation, Experiments and
Results 47
7.1 Experiments and Results on the
VOID dataset 47

7.2 Experiments and Results on data
captured from the robot 50

8 Conclusion and Future Work 55
8.1 Summary . 55
8.2 Future Work 55
Bibliography 59
A Pinhole Camera Model 67
B Network operations 71
B.1 Pooling . 71
B.2 Convolution 72
B.3 Upconvolution and Transpose
Convolutions 73

C Some properties of affine rigid
motion transformations 75
D Miscellaneous 79
D.1 Epipolar Geometry 79
D.2 A very brief introduction to some
graph concepts 80
D.2.1 Subgraph 80
D.2.2 Trees . 81

vii

Figures
2.1 General SFM Pipeline 6

3.1 Network architecture from [1]. f
here is the number of filters or output
channels used in the convolution
operations . 17

3.2 Sparse-to-Depth module. figure
from [1] . 18

3.3 Calibrated Backprojected layer;
figure from [1] 19

3.4 Visualization of Pareto optimal for
R2 with respect to the cone R2

+;
figure from [54] 20

3.5 The system during training in [1]:
Each training sample contains (It,
Iτ∈T , sparse depth (z), intrinsic
calibration K). The original work
uses a PoseNet to get relative depths
for lph but this work uses poses from
ORB-SLAM; 23

4.1 Components of ORB-SLAM; figure
from [2] . 26

4.2 BoW Vocabulary tree 27
4.3 An example of how ORB SLAM
would work. Takes in as input a
image patch, and outputs a binary
string which is rotation and scale
invariant. In this example, the two
image patches are rotated, but the
descriptor remains the same 27

4.4 Example of some components of
ORB-SLAM2; figure from
[ORBSLAM1] 28

6.1 ARI Cameras Configuration. The
Torso Front camera, an Intel
Realsense D435i is used with ORB
SLAM . 43

6.2 D435i camera module. Consists of
an RGB camera, and 2 monochrome
cameras in a stereo rig, along with an
Infraeed projector 44

6.3 Dataset structure after running the
modified ORB SLAM on the data
from the recorded rosbags. Each
sub-folder under the sequence
location directory contains files
(images or ’yml’s) for each keyframe
in the SLAM. The camera intrinsic
matrix is stored as a numpy ’npy’
matrix. 45

6.4 Examples of some images from
different sequences in the dataset.
Image (d) shows the ground truth
obtained from image (b), where we
see that almost no points from the
pillar are in the ’ground truth’ . . . 46

6.5 Sparse depth image from SLAM
corresponding to img (b).The image
has been inverted and the sparse
points dilated to appear larger than
they actually are; real sparse data is
even sparser than is shown in the
image 6.4b; . 46

7.1 Visualizations of outputs of models
trained using poses from a
pose-network, and with poses from
absolute poses 49

7.2 Difference in nature of data
between the VOID dataset and the
data captured from the robot. Sparse
depth rescaled for visualization . . . 51

7.3 Validation error metrics through
training steps for (a) network trained
with a pose-network, and (b) network
trained with poses from SLAM . . . 53

7.4 Visualizations of the results for
sequence 1 from the robot dataset.
We see that the network predicts
dense depth even in areas where the
ground truth fails. We see that the
network predicts dense depth even in
areas where the ground truth fails. 54

viii

7.5 Visualizations of the results for
sequence 2 from the robot dataset.
While the ground truth is entirely
absent for the pillar in figure (b), the
dense depth predicts depths in the
region. The pointclouds show the
projected points using the dense, and
ground truth depths. The points
from the dense depth for the floor are
not completely flat, especially
towards the edges of the image which
is also reflected in parts of the
inverted difference images. 54

8.1 The need for an selective
back-projection, and an uncertainty
measure. While in the case of (d),
the predicted depth ’seems’ accurate
when backprojected to the point
cloud, in (c) we see that the surfaces
aren’t flat but bent 56

A.1 Simple Pinhole model 67
A.2 Coordinate Systems for
perspective model. Image from [52] 68

B.1 Convolution operation 72
B.2 Transpose Convolution operation
eg without padding in the original
convolution. Image from [53] 74

B.3 Transpose Convolution operation
eg with padding in the original
convolution. Image from [53] 74

D.1 Epipolar Geometry of two
cameras. Image from text [52] 80

Tables
2.1 List of a some works with open
source code bases; classifying whether
they were designedfor indoor/outdoor
settings, trained supervised or
unsupervised, with information on
sensor type (eg. LiDARs, RGBD
cameras, VIO etc.) for acquiring
sparse depth information 16

7.1 Results on the testing set of VOID
dataset [4] for the network trained on
relative poses from 1.Posenet, and
2.Absolute poses from ORB SLAM
[2]. Training PoseNet simultaneously
and using it for the relative poses
seems to give better results in the
case of the VOID dataset 48

7.2 Results on the testing set of VOID
dataset [4] for the network trained on
different loss function weights, and
with absolute poses 49

7.3 Results on data collected from the
robot, and sparse depth obtained
from ORB SLAM sequence Room637.
(Tr stands for training, Ev for
evaluation, min_k and max_k for
min and max pooling kernel sizes in
the S2D module) 52

7.4 Results on data collected from the
robot, and sparse depth obtained
from ORB SLAM sequence Lecture
Hall 670. 52

ix

Terminology and Notation

. Point Cloud - Representation of a space as a collection of 3D points.. SFM - Structure From Motion. SLAM - Simultaneous Localization and Mapping. Visual Odometry(VO) - Process/Algorithm to determine the pose of a
moving camera using images. Keypoints - 2D points in images which are distinct from their neighbours,
and are usually the points tracked by SFM/SLAM algorithms like [2].Keyframes - Images/frames which are specially selected from the set of
all images, which contain some properties such as good covisibility with
other keyframes, have sufficient number of keypoints, etc.. RGBD - Red Green Blue (RGB) pixel Image with Depth values, usually
corresponding to each pixel of the image.. Textured area - Area in an image which is not completely homogeoneous
in pixel intensities.. Textureless are - Area in an image which is homogeneous in pixel inten-
sities.. D - Ground Truth Depth data. D̂ - Estimated Depth data. di or di ground truth depth data at pixel i. d̂i or d̂i estimated depth data at pixel i. Rn - set of real numbers in n dimensional space. Rn+ - set of non-negative real numbers in n dimensional space. The shape r × c refers to r: rows, and c: columns when dealing with
matrices unless specified otherwise.

1

..
. The shape w × h referes to w: width(columns), and h: height(rows),

when dealing with images unless specified otherwise.N - total number of pixels in an image N = wh , unless specified otherwise.. ORB SLAM: Refers to the works by Rau et al. [3] for monocular systems,
and [2] for stereo, rgbd systems

Notes:. The terms SFM , Visual Odometry, and SLAM are used interchangably
in this work, and mean the same thing in the context of this work,
although they vary in more general contexts.

2

Chapter 1
Introduction

Monocular, or stereo cameras are widely used in robotics applications due to
their convenient form factors, and the increasing availability of compute capa-
bility. Most Visual SLAM or Structure from motion pipelines using mono or
stereo cameras are broadly based on tracking a set of keypoints across images,
and estimating the camera positions from epipolar geometry, or homographies,
triangulating the points, and applying optimization and filtering techniques.
Though versions of this pipeline has been adopted with various modifications
[55] to achieve real time with high tracking accuracy, even on embedded
hardware, an obvious issue is that the resulting 3D scene representation is
(very) sparse, usually with a 3D points only for some key-points; while this is
sufficient for tasks such as localization, where in the minimal case the camera
pose can be estimated from 3 2D-3D correspondences [71] , it is an imprecise
representation of the environment, and causes significant issues for tasks
such as navigation. When there are textureless obstacles in the path of the
robot, they are not modelled accurately for the robot to avoid them during
navigation, which results in undesirable collisions. Navigation for ground
robots, typically does not use a point cloud representation, but 2D occupancy
grids. Techniques of conversion from 3D point clouds to 2D occupancy grids,
or occupancy grid creation are not discussed in this work.

This work aims to address the problem using a deep neural network to
infer dense depth from an image and a sparse point cloud using calibrated
backprojected layers from [1], and coupling this with a VO algorithm, such
as ORB SLAM [2] in an offline step to densify the point clouds, particularly
in areas of images with low texture. The network is trained on the data
obtained from the SLAM algorithm; while overfitting is usually avoided, in
this case, the network is made to learn parameters to overfit on the training
data, since the inference is on the same data as well.

3

1. Introduction
1.1 Contributions

The main contributions of this work are as follows:. An overview on historical and state of the art approaches on depth
completion detailing the working of several important works.. A method for the densification of sparse point cloud data from a classical
SLAM algorithm [2] using a depth completion network [1] with an
overfitting training paradigm, and back-projection to the original point-
cloud.. A depth completion dataset with an RGBD camera on the ARI robot
with ground truth for evaluation.

1.2 Structure

The structure of this work following this chapter is as follows:. Chapter 2 outlines the Overview and Related work. Chapter 3 describes the structure of the network, and the details of the
loss function. Chapter 4 provides a description of the working of the ORB SLAM
algorithm. Chapter 5 describes the modifications to couple the network with ORB
SLAM.. Chapter 6 describes the setup, and details of the data collection. Chapter 7 describes implementation details, experiments and their re-
sults.. Chapter 8 concludes this work with insights, and possible directions for
future work

4

Chapter 2
Overview and Related Work

Depth estimation for a scene representation can be broadly divided into three
methods:

Geometric Methods: Although geometry-based methods can efficiently
calculate the depth values of sparse points, they usually require multiple
(>=2) views to compute depth. Recovering 3D structures from multiple views
based on geometric constraints has been widely investigated ([51], [55]), and
used. Most Structure from Motion(SFM) pipelines and Visual Simultaneous
Localization and Mapping (SLAM) algorithms leverage these constraints to
estimate the camera positions, as well as the scene representation together
simultaneously [56] [57]. In the case of Monocular cameras, we recover the
scene ’depth’ only upto scale. In the case of stereo cameras, we pre-calibrate
the transformation between the two cameras (in some units), and hence we
can obtain the scene representation in the same world units as well. The
general pipeline for SFM is shown in figure 2.1.
A more detailed overview of these techniques is provided in chapter 4.

5

2. Overview and Related Work

Figure 2.1: General SFM Pipeline

Sensor-based Methods: Depth sensors such as RGB-D cameras, LI-
DARs, Time-of-Flight(ToF) sensors, etc.. are increasingly used to measure the
depth information of a scene directly. However, these sensors come with their
own issues such as:Prohibitive cost, Limited functionality such as RGB-D
cameras or IR-based ToF sensors working only in the absence of sunlight ,
prohibitive form factor, and so on..

Monocular Depth Estimation methods: The monocular depth es-
timation problem seeks to automatically infer a dense depth image from a
single color input image, and ,sometimes, it’s corresponding sparse depths.
This task seems ill-posed without additional view(s) images to enable triangu-
lation. Some classical methods for depth estimation from monocular images
include shape-from-shading [77], shape-from-defocus [78], depth inpainting
to fill in holes in depth channels of RGBD images using smoothness priors,
anisotropic diffusion,etc.. [79] [80] .
With the rapid development and success of deep learning for various com-
puter vision applications such as object detection, semantic segmentation,
etc., neural networks have also been used to estimate depth from a monocular
image, as well as depth completion of sparse depth. Various neural networks
such as CNNs, RNNs, variational auto-encoders, and GANs have been used
to address this problem with varying degrees of success.

The deep learning methods can be broadly divided into:. Supervised. Unsupervised or semi-supervised. Based on other methods such as conditional random fields, Adversial
learning ,etc.

Of these, this chapter will focus on the supervised, and unsupervised methods,
since these have had the most success in various benchmarks.

6

........................2.1. Datasets, and common evaluation metrics

2.1 Datasets, and common evaluation metrics

[5] provides an overview of the datasets, and commonly used evaluation
metrics in monocular depth estimation, and depth completion.

2.1.1 Datasets. Kitti Depth Completion evaluation [47]: The KITTI dataset is the largest
and most commonly used dataset for various sub-tasks in computer
vision like optical flow , visual odometry, object detection, semantic
segmentation and tracking, etc.. It contains over 93 thousand depth
maps with corresponding raw LiDaR scans and RGB images, aligned
with the "raw data" of the KITTI dataset. Given the large amount of
training data, it allows a training of complex deep learning models for
the tasks of depth completion and single image depth prediction. It
also provides manually selected images with unpublished depth maps to
serve as a benchmark for those two challenging tasks.The Kitti dataset,
however, is captured on outdoor data, and performance of methods
generally vary between outdoors, and indoors.. NYU Depth V2 [48]: The NYU-Depth V2 data set is comprised of video
sequences from a variety of indoor scenes as recorded by both the RGB
and Depth cameras from the Microsoft Kinect. It features 1449 densely
labeled pairs of aligned RGB and depth images, 464 new scenes, and
407,024 new unlabeled frames. Each object is labeled with a class and
an instance number (cup1, cup2, cup3, etc). The dataset has several
components:. Labeled: A subset of the video data accompanied by dense multi-

class labels. This data has also been preprocessed to fill in missing
depth labels.. Raw: The raw rgb, depth and accelerometer data as provided by
the Kinect.

The resolution of the RGB images in sequences is 640×480, and they are
also down-sampled by half during experiments. Because of the different
variable frame rates between RGB camera and depth camera, it is not
a one-to-one correspondence between depth maps and RGB images.
In order to align the depth maps and the RGB images, each depth
map is associated with the closest RGB image at first. Then, with the
geometrical relationship provided by the dataset, the camera projections
are used to align depth and RGB pairs. Since the projection is discrete,
not all pixels have a corresponding depth value, and thus the pixels with
no depth value have to be masked off during the experiments.. VOID Dataset [4]: The dataset was collected using the Intel RealSense
D435i camera, which was configured to produce synchronized accelerom-
eter and gyroscope measurements at 400 Hz, along with synchronized

7

2. Overview and Related Work
VGA-size (640 x 480) RGB and depth streams at 30 Hz. The depth
frames are acquired using active stereo and is aligned to the RGB frame
using the sensor factory calibration. All the measurements are times-
tamped.The dataset contains 56 sequences in total, both indoor and
outdoor with challenging motion. Typical scenes include classrooms,
offices, stairwells, laboratories, and gardens. Of the 56 sequences, 48
sequences (approximately 47K frames) are designated for training and 8
sequences for testing, from which we sampled 800 frames to construct
the testing set. Each sequence constains sparse depth maps at three
density levels, 1500, 500 and 150 points, corresponding to 0.5%, 0.15%
and 0.05% of VGA size.. Other datasets such as Cityscapes [49], Make3D, Matterport3D [50] have
been used in some works, but are not as popular as the above.

Out of these, the VOID, and NYUV2 datasets are the most relevant for
indoor scenes, and have been used for training and testing the model(s) used
in this work. The dataset built from the robot mimics the structure of the
VOID dataset, and is expanded upon in chapter 6.

2.1.2 Evaluation Metrics

Some of the commonly used evaluation metrics for the depth completion, or
estimation task are:. Root Mean Squared Error: RMSE =

√
1
|N |

∑
i∈N |di − d̂i|2]

. Inverse RMSE: iRMSE =
√

1
|N |

∑
i∈N |1/di − 1/d̂i|2

. RMSE log:
√

1
|N |

∑
i∈N |log(di)− log(d̂i)|2

. Abs Rel: 1
|N |

∑
i∈N

|di−d̂i|
di. Accuracies: % of d̂i S.T.

max(d̂i
di
,
di

d̂i
) = δ < threshold

.Mean Absolute Error: MAE = 1
|N |

∑
i∈N |di − d̂i|. Inverse MAE: iMAE = 1

|N |
∑
i∈N |1/di − 1/d̂i|

where N is the total number of pixels in image, di is the ground truth depth
at pixel i, and d̂i is the estimated depth at pixel i.

8

................................. 2.2. Supervised Methods

2.2 Supervised Methods

Supervised learning for the monocular depth estimation task implies learning
the weights for the mapping from an RGB image + Sparse Depth to Dense
depth using information of labelled input-output pairs. In other words, the
objective (loss) function to be minimized consists of comparison between the
estimated depths D̂ which has a value d̂i at pixel i and ground truth depths D
which has values di. This usually contains a form of Lp loss, which is defined
as:

Lp = (
N∑
i=1
|(di − d̂i)|p)1/p

, or

Lp = 1
N

(
N∑
i=1
|(di − d̂i)|p)1/p (2.1)

where N is the total number of pixels in the image (width*height). Often,
even the ground truth depth is not fully dense, i.e. it is not available for
every pixel; in these cases, N will be the number of pixels for which we have
the ground truth depth.

Architectures. One of the earlier works tackling this problem with super-
vised learning is from Eigen et al. [6], which used two deep network stacks:
one that makes a coarse global prediction based on the entire image, and
another that refines this prediction locally, to predict the depth map in an
end-to-end manner from a single color image with the training loss:

L = 1
N

∑
i

(log(d̂i)− log(d))2 − λ

N2 (
N∑
i

log(d̂i)− log(di))2 (2.2)

where λ ∈ [0, 1] referes to a balance factor, experimentally set to 0.5.
Laina et al. [8] proposed a fully convolutional architecture based on ResNet
[58] trained end to end using a loss based on the reverse Huber function [64].
Roy et al. [9] propsed an architecture combining random forests [74] and
CNNs to handle gradually decreasing training sets.
Park et al. [10] proposed estimating non-local neighbors and their affinities of
each pixel, as well as an initial depth map with pixel-wise confidences which
is then iteratively refined by its confidence and non-local spatial propagation
procedure based on the predicted non-local neighbors and corresponding
affinities. [11] proposed a lightweight multi-scale guided hourglass network
architecture; [12] achieving the state of the art in the KITTI benchmark (as
of Dec 2021) proposed a repetitive design in their image guided network to
gradually and sufficiently recover depth values. Specifically, the repetition is
embodied in both the image guidance branch and depth generation branch.
The former branch consists of a repetitive hourglass network, and the latter
a repetitive guidance module based on dynamic convolution [19].
[13] proposed a framework to extract the global and local information from

9

2. Overview and Related Work
sparse LIDAR point clouds to produce dense depth maps, with an encoder-
decoder network based on ERFNet [61] for the former, and two stacked
hourglass modules inspired by RESNET [58] for the latter. [14] introduces a
network, Sparse Auxillary Network, for both depth completion, or estimation,
depending on whether only an RGB image, or RGB image+ sparse depth
is available by decoupling the image, and depth map encoding stages. [15]
replaces the final 1× 1 convolution layer employed in most depth completion
networks with a least squares fitting module which computes weights by fitting
the implicit depth bases to the given sparse measurements. [16] proposes
a network which learns to extract joint 2D and 3D features, which consists
of two domain-specific sub-networks that apply 2D convolution on image
pixels and continuous convolution on 3D points, with their output features
fused in image space. [17] proposes a graph propogation to capture observed
spatial contexts. [18] proposes a two-branch network that consists of a color-
dominant branch and a depth-dominant branch to exploit and fuse the two
modalities. One branch takes as input a color image and a sparse depth map
to predict a dense depth map. The other branch takes as inputs the sparse
depth, and the estimated dense depth from the previous branch, and outputs
a dense depth map; these two depth maps are adaptively fused.

Depth representations. Works such as [26][25] [20] use different depth
representations in their works. [26] proposes to deal with depth-smearing
across occlusion boundaries with a multi-hypothesis depth representation that
explicitly models both foreground, and background depths in the occlusion-
boundary regions; [25] proposes an approach to initially densify sparse depth
information by figuring out which plane a pixel should lie among a number
of discretized depth planes, and to then calculate the final depth value
by predicting the distance from the specified plane; [21] proposes a dense
mapping framework for sparse Visual SLAM which leverages a compact scene
representation proposed in [20]; a dense representation of the scene geometry
conditioned on the intensity data from a single image, and generated from a
code consisting of a number of parameters.

Indirect Depth completion/estimation. Rather than estimating, or com-
pleting the depth directly, some recent works ([27] [28] [29]) have tried
to obtain depth estimates indirectly from estimating geometric properties
related to the depth, such as surface normals. Zhang et al. [27] uses a fully
convolutional neural network built on the back-bone of VGG-16 [59] with
symmetry encoder and decoder to predict dense surface normals and occlusion
boundaries. These are then combined, and run through global optimization
to solve for the depth. The optimization objective to minimize is of the form

E = λDED + λSES + λNENB (2.3)

where
ED =

∑
i∈Mobs

||di − d̂i||2

10

................................. 2.2. Supervised Methods

EN =
∑

i,j∈Neigh
|| < v(i, j), Normal(i) > ||2

ES =
∑

i,j∈Neigh
||di − dj ||2

where ED measures the distance between estimated depth D̂(i) and observed
raw depth D(i) in observations Mobs, EN measures consistency between
estimated depth and the predicted surface normal, ES encourages adjacent
pixels to have same depths. B ∈ [0, 1] downweights normal terms based on
the predicted probability a pixel is in an occlusion boundary. This non-linear
objective is linearized by foregoing vector normalization for tangent vector
v(i, j) required for the dot product with surface normal at pixel i, and solved
analytically with sparse Cholesky factorization.

X.Qi et al. propose GeoNet [28] to jointly predict depth, and surface
normal maps from a single RGB image; by building on top of two-stream
CNNs, it incorporates the geometric relation between depth and surface
normal via depth-to-normal and normal-to-depth networks. The inference of
surface normal from the depth map is formulated as a least squares problem
as follows:
For a pixel i, with depth zi, the 3D coordinates (xi, yi, zi) are computed
from its 2D coordinates (ui, vi) with the Pinhole camera model. With the
assumption that pixels within a local neighborhood of pixel i lie on the same
tangent plane, the surface normal estimate n = [nx, ny, nz] should satisfy the
over-determined linear system:

An = b, subject to ||n||22 = 1 (2.4)

, where A =


x1 y1 z1
x2 y2 z2
. . .
. . .
xK yK zK

 ∈ RKx3, and b ∈ RKx1 is a constant vector; the

constrained least squares problem in equation 2.6 has a closed form solution
of

n = (ATA)−1AT~1
||(ATA)−1AT~1||2

(2.5)

where ~1 ∈ Rk. The above is regarded as a fixed weight neural network which
predicts surface normal given the depth map.
For the normal-to-depth network; for any pixel i, given its surface normal
ni, and an initial depth estimate zi. the goal is to refine the depth. Given
the 3D point (xi, yi, zi) and its surface normal, the tangent plane Pi can be
uniquely determined, which satisfies

nix(x− xi) + niy(y − yi) + niz(z − zi) = 0 (2.6)

11

2. Overview and Related Work
For any pixel j in the neighborhood of a pixel i, with depth zj assumed to be
accurate, the depth estimate of pixel i , z′ji can be computed as:

z′ji = nixxj + niyyj + nizzj
(ui − cx)nix/fx + (vi − cy)niy/fy + niz

(2.7)

Kernel regression is then used to aggregate estimation from all pixels in the
neighborhood. [29] adds edge-aware refinement to this to exploit boundary in-
formation. [30] trains an encoder-decoder network to predict surface normals,
course depth and a confidence measure of inputs which are then inputted to a
diffusion refinement module which performs plane-origin distance refinement
via anisotropic diffusion based on the assumption that the 3D surface of the
scene is constituted by piece-wise planes and the plane-origin distance is
piecewise constant. [31] proposed an end-to-end encoder-decode architecture
by estimating surface normals as an intermediate representation, for outdoor
scenes captured using LiDARs, and uses synthetic Ground Truth genererated
from an open urban driving simulator Carla [81] for training.

2.3 Unsupervised & Semi-supervised Methods

Pixel-wise ground truth is expensive to acquire, and most sensors suffer
from varying degrees of noise , and inability to capture truly dense depths.
Most datasets, as well as techniques described in the above section only
compute the loss from those pixels where the ground truth is available;
this results in networks at-best learning to reproduce observed depths, but
not complete depths that are unobserved, which could and usually have
significantly different characteristics.

Garg et al. [7] proposed one of the earlier works on unsupervised depth
completion by training on a set of pair of images, source and target, with
small, known camera motion between the two, such as a stereo pair. They
generate an inverse warp of the target image using the predicted depth and
known relative pose, to reconstruct the source image. The photometric error
between the reconstructed image and the original source image is then the
loss minimized during training: Every training instance i ∈ {1..N} consists
of a (stereo) pair of images {Ii1, Ii2} capture by pre-calibrated stereo rig with
focal lengths f , and baseline B.
Predicted depth at pixel j = d̂j , and so the motion of the pixel along the
scan line is then fB/d̂j . Using the right image Ii2, a warp image Iiw can be
generated as

Iiw(j) = Ii2(j + fB/d̂j) (2.8)

The photometric error is then:

Eirecons =
∑
j

||Iiw(j)− Ii1(j)||2 (2.9)

They add an L2 regularization Eismooth = ||Od̂j ||2 on the disparity disconti-
nuities as a prior to deal with the problem of multiple disparities generating

12

........................ 2.3. Unsupervised & Semi-supervised Methods

equally good warps, in homogeneous regions of the scene.
The training loss is then:

E =
N∑
i=1

Eirecons + γEismooth (2.10)

where γ is a parameter determining strength of the regularization forcing the
depthmaps to be smooth.
C.Godard et al. [32] improved upon this with a network loosely inspired by
the DispNet [60] architecture to generate disparity images by training with
an image reconstruction loss, and a consistency loss that enforces consistency
between the disparities produced relative to both the left, and right images.
A combination of L1 and single scale SSIM [62] is used as the photometric
image reconstruction cost Lap. This compares the input image I, and its
reconstruction I ′ by the following:

Lap = 1
N

N∑
i

α
1− SSIM(Ii, I ′i)

2 + (1− α)||Ii − I ′i|| (2.11)

In their work, they use a simplified SSIM with a 3x3 block filter instead of a
Gaussian.For the disparity smoothness loss, Lds, they use an L1 penalty on
the disparity gradients, and weight this cost with an edge-aware term using
the image gradients. The network is trained to predict both left and right
disparities, and the left-right disparity consistency loss Llr is a L1 penalty
which attempts to make the left-view disparity map be equal to the projected
right-view disparity map:

Llr = 1
N

∑
i

|Displ(i)−Dispr(i+Displ(i))| (2.12)

At the time, its performance outperformed previous unsupervised methods,
as well as some supervised methods on the KITTI benchmark.
Zhou et al. [33] presented an unsupervised learning framework to estimate
monocular depth, as well as camera motion from video sequences. Unlike the
previous methods discussed above, this was completely unsupervised requiring
only a video sequence unlike the others which required some, albeit minimal,
supervision in the form of pre-calibrated stero rigs. It uses single-view and
multi-view pose networks to regress the pose between the frames, and trains
on a loss based on warping nearby views to the target using the estimated
depth, and poses.
Let < I1, .., IN > denote a training sequence of frames with one of the frames
being the target It view, and the rest source views Is for s 6= t. The view
synthesis objective is formulated as:

Lvs =
∑
s

∑
i

Êis|Iit − Îs
i| (2.13)

where i indexes over pixels, Îs is the source view Is warped to the target
coordinate frame based on the estimated depth, and relative pose, and Ês

13

2. Overview and Related Work
is a per-pixel soft mask for each target-source pair indicating the belief in
where direct view synthesis will be succesfully modeled. They use a L1
penalty on the second order gradients for smoothness Lsmooth, and add a
regularization term Lreg(Ês) to encourage nonzero predictions by minimizing
the cross-entropy loss with constant label 1 at each pixel location.
Based on the above work, Yang et al. [34] incorporates an edge-aware depth-
normal consistency constraint in the network. The mutual conversion between
depth and normal is solved by including a depth-normal layer, and a normal-
depth layer in the network, and the network achieves a higher accuracy than
[33].
F.Ma et al [35] proposed an encoder-decoder network which predicts dense
depth directly from RGB image (when available) and sparse depth. It is,
similar to the other unsupervised training works, trained on view synthesis
and the photometric loss. However, to compute the relative poses between
frames, rather than using a pose network, or pre-calibrated rigs they use
Pnp [72] with RANSAC [73] to estimate relative transformation between the
current frame and the nearby frame; using matched feature correspondences
extracted from RGBD (current) and RGB (nearby) respectively. Sivakumar et
al. [37] proposed a CNN to upsample a series of sparse depth measurements
based on contextual clues from a high resolution image which is trained
in a semi-supervised manner with optional stereo supervision. Yang et al.
[38] estimates the posterior distribution of dense depth map by using a
Conditional Prior Network that associates a probability to each depth value
in an image, and combines it with a likelihood term that uses the sparse
depth measurements. The training is either supervised, with the training loss
as a prediction error:

L(w) =
N∑
i=1
||φ(zi, Ii;w)− di||γ (2.14)

where φ is the map from sparse depth z and image I to dense depth. They
fix the parameters w and γ to 1 during training. In the case of unsupervised
training, they use a Conditional Prior Network (CPN), which infers the
probability of an optical flow given a single image, to score the compatibility
of a dense depth with the given image based on previous observed data. If
additional sensory data is available during training, such as stereo pairs, then
disparity supervision is used.
Recently, methods such as [4], [1] use the sparse depth, and camera poses
estimated from visual odometry (or VIO) which typically consist of very
sparse point clouds using photometric error as the supervisory signal. [4] first
constructs a piece-wise planar scaffolding of the scene, which it then uses to
infer dense depth. To compute the scaffolding, relying on a prior that surfaces
are locally smooth, and piecewise planar , they apply a lifting transform to
the sparse depth, and then compute its convex hull [75] of which the lower
envelope is taken as the Delaunay triangulation of the points, resulting in a
triangular mesh. Each surface is then approximated using linear interpolation
within the Barycentric coordinates, and the resulting scaffolding is projected

14

............................... 2.4. Combination with SLAM

back into the image plane.A pose network is used with an encoder-decoder
network based on VGG-11, or VGG-8 [59] (for the light-weight model) then
refines this scaffolding, along with its RGB image input to recover the dense
depth, and is trained on the following loss:

L = wphLph + wszLsz + wpcLpc + wsmLsm (2.15)

where Lph is the photometric consistency which is a combination of average
per-pixel reprojection residual with an L1 penalty and SSIM [62], Lsz is an
L1 norm of estimated depth, and sparse depth, Lpc is the pose consistency
loss, and Lsm local smoothness, an L1 penalty of the first order gradients
in the x, and y directions, and the ws are the associated weights. Since
the other losses have been discussed previously, only the pose consistency
loss for the pose network is expanded here: For an ordered pair of images
(It, Iτ), the relative pose gτt ∈ SE(3) is the relative (forward) pose, and
gtτ ∈ SE(3) the backward pose, which is the inverse of of the forward pose.
The forward-backward pose penalizes the deviation of the composed pose
from identity.

Lpc = ||log(gτt.gtτ)||22 (2.16)

where log: SE(3)→ se(3) is a logarithmic map. They also present the VOID
dataset, which is introduced in section 2.2.1
[1] uses an encoder-decoder architecture with calibrated backprojected-layers
trained on the photometric reprojection error, for unsupervised training
on visual-inertial odometry; which is the network used in this work. It is
expanded in detail in the following chapters

2.4 Combination with SLAM

Monocular depth estimation based on deep learning has been applied in
SLAM to improve mapping, recover absolute scale, etc. [39] improves upon
the mapping in SVO [40] by initializing the mean, and variance at feature
locations according to depth prediction from a monocular depth estimation
network [32]. This reduces the depth uncertainty of an initialized map
point leading to reliable feature correspondence between views, and faster
convergence to the true depth. This method outperforms the SVO mapping
on the KITTI dataset [47]. Yin et al. [41], and Yang et al. [42] used depth
estimation to recover the absolute scale of monocular VO.
[20] uses an image-conditioned autoencoder trained on depth images to
discover a optimizable ’code’, a compact representation, with a small number
of parameters which describes the dense depth map at a keyframe. For a
keyframe based SLAM, the camera poses with these ’code’ representations
can be jointly optimized to estimate a dense scene. [22] uses a [20]-like VAE
conditioned on a grayscale intensity image, and a sparse depth map, with a
system tightly coupled with filtering based VIO and simultaneously estimates
scene geometry, and camera trajectory in the same state space.

15

2. Overview and Related Work
[21], similar to this work, in that it takes as input the camera poses,

keyframes, and sparse points from the ORB-SLAM3 [23], in this case, mapping
and predicts a dense depth image for each keyframe. They, however build
on [20] and use a variational autoencoder (VAE) trained on intensity, sparse
depth, and reprojection error images to predict an uncertainty aware dense
depth map in an online process. Consecutive depth maps are refined through
multi-view optimization using fixed camera poses provided by the SLAM
system. They run two threads in parallel, a SLAM thread running ORB-
SLAM3 [23] tracking and mapping (described in more detail in chapter 4), and
after every ORB local bundle adjustment transfers data from a window of four
keyframes to the second thread. When the second thread, or Dense-Mapping
thread, receives the keyframes’ data runs the depth completion VAE using
the sparse depth and reprojection error images to predict an initial dense
depth map, and also generates low dimensional latent codes . They then
run multi-view optimization based on factor-graph optimization from [24]
optimizing only the codes, and not poses.

Merrill et al. [43] propose a lightweight network based on the hourglass
FastDepth architecture [35] to add to their EKF-based OpenVINS [44] VIO
algorithm by projecting tracked sparse features to an image similar to this
work. Sartipi et al. [45] uses a surface normal network [Deeplidar] with sparse
data from VI SLAM.

Table 2.1: List of a some works with open source code bases; classifying
whether they were designedfor indoor/outdoor settings, trained supervised or
unsupervised, with information on sensor type (eg. LiDARs, RGBD cameras,
VIO etc.) for acquiring sparse depth information

Works Setting Sensing method Training Method Code location
Hu et al. [18] Outdoor(KITTI) LiDAR Supervised github

Zhang et al. [27] Indoor RGB-D Supervised github
Park et al. [10] Indoor/Outdoor RGBD/LiDAR Supervised github

Gansbeke et al. [13] Outdoor(KITTI) LiDAR Supervised github
Qiu et al. [31] Outdoor(KITTI) LiDAR Supervised github

Imran et al. [26] Indoor/Outdoor RGBD/LiDAR/Synthetic Supervised github
Zhu et al. [46] Indoor RGBD Supervised nvidia(future)

Shivakumar et al. [37] Outdoor LiDAR Supervised github
Qi et al. [28][29] Indoor RGBD Supervised github
Ma et al. [36] Indoor RGBD/SLAM Supervised github
Mat et al. [35] Outdoor LiDAR Unsupervised github
Zhou et al. [33] Indoor/Outdoor Video Unsupervised github
Yang et al. [38] Outdoor LiDAR Unsupervised NA
Wong et al. [4] Indoor/Outdoor VIO Unsupervised github
Wong et al. [1] Indoor/Outdoor VO/SLAM Unsupervised github

Czarnowski et al. [24] (SLAM) Indoor/Outdoor SLAM Unsupervised github

16

https://github.com/JUGGHM/PENet_ICRA2021
https://github.com/yindaz/DeepCompletionRelease
https://github.com/zzangjinsun/ qNLSPN_ECCV20
https://github.com/wvangansbeke/Sparse-Depth-Completion
https://github.com/JiaxiongQ/DeepLiDAR
https://github.com/imransai/TWISE
https://research.nvidia.com/publication/2021-03_rgb-d-local-implicit-function-depth-completion-transparent-objects
https://github.com/ShreyasSkandanS/DFuseNet
https://github.com/xjqi/GeoNet
https://github.com/fangchangma/sparse-to-dense
https://github.com/fangchangma/self-supervised-depth-completion
https://github.com/tinghuiz/SfMLearner
https://github.com/YanchaoYang/Dense-Depth-Posterior
https://github.com/alexklwong/unsupervised-depth-completion-visual-inertial-odometry
https://github.com/alexklwong/calibrated-backprojection-network
https://github.com/jczarnowski/DeepFactors

Chapter 3
Network Architecture

This work uses the network from [1] by Wong et al., whose architecture
and the loss function used for training are described in this chapter. The
network takes in as input an RGB image, its intrinsic calibration matrix (see
Appendix A), and the sparse depth image corresponding to the RGB image,
and outputs the dense depth image with each pixel containing the depth
value corresponding to the pixel in the RGB image. The network consists of
a Sparse-to-Dense (S2D) module, a two-branch encoder for RGB 3D Encoder,
and Depth Encoder, and a Decoder.

Figure 3.1: Network architecture from [1]. f here is the number of filters or
output channels used in the convolution operations

The sparse-to-dense module learns a dense encoding representation of the
sparse depth; A Calibrated Backprojection (KB) layer backprojects each
pixel in the image to a 3D space. The resulting 3D positional encoding is
concatenated with the image descriptor and the previous layer output to
yield the input to the next layer of the encoder. The encoder consists of 5
resolutions as shown in figure 3.1 with the number of convolution filters for
the image encodings are [48, 96, 192, 384, 384], and for the depth encodings
[16, 32, 64, 128, 128]

A decoder uses skip-connections, and upsampling with a series of Up-
Convolution, or transposed convolutions (see section B.3) and produces the
output dense depth image.

17

3. Network Architecture

Figure 3.2: Sparse-to-Depth module. figure from [1]

3.1 Sparse-to-Dense Module(S2D)

The S2D consists of various pooling [appendix], and convolutional [appendix
] layers to yield a dense representation of the sparse depth image. Specifically,
it performs multi-scale densification using a series of min and max pooling
layers with different kernel sizes chosen on the basis of point cloud sparsity.
Experiments with these kernel sizes are described in chapter 7. In practice,
the max pooling(s) are done with kernel of size S with a single stride, and
half-padding(for S/2 pixels) with −∞ , and min pooling is done similarly
with a half-padding of ∞ .
The outputs of the pooling layers are concatenated and fed into three 1× 1
convolutions , whose result is fused with the original sparse depth z via a
3× 3 convolution layer giving a quasi-dense depth representation.
Due to the, by nature, sparsity of the input data, the min pooling layers
avoid pooling zeros or invalid depth, by setting all such values to infinity.

z′(i) =
{
z(i) if z(i) > 0
∞ otherwise

i ∈ N (3.1)

where N is the total number of pixels, and i is a pixel in the image. z′ is
then fed to the min-pool. For kernel-sized or larger regions where all values
in z′ are ∞ due to sparcity, for pooling operation p(i) ;

pmin(i) =
{
p(i) if p(i) 6=∞
0 otherwise (3.2)

The pooling, and convolution operations are described in appendix B.

3.2 KBNet Architecture

When a network is trained without supervision on the photometric reprojection
error, described in section 3.3, without prior information about the intrinsic

18

................................. 3.2. KBNet Architecture

Figure 3.3: Calibrated Backprojected layer; figure from [1]

calibration K, they implicitly learn the calibration parameters of K. This
results in the possibility of generalization being extremely low, no matter
how good the training data. In order to address this, as well as to produce
depth estimates that better respect object boundaries, and reduce the bleed
effect observed when a depth map is backprojected to a 3D point cloud, [1]
proposed calibrated backprojected layers; practically, this also results in a
lighter network with fewer layers and parameters to achieve state of the art
results.

Calibrated Backprojected (KB) Layers. take as input the feature maps
of image encodings (which are of the form image_shape× f where f is the
number of filters in the previous layer as can be seen in figure 3.1), depth
encodings (of the form image_shape× f), and a 3× 3 calibration matrix K
(A.5). This is realized in the following way:
The direction vectors for each coordinate i in the 2D image (ui, vi), are
computed with the calibration matrix, with

~Xi
dir = λK−1

uivi
1

 (3.3)

The above gives, for each pixel in the image, a direction vector along which
the actual 3D point will lie in since any point on the vector will project to the
same 2D point (ui, vi) in the image. If the depth di is known, the coordinates
of the point with respect to the camera coordinate frame (frame C(~c1, ~c2, ~c3)
in figure A.2) can be obtained with:

Xi = diK−1

uivi
1

 (3.4)

The depth encodings for each pixel φi ∈ Rf are projected from Rf to a R
with a trainable ’compression module’ which can be seen as:

di = qTφi (3.5)

19

3. Network Architecture
where qT is the trainable ’compression module’ which is performed with 1× 1
convolution operations. This di from (3.5) is used in (3.4) to obtain a 3D
positional encoding for each pixel Xi

3D
Here i ∈ H ×W corresponds to the resolution of the first image , that
decreases by a factor of 2 in each layer until the 5th at H/32×W/32. Hence,
the intrinsic parameters, must also be scaled by the same scale factor according
to the resolution. This 3D positional encoding is concatenated with the image
encoding, and if available the output of the previous KB layer. This is then
fused together by a 1× 1 convolution to yield the output RGB 3D encoding.
This is fed to the next layer, and also replaces the typical RGB skip connection
to the decoder. Finally, the output depth and image encodings of the KB
layer are produced by convolving separate 3× 3 kernels which are also then
passed to the next layer as inputs.

The overall system during training, which in [1] uses a Posenet, or a
pose-network for computing relative poses, is shown in figure 3.5

3.3 Loss function and Training

The training is a vector optimization problem where we optimize the vector

~L =

 lphlsz
llsm

 ,where lph denotes photometric consistency, lsz the sparse depth

consistency, and lsm a local smoothness.
Since we compare with respect to the cone K : R3

+, whose dual cone K∗ is
also R3

+, for any weights ~W ∈ K∗ : R3
+, we can get a Pareto optimal solution

[54], but the weights used for this scalarization can be seen as the importance
we give to each variable(loss type) in the vector.

Figure 3.4: Visualization of Pareto optimal for R2 with respect to the cone R2
+;

figure from [54]

An example for scalarization, and Pareto optima for R2 vector is shown in
figure 3.4

20

...............................3.3. Loss function and Training

3.3.1 Loss function

This vector objective is scalarized [CO] from R3 to R with the weights ~W to
reach a Pareto optimal solution formulated as:

L = wphlph + wszlsz + wsmlsm (3.6)

Photometric Consistency Loss (lph). discussed briefly in section 2.3 is
described more in detail here.

Consider two images I1, and I2 with respective intrinsic calibration matrices
K1,K2, and whose relative pose is represented as p ∈ SE(3), i.e. p is the
pose of camera frame of I1 in the frame of I2 or an affine transformation
which transforms a point from the camera frame of I1 to that of I2.
Given this information, the principle of photometric loss measure is to recon-
struct image I1 from image I2 as ˆI12 and compare I1 with this ˆI12
Consider a point X with the pixel coordinates (u1, v1) in I1. This point will
have some pixel coordinates (u2, v2) in I2. To get this (u2, v2): First, we
re-project this point to a ray/direction vector in the camera coordinate frame
of I1 with (3.3)

~xdir1 = λK−1
1

u1
v1
1

 (3.7)

Then, we use the estimated depth value d̂i for that pixel, to get the 3D point
X1 which projects to it (in the frame of camera I1) with:

X1 = d̂iK
−1
1

u1
v1
1

 (3.8)

Now, by constructing a 3× 4 projection matrix P2 with K2, and the relative
pose p with (A.11) we can recover the projection of this point in the image
I2 with (A.10):

λ2

u2
v2
1

 = P2X1 (3.9)

or

λ2

u2
v2
1

 = P2d̂iK
−1
1

u1
v1
1

 (3.10)

where
P2 =

[
K2 ~0

]
p (3.11)

and the coordinates of this point in the image I2 is: [u2, v2]T .
Thus, for the reconstructed image we get

ˆI12(u1, v1) = I2(u2, v2) (3.12)

21

3. Network Architecture
From this, it is easy to see that the more accurate the depth estimate (and
relative pose) is, the more similar ˆI12 will be to I1.

For a frame It at t, the photometric consistency loss hence penalizes the
dissimilarity using a combination of L1 penalty and SSIM [62]:

lph = 1
|N |

∑
τ∈T

∑
i∈N

wco|Îitτ − Iit |+ wst(1− SSIM(Îitτ , Iit) (3.13)

where N is the total number of pixels in the image, T = {t − 1, t + 1},
and wco,wst are weights denoting color consistency with the L1 penalty, and
structural consistency with the SSIM .
In [1], they use a Pose-network to estimate the relative pose ,p, between
frames and jointly optimize that along with the depth completion network
without additional supervision. In this work however, the pose-network is not
used and the relative pose is obtained from Orb-Slam [2] instead. How this is
done is described in section 3.3.2, and tests with poses from a pose-network
as well as orb-slam are described in chapter 7.

Sparse Depth Consistency. Minimizing the above error will reconstruct
the scene structure up to an unknown-scale. To ground the predictions to a
metric scale, that of the sparse depth, the sparse depth consistency is enforced
as an L1 penalty for the difference between the depth estimate at a pixel d̂i
and the sparse depth at that pixel zi, for i ∈ Nz where Nz is the set of all
pixels for which sparse depth exists.

lsz = 1
Nz

∑
i∈Nz
|d̂i − zi| (3.14)

Local Smoothness. The necessity to enforce local smoothness was briefly
discussed in section 2.3. This is enforced by minimizing the first order
gradients in the x direction : ∂X , as well as the y direction: ∂Y . The terms
are also weighted using their respective image gradients λX = e−|∂XI

i
t | and

λY = e−|∂Y I
i
t | to allow discontinuities along object boundaries.

lsm = 1
N

∑
i∈N

λiX |∂X d̂i|+ λiY |∂Y d̂i| (3.15)

3.3.2 Training

The overall system while training in [1] is shown in figure 3.5
Each training sample contains the following data: image It, images Iτ

where τ ∈ T : {t − 1, t + 1}, the sparse depth map z corresponding to It,
the intrinsic calibration matrix K, and the relative poses between It and Iτ
obtained from ORB-SLAM2 [2].
[1] does not use poses in the training data, but obtains the relative pose p as
described in 3.3.1 from a pose network based on PoseNet. The supervisory loss
for the pose network is from (3.13). For two images It, Iτ the pose network
directly regresses the relative pose p, but most SLAM or VO algorithms,

22

...............................3.3. Loss function and Training

Figure 3.5: The system during training in [1]: Each training sample contains (It,
Iτ∈T , sparse depth (z), intrinsic calibration K). The original work uses a PoseNet
to get relative depths for lph but this work uses poses from ORB-SLAM;

including ORB-SLAM store all the camera poses with respect to some global
frame, usually initialized as the coordinate frame of the initial frame. How
this is done is detailed in chapter 5 and the implementation details, and
experiments with training are discussed in chapter 7.

23

24

Chapter 4
ORB SLAM

This work uses ORB-SLAM [2] for obtaining the camera poses, as well as
the sparse point cloud. ORB-SLAM is one of the most widely used open-
source SLAM/VO algorithms due to its robustness, versatility and speed.
It uses ORB features [65], based on the FAST keypoint detector [66] and
BRIEF descriptors [67], for real time feature extraction and matching, and
a Bag of words (BOW) implementation [82] for image retrieval used during
localization with an optimization based approach for map generation and
tracking. The details of the workings of [2] will be presented here, and the
modifications made for the coupling with the network described in chapter 3
will be presented in chapter 5.

4.1 Overview

An overview of the working of ORB SLAM can be seen in figure 4.1. The
case of an RGBD input is discussed here since the testing for this work was
done with inputs from an RGBD camera. There are three threads running
simultaneously, for the tracking, local mapping, and loop closing.

In the tracking. thread for an RGBD input, the ORB features (see 4.3.1)
are first extracted incuding information about their 2D location (u, v) and
the depth corresponding to that point (d). The points from a single RGBD
image are then projected as stereo coordinates (see section 4.3.3). The map is
then initialized with the first frame as a ’keyframe’, and its ORB ’keypoints’
as points of the map. For subsequent frames, the motion is tracked with a
constant velocity motion model to predict the camera pose, and the poses
are optimized with full Bundle Adjustment (see section 4.6).
If the tracking is lost, a place recognition module using bag-of-words is emplyed
to perform a global relocalization. The system maintains a covisibility graph
[8 in ORBSLAM2] that links any two keyframes observing commonm points
and a minimum spanning tree (see Appendix D.2 connecting all keyframes.
Finally, the tracking thread decides if a new keyframe is inserted into

The Local Mapping. thread processes new keyframes and performs local
motion-only Bundle Adjustment (section 4.6.1). New correspondences for

25

4. ORB SLAM

Figure 4.1: Components of ORB-SLAM; figure from [2]

unmatched ORB points in the new keyframe are searched in connected
keyframes in the covisibility graph [76]to triangulate new points. Based on
information gathered during the tracking, a point culling policy is applied to
filter out some lower-quality points, as well as redundant keyframes.

Loop Closing. thread searches for loops (in the trajectory) with every new
keyframe. If a loop is detected, the drift accumulated is estimated, and
bosed sides of the loop are aligned and duplicated points fused. Lastly, a
pose-graph optimization (4.6.3) is performed over the Essential Graph, a
sparser subgraph of the covisibility graph.

4.2 Image Retrieval with BoW

Image retrieval is the task of finding the most similar image from a database,
to that of a query image. There are various methods tacking this, with deep
learning based methods recently outperforming conventional ones in terms
of accuracy. However, techniques like the Bag of Words still perform with
high accuracy and much faster retrieval times, so a Bag of Words approach is
what is used in the ORB SLAM works.
It involves constructing a ’dictionary’ or a ’Vocabulary’ where the ’words’ are
some visual features. This vocabulary is obtained from a number of images,
by clustering a set of features in an image into a ’word’.
An image is then stored, or represented in the database as a histogram of
the occurances of these ’words’ from the Vocabulary. During query time, the
query image is represented as a histogram of these words as well, and the
nearest neighbor histogram is found, using a TF-IDF distance measure.

ORB SLAM uses the DBoW2 [82] implementation with a vocabulary cre-
ated offline with ORB descriptors (4.3.1) extracted from a large set of images.
They also add various implementation tricks to add to the performance
described in their paper [3].

26

...................................... 4.3. Tracking

Figure 4.2: BoW Vocabulary tree

4.3 Tracking

4.3.1 ORB Features

ORB [65] are binary features invariant to rotation and scale (in a certain
range), resulting in a very fast recognizer with good invariance to viewpoint.

Figure 4.3: An example of how ORB SLAM would work. Takes in as input a
image patch, and outputs a binary string which is rotation and scale invariant.
In this example, the two image patches are rotated, but the descriptor remains
the same

The feature points are extracted with a FAST keypoint detector [66] at
8 scale levels with a scale factor of 1.2 , and the descriptor is based on the
BRIEF descriptor [67]; the name ORB is for Oriented FAST and Rotated
BRIEF.

4.3.2 Covisibility, and Essential Graphs

Covisibility graph. is an undirected weighted graph where each node is a
Keyframe and an edge between Keyframes exist if they share observations of
the same map points (at least 15 in the original implementation). The weight
θ of the edge is the number of common map points.

27

4. ORB SLAM

Figure 4.4: Example of some components of ORB-SLAM2; figure from [ORB-
SLAM1]

Essential Graph. is a subgraph of a covisibility graph that contains all its
nodes, but not the edges. The system incrementally builds a spanning tree
(D.2) from the initial keyframe which provides a connected subgraph of the
covisibility graph with minimal number of edges. When a new Keyframe
is inserted, it is included in the tree linked to the keyframe with which it
shares the most observartions, and when a Keyframe is removed by the
culling policy, the system updates all the nodes (keyframes) linked to it. The
Essential Graph contains this spanning tree, the subset of edges from the
covisibility graph with high covisibility (θmin >= 100) and loop closure edges.
The essential graph is used for the pose graph optimization (4.6.3).

See figure 4.4 for an example of covisibility graph, spanning tree, and
associated Essential graph.

4.3.3 Stereo points

A stereo point contains the following information: xs = (ul, vl, ur) where
(ul, vl) is the same as (u, v) of the ’left camera’ for an imaginary stereo set-up
and ul the horizontal coordinate for the ’right image’. For this imaginary
stereo set-up we assume it to be rectified left and right images, and hence
vr = vl so we do not mention it explicitly. The coordinate ur is generated
with the depth as:

ur = ul −
fxb

d
(4.1)

where fx is the horizontal focal length, and b is some fixed baseline. This is
done in the original work so that it is easier to have a single setup for both

28

...................................... 4.3. Tracking

stereo, and RGBD cameras.
The mono keypoints contain only (ul, vl), for pixels where there is no depth
value available.

4.3.4 Pose tracking

After the map has been initialized with the points from the first frame, a
constant velocity motion model [83] is used to predict the camera pose and
perform a guided search of the map points observed in the previous frame.
If insufficient matches were found, it implies that the motion model was
violated; a wider search is used for the map points around their position in
the last frame. The pose is then optimized with the found correspondences.

4.3.5 Relocalization if tracking is lost

If the tracking of the features across frames is lost for a frame, that frame
is converted into a bag of words representation (see 4.2), and the databse
consisting of all the previously tracked keyframes is queried for candidates C
for global relocalization. ORB 2D features of the query frame, Iq are matched
with 2D keypoints which contain a corresponding 3D points in the global
map from database image Id ∈ C.
Then, Pnp[72] with RANSAC [73] is run to find camera poses and their
inliers for each of the candidate keyframes. If there is a valid camera pose
(with enough inliers) the pose is optimized and a guided search is done for
finding more matches with the map points of the candidate frame. Finally
the camera pose is again optimized, and if supported with enough inliers,
tracking procedure continues.

4.3.6 Local map tracking

A local map contains a set of keyframes K1 that share map points with the
current frame, and a set K2 with neighbors to the keyframes in K1 in the
covisibility graph (4.3.2). It also has a reference keyframe Kref ∈ K1 which
shares most map points with the current frame. Each map point seen in K1,
and K2 is searched in the current frame as:..1. The projection x of the map point as in Appendix A is computed, and

discarded it if the image coordinates are out of bounds of the image
resolution...2. The angle between the current viewing ray ~v (see (3.3)), and the map
point mean viewing direction ~n is computed, and map point discarded if
~vT~n < cos(60◦)..3. Distance d of map point from camera center is calculated as L2 distance
and point is discarded if it is out of the scale invariance region, i.e.
d /∈ [dmin, dmax]..4. Scale in the frame computed by the ratio d/dmin

29

4. ORB SLAM5. The representative descriptorD of the map point with the still unmatched
ORB features in the frame, at the predicted scale, and near x are
compared to associate the map point with the best match.

The camera pose is then optimized with all the map points in a full bundle
adjustmnent.

4.4 Local Mapping

The local mapping thread handles the following with every new Keyframe Ki

:

4.4.1 KeyFrame Insertion

The covisibility graph is updated with a new node for Ki and updating
relevant edges from shared map points with other keyframe nodes. The
spanning tree is then updated linking Ki with its parent node Kp which is the
keyframe with the most shared map points. The BoW (4.2) representation of
the keyframe is then stored in a database for use when tracking is lost, or
relocalization.

4.4.2 Map Points Culling

Recent map points (observed from < 3 Keyframes ago) are checked for the
following criteria, and culled if they fail them:..1. The tracking must find the point in > 25% of frames where it is predicted

to be visible...2. If more than one keyframe has passed from map point creation, it must
be observed from at least three keyframes

4.4.3 New point creation

New map points are created by triangulating the tracked ORB features from
connected keyframes Kc in the covisibility graph. Matches are searched for
the unmatched points in Ki with points in frames of Kc, and if match is found
they are checked to see if they satisfy the epipolar constraint (see appendix
D.1). ORB pairs are triangulated, and to accept the new points,

4.4.4 Local Bundle Adjustment

The local Bundle Adjustment optimizes the current Keyframe Ki, all the
Keyframes connected to it in the Covisibility graph Kc, and all the map points
seen by those frames. Other keyframes that see those points but which /∈ Kc

are included in the optimization but remain fixed. Details of the optimization
are in 4.6.2

30

.....................................4.5. Loop Closing

4.4.5 Local Keyframe Culling

The local mapping tries to detect redundant keyframes as frames in Kc whose
90% of the map points have been seen in at least other three keyframes in
the same or finer scale, and delete these for reducing BA complexity, and
bounding the number of local keyframes.

4.5 Loop Closing

Loop closing is an integral part used in many optimization based SLAM
algoriths [69][70] which reduces global drift significantly. The loop closing
thread takes Ki and tries to detect, and close loops. This is done in four
steps which are described in the following subsections/

4.5.1 Loop Candidate Detection. First, the similarity scores between the BoW representation of the query
frame, Ki with its neighbors in the covisibility graph (for which min
number of shared map points=30) is computed, and the lowest score
among these is stored as smin.. Then the database is queried, and all Keyframes from the database for
which the similarity score s < smin are automatically rejected. DBoW2
[82] uses a normalizing score to gain robustness, but ORB SLAM uses
this covisibility score for robustness.. All keyframes directly connected to Ki are also rejected for the loop
closure candidates since these would generally have high scores, but not
close a loop.. To accept a loop candidate, three consecutive loop candidates that
are consistent (keyframes connected in the covisibility graph) must be
detected.

4.5.2 Transformation Computation

To estimate the error accumulated in the loop, and for a geometrical validation
of the loop, the rigid body transformation between the current keyframe Ki

and the loop keyframe Kl. ORB features associated with the map points
in current frame, Ki and loop candidate frames Kl are obtained, and from
this we get the 3D-3D correspondences from which the transformation can
be computed with a closed form solution [68] and RANSAC. If enough inliers
are found, the loop with Kl is accepted.

4.5.3 Loop Fusion

The first step for the loop correction is to is to fuse duplicated map points
and insert new edges in the covisibility graph that will attach the loop

31

4. ORB SLAM
closure. The current keyframe pose Tiw is corrected with the transformation
Til and this correction is propagated to all the neighbors of Ki, concatenating
transformations, so that both sides of the loop get aligned.
All map points seen by the loop keyframe and its neighbors are projected
into Ki and its neighbors, and matches are searched in a narrow area around
the projection. All those map points matched and those that were inliers in
the computation of the transformation in 4.5.2 are fused.

4.5.4 Graph Optimization

The Essential Graph is optimized with a pose-graph optimization (4.6.3)
that distributes the loop closing error along the graph. In the monocular
case, the optimization is performed over similarity transformations to correct
the scale drift, but in the RGBD case there is no need for this as we have
the scale from the sensor input; and the optimization is hence over rigid
transformations.

After the pose-graph optimization a full BA (4.6.2) is performed in a
separate thread. However, if a new loop is detected while the optimization is
running, the optimization is aborted and the looop is closed with the steps
detailed above, which also again triggers a full BA.
When this full BA finishes, the updated set of Keyframes and points are
merged with the non-updated ones by propogating the correction of updated
frames to non-updated frames through the spanning tree. Non-updated
points are transformed according to the correction applied to their referece
Keyframe.

4.6 Optimization Problems

The different optimization and bundle adjustment problems used in the above
sections are detailed here.

4.6.1 Motion-only Bundle Adjustment

The optimization variables are camera orientation R ∈ SO(3) and translation
t ∈ R3. The objective function is the reprojection error between 3D points
Xi ∈ R3 and keypoints xis ∈ R3 consisting of ul, vl, ur where i ∈ set of all
matches.

R, t = arg min
R,t

∑
i

ρ(||xis − π(R, t,Xi)||2σ) (4.2)

where ρ is the robust Huber cost function [63], σ the covariance matrix
associated to the scale of the keypoint, π a projection function where π(X) =
[ûl, v̂l, ûr]T , where the first two coordinates are obtained from the pinhole
projection (appendix A) and the last coordinate ur from (4.1).

32

................................ 4.6. Optimization Problems

4.6.2 Local Bundle Adjustment

The local Bundle adjustment optimizes a set of covisible keyframes KL,
and all points seen in those keyframes PL. All other keyframes KF /∈ KL

but which observe points in PL contribute to the cost function but are not
variables for the optimization, i.e. they remain fixed. Consider Mk the set of
matches between points in PL and 2D keypoints in a Keyframe k, we have
the following problem:

Xi, Rl, tl|i ∈ PL, l ∈ KL = arg min
Xi,Rl,tl

∑
k∈KL∪KF

∑
j∈Mk

ρ(Ekj) (4.3)

where
Ekj = ||xjs − π(Rk, tk, Xj)||2σ (4.4)

Full BA. is a case of the above optimization problem where all keyframes
and map points are optimized together, except the origin keyframe which is
fixed at Identity.

4.6.3 Pose-Graph Optimization

The pose-graph optimization is a rough approximation of full BA, done with
the Essential graph. Given an essential graph (4.3.2) , the error in an edge is
defined as:

ei,j = logSE(3)(TijTjwT−1
iw) (4.5)

where Tij is the relative rigid body transformation estimated in 4.5.2. In
the case of loop closure the value of TijTjwT−1

iw should be Identity, since the
transform is from i frame → World frame → j frame → back to i frame
The objective for minimization is:

C =
∑
i,j

(eTi,jΛi,jei,j) (4.6)

where Λi,j is the information matrix of the edge, which is set to Identity in
the ORB SLAM paper.

33

34

Chapter 5
Modifications to couple the network with
ORB SLAM

This chapter details the engineering modifications to the network, and to the
ORB SLAM code to enable the densification of the sparse point cloud from
SLAM.

5.1 Modifications to the Network

The primary modification on the network side, is for the network training
stage. The implementation by [1] uses a pose-network to directly regress the
relative pose between frames needed to compute the Photometric error (3.3)
which is trained simultaneously along with the depth completion network.
While the same mechanism could be adopted to use with Keyframes, and
sparse point clouds from ORB SLAM, it was found during experimentation
(7) that the training converges faster, and performs better on the evaluation
metrics when trained using the camera poses from the ORB SLAM tracking
instead of the pose net. Most SLAM or VO algorithms, including ORB-
SLAM track all the camera poses with respect to some global frame, usually
initialized as the coordinate frame of the initial frame. To convert from the
global camera poses, to the relative poses the following is done:

For three frames It−1, It, It+1 with some absolute poses pt−1, pt, pt+1 re-
spectively, which transform points from the world frame to the respective
camera frame (see interpretation (C.3)), we need the relative poses, or the
transforms pτt which transform a point in the frame of camera It to that of
the frame of camera Iτ for τ ∈ T : {t− 1, t+ 1}.
Consider a 3D point Xγt in the frame of camera It. Our pτt must satisfy the
following: [

Xγτ

1

]
= pτt

[
Xγt

1

]
(5.1)

where Xγτ is the coordinate of the same point in the frame of Iτ .We get this
pτt as the composition of transformations (see C)

First the transformation p−1
t transforms a point X from the frame of camera

35

5. Modifications to couple the network with ORB SLAM
I1, γt to theworld frame δ as (see C):[

Xδ

1

]
= p−1

t

[
Xγt

1

]
(5.2)

Then the transformation pτ transforms the point Xδ from the world frame to
the camera frame of Iτ . γτ . [

Xγτ

1

]
= pτ

[
Xδ

1

]
(5.3)

From (5.2) and (5.3), we see that[
Xγτ

1

]
= pτp

−1
t

[
Xγt

1

]
(5.4)

transforms the point Xγt from the frame of camera of It to the point Xγτ in
the frame of camera of Iτ . We see that this satisfies equation (5.1) and we
have the relative pose:

pτt = pτp
−1
t (5.5)

In some cases, where pt−1, pt, pt+1 are the transforms from the respective
camera frame to the world frame , the inverse of the 4× 4 matrices are taken
in the beginning, and the rest of the procedure remains the same. With this,
we get the relative pose pτ t for τ ∈ t− 1, t+ 1, which is used in 3.3.1 to
compute the photometric error which the network is trained on.

Apart from this, there are multiple code modifications in the codebase of
[1], for compatibility with the ORB SLAM data; some of them are:. ORB SLAM saves the depth data (sparse and raw), as well as pose data

as yml matrices instead of depth images.. An artefact of the code in the original codebase made it such that though
a triplet image is required for just the each training sample, they use the
triplet image as inputs for the inference as well. This is undesirable since
if we have a single image with sparse data we’d still like to run inference,
and the changes to enable this were implemented..Modifications to enable inference of a single instance of image and sparse
data were implemented; the original codebase could only run inference
for testing/validation on a batch of data.. Convenience scripts for data pre-processing, 3D visualization, etc.. were
implemented.

5.2 ORB SLAM modifications

The ORB SLAM implementaion uses the following data structure objects,
some of which contain overlapping information to represent various aspects
described in chapter 4:

36

............................... 5.2. ORB SLAM modifications..1. Frames..2. KeyFrames..3. KeyFrame Database..4. Map point..5. Map

The original datastructure objects, and their modifications are detailed.
Not every variable, and function is detailed, but the most important ones
to understand the overall functioning, and those that enable the changes
possible are.

5.2.1 Frames

For every input RGBD data, a Frame object is created which originally
contained the following:. The Vocabulary for the Bag of Words representation (see 4.2). An orb extractor. The intrinsic, and distortion parameters for the RGB camera. Stereo baseline if stereo inputs, and imaginary stereo rig baseline to

create the stereo points as detailed in 4.3.3 if RGBD .. A vector of undistorted detected 2D ORB keypoints mvKeysUn. A vector of the ’right’ stereo coordinate of the keypoints from above
mvuRight.. A vector of the depths corresponding to those keypoints as input from
the sensor. mvDepth. A vector of the Bag of Words representation mBowV ec, and a feature
vector mFeatV ec. A vector of map points associated to keypoints in the framemvpMapPoints. The computed camera pose mTcw. Its reference Keyframe, i.e. the keyframe with which it shares the most
map points mpReferenceKF. Various functions to extract or compute all the above mentioned data,
and also miscellaneous functions on the data.

To this are added the following:

37

5. Modifications to couple the network with ORB SLAM
. The raw RGB image. Though the original orb slam has no necessity

for storing the image itself, the RGB image is required for use with the
network. The depth image from the sensor. The original algorithm just uses the
depth data to convert to stereo coordinates with a baseline, but the
depth data as an image is stored in this work to use as ground truth
depth for a frame for evaluation purposes.

Although storing the images is not efficient memory-wise it is imperative that
there is access to this data so that they can be stored, and used with the
network for training, inference, and evaluation.

5.2.2 KeyFrames

The Keyframes are ’special’ frames which are the nodes in the covisibility
graph described in chapter 4. They contain the following information:. A Keyframe ID, the frame ID, and the ID of the next Keyframe. local Bundle Adjustment (see 4.6.2) variables. Variables for loop closure, and re-localization. Intrinsic, and distortion parameters carried over from the Frame data

structure.. vectors of Keypoints, stereo coordinates, and their descriptors. The Bag of Words vectors. Pose of Keyframe Tcw. Inverse pose of Keyframe, i.e. pose of the keyframe system in the world
coordinate frame Twc.. The camera center in the world frame, Ow. The vector of Map points associated to the keyframe mvpMapPoints. Variables for the spanning tree, and Loop Edges. Thread locked function to get the map points associated with the
keyframe. Since it is thread locked, the map points cannot be ob-
tained from a function call to this function outside the thread in the
main program, and hence it is not possible to get the map points’ world
coordinates from a KeyFrame.. Various other functions to extract or compute the above mentioned data,
and also miscellaneous functions on the data.

Similar to the Frames, the KeyFrames data structures are also made to
store the RGB data for inference with sparse depth, and the raw depth image
for evaluation. These are propogated to the Keyframes from Frames.

38

............................... 5.2. ORB SLAM modifications

5.2.3 KeyFrame Database

The KeyFrame database, as the name suggests stores the KeyFrames, with
their bag of words representations for loop detection, and relocalization. This
work does not use this data structure object, and there are no changes to it.

5.2.4 Map Point

The Map point object, as the name suggests stores information about a point
in the created map. It has the following members:. The ID of the point, mnId. The IDs of the first KeyFrame ID, and the first Frame ID.. number of times the point is observed nObs. Variables used by the tracking. Variables used by the local mapping, which optimizes the map points

and poses. Variables used by the loop closing. The position of the point in absolute coordinates (in the World Frame),
mWorldPos. An std::map of Keyframes observing the point and associated index in
the keyframe, mObservations. The reference keyframe for the point, mpRefKF. The Map object of the entire map. Various functions, and other variables.

The map point is an important object which is used in the main program,
outside any of the three threads (tracking, local mapping, loop closure) to
get the 3D World coordinates of a point.

5.2.5 Map

The data structure object storing a representation of the entire map. It
consists of:. A vector of the Keyframe origins of the points in the map. An std::set of all the map point objects, mspMapPoints. An std::set of all the KeyFrame objects associated with any point in the

map, mspKeyFrames. A vector of reference map points, mvpReferenceMapPoints. Functions related to map manipulation, and to get information about
the map objects.

39

5. Modifications to couple the network with ORB SLAM
5.2.6 Main program

In the main program where all the submodules are run, the data we require
is accessed, checked, and saved while a function to save the map is called.
For training the network on Orb SLAM data, we need the following:..1. RGB Images..2. Sparse depth data from the map points, corresponding to the RGB

images in the frame of the cameras..3. Validity maps which are boolean images with True value for valid depths,
and False for invalid ones in the sparse data...4. Raw depth from the sensor corresponding to each frame for evaluation.
This is not used during training..5. Pose data for each frame used for the training and reprojection.

As mentioned in 5.2.2, we cannot get the world coordinates of the map points
from a mappoint obtained from a KeyFrame object in the main program.
Hence, to obtain the depth, we extract all the map points together from the
map object, extract the 3D coordinates from them, and project them into
each keyframe by which they are observed. This information is created, and
extracted with the following procedure:. First, from the map datastructure object (5.2.5) we use one of its functions

GetAllKeyFrames() to get all keyframes for points in the map and store
it in a vector of KeyFrames(5.2.2) vpKFs which are sorted according to
their IDs.. Then, using the function GetAllMapPoints() from the map datastruc-
ture object, we get the vector of map points(5.2.4). Looping over the vector of map points mps:. The 3D coordinates of the map point with respect to the world

frame Xδ is extracted with the function GetWorldPos()..We then loop over every keyframe in the vector vpKFs. For
Keyframe Kj for j ∈ length(vpKFs):. First, check if the keyframe observes the map point. If it does

not, iterate to the next Keyframe.. Extract the vector of 2D ORB keypointsmvKeysUn of KeyFrame
Kj .. Extract the intrinsic camera matrix parameters from Kj , and
construct the matrix K for KeyFrame Kj. Then, the index of the map point in the KeyFrame is extracted.
This index refers to the 2D keypoint in the KeyFrame, to which
the map point corresponds.

40

.................... 5.3. Combining ORB SLAM data with KBNET network

. With this index, the 2D image coordinates of the keypoint (u, v)
from mvKeysUn corresponding to the map point is extracted.. The pose p, of the form (C.1), of KeyFrame Kj is extracted.. With the pose p, and the intrinsic matrix K, we obtain the
image coordinates of the projection (û, v̂) of Xδ (see A). The reprojection error is computed as:

r = ||
[
û
v̂

]
−

[
u
v

]
||2 (5.6)

. If the reprojection error r < error threshold, then the z coor-
dinate of the point X in the camera coordinate frame. i.e..

x
y
z
1

 = p

[
Xδ

1

]
(5.7)

and depth d = z. The coordinates of the 2D keypoint (u, v) along with the depth
value d of the map point, and the pose pj for the Keyframe Kj

is stored in some respective variables.. This is used to create the sparse depth map for each keyframe, the rgb
image and raw depth is extracted from the KeyFrame object, and the
validity map is created as an image which has values of 1 in pixels where
the sparse depth > 0, and 0 otherwise.

5.3 Combining ORB SLAM data with KBNET
network

Once the data from ORB SLAM described in the previous section is available,
it is set up in a format compatible with the KBNet training and inference
(described in chapter 7). The network is then trained to overfit on this
training data since we wish to densify the same data. The reason for this
approach is elucidated in chapter 7.
Once we have the best model from validataion (a subset of the training data
in this case), inference is run for all the images with their respective spare
depths and intrinsic matrices, obtaining the output dense depth maps.

5.3.1 Dense depth back-projection

For a selection of the keyframes, we back-project these dense depths to the
original pointcloud from ORB SLAM by the following:

Given a keyframe i, we have the RGB image Ii, sparse depth Di obtained
as described in 5.2.6, for intrinsic matrix K we get the estimated depth D̂

41

5. Modifications to couple the network with ORB SLAM
from running the inference. We also have the pose pi from ORB SLAM for the
keyframe. For a point j with some pixel coordinates (ui, vi), the corresponding
estimated dense depth value is then dij . To get the 3D coordinates Xγi in the
frame of camera i, we follow the process shown in 3.3.1. Direction vector

~xij = λiK
−1

uivi
1

 (5.8)

Xγi = dij
~xij (5.9)

We get the coordinates of the point in the world frame, Xδ with:[
Xδ

1

]
= p−1

i

[
Xγi

1

]
(5.10)

We use the property that p can be seen as a transformation from world frame
to camera frame, its inverse p−1 is the transformation from camera frame to
the world frame.(C.3). This is done for every point j in keyframe i, and for
every i in the list of keyframes to be backprojected.

42

Chapter 6
Data collection and Dataset creation

The ARI robot is a humanoid platform designed for a wide range of multimodal
expressive gestures and behaviors, suitable for Human-Robot-Interaction,
perception, cognition and navigation. It provides an interesting case where
some form of depth completion is almost necessary for functioning of the
robot since navigation often runs into collisions for areas which were not
sufficiently mapped by a sparse mapper. For this reason, testing on data
captured from the actual robot is vital to gauge its validity. The robot
has multiple cameras for mapping, localization, navigation and sensing the
environment; the camera configuration in the robot is shown in figure 6.1.

Figure 6.1: ARI Cameras Configuration. The Torso Front camera, an Intel
Realsense D435i is used with ORB SLAM

The torso front camera, which is an Intel Realsense D435i RGBD camera is
used for the data collection, and dataset creation in this work. The Realsense
D435i is an RGBD camera consisting of an RGB imagine module, along with
two monochrome cameras in a stereo rig set-up, and an IR projector, along

43

6. Data collection and Dataset creation

Figure 6.2: D435i camera module. Consists of an RGB camera, and 2
monochrome cameras in a stereo rig, along with an Infraeed projector

with an Inertial Measurement Unit (IMU). The IR projector is used as an
active stereo imaging technique to project an IR pattern into textureless
surfaces which is detected by the monochrome cameras. However, in this
work this IR projector is turned OFF since the challenge is to estimate depth
in areas of low/no texture without an active component.

The camera is pre-calibrated, and the intrinsic matrix parameter values
are provided by the manufacturer. The RGB camera is operated at 848× 480
resolution at 30 frames per second for the image, as well as depth data.
The depth is obtained from the stereo rig consisting of the two monochrome
cameras and the IR projector. We use the RoboticOS(ROS) [85] framework
to work with the camera, as well as the robot as a whole. The data is stored
in the form of a rosbag containing the RGB camera information, aligned
depth information, and the camera intrinsics, and distortion parameters with
the topics:..1. /torso_front_camera/color/image_raw/compressed : containing the

RGB frames in the form of sensor_msgs/compressedImage messages..2. /torso_frontcamera/aligned_depth_to_color/image_raw : contain-
ing the depth aligned to the RGB camera frame in the form of sensor_msgs/Image
messages. Each pixel in a frame of this topic contains the scaled depth
value corresponding to that pixel location in the RGB image with a scale
factor of 1000...3. /torso_front_camera/color/camera_info : containing the camera
information, i.e. the parameters of the intrinsic matrix K, and the
distortion parameters for the camera. In our case, the RGB image we
obtain is rectified (undistorted) by the ROS wrapper, so we can assume
0 distortion.

The open-source ROS wrapper for ORB-SLAM2 works with raw RGB
images, and raw aligned depth as inputs. Since recording raw images is not
convenient for lengthy recordings, functionality to synchronize and work with
compressed images and raw aligned depth, as well as compressed images,
and compressed aligned depths had to be added. The dataset consists of the
recorded rosbags, and the results of the ORB-SLAM using 5.2. The structure

44

........................... 6. Data collection and Dataset creation

Figure 6.3: Dataset structure after running the modified ORB SLAM on the
data from the recorded rosbags. Each sub-folder under the sequence location
directory contains files (images or ’yml’s) for each keyframe in the SLAM. The
camera intrinsic matrix is stored as a numpy ’npy’ matrix.

for each sequence in the dataset is shown in figure 6.3. The RGB images, and
validity maps for the sparse depth are stored as ’png’s while the sparse depth
from SLAM, as well as the semi-dense depth which we use as ground truth
for evaluation are stored as ’yml’s, and the Camera intrinsic matrix file is
stored as a numpy ’npy’ matrix.

The data was recorded from indoor locations in CIIRC building, as well as
in a hospital. The robot was controlled with a joystick, and moved at slow
translational and rotational speeds in a manner which ensures that the ORB
SLAM would not lose tracking. Additionally, since ORB SLAM performs a
pose-graph optimization (4.6.3), and full bundle adjustment on loop detection
and closure as described in section 4.5, the robot was moved in a looped
trajectory which would ensure that the loop closure was triggered. The data
was recorded in the following locations:..1. A small room #637 in CIIRC..2. A relatively larger room AAG impact room in CIIRC..3. A large lecture hall #670 in CIIRC...4. A corridor and hallway at BROCA hospital in Paris, for SPRING.

The rosbags for the data in the BROCA hospital was recorded with not
only the topics listed previously, but also various other data required for
the SPRING project. Due to this, the sequence contains multiple bags of
large size, and the aligned depth data as well as the RGB data are both
compressed.
Each sequence has challenging images, both due to the nature of the downward
facing camera itself, and meeting pillars, and other textureless objects in the

45

6. Data collection and Dataset creation

(a) : Image from Room
637

(b) : Image of a white
pillar from Room 670

(c) : Image from the
BROCA hospital hall-
way

(d) : Ground truth of (b)

Figure 6.4: Examples of some images from different sequences in the dataset.
Image (d) shows the ground truth obtained from image (b), where we see that
almost no points from the pillar are in the ’ground truth’

Figure 6.5: Sparse depth image from SLAM corresponding to img (b).The
image has been inverted and the sparse points dilated to appear larger than they
actually are; real sparse data is even sparser than is shown in the image 6.4b;

path. Some examples are shown in figure 6.4. For most images, the ’ground
truth’ from the sensor is incomplete in varying degrees since the depth values
are obtained from stereo, and stereo relies on textured surfaces as well. An
example of ground truth corresponding to figure 6.4b is shown in figure 6.4d.
The sparse data which we obtain from points tracked in ORB SLAM contains
about few hundred points per frame, which is significantly lower than in other
datasets which contain thousands to tens of thousands of points per frame.
This adds to the complexity of the task and provides an additional reason as
to why a previously trained model on other datasets can be employed. An
example of the sparse depth image is shown in figure 6.5. We see that there
are a few points near the base of the pillar, but no points along the pillar
itself.

46

Chapter 7
Implementation, Experiments and Results

The implementation details such as description of hyperparameters for the
network training and inference, ORB SLAM parameters, steps for dataset
preprocessing, as well as the experimentations and their results are described
in this chapter. Experiments were carried with the VOID dataset [4], as well
as the captured data described in chapter 6

. The KBNet model is implemented in PyTorch [86] using the Adam optimizer
[84] with the initial decay rates hyperparameters β1 = 0.9, and β2 = 0.999
to optimize the network. [1] trains with a batch size of 8 for 15 epochs on
the VOID dataset. Since the data from a single ORB SLAM sequence is
considerably smaller, we use a batch size of 4, and significantly more epochs
to overfit. Results pertaining to these hyperparameters are presented in later
sections in this chapter.

NOTE: The units for the evaluation metrics are as follows: MAE, and
RMSE are in mm and the iMAE, and iRMSE in mm−1

7.1 Experiments and Results on the VOID dataset

The VOID dataset is described in section 2.1. The dataset we create with the
robot data also mimics this dataset. This section details some experiments
and their results on the network with the VOID dataset. For this, we use a
subset of the void dataset consisting of a total of 36451 samples with 35917
samples in the training set, and 534 samples in the testing and validation
sets. Mimicking [1], the training is validated on the same set of samples as
the testing set. The evaluation metrics used are the Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), inverse Mean Absolute Error
(iMAE),and the inverse Root Mean Squared error (iRMSE) (see section 2.1),
and the units are in mm or 10−3m

The weights for the Loss function are initially set to wph = 1, wco = 0.15,
wst = 0.95, wsz = 2, and wsm = 2. The meaning behind these weights is
explained in section 3.3. The kernels for the min, and max pooling operations
in the Sparse-to-Dense Module (3.1) is 3 min-pooling layers of sizes [15, 17, 19]
and 2 max-pooling layers with kernel sizes [23, 27]. The learning schedule for

47

7. Implementation, Experiments and Results
the 15 epochs are split as 1× 10−4 for the first 10 epochs and 5× 10−5 for
the last 5. Data augmentations such as randomly removing 30% to 60% of
the sparse points are enabled 100% of the time, following [1]. The step where
the validation loss is the least is chosen as the ’best’ model from the training.

Training with and without a pose-network. Though the VOID dataset
contains poses corresponding to every image, and sparse depth data, [1]
do not use these poses for their training, nor do they test the difference
between using the Pose network, and using these poses. Modifying the
training mechanism to use the poses (see 5.1), the training using posenet
outperformed that with poses. The quantitative results are presented in
table 7.1, and the qualitative visualizations are shown in figure 7.1. For the
visualization, all the depths are normalized to lie in a range of 0-255 where
0 corresponds to the minimum value, and 255 to the maximum value. The
normalized pixelwise L2 difference between the predicted dense depth, and
the ground truth depth is visualized as an inverse difference image.
From figure 7.1 we see that the prediced depths do not differ significantly
from either method in most areas, but the model trained on absolute poses
performs worse in the pillar as can be seen in the inverse difference images.
While in the case of the VOID dataset training with posenet outperforms
using the poses quantitatively, we will see that it is not so for the data
captured from the robot. A possible reason for this could be that the poses
of the VIO used in VOID dataset are outperformed by the Posenet, and since
the photometric loss (3.3) depends heavily on them, they would affect the
model accuracy.

Table 7.1: Results on the testing set of VOID dataset [4] for the network trained
on relative poses from 1.Posenet, and 2.Absolute poses from ORB SLAM [2].
Training PoseNet simultaneously and using it for the relative poses seems to give
better results in the case of the VOID dataset

Pose source MAE RMSE iMAE iRMSE
Relative poses from PoseNet 31.294 79.999 16.512 39.643
Absolute poses from VIO 35.596 89.272 20.327 46.497

Training with different loss function weights. The loss function weights
were experimented with the model trained using the absolute poses. The
results are presented in table 7.2. The best results were obtained with the
values used in [1]. Moreover, when the structural loss weights were increased
thus giving it more importance, the validation loss got worse with training
epochs, which again suggests that the absolute poses in the dataset might
not be contain inaccuracies.

48

...................... 7.1. Experiments and Results on the VOID dataset

(a) : RGB Image from
the VOID dataset

(b) : Sparse depth im-
age with 1500 points

(c) : Ground Truth
depth for the image

(d) : Predicted dense
depth using the model
trained with poses
from PoseNet

(e) : Predicted dense
depth using the model
trained with absolute
poses

(f) : L2 difference
image (inverted) visual-
ized for model trained
with posenet. Brighter
is more difference, and
darker is less

(g) : L2 difference im-
age (inverted) visual-
ized for model trained
with posenet.

Figure 7.1: Visualizations of outputs of models trained using poses from a
pose-network, and with poses from absolute poses

Table 7.2: Results on the testing set of VOID dataset [4] for the network trained
on different loss function weights, and with absolute poses

wph wco wst wsz wsm MAE RMSE iMAE iRMSE
1 0.15 2.0 2.0 1.0 46.346 101.458 28.349 58.658
1 0.15 2.0 1.5 1.5 54.043 109.192 31.220 61.149
1 0.15 3.0 2.0 1.0 90.494 137.657 48.679 76.186
1 0.15 0.95 2.0 2.0 35.596 89.272 20.327 46.497

49

7. Implementation, Experiments and Results
7.2 Experiments and Results on data captured
from the robot

Dataset Preprocessing. Since the training of the network (3.3) uses 3 images
per training sample, in [1] they concatenate three images It−1, It, It+1 into one
combined image which is loaded along with the sparse depth for St, and the
intrinsic matrix Kt, and the relative poses pτt for τ = {t− 1, t+ 1} regressed
from the pose-network. In this work, the same concatenation is performed on
the image data resulting in a single 2544× 480× 3channes image stacked along
the width from three 848× 480× 3channels images for each training sample;
the pose data with respect to some global frame are also concatenated to a
12× 4 matrices stacked along the rows. These poses are separated into four
4× 4 matrices while reading and converted to relative poses during training
using the method described in section 5.1. This concatenation of poses is
done solely for easier integration with the existing codebase.

Data split. For the data captured with the robot, the data split is different
from the previous section, since in this case, our aim is to train and run
inference on the same data. Hence, all the samples from a sequence are used
for training and testing. For validation, we take a random subset of this
consisting of 0.1 times the size of the data.

Depth Scaling. A vital implementation difference, which causes problems
if missed, between the VOID dataset, and the data we capture obtained from
ORB SLAM is that; the VOID dataset [4] scales the depth by a factor of
256 to preserve the floating point accuracy. However, when the depth data
is obtained from ORB SLAM, this is not done since the values are stored
without losing their floating point accuracy as ’yml’ files.

Testing with pre-trained model on VOID. First, inference is run on the
data captured from the robot from Room 637 in CIIRC, and lecture hall 670,
with the best performing model on the VOID dataset, i.e. the model trained
with relative poses from posenet whose results are presented in table 7.1. The
evaluation on this produces, as expected, large errors. This is because. Though the VOID dataset is captured using the same camera and the

model takes in the Intrinsic matrix as an input, the images are at a lower
resolution of 640× 480 in VOID, whereas they are 848× 480 from the
robot.. The sparsity from ORB SLAM tracking is much worse, and unevenly
distributed. In the VOID dataset, the sparse points are sampled using a
corner detector with a low threshold, and then clustered to ensure that
they are sampled from throughout the image, and not concenrated in
some areas with constant density of 0.15%, i.e. 1500 points per image.
Opposed to this, ORB SLAM tracks keypoints only based on the FAST
[66] detectors, and the tracking, which results in an uneven distribution

50

................. 7.2. Experiments and Results on data captured from the robot

(a) : RGB image, and Sparse depth form VOID

(b) : RGB Image from the robot and Sparse depth image from ORB SLAM

Figure 7.2: Difference in nature of data between the VOID dataset and the data
captured from the robot. Sparse depth rescaled for visualization

of points as well as much fewer points (between 100-1000) points in an
image.. The dataset is captured using a robot from a downward facing camera.
Though the VOID dataset has different sequences in various environments,
very few of its images are similar to those captured by the robot.

Due to this, using the pre-trained network trained on a datasets like VOID,
or others wouldn’t work. The results are presented in table 7.3 and 7.4

Results from the training on the captured data, and the training procedure
is presented in this section. Results are presented for the training with poses
obtained from the ORB SLAM as well as using the pose-network, and with
different learning schedules.

Overfitting. As explained in previous sections, since the the densification
process is performed as an offline step with all the data from a sequence
available, the model is trained to overfit on the data so as to achieve the
best results on it. Training on limited data for a large number of epochs, in
practice, results in a model learning or ’memorizing’ the parameters to map
from images and sparse depth to dense depth.

The data was trained and tested on two sequences from the robot; the first
being a small room Room 637, and the other a large room lecture hall 670.
The first sequence contains 448 samples, with each consisting of: an image

51

7. Implementation, Experiments and Results
Training epochs Tr min_k Tr max_k Ev min_k Ev max_k MAE RMSE iMAE iRMSE

VOID posenet 15 [15,17,19] [23,27] [15,17,19] [23,27] 1318.664 1354.608 5337.475 5602.716
ORB posenet 150 [15,17,19] [23,27] [15,17,19] [23,27] 360.522 448.070 198.450 237.920
ORB ORB 150 [15,17,19] [23,27] [15,17,19] [23,27] 78.956 125.638 39.758 111.631
ORB ORB 150 [15,17,19] [23,27] [25,27,29] [33,37] 78.222 126.041 39.570 112.032
ORB ORB 150 [25,27,29] [33,37] [25,27,29] [33,37] 76.779 116.763 39.985 94.212
ORB ORB 150 [25,27,29] [33,37] [15,17,19] [23,27] 78.108 118.492 40.521 94.619
ORB ORB 150 [15,17,19] [23,27] [25,27,29] [33,37] 78.222 126.041 39.570 112.032
ORB ORB 250 [15,17,19] [23,27] [15,17,19] [23,27] 78.464 121.093 38.083 88.373
ORB ORB 500 [15,17,19] [23,27] [15,17,19] [23,27] 72.278 115.754 33.656 68.020

Table 7.3: Results on data collected from the robot, and sparse depth obtained
from ORB SLAM sequence Room637. (Tr stands for training, Ev for evaluation,
min_k and max_k for min and max pooling kernel sizes in the S2D module)

Training epochs Tr min_k Tr max_k Ev min_k Ev max_k MAE RMSE iMAE iRMSE
VOID posenet 15 [15,17,19] [23,27] [15,17,19] [23,27] 1337.092 1378.701 6443.715 6863.004
ORB posenet 150 [15,17,19] [23,27] [15,17,19] [23,27] 351.743 453.680 181.208 213.572
ORB ORB 150 [15,17,19] [23,27] [15,17,19] [23,27] 86.657 157.543 38.535 68.639
ORB ORB 150 [15,17,19] [23,27] [25,27,29] [33,37] 126.924 199.744 54.955 81.512
ORB ORB 150 [25,27,29] [33,37] [25,27,29] [33,37] 83.948 157.052 36.758 89.660

Table 7.4: Results on data collected from the robot, and sparse depth obtained
from ORB SLAM sequence Lecture Hall 670.

triplet {It−1, It, It+1}}, the pose triplet: {pt−1, pt, pt+1} , the sparse depth sz
corresponding to It, and the second sequence contains 2202 samples. The loss
function weights used for training are the same as the best ones for VOID
shown in table 7.2; the training is done with batches of size 4.

Results. Since the sparse depth is significantly sparser in the ORB SLAM
output data, than in the VOID dataset (see example in figure 7.2), as per
the suggestion in [1], we use bigger kernels for the min and max pooling
layers in the Sparse-to-Dense (S2D) module. The results show that this is
indeed useful, and the evaluation metrics improve on both sequences. The
results are presented in table 7.3 for the first sequence, and in table 7.4 for
the second sequence. In examples shown in figure 7.4 and 7.5, it is seen that
due to the nature of the scene, the ground truth depth itself is incomplete,
or only semi-dense. This is because the ground truth is generated by stereo
algorithms , and with the IR emitter in the camera turned OFF, it struggles
to measure the depths in areas of no texture.

52

................. 7.2. Experiments and Results on data captured from the robot

(a) : The RMSE, and MAE error metrics from the validation set during training with
a pose-network

(b) : The RMSE, and MAE error metrics from the validation set during training with
a pose-network

Figure 7.3: Validation error metrics through training steps for (a) network
trained with a pose-network, and (b) network trained with poses from SLAM

While in both sets when the network is both trained and tested on bigger
pooling kernels for the S2D, it performs outperforms a network trained on
smaller pooling kernels by a little; however when the network is trained on
smaller pooling kernels, and tested with larger kernels, the performance is
nearly the same in the case of the first sequence, and is markedly worse for
the second sequence. This highlights the importance of the Sparse-to-Dense
module to the process. The training epochs affect the performance as well,
although the difference is not significant. Hence, it might not be worth the
time cost to train the extra epochs for a small performance boost.
Another noteworthy observation is that not only are the evaluation errors
significantly higher when the network is trained with a pose-network, but the
validation loss does not saturate to a minimum even with 150 epochs. This
can be seen in the graphs plotting a validation error metric through train-
ing steps for the posenet, as well as with using ORB SLAM poses in figure 7.3.

Example visualizations of the network outputs are shown in figures 7.4
for sequence 1, and 7.5 for sequence 2. In the visualizations we see that the
network predicts depths where even the ground truth fails to estimate them.
The sparse points from the point cloud are not visualized since there are too
few points to view at this image scale; this makes the performance of the
network all the more impressive. The inverted difference images are visualized
as well, where the L2 difference between the predicted dense depth and the
ground truth depth at each pixel are computed and normalized to a scale of
[255-0] for visualization. Since the image is inverted, a value of 0 corresponds
to the highest L2 difference, and a value of 255 for 0 difference, i.e.. brighter
a region is, the more relatively accurate it is. This gives us an idea of the
relative error between areas in the image, but not the absolute error.

53

7. Implementation, Experiments and Results

(a) : Example image, dense depth, ground truth, and inverted difference image 1

(b) : Example image, dense depth, ground truth, and inverted difference image 2

(c) : Pointclouds of projected predicted dense point cloud, and semi-dense ground-trugh
for image (a)

Figure 7.4: Visualizations of the results for sequence 1 from the robot dataset.
We see that the network predicts dense depth even in areas where the ground
truth fails. We see that the network predicts dense depth even in areas where
the ground truth fails.

(a) : Example image, dense depth, ground truth, and inverted difference image 1

(b) : Example image, dense depth, ground truth, and inverted difference image 2

(c) : Pointclouds of projected predicted dense point cloud, and semi-dense ground-trugh
for image (b)

Figure 7.5: Visualizations of the results for sequence 2 from the robot dataset.
While the ground truth is entirely absent for the pillar in figure (b), the dense
depth predicts depths in the region. The pointclouds show the projected points
using the dense, and ground truth depths. The points from the dense depth for
the floor are not completely flat, especially towards the edges of the image which
is also reflected in parts of the inverted difference images.

54

Chapter 8
Conclusion and Future Work

8.1 Summary

This work presents. A review on datasets, commonly used evaluation metrics, and systems
for monocular depth completion and estimation with a compilation on
available open-sources codebases in chapter 2.. The workings of the KBNet network, and ORB-SLAM in chapters 3,
and 4. A method to densify a sparse scene representation obtained from SLAM
[2] using a monocular depth completion network [1] in chapter 5. Details setup for data capture, and results of experimentation from data
on the ARI robot in chapters 6, 7

The densification process is currently carried out as an offline step after the
sparse mapping, and can be used to create a dense representation of the
scene in areas where the sparse mapping fails to capture any points, before
navigation. The depth prediction network manages to use RGB images, with
extremely sparse depths to produce dense depth maps even in areas where
the ground truth from the sensor fails. This comes with the drawback that
we have no way to quantitatively measure the errors from these regions, but
rely on qualitative assessment.

8.2 Future Work

Selective Back-Projection. The results from section 7.2 show that the
depth prediction manages to estimate depth even with extremely sparse
inputs, with some exceptions, even in regions where the ground truth from a
stereo-based RGBD sensor cannot. However, we cannot efficiently measure
the accuracies of predictions in these problematic, but extremely important
areas. Hence, rather than using the depth estimation predicted depths for
every point of every frame, a focus of the future work should be on identifying

55

8. Conclusion and Future Work
certain ’problematic’ key-frames, and specific areas in them for which we use
the estimated depth to backproject. Estimating the uncertainity associated
with the predictions [13][87][88] would also aid this selective back-projection,
since we then discard predictions with high uncertainty.

(a) : Image, predicted dense depth, and the ground truth depth

(b) : Example image, dense depth, and the ground truth, where ground truth is missing
for a large part of the image

(c) : Pointclouds of projected predicted dense point cloud, and semi-dense ground-trugh
for image for image (a). We see from the point cloud of the predicted dense depth that
the surfaces are ’bent’ towards the camera at the edges

(d) : Pointclouds of projected predicted dense point cloud, and semi-dense ground-trugh
for image for image (b). Here, the point cloud of the predicted dense depth seems more
accurate, and the surfaces are flat

Figure 8.1: The need for an selective back-projection, and an uncertainty
measure. While in the case of (d), the predicted depth ’seems’ accurate when
backprojected to the point cloud, in (c) we see that the surfaces aren’t flat but
bent

Online depth completion with SLAM. While the method outlined in this
work is sufficient for systems which perform mapping and navigation asyn-
chronously, many systems work in environments where the mapping and
navigation take place together. This would require moving the depth comple-
tion from an offline step, to an online one, being performed in synchronization

56

.....................................8.2. Future Work

with the mapping, for which the current training regime would hence not
be applicable. Ground robots also use 2D occupancy grids probabilistically
mapped from the 3D SLAM data for navigation. While there are techniques
to convert 3D point clouds to occupancy grids, the probablistic method
involves observing multiple observations of a scene which can only be done
online. An added advantage with optimization-based methods is that while
running the algorithms online, they optimize on all available points to mini-
mize reprojection errors or to close loops with pose-graph optimizations which
is not done with the back-projected points in the offline case. Hence, some
continual learning techniques [90] can be incorporated to ’learn as we go’ and
continually improve the system with more data to enable these.

57

58

Bibliography

[1] Alex Wong and Stefano Soatto. Unsupervised depth completion with
calibrated backprojection layers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12747–12756, 2021.

[2] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a
versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics, 31(5):1147–1163, 2015.

[3] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE Transactions
on Robotics, 31(5):1147–1163, oct 2015.

[4] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto. Unsuper-
vised depth completion from visual inertial odometry. IEEE Robotics
and Automation Letters, 5(2):1899–1906, 2020.

[5] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang, and Feng
Qian. Monocular depth estimation based on deep learning: An overview.
CoRR, abs/2003.06620, 2020.

[6] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map pre-
diction from a single image using a multi-scale deep network. CoRR,
abs/1406.2283, 2014.

[7] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsu-
pervised cnn for single view depth estimation: Geometry to the rescue,
2016.

[8] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari,
and Nassir Navab. Deeper depth prediction with fully convolutional
residual networks, 2016.

[9] Anirban Roy and Sinisa Todorovic. Monocular depth estimation using
neural regression forest. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5506–5514, 2016.

[10] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So Kweon.
Non-local spatial propagation network for depth completion, 2020.

59

8. Conclusion and Future Work
[11] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, shenghao zhang, and

Chong Zhang. A multi-scale guided cascade hourglass network for depth
completion. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), March 2020.

[12] Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Baobei Xu, Jun
Li, and Jian Yang. Rignet: Repetitive image guided network for depth
completion, 2021.

[13] Wouter Van Gansbeke, Davy Neven, Bert De Brabandere, and Luc
Van Gool. Sparse and noisy lidar completion with rgb guidance and
uncertainty, 2019.

[14] Vitor Guizilini, Rares Ambrus, Wolfram Burgard, and Adrien Gaidon.
Sparse auxiliary networks for unified monocular depth prediction and
completion, 2021.

[15] Chao Qu, Ty Nguyen, and Camillo J. Taylor. Depth completion via
deep basis fitting, 2019.

[16] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learning joint
2d-3d representations for depth completion, 2020.

[17] Shanshan Zhao, Mingming Gong, Huan Fu, and Dacheng Tao. Adap-
tive context-aware multi-modal network for depth completion. IEEE
Transactions on Image Processing, 30:5264–5276, 2021.

[18] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiaojin Gong.
Penet: Towards precise and efficient image guided depth completion,
2021.

[19] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan,
and Zicheng Liu. Dynamic convolution: Attention over convolution
kernels, 2019.

[20] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger,
and Andrew J. Davison. Codeslam - learning a compact, optimisable
representation for dense visual slam, 2018.

[21] Hidenobu Matsuki, Raluca Scona, Jan Czarnowski, and Andrew J. Davi-
son. Codemapping: Real-time dense mapping for sparse slam using
compact scene representations, 2021.

[22] Xingxing Zuo, Nathaniel Merrill, Wei Li, Yong Liu, Marc Pollefeys,
and Guoquan Huang. Codevio: Visual-inertial odometry with learned
optimizable dense depth, 2020.

[23] Carlos Campos, Richard Elvira, Juan J. Gomez, José M. M. Montiel,
and Juan D. Tardós. ORB-SLAM3: An accurate open-source library
for visual, visual-inertial and multi-map SLAM. IEEE Transactions on
Robotics, 37(6):1874–1890, 2021.

60

.....................................8.2. Future Work

[24] J Czarnowski, T Laidlow, R Clark, and AJ Davison. Deepfactors: Real-
time probabilistic dense monocular slam. IEEE Robotics and Automation
Letters, 5:721–728, 2020.

[25] Byeong-Uk Lee, Kyunghyun Lee, and In So Kweon. Depth completion
using plane-residual representation, 2021.

[26] Saif Imran, Xiaoming Liu, and Daniel Morris. Depth completion with
twin surface extrapolation at occlusion boundaries, 2021.

[27] Yinda Zhang and Thomas A. Funkhouser. Deep depth completion of a
single RGB-D image. CoRR, abs/1803.09326, 2018.

[28] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and Jiaya Jia.
Geonet: Geometric neural network for joint depth and surface normal
estimation. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 283–291, 2018.

[29] Xiaojuan Qi, Zhengzhe Liu, Renjie Liao, Philip H. S. Torr, Raquel Ur-
tasun, and Jiaya Jia. GeoNet++: Iterative geometric neural network
with edge-aware refinement for joint depth and surface normal estima-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(2):969–984, feb 2022.

[30] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun Bao, and
Hongsheng Li. Depth completion from sparse lidar data with depth-
normal constraints, 2019.

[31] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang, Shuaicheng
Liu, Bing Zeng, and Marc Pollefeys. Deeplidar: Deep surface normal
guided depth prediction for outdoor scene from sparse lidar data and
single color image. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[32] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Bros-
tow. Digging into self-supervised monocular depth estimation, 2018.

[33] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe.
Unsupervised learning of depth and ego-motion from video, 2017.

[34] Zhenheng Yang, Peng Wang, Wei Xu, Liang Zhao, and Ramakant
Nevatia. Unsupervised learning of geometry with edge-aware depth-
normal consistency, 2017.

[35] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac Karaman.
Self-supervised sparse-to-dense: Self-supervised depth completion from
lidar and monocular camera, 2018.

[36] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction
from sparse depth samples and a single image. 2018.

61

8. Conclusion and Future Work
[37] Shreyas S Shivakumar, Ty Nguyen, Ian D. Miller, Steven W. Chen,

Vijay Kumar, and Camillo J Taylor. Dfusenet: Deep fusion of rgb
and sparse depth information for image guided dense depth completion.
https://arxiv.org/pdf/1902.00761.pdf, 2019.

[38] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth posterior
(ddp) from single image and sparse range, 2019.

[39] Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai Hong Tang,
and Hong Zhang. Cnn-svo: Improving the mapping in semi-direct visual
odometry using single-image depth prediction, 2018.

[40] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast
semi-direct monocular visual odometry. In IEEE International Confer-
ence on Robotics and Automation (ICRA), 2014.

[41] Xiaochuan Yin, Xiangwei Wang, Xiaoguo Du, and Qijun Chen. Scale
recovery for monocular visual odometry using depth estimated with deep
convolutional neural fields. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 5871–5879, 2017.

[42] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers. Deep virtual
stereo odometry: Leveraging deep depth prediction for monocular direct
sparse odometry, 2018.

[43] Nathaniel Merrill, Patrick Geneva, and Guoquan Huang. Robust monoc-
ular visual-inertial depth completion for embedded systems. In IEEE
International Conference on Robotics and Automation (ICRA), pages
5713–5719. IEEE, 2021.

[44] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan
Huang. OpenVINS: a research platform for visual-inertial estimation. In
IEEE International Conference on Robotics and Automation (ICRA),
pages 4666–4672. IEEE, 2020.

[45] Kourosh Sartipi, Tien Do, Tong Ke, Khiem Vuong, and Stergios I.
Roumeliotis. Deep depth estimation from visual-inertial slam, 2020.

[46] Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef
van Eenbergen, Shoubhik Debnath, and Dieter Fox. Rgb-d local implicit
function for depth completion of transparent objects. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021.

[47] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas
Brox, and Andreas Geiger. Sparsity invariant cnns. In International
Conference on 3D Vision (3DV), 2017.

[48] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In ECCV, 2012.

62

.....................................8.2. Future Work

[49] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[50] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3d: Learning from rgb-d data in indoor environments. Inter-
national Conference on 3D Vision (3DV), 2017.

[51] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, USA, 2 edition, 2003.

[52] Tomas Pajdla. Elements of Geometry for Computer Vision. 2017.

[53] Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning, 2016.

[54] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[55] Boxin Zhao, Tianjiang Hu, and Lincheng Shen. Visual odometry -
a review of approaches. In 2015 IEEE International Conference on
Information and Automation, pages 2569–2573, 2015.

[56] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and
mapping (slam): Part i the essential algorithms. Robotics and Automation
Magazine, 13, 01 2006.

[57] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and
mapping (slam): Part ii. Robotics and Automation Magazine, IEEE,
13:108 – 117, 10 2006.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition, 2014.

[60] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun, Hongsheng
Li, and Liang Lin. Single view stereo matching, 2018.

[61] Eduardo Romera, José M. Álvarez, Luis M. Bergasa, and Roberto Ar-
royo. Erfnet: Efficient residual factorized convnet for real-time semantic
segmentation. IEEE Transactions on Intelligent Transportation Systems,
19(1):263–272, 2018.

[62] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing, 13(4):600–612, 2004.

63

8. Conclusion and Future Work
[63] Peter J. Huber. Robust Estimation of a Location Parameter. The Annals

of Mathematical Statistics, 35(1):73 – 101, 1964.

[64] Laurent Zwald and Sophie Lambert-Lacroix. The berhu penalty and the
grouped effect, 2012.

[65] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International Conference
on Computer Vision, pages 2564–2571, 2011.

[66] Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors,
Computer Vision – ECCV 2006, pages 430–443, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[67] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
Brief: Binary robust independent elementary features. In Kostas Dani-
ilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision –
ECCV 2010, pages 778–792, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[68] Berthold Horn, Hugh Hilden, and Shahriar Negahdaripour. Closed-form
solution of absolute orientation using orthonormal matrices. Journal of
the Optical Society of America A, 5:1127–1135, 07 1988.

[69] Mathieu Labbé and François Michaud. Appearance-based loop clo-
sure detection for online large-scale and long-term operation. IEEE
Transactions on Robotics, 29(3):734–745, 2013.

[70] Mathieu Labbé and François Michaud. Online global loop closure detec-
tion for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2661–
2666, 2014.

[71] Mikael Persson and Klas Nordberg. Lambda twist: An accurate fast ro-
bust perspective three point (p3p) solver. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[72] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An
accurate o(n) solution to the pnp problem. International Journal of
Computer Vision, 81, 02 2009.

[73] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24:381–395, 1981.

[74] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Image classifica-
tion using random forests and ferns. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8, 2007.

64

.....................................8.2. Future Work

[75] Kevin Q. Brown. Voronoi diagrams from convex hulls. Information
Processing Letters, 9(5):223–228, 1979.

[76] Hauke Strasdat, Andrew J. Davison, J.M.M. Montiel, and Kurt Konolige.
Double window optimisation for constant time visual slam. In 2011
International Conference on Computer Vision, pages 2352–2359, 2011.

[77] Ruo Zhang, Ping-Sing Tsai, J.E. Cryer, and M. Shah. Shape-from-
shading: a survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(8):690–706, 1999.

[78] Supasorn Suwajanakorn, Carlos Hernandez, and Steven M. Seitz. Depth
from focus with your mobile phone. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3497–3506,
2015.

[79] Daniel Herrera C., Juho Kannala, L’ubor Ladický, and Janne Heikkilä.
Depth map inpainting under a second-order smoothness prior. In Joni-
Kristian Kämäräinen and Markus Koskela, editors, Image Analysis, pages
555–566, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[80] Junyi Liu and Xiaojin Gong. Guided depth enhancement via anisotropic
diffusion. In Benoit Huet, Chong-Wah Ngo, Jinhui Tang, Zhi-Hua Zhou,
Alexander G. Hauptmann, and Shuicheng Yan, editors, Advances in
Multimedia Information Processing – PCM 2013, pages 408–417, Cham,
2013. Springer International Publishing.

[81] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. In Pro-
ceedings of the 1st Annual Conference on Robot Learning, pages 1–16,
2017.

[82] Dorian Gálvez-López and J. D. Tardós. Bags of binary words for fast
place recognition in image sequences. IEEE Transactions on Robotics,
28(5):1188–1197, October 2012.

[83] Nathanael L. Baisa. Derivation of a constant velocity motion model for
visual tracking, 2020.

[84] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[85] Stanford Artificial Intelligence Laboratory et al. Robotic operating
system.

[86] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H. Wallach,

65

8. Conclusion and Future Work
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[87] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. On
the uncertainty of self-supervised monocular depth estimation, 2020.

[88] Xinyu Nie, Dianxi Shi, Ruihao Li, Zhe Liu, and Xucan Chen. Uncertainty-
aware self-improving framework for depth estimation. IEEE Robotics
and Automation Letters, 7(1):41–48, 2022.

[89] Dongmin Park, Seokil Hong, Bohyung Han, and Kyoung Mu Lee. Con-
tinual learning by asymmetric loss approximation with single-side over-
estimation, 2019.

[90] Z. Chen, B. Liu, R. Brachman, P. Stone, and F. Rossi. Lifelong Machine
Learning: Second Edition. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2018.

66

Appendix A
Pinhole Camera Model

Since the pinhole model is most commonly used, to model the projection of a
3D point to a 2D Image plane, and is central to a number of works, including
concepts described in this work, it is worth introducing it.

Figure A.1: Simple Pinhole model

As figure 2.2 shows, each point on the object emits multiple rays towards
the image plane (film). However, if we place a barrier of low aperture, or a
’PinHole’, we get a 1-to-1 relation between a 3D point in the object, and a
2D point in the image plane.

67

A. Pinhole Camera Model

Figure A.2: Coordinate Systems for perspective model. Image from [52]

Consider a 3D point X in some world coordinate frame δ, with the coordi-
nates Xδ = [x, y, z]T ; C is the camera center, and π is the image plane. The
pixel coordinates of the projection of this point, x, in the image plane are
given by a [u, v]T in coordinate system α with origin o, and bases [~b1, ~b2].
The coordinate system β is constructed with its origin at C, and bases as
[b1, b2, b3] as shown in A.2 where b1 and b2 are the same as in system α.
Thus, the coordinates of the point x in system β is given by:

xβ = [u, v, 1]T (A.1)

The point Xδ is transformed from the World coordinate system δ to the point
Xγ in the camera coordinate system γ with origin C, and bases [~c1, ~c2, ~c3], by
an affine transormation ∈ SE(3) ; a Rotation R ∈ SO(3), and a translation
t, a 3× 1 vector i.e..

Xγ = RXδ + t (A.2)

, or [
Xγ

1

]
=

[
R t
0T 1

] [
Xδ

1

]
(A.3)

the 4× 4 affine transformation matrix is often called the extrinsics matrix,
and the 4D points are points in homogeneous coordinates [51].

68

................................. A. Pinhole Camera Model

This point Xγ is then transformed to the coordinate system β with origin
C and bases [~b1, ~b2, ~b3] by the camera intrinsic matrix denoted by K, which
is a 3x3 matrix of the form:

K =

k11 k12 px
0 k22 py
0 0 1

 (A.4)

, which, for rectangular pixels, is of the formk11 0 px
0 k22 py
0 0 1

 (A.5)

where k11 = k22 for square pixels.
The parameters k11, k22 are ratios pixels/metric units which are called focal
lengths fx, and fy along the x, and y directions; and px and py are the pixel
coordintaes of the ’principal point’. This matrix K transforms coordinates
from the coordinate system γ(C, [~c1, ~c2, ~c3]) to the system β(C, [~b1, ~b2, ~b3]),
i.e.

Xβ =

xβyβ
zβ

 = K

xγyγ
zγ

 (A.6)

We see that the 3D point X, and its projection x, are related in the following
way, in system β

Xβ = λ ~xβ (A.7)
where λ in this case is zβ.
Or uv

1

 =

xβ/zβyβ/zβ
1

 (A.8)

which gives us pixel coordinates[
u
v

]
=

[
xβ/zβ
yβ/zβ

]
(A.9)

It is also obvious now that for any value of λ ∈ R, i.e. for any point along
the direction vector given by x, the pixel coordinates remain the same.
Putting it all together, we then get,

λ

uv
1

 = P

[
Xδ

1

]
(A.10)

where
P =

[
K ~0

] [
R t
0T 1

]
(A.11)

is a 3× 4 projection matrix.
In most real world systems, there are various degrees, and types of distortion
present as well, which have to be included in the model.

69

70

Appendix B
Network operations

B.1 Pooling

The common pooling functions used are. Average pooling.Max/Min pooling
Out of these, the most relevant to this work are the max, and min pooling

which are described here:

Max Pooling. Max pooling selects the maximum element from each region
of some kernel/filter size. Thus, the output of a max pooling would be a
feature map containing the most prominent features of the previous layer.

Consider the following 4x4 block:


2 2 7 3
9 4 6 1
8 5 2 4
3 1 2 6

; with a 2x2 kernel, we

operate first on the sub-block max(
[
2 2
9 4

]
) = 9, and then max(

[
7 3
6 1

]
) = 7,

and so on.
In this case the result of our max pooling with a 2x2 kernel, where we move

by a (2,2) stride, and without any additional padding is:[
9 7
8 6

]
Padding can be seen as ’adding’ values outside the border to anchor the

kernel at, or near the border points, depending on required input, and output
sizes of the filter maps. Max pooling is often done with a padding of −∞, a
padding of size 1 on our block would look like the following:

−∞ −∞ −∞ −∞ −∞ −∞
−∞ 2 2 7 3 −∞
−∞ 9 4 6 1 −∞
−∞ 8 5 2 4 −∞
−∞ 3 1 2 6 −∞
−∞ −∞ −∞ −∞ −∞ −∞


71

B. Network operations..................................
and applying the same 2x2 kernel max pooling with a (2,2) on this block

would give a 3x3 output:

2 7 3
9 6 4
3 2 6

 The size of the output can be determined

with

output_size = (nh − kh + 2 ∗ ph
sh

+ 1)× (nw − kw + 2 ∗ pw
sw

+ 1) (B.1)

where nh × nw is the size (rows x cols) of the matrix, kh × kw is the size of
the kernel, (sh, sw) is the stride along height, and width, and ph, pw is the
padding size along the height, and width.

Min, Average Pooling. Min Pooling is done similarly by taking the mini-
mum element in each sub-block instead, and is usally padded with ∞ values,
and average pooling takes the average of the sub-block, usually with 0 padding
values.

B.2 Convolution

As the name implies, convolutions are vital operations in Convolutional Neural
Networks (CNNs). A convolution layer applies a convolution filter with a
kernel or a filter which approximates to a linear function.

Consider the following 3x3 matrix x:x11 x12 x13
x21 x22 x23
x31 x32 x33



and the 2x2 convolution kernel w:
[
w11 w12
w21 w22

]
The convolution operation

with no padding, and single stride would then give us the output y as in fig
B.1 :

Figure B.1: Convolution operation

72

....................... B.3. Upconvolution and Transpose Convolutions

where,

y11 = w11x11 + w12x12 + w21x21 + w22x22
y12 = w11x12 + w12x13 + w21x22 + w22x23
y21 = w11x21 + w12x22 + w21x31 + w22x32
y22 = w11x22 + w12x23 + w21x32 + w22x33

The padding, stride, and their relation to the output size work can similarly
obtained from equation (B.1). However, the padding values for convolution
are usually 0,1,etc..

B.3 Upconvolution and Transpose Convolutions

In [1] , UpConvolution or transpose convolutions are the two methods the
decoder uses in its layers. The UpConvolution consists of an upsampling + a
conventional convolution.

Upconvolution. first interpolates the input with a nearest neighbor interpo-
lation to the required output shape, and then performs a convolution on the
output of the interpolation to upsample a feature map.

Transposed Convolution. also called fractionally strided convolution, and
(incorrectly) deconvolution work by swapping the forward and backward
passes of a convolution. The trasposed convolution can be considered as an
operation that allows to recover the shape of the initial feature map.

Consider the convolution of a 3 × 3 kernel on a 4 × 4 input with single
stride and no padding. Using equation (B.1) , we see that this produces a
2× 2 output. The transpose of this convolution will then have an output of
shape 4× 4 when applied on a 2× 2 input.

Let the input size of the original block (4x4 in our example) be nih × niw;
the output size of the original convolution (2x2 in our example) be noh × now,
with kernel size kh×kh with stride (sh, sw). We consider the case where there
is no padding for the original convolution.
One way to achieve the transpose convolution is by convolving a 3× 3 kernel
over the 2× 2 input (output of the original convolution) padded with a 2× 2
padding using single (1,1) stride. We can again verify with equation (B.1)
that this operation now gives us a 4×4 feature map, which is the same size as
the original input. The kernel, and stride have the same size as the original,
but the input is now padded. The required padding size for a single stride
can easily be calculated with the following:

pt = nih − noh + kh − 1
2 ,

niw − now + kw − 1
2) (B.2)

where pt is the padding size required for the transpose convolution. Using
this on our example, we see that pt is indeed (2, 2)

73

B. Network operations..................................

Figure B.2: Transpose Convolution operation eg without padding in the original
convolution. Image from [53]

Figure B.3: Transpose Convolution operation eg with padding in the original
convolution. Image from [53]

74

Appendix C
Some properties of affine rigid motion
transformations

The special Euclidean group in 3 dimension, called SE(3), contains the set
of rigid transformations with some rotation R, and translation t. A member
p ∈ SE(3) is of the form:

p =
[
R t
~0 1

]
(C.1)

where R ∈ SO(3) is the rotation matrix, t is the 3 × 1 translation vector
∈ R3, ~0 is a 1× 3 vector of all 0s.

This transformation can be seen in two ways;. a transformation of a point X in some coordinate frame α to another
point Y in the same coordinate frame; i.e.[

Yα
1

]
= p

[
Xα

1

]
(C.2)

or. a change of basis a point X from some coordinate frame β to coordinate
frame α; i.e. [

Xα

1

]
= p

[
Xβ

1

]
(C.3)

where, in this case, the columns of R contain the coordinates of the
basis vectors of the frame β in the frame α, and the translation t is the
coordinates of the origin of frame β in the frame α

It is important to see two important properties of this group:

Composition. for any p, q ∈ SE(3) their composition, which is a matrix
product

pq ∈ SE(3) (C.4)

and this pq means that we first apply the transformation q, and then apply p.

75

C. Some properties of affine rigid motion transformations...................
Inverse. The inverse of the matrix p gives us the inverse transformation, i.e.
if [

Xα

1

]
= p

[
Xβ

1

]
(C.5)

then [
Xβ

1

]
= p−1

[
Xα

1

]
(C.6)

For showing (C.4): Let p =
[
R1 t1
~0 1

]
and q =

[
R2 t2
~0 1

]

pq =
[
R1 t1
~0 1

] [
R2 t2
~0 1

]
=

[
R1R2 + t1~0 R1t2 + t1
~0R2 + 1.~0 ~0.t2 + 1

]
=

[
R1R2 R1t2 + t1
~0 1

]
(C.7)

the product of the two rotations R1R2 is another rotation matrix; this is
geometrically obvious that one rotation after another, can be represented as
another rotation, and R1t2 + t1 is a 3× 1 translation vector.

For showing (C.6): Let p =
[
R t
~0 1

]
and p−1 =

[
Q ~y
~0 1

]
where Q is some 3× 3

matrix, and ~y is some translation: The inverse should sastisfy:

pp−1 =
[
I3×3

~0T
~0 1

]
(C.8)

which corresponds to no rotation, and 0 translation.

From this, we get that
RQ+ t.~0 = I3×3 (C.9)

which implies
Q = R−1 = RT (C.10)

and
R~y + t = ~0T (C.11)

which implies
~y = −R−1t = −RT t (C.12)

which then gives

p−1 =
[
RT −RT t
~0 1

]
(C.13)

Now let us look at the change of basis from β to α with:

Xα = RXβ + t (C.14)

With some basic algebraic manipulation:

RXβ = Xα − t =⇒ Xβ = RTXα −RT t (C.15)

76

................... C. Some properties of affine rigid motion transformations

which can be shown with an affine transformation as:[
Xβ

1

]
=

[
RT −RT t
~0 1

] [
Xα

1

]
(C.16)

and from (C.13) is the same as (C.6)

77

78

Appendix D
Miscellaneous

D.1 Epipolar Geometry

Epipolar Geometry details geometrical constraints for multi-view scene geom-
etry.

Consider two cameras with camera centers C1, and C2 observing a 3D
point in the world X as shown in figure D.1 with poses R1, t1 and R2, t2
respectively with resepct to some world coordinate frame δ, and intrinsic
matrices K1, and K2. So,

λ1x1 = P1

[
Xδ

1

]
(D.1)

and

λ2x2 = P2

[
Xδ

1

]
(D.2)

where x1, x2 are the homoegeneous coordinates of respective projections of
the point X, and P1, P2 are the projection matrices of the form (A.11).

The camera center C1 will have the coordinates [0, 0, 0]T in the camera 1
frame, and coordinates C1δ. For change of basis (A.2) from world frame δ to
camera1 frame γ1

Xγ1 = R1Xδ + t1 (D.3)

Thus,
~0 = R1C1δ + t1 (D.4)

from which we get
C1δ = −RT1 t1 (D.5)

and similarly
C2δ = −RT2 t1 (D.6)

Such a scene as in D.1 will satisfy the constraints [PAJDLA TEXT]:

xT2 K
−1
2 R2[C2δ − C1δ]×RT1 K−1

1 x1 = 0 (D.7)

79

D. Miscellaneous

Figure D.1: Epipolar Geometry of two cameras. Image from text [52]

where the [C2δ−C1δ]× is a skew-symmetric cross product matrix of the vector
~C2δ − ~C1δ.
This is represented as:

xT2 Fx1 = 0 (D.8)

where the Fundamental matrix

F = K−1
2 R2[C2δ − C1δ]×RT1 K−1

1 (D.9)

or
xT2 K

−1
2 EK1−1x1 = 0 (D.10)

where the Essential matrix

E = R2[C2δ − C1δ]×RT1 (D.11)

Equations (D.8), and (D.10) are known as the epipolar constraints with
the Fundamental, and Essential matrix respectively. It can be seen that
the Fundamental, and Essential Matrices encodes the relative rotation, and
translation between the two cameras C1 and C2 which is extremely useful.

D.2 A very brief introduction to some graph
concepts

D.2.1 Subgraph

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. G2 is a subgraph of G1
i.e. G2 ⊆ G1 if V2 ⊆ V1 and E2 ⊆ {E1 restricted to V2} where Vi are the
vertices, or nodes of the graph, and Ei are the edges.
For two graphs G1, G2 having the same vertex set, G2 is a subgraph of G1 iff
its edge set E2 is a subset of E1, i.e. G2 ⊆ G1 iffE2 ⊆ E1

80

.....................D.2. A very brief introduction to some graph concepts

D.2.2 Trees

A tree is an acyclic connected graph of n vertices, and n− 1 edges. It implies
a hierarchical structure with parent nodes emanating edges which connect to
children nodes.
In a tree, there exists a node called root, which has no parents, and this is
the highest node in the tree hierarchy.
The nodes which have no children are called leaves, which are the lowest
nodes in the hierarchy.

Spanning Tree. is a tree subgraph containing all the original graph vertices,
i.e. for a graph G1(V1, E1), a tree ST (V1, E2) ⊆ G1.

81

	Terminology and Notation
	Introduction
	Contributions
	Structure

	Overview and Related Work
	Datasets, and common evaluation metrics
	Datasets
	Evaluation Metrics

	Supervised Methods
	Unsupervised & Semi-supervised Methods
	Combination with SLAM

	Network Architecture
	Sparse-to-Dense Module(S2D)
	KBNet Architecture
	Loss function and Training
	Loss function
	Training

	ORB SLAM
	Overview
	Image Retrieval with BoW
	Tracking
	ORB Features
	Covisibility, and Essential Graphs
	Stereo points
	Pose tracking
	Relocalization if tracking is lost
	Local map tracking

	Local Mapping
	KeyFrame Insertion
	Map Points Culling
	New point creation
	Local Bundle Adjustment
	Local Keyframe Culling

	Loop Closing
	Loop Candidate Detection
	Transformation Computation
	Loop Fusion
	Graph Optimization

	Optimization Problems
	Motion-only Bundle Adjustment
	Local Bundle Adjustment
	Pose-Graph Optimization

	Modifications to couple the network with ORB SLAM
	Modifications to the Network
	ORB SLAM modifications
	Frames
	KeyFrames
	KeyFrame Database
	Map Point
	Map
	Main program

	Combining ORB SLAM data with KBNET network
	Dense depth back-projection

	Data collection and Dataset creation
	Implementation, Experiments and Results
	Experiments and Results on the VOID dataset
	Experiments and Results on data captured from the robot

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Pinhole Camera Model
	Network operations
	Pooling
	Convolution
	Upconvolution and Transpose Convolutions

	Some properties of affine rigid motion transformations
	Miscellaneous
	Epipolar Geometry
	A very brief introduction to some graph concepts
	Subgraph
	Trees

