
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Web browser plug-in for semantic
vocabulary creation

Alan Buzek

Supervisor: Ing. Petr Křemen, Ph.D.
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

491979Osobní číslo:AlanJméno:BuzekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Plugin do webového prohlížeče pro tvorbu sémantických slovníků

Název bakalářské práce anglicky:

Web browser plug-in for semantic vocabulary creation

Pokyny pro vypracování:
Semi-automatic creation of semantic vocabularies from documents can be tedious. During the process the created concepts
are linked back to the parts of the document defining them. The goal of this thesis is to design, implement and evaluate a
web browser plugin for annotating web documents using existing semantic vocabularies and allowing to create new
vocabulary concepts from the document.
1. Become familiar with RDF, OWL, the TermIt system (https://github.com/kbss-cvut/termit) and the Annotace service
(https://github.com/kbss-cvut/annotace).
2. Design and implement a web browser plugin that allows creating semantic vocabularies by semi-automatic annotation
of web documents and robust annotation resolution in case a web document evolves. The plugin will use Annotace to
provide automated suggestions and TermIt to manage the vocabularies.
3. Evaluate the robustness of the web browser plugin annotation of evolving web documents on selected examples from
the Czech or international legislation.
4. Evaluate the usability of the web browser plugin by a user study with several vocabulary designers.

Seznam doporučené literatury:
• Martin Ledvinka, Petr Kremen, Lama Saeeda, Miroslav Blasko: TermIt: A Practical Semantic Vocabulary Manager. ICEIS
(1) 2020: 759-766
• Web Annotation Vocabulary, R. Sanderson, P. Ciccarese, B. Young, Editors, W3C Recommendation, February 23, 2017,
https://www.w3.org/TR/2017/REC-annotation-vocab-20170223/.
• OWL 2 Web Ontology Language Primer, P. Hitzler, M. Krötzsch, B. Parsia, P. Patel-Schneider, S. Rudolph, Editors, W3C
Recommendation, October 27, 2009, http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Křemen, Ph.D. skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 07.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Křemen, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like hereby thank my supervisor
Ing. Petr Křemen, Ph.D. for his patient
guidance, advice, and all the helpful feed-
back he has given me throughout my work
on this thesis.

Declaration
I declare that this work is all my work,
and I have cited all sources I have used in
the bibliography.

Prague, May 20, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 20. května 2022

v

Abstract
The goal of this bachelor thesis is to de-
sign and implement a web browser plug-in
for creating semantic semantic vocabular-
ies through the annotation of documents
on the Web. The plug-in aims is to pro-
vide robust annotation capabilities while
integrating with the Annotace service to
for automatic annotation suggestions and
the TermIt system for vocabulary man-
agement. After architecting and imple-
menting the solution, the work evaluates
the plug-in’s effectivness in evolving Web
documents and conducts a usability study
with users of the TermIt system.

Keywords: semantic web, browser
extension, web annotations

Supervisor: Ing. Petr Křemen, Ph.D.

Abstrakt
Cílem této bakalářské práce je návrh a

implementace pluginu do webového pro-
hlížeče pro vytváření sémantických slov-
níků prostřednictvím anotací webových
dokumentů. Účelem pluginu je poskytnout
robustní možnosti anotování a zároveň
být integrován se službou Annotace pro
automatické návrhy anotací a systémem
TermIt pro správu slovníků. Po návrhu
architektury a implementaci řešení je sou-
částí práce vyhodnocení efektivity pluginu
v měnících se webových dokumentech a
provedení studie použitelnosti s uživateli
systému TermIt.

Klíčová slova: sémantický web, plug-in
do prohlížeče, webové anotace

Překlad názvu: Plugin do webového
prohlížeče pro tvorbu sémantických
slovníků

vi

Contents
1 Introduction 1
1.1 Annotations 1
1.2 TermIt . 1
1.3 Motivation . 2
1.4 Goal . 2
2 Related work 5
2.1 Vocabulary management 5

2.1.1 Pool Party Semantic Suite . . . 5
2.2 Web annotation extensions 6

2.2.1 Weava Highlight 6
2.2.2 Diigo Web Collector 7
2.2.3 Hypothes.is 7

2.3 Summary . 7
3 Background 9
3.1 Semantic Web 9

3.1.1 RDF . 9
3.1.2 OWL . 10
3.1.3 SKOS . 10

3.2 TermIt . 10
3.2.1 TermIt’s current architecture 11
3.2.2 Annotation workflow 13
3.2.3 Annotator 13

3.3 Used technologies 14
3.3.1 React . 14
3.3.2 Browser extensions 14

4 Architecture 17
4.1 Requirements 17

4.1.1 Functional requirements 17
4.1.2 Non-functional requirements . 19

4.2 TermIt-wide architectural changes 20
4.2.1 Annotation resolution redign 20
4.2.2 TermIt Server changes 23
4.2.3 Annotations as Term

occurrences 24
4.2.4 TermIt UI changes 24
4.2.5 Annotace changes 25

4.3 Extension architecture 26
4.3.1 Key factors 26
4.3.2 Content Script 27
4.3.3 Browser storage 27
4.3.4 Background script and syncing

with TermIt UI 28
4.4 Extension’s annotator 28

4.4.1 Basic structure 29

4.4.2 Control flow and state
management 29

4.4.3 The case for Redux 29
4.5 Annotation resolution 30

4.5.1 Initial annotation flow 30
4.5.2 Dropped annotation

suggestions 31
4.5.3 Ensuring selector robustness . 31

5 Implementation 33
5.1 React justification 33
5.2 TermIt UI code reuse 33
5.3 Sidebar performance

optimizations 34
5.4 Vocabularies caching 34
5.5 Website URL matching 35
5.6 Hypothes.is inspiration 35
5.7 Annotation selector caveats 36
5.8 Mark.js . 36
6 Evaluation 39
6.1 Annotation resolution robustness 39

6.1.1 Unchanged Web pages 39
6.2 Evolving Web pages 41

6.2.1 Expectations 41
6.2.2 Testing 43

6.3 User study 44
6.3.1 Testing environment 45
6.3.2 User group 45
6.3.3 Test scenario and feedback . . 45
6.3.4 User study results 46

7 Conclusions 47
7.1 Evaluation 47
7.2 TermIt Annotate and its future . 48

7.2.1 Chrome Web Store 48
7.2.2 Future work 48

Bibliography 51
A Tutorial 55
B Proof of concept 61
B.1 Functionality 61
B.2 Tracked metrics 61

B.2.1 Elements selection 61
B.2.2 Term annotation 62
B.2.3 Testing 62

vii

C Test scenario 65
D Description of electronic
attachmens 67

viii

Figures
1.1 Screenshot from the TermIt’s

annotation page 3

2.1 Pool Party Semantic Suite’s text
annotation [9] 6

2.2 Annotations in Weava Highlight
[11] . 7

3.1 An example of two SKOS concepts
being hierachically related [23] 11

3.2 Current TermIt architecture 11
3.3 Annotace service input and output

example with a the word “page”
annotated using RDFa 12

3.4 Basic annotation workflow in
TermIt UI . 13

3.5 Browser extension architecture
[27] . 15

3.6 manifest.json example 16

4.1 New TermIt architecture 21
4.2 Annotation selector generation

algorithm . 23
4.3 TermIt’s Data Model after our

modification 25
4.4 Browser extension architecture . 26
4.5 Extension’s annotator architecture 28
4.6 Annotation flow from browser

extension . 31

6.1 Example of an annotation text not
found after the document has
evolved . 42

6.2 Example of an offset mismatch
selector failure. 43

7.1 The Chrome Web Store listing of
TermIt Annotate 49

A.1 1. step of the tutorial – A brief
introduction to TermIt Annotate . 56

A.2 2. step of the tutorial – Start page
annotation through the sidebar . . . 56

A.3 3. step of the tutorial – Confirm
suggested annotations and create
your own . 57

A.4 4. step of the tutorial – Use
sidebar to keep things in grip 57

A.5 5. step of the tutorial – See your
annotations in time 58

A.6 6. step of the tutorial – Take full
advantage of TermIt’s semantic
vocabulary platform 58

A.7 1.step of the tutorial, a brief
introduction to TermIt Annotate. . 59

B.1 Screenshot of using the extension
annotations on the page
https://www.zakonyprolidi.cz/
cs/2006-499. 62

ix

https://www.zakonyprolidi.cz/cs/2006-499
https://www.zakonyprolidi.cz/cs/2006-499

Tables
6.1 Test results on evolving Web

pages . 44

B.1 Proof of Concept aggregate
selector test results. 63

x

Chapter 1
Introduction

Vocabularies have proven to be a very useful tool over the years. With the rise
of information technology, its capabilities were greatly amplified. Searching
through a vocabulary is almost instantaneous and widely available, making
all the information one could ever need about a word or a phrase readily
available just a click or two away.

Furthermore, there can be more to vocabularies than just a list of words
and their definitions. Terms can be enriched with meaningful metadata and
linked together through defined relationships, forming a knowledge graph.
More importantly, annotations can also connect terms with various text
resources. Annotating a term’s occurrence within a piece of text may seem
like a seemingly trivial task. However, annotations can be tremendously
powerful. They can facilitate terms definition and disambiguation and help
infer new knowledge about both documents and terms. The importance of
vocabulary terms’ annotations expands even further if we consider the Web,
as this vast source of documents we can extract knowledge from.

1.1 Annotations

Annotations are a way to add extra information to text or other resources
and can be in the form of highlighting, underlining, adding additional notes,
or other ways. Of course, annotations have existed on physical written media
for a long time. They have, in fact, become quite common in texts as early
as in the Medieval era [1].

With the advent of modern computers, the impact of annotations has
increased manifold. Digital annotations have since seen wide use in fields
such as linguistics, natural language processing (NLP) [2] or education [1].
Most importantly, as this work shows, annotations can be used with great
efficacy to create semantic vocabularies on the Web.

1.2 TermIt

TermIt is an open-source vocabulary management and a glossary editing
information system based on Semantic Web technologies. It aims to provide

1

1. Introduction
an easy way for domain experts to create and manage terms without requiring
ontology expertise [3].

Besides vocabulary management, it also supports annotating vocabulary
terms’ occurrences and definitions in HTML documents. Annotations provide
a way to link resources with terms, easily create new terms, and later use
this information to enable more accurate searching through documents and
infer further knowledge of both documents and terms.

TermIt is being developed by the Knowledge Based Software System Group
at the Czech Technical University in Prague. It has seen adoption in public
administration [4], healthcare, and urban planning [3].

1.3 Motivation

TermIt allows the user to upload a new document and run automatic text
analysis on it, annotating it with suggestions of new terms to create and
possible occurrences of existing terms. Afterward, the user can easily create
new terms and confirm or decline the suggestions of existing ones. This
semi-automatic approach reduces the user’s effort to create highly accurate
semantic vocabularies. An example from the resource annotator in TermIt is
to be found in Figure 1.1.

Despite this great functionality offered, the resource annotation workflow
in TermIt has some significant shortcomings, namely:..1. Users first have to upload an HTML document into TermIt to start

annotating it...2. Storing a given Web page onto the user’s computer and only then
uploading it into the application is a cumbersome and error-prone process
that may prove challenging for many users...3. This way, the page’s layout and styling are frequently broken, so it is
hard to compare the uploaded document with the original copy...4. Web documents typically evolve over time. There is no way to reflect
those changes in already annotated documents with the current approach...5. If the user encounters hyperlinks to different pages they would like to
follow and continue annotating, they will be taken outside of TermIt’s
application again, having to repeat the entire process.

1.4 Goal

Considering the above issues, naturally, a thought comes to mind: Would there
be a way to provide a more immersive, user-friendly, and efficient experience?
We have pondered this question and arrived at a clear conclusion: all the above
issues can be solved with a browser extension that will enable annotations

2

.. 1.4. Goal

Figure 1.1: Screenshot from the TermIt’s annotation page

seamlessly right on any Web page. Moreover, it can do so without the user
first having to go into the original TermIt application while still taking full
advantage of key features such as automated text analysis.

Browser extensions, also called plugins or add-ons, are programs that modify
or extend the web browser’s functions [5]. Extensions can take advantage of
different capabilities allowed by the browser to, for example, modify the color
of bookmarks, alter the content of viewed pages, or otherwise enhance the
web browsing experience [6].

At a time when a fair amount of client software essentially runs just in web
browsers in the form of websites and web applications [7], browser extensions
can prove to be tremendously valuable for the end-users. Moreover, they
generally come at a relatively low cost for the extension developer and easy
distribution through official marketplaces offered by browser vendors [8].

Thus, this work aims to design and implement a browser extension called
TermIt Annotate for creating semantic vocabularies through annotations
on Web pages. It aims to be lightweight, easy to use, and available for a
wide range of users. With that in mind, it must provide a consistent user
experience with that of TermIt’s original web application. Therefore, the
extension will narrowly focus on the annotation piece of functionality while
linking to the original application for other use cases, such as browsing existing
vocabularies and terms, seeing statistics, login and registration, and others.
Thus, a secondary but just as essential goal of this work is to extend the
necessary TermIt system’s software components to accommodate the needs
of the implemented extension.

3

4

Chapter 2
Related work

We will first briefly examine select general semantic vocabulary management
tools and then dive specifically into browser extensions supporting website
annotation use cases to describe related work.

2.1 Vocabulary management

There are several vocabulary management solutions, many of which also
support Semantic Web technologies. However, their common pitfall is that,
unlike TermIt, they require ontology expertise, presenting a barrier for entry
for domain experts [3]. Moreover, very few such systems provide any resource
annotation capabilities, and none offer a browser extension to enable creating
semantic vocabularies on the Web. In terms of resource annotation, we have
found only one system that is relevant enough to be examined for our work,
and it will be discussed as follows.

2.1.1 Pool Party Semantic Suite

Pool Party Semantic Suite [9], as the name suggests, provides a whole suite
of tools built around ontologies and the Semantic Web. Most notably, it
can manage controlled vocabularies, such as taxonomies or thesauri. Like
TermIt, automatic text analysis on uploaded documents is possible through
its “Corpus Analysis” feature to speed up vocabulary creation. A wide range
of text file formats is supported, even the ability to insert a website’s URL to
analyze. The vocabulary creation is also semi-automatic, in the sense that
as a result of the text analysis, suggestions of existing and new concepts are
shown in the uploaded file. The user can confirm concept (terms) occurrence
suggestions and can do so in bulk, which speeds up the workflow. While the
annotated document can be displayed within the user interface as shown in
Figure 2.2, occurrences of a single term in the text can only be edited all at
once, and there is no possibility of creating one’s own annotations after the
text is analyzed automatically.

The tool is quite extensive, making it easy for a non-expert user to get lost.
Moreover, its resource annotation capabilities are noticeably optimized for
a workflow where a vast number of documents are uploaded and analyzed

5

2. Related work.....................................

Figure 2.1: Pool Party Semantic Suite’s text annotation [9]

automatically. Then its results are examined manually in bulk, undoubtedly
resulting in lesser accuracy. Consequently, this approach makes it a lot less
suitable for our use case of creating highly accurate vocabularies.

2.2 Web annotation extensions

There exists a relatively large number of different browser extensions that offer
annotations. Google Chrome’s web store even has a dedicated category titled
“Annotate the Web” [10]. However, none can be used for generic vocabulary
management, let alone take advantage of Semantic Web technologies like
TermIt. Instead, most focus on general-purpose annotations for use cases
such as research, note-taking, or education. As follows, we have selected three
extensions to examine, based both on their popularity with users and the
similarities with our use case.

2.2.1 Weava Highlight

Weava Highlight [11] is a Google Chrome extension that provides an easy and
intuitive way to annotate any page elements and add notes to each annotation.
Annotations are each put into a specific collection. Only those belonging
to the currently selected collection will appear on web pages, allowing for
switching between different browsing contexts.

Upon visiting its website at https://www.weavatools.com/ and signing into
one’s account, one can view and edit all previously saved annotations. In
addition, Weava Highlight offers the option to collaborate on an annotation
collection and generate citations.

• Number of installs (Chrome web store): 700,000+

6

...................................... 2.3. Summary

Figure 2.2: Annotations in Weava Highlight [11]

2.2.2 Diigo Web Collector

Diigo Web Collector [12] does text annotation and supports other use cases
such as screenshots and bookmark capture. It also comes with an "outliner"
tool, allowing drag-and-drop annotations and arbitrarily texts to be captured
while browsing the Web.

• Number of installs (Chrome web store): 300,000+

2.2.3 Hypothes.is

Hypothes.is [13] takes a different approach to the two extensions mentioned
above. Annotations created by users of the Hypothes.is extension are shared
with other users by default, displaying it to anybody with the extension
installed and comes to the same page. Hypothes.is is open-source and aims
to bring back the old idea of annotataions as a shared conversation layer on
top of the Web itself. This feature was present in one of the first browsers,
Mosaic [14]. However, it was ultimately cut due to technological challenges it
brought at the time [15] and never re-appeared in any major browser again.

• Number of installs (Chrome web store): 200,000+

2.3 Summary

From our research of related work, it is apparent that none of the examined
solutions fit what we are trying to achieve with our browser extension.

7

2. Related work.....................................
Despite the Pool Party Semantic Suite offering a competent set of tools,

including extensive resource annotation functionality, it does not fit our
needs very well. The examined browser extensions are good at in-browser
annotation annotating functionality. However, their vocabulary management
capabilities are non-existent, nor can they be integrated with any existing
systems, let alone TermIt.

Thus, the browser extension we will implement, called TermIt Annotate,
will be a unique, one-of-a-kind tool that could not only improve current
TermIt users’ annotation workflows. It could also very likely draw in new
users interested in vocabulary management and annotation who have not
been able to do so due to a lack of such a tool.

8

Chapter 3
Background

This chapter introduces the necessary background surrounding our work.
Firstly, as the TermIt system is built on them, the Semantic Web technologies
will be introduced. Afterward, putting those introduced concepts into practice,
we will then be able to describe and understand the current TermIt system.
Understanding all TermIt’s components will be fundamental for our work.
Finally, the necessary technical background surrounding Web browser plugin
development and related used technologies will be introduced.

3.1 Semantic Web

The Semantic Web is an extension of the World Wide Web defined by a set of
standards published by W3C [16]. Its main goal is to make data on the Web
machine-readable. Traditionally, documents on the Web have only pointed
at other documents through hyperlinks. The Semantic Web aims to connect
the Web on the level of individual pieces of data that have traditionally been
scattered in HTML documents and only understood by humans, thus making
information machine-readable and connected. To achieve this, the Semantic
Web is comprised of a set of technologies specified by its standards, namely
RDF, RDFS, SKOS, OWL, and SPARQL [17], which will be described in
briefly introduced in the following sections.

While the original goal of the Semantic Web as a replacement of the
traditional World Wide Web as we know it remains largely unrealized [18],
its technologies are still tremendously beneficial in many areas. Some of its
most common applications are knowledge organization, ontologies [19] and
publishing linked data [20].

3.1.1 RDF

RDF [21] stands for Resource Description Framework, and it is a data
model describing concepts through so-called triples. A triple is an expression
containing a subject, predicate, and object. The subject denotes the resource
itself, and the predicate denotes the relationship between the subject and the
object. The object describes the relationship itself. A triple is, therefore, a
simple statement about a resource. For example, to represent the statement,

9

3. Background
“Patrick is married to Paula” as an RDF triple is to “Patrick” be the subject,
“is married to” be the predicate, and “Paula” be the object. This way, a triple
is readable by both machines and humans alike.

RDF serves as the backbone upon which other Semantic Web technologies
are built. RFDS, also called RDF Schema, is data modeling vocabulary for
RDF, serving as its semantic extension. In addition, it provides the necessary
elements for ontology description.

3.1.2 OWL

The Web Ontology Language (OWL) [22] is a language to describe and repre-
sent knowledge used to create ontologies. Ontologies are formal specifications
of concepts shared between humans and machines. They help define concepts
in a particular domain and infer new knowledge based on set rules. Because
OWL is a logic-based language, it can be used computationally to verify
knowledge consistency and infer implicit knowledge.

3.1.3 SKOS

SKOS [23] or Simple Knowledge Organization System specifies the representa-
tion of knowledge organization systems in the form of controller vocabularies
such as thesauri, taxonomies, or glossaries. The core elements of a SKOS
vocabulary are concepts organized within concept schemes. Concepts are
identified with URIs and have designated labels that can be multilingual and
contain various types of additional information. In addition, concepts can
be semantically related to each other, as shown in Figure 3.1. One of the
main objectives of SKOS is to provide a simple way to publish vocabularies
as linked data [20]. Linked Data represents a type of structured data that is
linked through the use of RDF(S) and URIs, adhering to the objects of the
Semantic Web of machine-readable interconnected data described earlier in
this chapter.

3.2 TermIt

As outlined above, TermIt is a vocabulary manager for domain experts. It is
compliant with the SKOS standard. More specifically, SKOS concept schemes
represent its vocabulary. Each term represents a concept and contains rich
metadata describing its label, definition, or other notes, all in line with
properties defined by SKOS. Significantly, terms can be related to each other,
forming a hierarchical tree, exploiting the SKOS-defined properties such as
narrower, broader, or related. Also, entire vocabularies can be related to each
other, using the same hierarchical relations. The system uses a triple store,
a type of database for graph data stored as RDF triples. TermIt supports
RDFS and OWL such that the knowledge can be inferred based on the defined
rules.

10

....................................... 3.2. TermIt

Figure 3.1: An example of two SKOS concepts being hierachically related [23]

As a result of this Semantic Web foundation, terms created and managed
within TermIt’s vocabularies contain rich interconnected metadata. This
allows for accurate searching based on the term’s ontological relations and,
importantly, serves to be able to disambiguate similar terms. Furthermore,
the end-users can enjoy these capabilities while not needing any prior onto-
logical background. They are effectively fully abstracted from the ontological
internals of the application, while still reaping its benefits.

3.2.1 TermIt’s current architecture

This section introduces, on a high level, the current software architecture of
the TermIt system and its directly related and dependent components. To
get a quick overview of the architecture, its diagram is shown in Figure 3.2.

Figure 3.2: Current TermIt architecture

11

3. Background
Input HTML:

<div>
This page is an example.

</div>

Ouput HTML:
<div>

This
<span

about="_:7d5c-3"
property="ddo:je-výskytem-termu"
content="page" typeof="ddo:výskyt-termu"
score="1.0">
page

is an example.

</div>

Figure 3.3: Annotace service input and output example with a the word “page”
annotated using RDFa

TermIt Server and UI

The TermIt system itself has two main components – TermIt Server imple-
mented as a Java application using Spring Boot1, and TermIt UI implemented
as a React single-page Web application. These two components communicate
through a REST API and exchange data in the JSON or JSON-LD2 format.
TermIt’s data is stored on the server in the form of RDF triples using a
GraphDB[24] database. To achieve mapping of underlying RDF triples to
Java objects, the JOPA[25] library is used.

Annotace

Annotace is a stateless web service, independent of other components within
TermIt, not requiring authentication. It provides a REST API with a single
endpoint that automatically annotates HTML documents with suggestions
based on selected vocabularies and commonly used keywords. It uses third-
party libraries for term lemmatization and keyword extraction based on
statistical analysis. Found annotation suggestions are inserted directly into
the input HTML document as RDFahttps://rdfa.info/ tags, as shown in
Figure 3.3. The document modified in this way is then returned from the
endpoint.

1https://spring.io/projects/spring-boot
2https://json-ld.org/

12

....................................... 3.2. TermIt

Figure 3.4: Basic annotation workflow in TermIt UI

3.2.2 Annotation workflow

After uploading a document to TermIt UI, the user can initiate the annotation
process. The UI first calls TermIt Server, which then makes a request to
Annotace. The annotated HTML document is then returned to the server,
where annotations are parsed and saved as term occurrences into the database.

Further modifications of existing annotations or adding new annotations
are done by directly modifying the HTML document. In most cases, any of
these actions will not modify or create any TermOccurrence instances in the
database.

A basic scenario of annotating a document and later creating a term from
it is shown in Figure 3.4.

3.2.3 Annotator

The TermIt UI’s Annotator has a dedicated React component within the
application and works as follows. First, the HTML of the annotated document
is requested from the server and rendered as a set of React components. Then,
importantly, each existing annotation is rendered as its component within the
React tree, which is shown overlaying the text if the annotation is clicked.

The overlaying popup can assign an annotation to a term, and the anno-
tation thereby becomes the term occurrence of that term. Moreover, it can
delete annotations or create entirely new terms and assign those to anno-
tations. Besides, there are other components relevant to the page, such as
a Modal window for creating a term, another popup component to appear
above selected text to select the purpose of the selection, or a dropdown to
select which vocabulary to get annotation suggestions for.

13

3. Background
3.3 Used technologies

Having introduced the Semantic Web and the TermIt system, we now have
a solid knowledge foundation for our work. Before proceeding, however, we
must also get familiar with the technologies used in the browser extension
that will be designed and implemented.

3.3.1 React

React [26] is a front-end JavaScript library for creating user interfaces created
by Jordan Walke and now developed by Meta. Its key feature is a concept
called Virtual DOM, a layer of abstraction on top of the browser’s native
Document Object Model (DOM). It means that the state of the UI is kept
in memory and synchronized into the browser DOM on updates through a
process called reconciliation. Reconciliation compares the in-memory (virtual)
state with the state of the actual DOM and then selectively updates the
DOM only where necessary, maximizing performance. Importantly, virtual
DOM allows React to have a declarative API, abstracting the developer away
from complicated DOM updates [26].

React code is split into components, which are reusable pieces of the user
interface defined as JavaScript functions or classes. Each component has its
own encapsulated state that can be defined and updated over time. The
components’ markup is written using JSX, an HTML-like syntax used within
JavaScript. A component can have any number of child components, to which
state can be passed down as so-called props, named properties for the child
component to access.

3.3.2 Browser extensions

As extensions run in the browser, they are developed by using standard
Web technologies – HTML, CSS, and JavaScript. The following sections will
introduce the files and concepts relevant to browser extension development [6].
Note that due to slight incompatibilities between extensions in different
browsers, the following section and the rest of this work will primarily focus
on Google Chrome’s specification of extensions, knowing that there might be
slight incompatibilities with other browsers here and there.

Manifest file

Browser extensions vary in their structure depending on the use case, but a
core and mandatory piece of every browser extension is a manifest file. It is
a JSON document that declares basic information about the extension, such
as its name, description, version number, and different browser APIs and
permissions that will be leveraged [27]. See an example manifest.json file in
Figure 3.6.

14

.................................. 3.3. Used technologies

Figure 3.5: Browser extension architecture [27]

Background script

The background script is the extension’s event handler in the form of a service
worker. It runs once an event has been fired and then goes dormant after
handling it [27]. Unlike other extension scripts, it is not directly tied to any
piece of the user interface.

Note that, the background script has seen very recent changes in its capabil-
ities with the introduction of the Manifest v3 specification by Google Chrome.
Previously, a persistent background page would be open throughout the entire
browser session, sometimes resulting in unnecessary resource allocation [28].
Support for the previous versions of the manifest specification is still partly
there for existing plugins but is to be phased out entirely by 2023 [29]. Other
browser vendors, such as Mozilla Firefox, have announced plans to support
Manifest v3 soon [30], but are not compatible as of now (05/2022).

Content script

Content script is a piece of code injected into pages the user visits [27].
Its capabilities include reading and modifying the DOM, registering event
listeners, and otherwise interacting with the currently visited page to which
they have access. Essentially, the content script’s code can perform similar to
what JavaScript downloaded from the host page can do. It is worth noting
that both the host page’s script as well as the content script run in so-called
“isolated worlds”, meaning that their JavaScript environments cannot affect
each other [31]. The extensions’ host permissions declaration in the manifest
file determines into what pages (if any) is the content script injected.

15

3. Background
{

"name": "Example extension",
"description": "This is an example description.",
"version": "1.0",
"manifest_version": 3,
"icons": {

"16": "icon_16.png",
"32": "icon_32.png"

},
"background": {

"service_worker": "background-script.js"
},
"permissions": [],
"host_permissions": ["https://*.my-page-example.com/*"],
"action": {

"default_icon": "icon_16.png",
"default_popup": "popup-page.html"

}
}

Figure 3.6: manifest.json example

Browser action and popup

Each extension is required to have an icon [27], which will appear in the
browser toolbar, typically in the top right of the browser window. This icon
is sometimes also referred to as the browser action.

Upon the user clicking the browser action, typically a popup appears,
with a popup script loaded into it [32]. While an extension’s popup window
represents a common way for users to interact with extensions, it is not
required per se. Users’ click on the browser action icon can be handled
by an event listener and trigger a different arbitrarily action instead. One
disadvantage of using the popup is that it cannot be opened programmatically,
rather only when the user manually clicks the extension icon.

Message passing

Background, content, and other extension scripts can communicate through a
mechanism known as “message passing”. Event listeners need to be registered
first in a receiving script, and after that, a message can be sent from other
scripts. This communication is handled asynchronously via JavaScript call-
backs or promises. Note that only JSON-serializable objects can be sent [33].
Importantly, a website running within the same browser as the extension
can also exchange messages with it, provided that the website initiates the
communication first.

16

Chapter 4
Architecture

We will first describe the requirements we have identified for our work in the
following section.

Afterward, the architecture of our solution will be presented in three
separate sections, going from the highest level to the lowest. On the level of
the whole TermIt system and its components, we will discuss the significant
architectural adjustments required to accommodate our browser extension,
especially its annotation needs. Afteward, on a level lower, the architecture
of the extension itself will be presented. We will then present the design of an
Annotator component that will be contained within the browser extension,
presenting its most significant part.

Finally, we will circle back to annotations themselves, detailing the new
annotation workflow, and the related design decisions.

4.1 Requirements

This section lists the functional and non-functional requirements for the
browser extension.

4.1.1 Functional requirements. FR1: TermIt instance selection. The extension must allow the user to choose from a dropdown list
what TermIt instance (server) will it be connected to.. FR2: Authentication. The extension must allow the user to login and logout into their
account. A link to a TermIt sign up page must be provided for
users who don’t have an account yet.. FR3: Anonymous annotations. The extension must support annotating web pages even if not the
user is not logged in. Annotations created this way will not persisted

17

4. Architecture
to the server and lost upon leaving the given web page. The user
will be prompted to register to save progress.. FR4: Vocabulary selection. The extension must allow the user to choose a vocabulary from a
dropdown list, based on which suggested annotations of web pages
will be generated.. (desirable): By default, annotations should be based on all vocabu-
laries available in the selected TermIt instance.. FR5: Annotation of current web page. The extension must allow the user to generate annotation sugges-
tions for the current web page and be able to create annotations
manually. Annotations will be highlighted in page’s text by different
colors and borders.. The extension must support all types of annotations of TermIt
(term occurrences):. Occurrence of an unknown term. Occurrence of an existing term. Term definition. Definition of an unknown term. Proposed occurrence of an new term. Proposed occurrence of an existing term. FR6: Term creation from a proposed new term. The extension must allow the user to create a new term from a
proposed new term annotation.. FR7: Term creation from unannotated text. The extension must allow the user to create a new term from
arbitrarily unannotated text on the web page.. FR8: Existing term occurrence creation from unannotated text. The extension must allow the user to create a new occurrence of an
existing term from arbitrarily unannotated text on the web page.. FR9: Existing term occurrence confirmation. The extension must allow the user to confirm the occurrence of an
existing term from a proposed occurrence of existing term.. FR10: Annotation deletion. The extension must allow the user to delete an annotation of any
of the supported annotation types.

18

.................................... 4.1. Requirements

. FR11: Deletion of all annotations on page. The extension must allow the user to delete all annotations at once
from the current page.. FR12: Deletion of all suggested annotations on page. The extension must allow the user to delete all suggested annotations
at once from the current page.. FR13: Showing previously created annotations. The extension must automatically show previously created annota-
tions when the user revisits any of previously annotated pages.. FR14: Annotator Sidebar. Upon clicking the extension’s browser action icon, the extension
must display a sidebar panel, showing the list of annotations on the
the current web page and allowing the user to take the following
actions:. Annotate the current web page. Delete annotations from the current web page. Follow a link to TermIt to show an assigned Term or selected

vocabulary. Login or logout depending on the current status. FR15: Disable and enable annotations. The extension must allow the user to disable or enable annotations
in their browser.. FR16: Show not found annotations.When revisiting a page with previously created annotations, the
extension must show the user any existing terms occurrences or
term definitions that were not found on the page.

4.1.2 Non-functional requirements. NFR1: Browser compatibility. The extension must be compatible with Google Chrome.. (desirable) The extension should be compatible with Mozilla Firefox
and Microsoft Edge.. NFR2: Extension distribution (desirable). The extension should be able to be distributed through an official
browser extension store (Chrome Web Store, Firefox Browser Add-
ons, or Microsoft Edge Add-ons).

19

4. Architecture
. NFR3: User friendliness and user interface consistency. The extension’s user interface must be user-friendly and functionally

similar to TermIt’s web application user interface. There can be
visual improvements to the UI, but the fundamental functionality
should remain the same.. NFR4: Noninvasiveness. The extension must not disturb the user while browsing the Web,
and annotations must appear only after explicit activation for a
given page or when revisiting a previously annotated page.. NFR5: Static web pages support. The extension’s annotations must work reliably on static HTML
pages, not necessarily on websites with dynamic content or single-
page applications..Other documents like PDFs opened in the browser will not be
supported.. NFR6: Robust annotation resolution. The extension must save created annotations reliably so that they
will be shown on the page again on subsequent visits, even after
minor modifications of the page by its author.. NFR7: Data persistence on server. The extension must save terms, annotations, and annotated website
information to the selected TermIt server, not in memory or local
storage in the browser. Annotations do not need to be stored on
the server if the user is not logged in.

4.2 TermIt-wide architectural changes

Firstly, this section describes the redesign of annotations that will need to
happen to support the extension’s annotations within the TermIt system.
After that, it will describe the designed solution for annotations resolution
in detail. As a result of our redesign, there will be changes required across
different TermIt components, which we will discuss followingly. The updated
high-level architecture, as explained in this section, is depicted in Figure 4.1

4.2.1 Annotation resolution redign

As stated in Section 3.2.2, annotations within the TermIt system only occur
by modifying a specific HTML element within the document returned to
TermIt from the Annotation service.

20

........................... 4.2. TermIt-wide architectural changes

Figure 4.1: New TermIt architecture

This approach is not suitable for our browser extension use case, where
annotation of any text within an open web page is assumed. We could simply
take the returned annotated HTML and try to overwrite the current content
of the page (using e.g., “document.body.innerHTML = <modified-html-from-
annotation-services>”). However, some parts of the page would break in
many cases, and event listeners stop working because they have not been
registered for replaced HTML elements and other issues. In the case of a
single-page application relying solely on rendering markup using JavaScript, it
would most likely make the page completely unusable. In addition, even if the
existing method did work, we would run into incompatibility problems with
any website changes by its author. In its nature, this solution would not be
much different from what TermIt already offers. Also, storing entire HTML
documents and transferring them over the network consumes unnecessary
storage and bandwidth resources.

Finding a more flexible solution for the extension requirements will therefore
be necessary. Having experimented with a few different approaches, it quickly
became apparent that generating and storing some form of CSS selectors
(or possibly XPath selectors) is practically the only viable solution for this
problem. CSS selectors can select the parent element where the annotation is
found, and that can later be scanned for the occurrence of annotation text
that we will also store.

To account for possible duplicates of the same term in one HTML element,
its position (starting index) within the element needs to be stored. This way,
annotations can be performed in the browser as the user views the page by
replacing only annotated terms as they occur on the page.

Approach validation

The natural disadvantage of CSS selectors is that they can be susceptible to
changes in the page. For example, if we have the selector

21

4. Architecture
div > .element-class > nth-child (1) and the author of the website
changes the class name of the given element from element-class to
element-class-2, this selector will no longer work. Furthermore, it may
happen that selectors are not unique and select more than one element. Thus,
we must ensure to generate robust and unique selectors. Moreover, it will be
needed to generate multiple different such selectors so that in the case of an
occasional unavoidable failure of a selector, there would always be a spare
selector to fall back on.

With these issues in mind, to test that our approach works correctly and
reliably enough, we have created a simple proof of concept extension to
validate our idea, which is described in detail in Appendix B. Its results were
successful, and we could go forward with the design and implementation.

Selector generation and resolution algorithm

As described in the previous paragraphs, we will employ a CSS selector, a
left offset, and the value of the annotations’ text to generate an annotation
selector. While a relatively simple algorithm, it is relied upon in the rest of
our work and should be broken down in detail, so it is visualized in Figure 4.2
and described in this section...1. We have identified a piece of text on the page to annotate, either by user

selection in the browser or programmatically during text analysis...2. Find the direct parent of the text identified. If the identified text spans
multiple elements and thus does not have a direct parent that would
contain it entirely, find a higher ancestor element that does contain the
complete selection...3. Once we have the parent element, generate its CSS selector(s) using a
library...4. Within the parent element, take all the text to the left text to be
annotated and measure its length after removing any whitespace (to
account for issues as per Section 5.7)...5. Take the string value of the text to be annotated itself and store it
along with the measured offset and the parent CSS selector(s) as per the
previous two steps.

To resolve the selector at any time, we simply need to select the parent
with the CSS selector, check the text at its stored index, and compare the
stored text content with the text on the page. If everything matches, we have
found our annotation and can wrap it in the page’s DOM. Note that the
implementation details of the selector resolution process are further discussed
in Section 5.8.

22

........................... 4.2. TermIt-wide architectural changes

Figure 4.2: Annotation selector generation algorithm

4.2.2 TermIt Server changes

While TermIt’s core components of its server and UI will largely stay intact,
some changes will be needed to support the annotation redesign. Furthermore,
at least for now, any changes must be backward compatible with the existing
annotation capabilities of TermIt (i.e., the old way of annotating uploaded
documents still needs to work).

The required changes will predominantly need take place on the level of
TermIt’s data model, described in detail in the following paragraphs. As a
result of the adjustment, some concerned endpoints will need to be slightly
modified, and a few new ones will be added. Please refer to Figure 4.3 to
see the updated data model, distinguishing between existing entities, newly
added ones, and ones that were previously present but either only partly or
not at all used, prior to our integration effort. Note that the diagram only
contains a relevant subset of the entire data model, with lesser attributes and
entities omitted.

23

4. Architecture
Data model adjustments

RDF triples in TermIt’s GraphDB database are mapped to and from Java ob-
jects automatically using the library JOPA [25], providing Object-ontological
mapping (OOM) with support of OWL ontologies. The described changes will
be designed and implemented on the level of JOPA entities – Java classes with
JOPA annotations, requiring the definition of an IRI for each ontological class
and relationship and allowing for setting ontological integrity constraints.

Firstly, a new resource data type will have to be introduced, not holding
the HTML file itself but only a URL to the web page. For this purpose, a
Website entity will be created as a counterpart of previously used File entity
for representing uploaded documents for annotation.

4.2.3 Annotations as Term occurrences

Apart from creating a Website entity, annotations and their generated selectors
will need to be stored as instances of the TermOccurrence class. Optionally,
they will have hold a link to a term if the assigned to one. Also, occurrences
will now be linked to websites where they were created, allowing for subsequent
retrieval of all TermOccurrences for a single page. Note that the notion of
each annotation being represented by TermOccurrence had partially been
implemented already. However, due to annotations being primarily stored in
the document itself, occurrences were not consistently updated or deleted after
initial automatic text analysis. Our redesign will ensure that TermOccurrences
are always up to date and thus unlock new future possibilities for querying our
vocabularies. For example, all occurrences of a single selected term could be
shown in TermIt UI in the term’s detail, with a link to their original location
on the Web. For Web annotations, the TermWebsiteOccurrence subclass of
TermOccurrence will be created.

To be able to store, retrieve, and delete web term occurrences, a new set
of endpoints will be introduced to the TermIt Server’s REST API.

4.2.4 TermIt UI changes

The changes from TermIt Server also need to be reflected in the UI, where
files will be stored in the list of vocabularies’ resources and websites that will
link to their URLs. Crucially, TermIt UI needs to be able to send messages to
the extension through message passing (Section 3.3.2) to allow syncing logged
in and configuration state. Message passing will be used for authentication
as a JWT token1 received from the server upon logging in will be sent to the
extension to use for its calls to TermIt Server.

Moreover, TermIt UI also needs to interpret a definition of a term correctly.
If it happens to have a Website as its origin, the user will be redirected to it
when wanting to display the source of a definition.

1https://jwt.io/

24

........................... 4.2. TermIt-wide architectural changes

Figure 4.3: TermIt’s Data Model after our modification

4.2.5 Annotace changes

A new endpoint will need to be added to Annotace, with identical input as
the original one – an HTML document to annotate. However, instead of
returning the modified HTML, found annotation suggestions will be mapped
to term occurrences objects with generated selectors and returned in JSON
format.

25

4. Architecture
4.3 Extension architecture

Now that we have described changes needed on the level of the whole TermIt
system, we can introduce the design of the browser extension itself, breaking
down its different parts and their responsibilities. The entire architecture of
the extension, along with its communication with TermIt UI, is visualized in
Figure 4.4.

Figure 4.4: Browser extension architecture

4.3.1 Key factors

Before we present the design of our browser extension, it is essential to
mention the critical defining factors influencing our architectural decisions..Data persistence – The need to persist all relevant data on the server

(except for certain temporary and cached data), resulting in communica-
tion with the server to handle most user actions.

26

.................................4.3. Extension architecture

.No data overlap across pages – For each page, the user is required to
choose a TermIt vocabulary, each having a different set of saved terms,
and thus can effectively annotate pages within different contexts. The
annotations themselves are also strictly tied to the given page. There
could thus be little overlap between the data requested by different pages
the extension is used on.. Interaction with the host page – to achieve the core functionality
of page annotations, the bulk of the user interaction is, of course, to
happen right on the annotated page itself (e.g., as opposed to a browser
action popup, a separate page dedicated to the extension)..Non-persistent background scripts – It used to be quite a typical
pattern to have data and some of the logic kept in a persistent background
script of one’s extension. However, with the advent of ephemeral service
workers, this approach is no longer possible in browsers that only support
the Manifest v3 extension specification.

4.3.2 Content Script

Having the factors mentioned above in mind, the right design decision was,
in our opinion, to structure the extension in the following way.

Injected into each new page, the content script essentially acts as its own
independent application providing complete page annotation functionality
by itself. It is similar to that of TermIt UI’s Annotator page component but
runs on any host page open in the browser instead of within TermIt UI’s
React application.

The content script manages its own state, calls the TermIt server and
Annotace’s REST APIs directly (similar to TermIt UI), and in most cases,
has its independent lifecycle entirely. It thus has little dependency over any
other parts of the extension, such as the background service worker or content
scripts running in other opened tabs. Therefore, its internal subcomponents
can be highly cohesive, revolving around the annotation functionality while
only loosely coupled to other extension parts. The internals of the Annotator
is further discussed below in Section 4.4.

4.3.3 Browser storage

Naturally, some state and data still need to be shared outside the Annotator
component, notably, the user’s logged-in status, basic profile information, and
preferences. This information is stored on an extension-wide level utilizing the
extension’s storage API2 shared among all scripts and loaded in the content
script upon opening a new page. Its critical attribute is that anything stored
in the storage remains persistent, even if the browser is shut down, presenting
a reliable source of storing necessary data on the client-side.

2https://developer.chrome.com/docs/extensions/reference/storage/

27

4. Architecture
4.3.4 Background script and syncing with TermIt UI

The background script listens to the extension’s install event and browser
action icon clicks. Also, the browser’s external message passing API and
external messages from the TermIt UI are being handled to sync logged in
and configuration state across the extension and the UI. To handle events,
it updates the extension’s shared storage or, occasionally, sends messages to
content scripts that expect it. Typically it only sends messages to content
scripts when synchronization needs to happen in real-time, such as when the
user is logging in.

4.4 Extension’s annotator

Having established the TermIt-wide architectural changes and the design of
the extension as a whole, we will now have a detailed look at its Annotator
component that runs in the content script. As discussed in Section 4.3.2, it
almost acts as its own independent application.

Figure 4.5: Extension’s annotator architecture

28

.................................4.4. Extension’s annotator

4.4.1 Basic structure

Firstly, there is the host page itself. Even though the extension will likely
be used for primarily static websites containing normative documents, we
should still focus on designing a generic solution instead of one that would
be tailored to a minimal subset of specific pages.

The annotator itself can then further be broken down into the following
subcomponents. First, in terms of the user interface, an annotation popup
window will allow the user to interact with existing annotations or create new
ones, similar to the existing solution in TermIt UI. Also, there needs to be
a sidebar panel to manage annotations that can be opened at closed by the
user.

To achieve this within the host page, we can render two distinct React
components by mounting their React trees into elements we first insert into
the DOM that serve as container elements. To help us achieve encapsulation
and avoid CSS style conflicts from the host pages’ style, Shadow DOM will
be utilized.

4.4.2 Control flow and state management

When a new page is opened, an AnnotatorController object is created and
first waits for the page’s‚ load ’event and then runs its initiation method -
getting the current users’ information and all annotated website information
from browser storage, if any. It also initiates the sidebar and annotation
popup React components.

Suppose the current page already has been annotated before, or the user
later manually starts annotation through the Sidebar. In that case, annota-
tions are requested from the server, and they are subsequently highlighted
and shown on the page if found.

The AnnotatorController class holds a state object containing global anno-
tator state - vocabularies, the user object, their configuration, and all page
annotations and other fields, which are passed down to the React components
as props. In addition, a set of functions called “actions” is exposed to be called
from React components and elsewhere to modify the state. Only actions can
modify the global state, call back-end APIs (TermIt and Annotace), abstract
away state updates, and ensure a more predictable behavior than if all parts
of code could modify that state directly.

Content actions also call React components container classes, such as for
showing or hiding the annotation popup or sidebar. Finally, it updates
the annotations displayed within the host page by calling helper classes or
methods.

4.4.3 The case for Redux

Redux [34] is JavaScript library for state management. In a nutshell, it can
be described as follows. It has three core concepts which are actions, reducers,
and stores. Actions are plain JavaScript objects that are sent to reducers,

29

4. Architecture
which then, in turn, modify the store based on the action’s type and payload.
Redux thus offers a predictable and central means for managing a state that
is not framework-depending per se but is most commonly used with React.

TermIt UI already uses Redux for its application-wide state management
needs. We have designed quite similar functionality ourselves as per the last
section, compared to what Redux provides out-of-the-box. So naturally, one
could ask why didn’t we also use Redux for our browser extension use case
and instead implemented our own above described solution?

It could be a viable option. A single store would be created in each
active content script and then passed down to both distinct React trees we
mount (Sidebar and AnnotationPopup). It would also allow for a certain
amount of Redux-related code reuse from TermIt UI. However, we wanted our
actions, among other things, to also trigger updates to our page annotations
accordingly (outside of either of our React trees) and be responsible for the
entire control flow of the content script. In addition, we were concerned
this would not strictly fit into the Redux paradigm of managing state and
introduce unnecessary complexity. Finally, we currently have just a few state
fields to keep track of, so we felt confident implementing a simple custom
solution.

Nevertheless, it was not, in any case, a clear-cut decision. Should our state
grow a lot more complex over time and such a need arise, we are open to
adding Redux. We have tried to write our current code to be as agnostic to
the state implementation as possible, making it easier to replace it later.

4.5 Annotation resolution

Now that we have described the architecture on all three different levels, we
will discuss the annotation workflow and the relevant annotations resolution
design decision.

4.5.1 Initial annotation flow

To generate CSS selectors, we first use a rather basic yet quite reliable
in practice method from the ssoup library in the Annotace service, where
annotation suggestions and their selectors are initially generated.

Those suggested annotations then come to the extension’s annotator,
grouped by their parent selector. We then take each selector and try running a
simple “document.querySelectorAll” on it, ensuring that exactly one element
is returned. Conversely, we drop the selector and all associated annotations,
no longer considering as there is little we can do to recover them.

Afterward, each found parent element is scanned for annotation matches
starting at the specified index, which are then wrapped in a custom <h-
termit/> HTML tags. Extra CSS classes are also added to the element,
depending on the annotation type as listed in Section 4.1.1. At this stage,
similarly, any annotations that failed to be found are filtered out and not

30

................................. 4.5. Annotation resolution

Figure 4.6: Annotation flow from browser extension

considered anymore. Finally, all successful annotations are persisted to TermIt
Server.

4.5.2 Dropped annotation suggestions

The previous section mentions two separate instances of the selector failure
and dropped annotations. Therefore, one could see this as a design flaw and
a failure on our part. To refute this, let us elaborate a bit further.

Firstly, the dropped annotations are only suggestions, meaning that we
are not losing any data explicitly created by the user. Secondly, we do not
filter any parts of the page’s HTML that are being sent to Annotace in the
first place (literally, the whole “document.body.outerHTML” is being sent).
As a result, those failed selectors are often for annotations in ephemeral
page elements (e.g., ads, cookie compliance messages). They have likely
disappeared from the page or significantly changed by the time we get a
response from Annotace and have little meaning for the end-user from an
annotation perspective either way. If anything, such annotations could be
distracting the user away from other, actually meaningful, annotations. While
there will inevitably occasionally be legitimate suggested annotations dropped
as a result of this filtering, it is clear that its benefits far outweigh its cost.

4.5.3 Ensuring selector robustness

It is only after we have a list of “clean” found annotations that are displayed
to the user that we need to start to tread carefully and make sure to be able
to select it on every subsequent visit of the page in the future. Therefore,
a few (2-3) extra CSS selectors are generated through different JavaScript

31

4. Architecture
libraries that try to generate the most robust and unique selectors possible.
These additional selectors then serve as a fallback should the original one fail
in the future as the page evolves (or one of them is the primary selector if they
are manually created annotations that have not gone through Annotace).

Note that generating a variety of robust CSS selectors is only easily feasible
on the front-end (as opposed to right in Annotace), as there exists a large
number of selector generating libraries 3, unlike, for example, in Java, where
we have not found a single one. When the user manually creates a new
annotation, a set of robust selectors is generated right away on the front-end
and persisted to TermIt Server.

3https://github.com/fczbkk/css-selector-generator-benchmark

32

Chapter 5
Implementation

The following chapter clarifies why we chose some of the critical libraries
we did during implementation and contains other unexpected and worth
mentioning implementation-related notes.

5.1 React justification

There are other prominent front-end frameworks, but for us, picking React
as the framework of choice was an easy decision:. TermIt UI already uses React. Therefore, some components or parts can

be reused in the extension, which aligns well with the goal of providing
a consistent user interface across the web application and the extension.. React provides an excellent developer experience and is by far the most
popular front-end framework of this type [35].. It is what we are the most familiar with.

5.2 TermIt UI code reuse

The functionality of the newly implemented annotator and the existing one
is quite similar, both written in TypeScript and React as their framework,
and both calling TermIt Server’s REST API. As a result, we could reuse
reasonably large parts of the TermIt UI codebase in our extension. Reusing
parts of the code allowed us to focus more narrowly on the newly designed
annotation resolving functionality and other features. It also helped keep the
two annotators consistent both on a user experience level and the data level
of payloads sent and received by the TermIt server.

Specifically, we were able to reuse the following categories of code:. Classes representing models of objects returned from TermIt Server, such
as Term, TermOccurrence, Vocabulary, and Document. Code related to calling TermIt Server, notably the RequestBuilder class.

33

5. Implementation....................................
. Relevant React components, predominantly those related used in An-

notation Popup and modal window for creating new terms. While the
core of those components usually stayed the same, some modifications
were required more often than not (e.g., get state from props instead of
Redux).. Utility functions and constants

All the reused files are contained in the “/src/termit-ui-common” directory
of the extension’s repository, and its internal file structure is the same as in Ter-
mIt UI. So, for example, what exists in TermIt UI in “src/model/Vocabulary.ts”
is to be found in “src/termit-ui-common/model/Vocabulary.ts” in termit-
extension. This approach allows for easier monitoring of changes across the
two codebases. Furthermore, the assumption is that identical files in both
projects will eventually be extracted to a separate NPM package that can be
imported back into both repositories.

5.3 Sidebar performance optimizations

The extension’s sidebar is the primary way for the user to interact with the
extension, apart from creating/editing/deleting individual annotations right
where they occur on the page through the Annotation popup. Notably, the
sidebar contains a list of all annotations that occur on the page. If annotating
a larger page, hundreds or even thousands of annotation suggestions can
be returned from Annotace alone, with many more potential annotations
the user can eventually create manually. After initially implementing the
extension and testing it on larger pages, very noticeable slowness started
to bog down the user experience, with the page sometimes being stuck for
seconds at a time when a new annotation was added or removed, thus forcing
the sidebar to rerender.

To combat this, we have wrapped the original annotations list component
with a virtualized list component from the react-virtualized?? library. It keeps
the state of all the elements in memory and only renders to the DOM what
is currently visible, depending on how far the user has scrolled. Fortunately,
adding a virtualized list has instantly solved the problem, and we have not
encountered any performance issues since, even when testing on the largest
of pages.

5.4 Vocabularies caching

Previously annotated pages are automatically annotated again on subsequent
page visits. A list of all annotated websites’ URLs needs to be accessed
to scan and find a possible match for this to happen. Despite having the
extension installed and active, the user may likely be doing a completely
unrelated activity the vast majority time while browsing the Web. We thus
want to avoid having to send a request to TermIt Server every time a new

34

................................ 5.5. Website URL matching

page is opened in the browser to limit the load on the server. Therefore,
a cached list of all user vocabularies is kept in browser storage, containing
annotated websites for each vocabulary.

This cached list can grow quite large when serialized to browser storage.
However, it may contain nested references to other objects, ballooning its
size and sometimes resulting in a storage quota exceeded error thrown by the
browser. We addressed this by mapping Vocabulary objects upon creation
to plain objects containing only literal properties that used the extension’s
codebase without any references.

5.5 Website URL matching

As discussed in the previuos sectio, a check needs to run to see if that page
has previously been annotated or not and highlight annotations on the page
accordingly. It is done by comparing the URL of the current page against all
the URLs of all previously annotated websites (cached in vocabularies, as per
last section). The issue is that a change in the URL can be just a change in
a query parameter or a hash fragment, neither of which typically designate
a separate page but rather provide some auxiliary information to the page,
such as different filters and other preferences and others. Therefore, we have
decided to ignore a hash fragment and query parameters and map all URLs
to a value not containing them for our comparison.

Unfortunately, some websites will use a query parameter to decide what
page will be shown, e.g., “https://example.com?article=1” will have shown a
different article than “https://example.com?article=2”, but mapped to the
same website in TermIt Annotate. Nevertheless, taking this approach works
more reliably than not having such a mechanism in place.

5.6 Hypothes.is inspiration

Hypothes.is is probably the most similar browser extension to the one we
wanted to build. So naturally, as it is open-source and its license 1 allows for it,
we have examined its source code2 before starting during our implementation.
Simply creating a fork of its codebase and adjusting it to fit our use case was
never seriously considered and quickly out ruled since there was not enough
overlap between the functionality it offers and what we needed. It would
make us maintain a huge codebase full of complexity unnecessary for our
needs.

However, there were some low-level design patterns (not anything driving
our major architectural decisions in Chapter 4) that were a fit for our imple-
mentation — for instance, taking Hypothes.is as the blueprint, we adopted
wrapping React trees such as the sidebar and annotation popup in helper
container classes. Also, a few pieces of mainly utility functions and classes

1https://github.com/hypothesis/client/blob/master/LICENSE
2https://github.com/hypothesis/client

35

5. Implementation....................................
could be reused, such as the SelectionObserver class that keeps track of users’
clicks and selections on the page. Such reused, unmodified files are found in
the directory “src/content/util/hypothesis” of our extension repository in the
attachment of this work, as described in Appendix D.

5.7 Annotation selector caveats

When it came to implementing selectors, we encountered an issue in calculating
the annotations’ offset. There turned out to be a mismatch between the
actual representation of DOM in the browser and its jsoup (a Java HTML
library) counterpart in Annotace. Specifically, whitespace present in the
DOM was sometimes missing in jsoup and vice-versa, resulting in the index
calculation being sometimes slightly off and selectors failing. As a result,
we now do not consider any whitespace for our offset calculation purposes,
arguably resulting in a slightly more robust resolution for other purposes as
well, as any whitespace changes on the page will be ignored.

5.8 Mark.js

As we have touched on in the preceding paragraphs, the annotated text is in
its parent element and wrapped in an extra HTML tag to show annotations
on the page. While we could fully implement its functionality ourselves, there
are certain intricacies in replacing parts of DOM elements. Specifically, it can
be easy to break the original page’s layout and event listeners or negatively
affect the page when modifying existing elements on an unknown page not
carefully enough, especially if the annotation spans multiple elements. We
have therefore looked for an existing library that provides this functionality.
Our criteria were as follows. To be reliable in selecting our text occurrences
within an element, cause minimal unintended consequences (e.g., breaking
events listeners or styles) and ideally offer enough configuration options to
make it be able to pair well with our selectors.

Despite initially looking at a few different libraries such as hrjs 3 or lumin
4, we quickly settled on Mark.js 5, as it seemed to have been the only library
even to come close to meeting our needs. All other alternatives either did not
offer much in terms of configuration, there was hardly any documentation, or
it was outright doubtful how well the library would work. Furthermore, unlike
Mark.js, with 260k weekly downloads on npm, none of them have become at
least moderately popular among developers. Finally, the fact that we already
had some prior experience with Mark.js also helped sway our decision towards
it.

Mark.js takes in a DOM element to work on and then an arbitrarily string
to try to match within the text of that element. It exposes many configuration

3https://mburakerman.github.io/hrjs/
4https://github.com/pshihn/lumin
5https://markjs.io/

36

....................................... 5.8. Mark.js

options, such as the type of HTML tag wrapped around matches, classes that
will be added, and, more importantly, a filter callback function to be run on
each potential match. This is key because, within this callback, we can then
check the offset of the current potential match and compare it with the value
stored in our annotation selector and thus filter out any duplicates at wrong
indices.

Unfortunately, the parameters passed into the filter callback did not contain
the relevant information from which we could calculate the current offset.
Since the library is open-source and published under the MIT license 6, we
forked its repository 7. We made the necessary changes to calculate the offset
and pass it into the filter function as required. Forking the library would
probably have to be done at some point in any case, even if it was not for
this adjustment, as the open-source community is actively maintaining it.

We have expected the library to work reliably, to begin with, but after
implementation, our expectations were exceeded. It works incredibly well for
virtually any type of plausible text selections the user could make on the page,
even if spanning across many different elements. Also, different annotations
can even be stacked with ease, allowing the user not to be limited to a single
annotation in each piece of text.

6https://opensource.org/licenses/MIT
7https://github.com/alanbuzek/mark.js

37

38

Chapter 6
Evaluation

One of the significant challenges when designing and implementing this
work was the resolution of annotations, especially in Web documents that
evolve over time. It is thus paramount to thoroughly examine annotations’
robustness in this context, as will be done in the following section. Afterward,
the results of a user study on our browser extension will be presented, also
representing a significant indicator when evaluating our work.

6.1 Annotation resolution robustness

At the start, when analyzing the architecture of current annotations in TermIt
and designing our solution, an unknown essential factor, and later a challenge
during implementation, presented annotation resolution.

Before diving into evaluating annotation resolution in documents evolving
in time, we will first examine the annotation resolution efficacy in Web pages
in a single point of time, without the underlying HTML document evolving.
The findings we establish in this part of testing will then serve as the basis
and a reference point for evaluating evolving documents.

6.1.1 Unchanged Web pages

For this part of testing, we conducted subsequent page visits within a brief
time span, such that there would be no explicit modification of the page by
its publisher.

Firstly, even before implementing our solution, we came up with a simple
proof of concept extension, using an adjusted version of Annotace, testing
our proposed design of CSS selectors and offset to resolve annotations. The
proof of concept is discussed in detail in Appendix B — its results were
overwhelmingly positive, resulting in an annotation success rate of about
99.6%. In other words, if an annotation was generated on the server in
Annotace, it had roughly a 99.6% chance of being successfully found and
highlighted on the page in the users’ browser. As discussed in Section 4.5.2,
we decided to drop any remaining annotations (0.4%) as they were most likely
not relevant to the user.

39

6. Evaluation
This initial success from our proof of concept carried over to implementing

our full-fledged extension. Once the implementation was done, we tested the
ability to resolve annotations on any subsequent page visits, during which the
user may manually create or delete more annotations. While it was required
for the extension to only work on static pages, for the sake of completeness,
we also mention how it faires on (partly) dynamic pages.

Static pages

Static pages, such as legal and other normative documents accessible on the
Web as HTML, represent the primary use case for our extension. Per our
testing, on a static page, virtually all annotations would be found (ignoring
any initially dropped annotations as stated above). Moreover, that was the
case on subsequent page visits, even as the user manually created or deleted
arbitrary annotations as they visited the page each time. Rare instances of
resolution failure could be produced, but likely only as a result of a deliberate
effort (e.g., by creating an extensive annotation spanning the whole page).

Partly dynamic pages

An example of a partly dynamic page could be an article on a news site or
a blog. The bulk of the page’s content, such as the text of the article itself,
in this case, is static. However, it also contains smaller parts of dynamic
content, such as a list of other recommended articles to read or user-generated
comments that may be different each time. In this scenario, the extension
also works as expected, resolving annotations in static parts of the page, with
annotations from dynamic parts left unresolved if no longer present.

Entirely dynamic pages

Finally, there are also websites with entirely dynamic content, such as algorith-
mic social media feeds, where most of the content is dynamic. The contents
of such pages are different on each page load, despite the URL unchanged
and interpreted as the same page by our extension. There is little benefit to
annotating such pages, and we were not considering them for our testing.

Shortcomings

While the results presented look overwhelmingly positive, and they certainly
are, we have encountered a few minor issues that need to be mentioned and
could not be easily assigned into one of the three categories of pages above.
Notably, selectors may also fail if the page has changed in some, maybe not
even a noticeable way. For example, if we ran the automatic annotations
when a cookie panel was open, annotations would persist in that part of
the page. Afterward, when revisiting the page and having all annotations
resolved, the ones the panel would fail. Thus, even a page that we would
consider static would have some annotations fail.

40

................................. 6.2. Evolving Web pages

Apart from that, it also sometimes happens that results of automatic
annotation annotate text that is entirely not visible on the page to the user.
However, this may be easily fixable in the future, as it should suffice to
check whether the parent element is visible on the page and within specific
dimensions.

6.2 Evolving Web pages

Knowing how well annotation resolution works on static pages in a single
point, we can now accurately assess its capability to cope in situations where
the document has changed in time. Note that for this assessment, we will
only consider static pages. Specifically, select examples from Czech legislation
will be used. Furthermore, to simulate Web pages evolving over time, we will
compare different versions of the same legal document.

6.2.1 Expectations

A Web page can, over time, evolve in an arbitrary number of ways, and,
inevitably, there is a chance for an annotation that previously existed on the
page not to be found anymore. Not found annotations are not necessarily a
failure on our part but rather an unavoidable consequence of the evolving
nature of the Web that we should plan for. To address this scenario, any not
found annotations are shown in the sidebar to the user, allowing them to
delete them and show what element of the document the annotation previously
appeared in, if possible, such that they can create new, more appropriate
annotations.

As follows, we can categorize the types of annotation failures into four
main types that can occur in evolving documents.

Element not found

Firstly, certain HTML elements can disappear entirely as the page changes in
time. If the removed element were a direct parent containing an annotation,
it would, of course, not be found. In legal documents, this can typically occur
when, for example, a section is removed in its new version. In such cases,
with little to be recovered, the user will most likely delete the annotation.

Text not found

When the parent element of an annotation is found through its CSS selector,
the annotation text still needs to be matched precisely within the text. As
shown in Figure 6.1, for example, when a new version of law changes, a section
may be kept, but its content change, which may result in the annotation’s
text no longer being there. In such cases, the user can click on the annotation
in the extension’s sidebar, and the parent element is then highlighted to them,
allowing for possibly creating a new annotation in the modified part of the
document.

41

6. Evaluation

Figure 6.1: Example of an annotation text not found after the document has
evolved

Offset mismatch

This failure can occur when the annotated text still appears in the same
element, but its position has been shifted to the right or left. For example,
when any text to the left of the annotation has its length changed, it results in
the original annotated text appearing in a different position than the selector,
an example of which is shown in Figure 6.2. Notice that in that example,
there is only a subtle difference – the string “f)” of length two is replaced by
a single letter “e”, causing a mismatch by one.

Unexpected failure

The three types mentioned above of failures are expected when the described
changes occur, given how our deterministic annotation resolution algorithm
works. However, there can also be an unexpected and undesired failure. The
parent element may fail to be selected despite being on the page. For example,
different CSS classes are assigned to it. This may, in turn, cause our CSS
selector to fail. This is precisely why we generate a multitude of selectors,
such that we can always have one to fall back on and hopefully succeed in
selecting the desired element.

While unexpected failures cannot be avoided with absolute certainty, they
should be minimized to the lowest possible level. Luckily, in our experience,
legal and other normative documents on the Web seem to have a consistent
structure across different versions, minimizing any potential CSS selector
failure.

42

................................. 6.2. Evolving Web pages

Figure 6.2: Example of an offset mismatch selector failure.

6.2.2 Testing

The website zakonyprolidi.cz, providing an archive of Czech legal regulations,
will be leveraged to source versions of legal documents for our assessment. It
can visualize the differences between versions of a legal document, making it
easy to conduct our testing. Additionally, it is generally a popular source of
Czech legal documents, making it a likely website to be used by our extension’s
users in the future.

Test cases

We have selected three legal documents at our discretion, each to be compared
across two different versions. The document versions were either immediately
succeeding or across many versions. Either way, we made sure that there
were a fair amount of changes such that there would be annotation resolution
failures to investigate.

First, the respective earlier version of the document was annotated with

43

6. Evaluation
automatic suggestions and annotations manually created by the user. Af-
terward, we opened the respective later version of the document in a new
tab, and the extension showed us a list of failed annotations to investigate.
For this simulation of the website’s evolution over time, slight, temporary
modifications were made to the extension’s code to interpret all URLs. The
two pages would be interpreted as the same one which has evolved.

Once on the second respective version of the legal document, we examined
each annotation failure, comparing it to the previous version and using the
version of the comparison tool offered by zakonyprolidi.cz. The root cause of
each failed annotation was determined and assigned to its respective failure
category as defined in Section 6.2.1

Results

The results of our assessment were overwhelmingly positive and are broken
down in detail in Table B.1. There were 3081 total annotations, out of which
144 failed to be found after visiting the second version of the respective legal
document. Incredibly, all 144 were a function of the changes in the legal
norm itself across its versions, falling under one of the three types of expected
failures, which is precisely what was expected and desired.

Document
name

Versions
compared

Annotations
total

Failures
breakdown1

Difference
visualization

Zákon č.
194/2017 Sb.

3.version2

4.version3
1009 29/10/6/0 at

zakonyprolidi.cz4

Zákon č.
354/2019 Sb.

0.version5

1.version6
785 4/16/7/0 at

zakonyprolidi.cz7

Zákon č.
549/1991 Sb.

30.version
45.version8

1287 14/43/15/0 not publicly avail-
able

Table 6.1: Test results on evolving Web pages

6.3 User study

Apart from thoroughly evaluating the implemented solution on a critical tech-
nical requirement that resolving annotations represents, it is also imperative
to assess its usability. To do so, we have conducted a user study, which will
be presented in the section.

1Failure types as per s Section 6.2.1: Element not found / Text not found / Offset
mismatch / Unexpected failure

2https://www.zakonyprolidi.cz/print/cs/2017-194/zneni-20210101.htm
3https://www.zakonyprolidi.cz/print/cs/2017-194/zneni-20220101.htm
4https://www.zakonyprolidi.cz/cs/2017-194/zneni-20220101?porov=20210101text=
5https://www.zakonyprolidi.cz/print/cs/2019-354/zneni-0.htm
6https://www.zakonyprolidi.cz/print/cs/2019-354/zneni-20210101.htm
7https://www.zakonyprolidi.cz/cs/2019-354/zneni-20210101?porov=0
8https://www.zakonyprolidi.cz/print/cs/1991-549/zneni-20220101.htm

44

......................................6.3. User study

6.3.1 Testing environment

Before conducting the study, it was necessary to have the finished browser ex-
tension distributed to testers. Apart from that, as the extension is dependent
on other components of TermIt as per the designed architecture in Section 4,
it was necessary to deploy TermIt Server, Termit UI, and Annotace, all of
which contain changes we have made in the respective repositories as part of
this work. All three modified components have been deployed to our server,
with a fresh instance of the GraphDB database.

6.3.2 User group

Given that the target user group for the current TermIt system is primarily
domain experts who use TermIt for designing vocabularies, we have decided
to include testers from this target groups as our study participants. More
specifically, three domain experts as well as well as two ontologist were selected
for our study, all of whom had prior, some quite extensive, experience with
using TermIt and its annotation capabilities. There are certainly trade-offs
to consider only including testers with prior TermIt experience, such as not
having a completely new users’ perspective. Nevertheless, we concluded
that such a group would best put things into perspective knowing TermIt’s
current annotation capabilities and provide valuable insight into how our
extension fairs against its incumbent, which is ultimately the most important
for evaluating our work and deciding TermIt Annotate’s future direction.

6.3.3 Test scenario and feedback

There was one common test scenario prepared and sent to each tester and
additional instructions to go through on their own. The test scenario’s steps
were logically grouped into a separate section, sets of actions to fulfill. After
completing the test scenario, testers submitted their feedback into a form.
They were asked to rate each section of the test scenario on a scale from 1
(worst) to 5 (best) and provide additional feedback for each section and rate
TermIt Annotate as a whole.

The test scenarios’ description, along with its respective user feedback, is
accessible in Appendix C. Screenshots of the extension’s tutorial are also
included in Appendix A, offering an easy way to familirize oneself with the
extension.

Overall impressions

Apart from being asked to rate and comment on each section of the test
scenario separately, testers were asked more general questions at the end and
rated their overall impression..Would TermIt Annotate be more suitable for your work than the current

Annotator in the TermIt system?

45

6. Evaluation
. Definitely yes - 2x. Generally yes, but needs some fine-tuning - 1x. Not sure yet, needs more context about how evolving documents are

handled - 1x. Not sure yet, missing features - 1x.Overall rating:.Overall impressions: 4.6/5 (4, 4, 5, 5, 5). Average rating of all test scenario sections: 4.1/5 (avg. for each
section respectively: 3.8, 3.4, 4.0, 4.6, 4.8)

6.3.4 User study results

The user study has given us great insight into how valuable TermIt Annotate
is to the users. All users have completed the test scenario without much
difficulty, and the feedback has generally been positive. The testers have
given an overall impression rating of 4.6/5 and an average rating of 4.1/5
for the performed test scenario steps and had some general positive written
remarks. Around half of the testers thought that TermIt Annotate would
already be better for their work than the current solution, and the rest may
be unsure for now, but would likely be willing to reconsider, once some more
minor improvements are complete.

Nevertheless, there were numerous minor issues and improvement sugges-
tions that testers remarked on at almost every step of the test scenario. As a
result, we have identified the following areas of improvement that should be
highly prioritized for future work..Repeated automatic annotations – As evident from some of the

written feedback excerpts in Appendix A, users were missing the ability
to annotate the page again with automatic suggestions with a different or
edited vocabulary. We have also pondered this idea during requirements
analysis but have not included it in the end. Now it is clear that this
will be an important thing to add..UI/UX improvements – Some users have indicated that they were
unsure about what to expect when invoicing some actions are did not
know how to perform the action they were looking for. This could be
solved with some user interface improvements, notably, as one of the users
suggests, adding tooltips on certain buttons to explain the functionality
or reorganizing some parts of the UI.

46

Chapter 7
Conclusions

The goal of this work was to create a browser extension for creating semantic
vocabularies through annotations on pages of the Web and integrate it with
the TermIt system. Moreover, it was necessary to test its annotation resolution
capabilities and assess its reusability.

7.1 Evaluation

As described in this work, the main goals of our work have now been achieved.
Moreover, all the specified requirements have been implemented and met, ex-
cept for the “desirable” parts of the requierements in Sections 4.1.1 and 4.1.2,
both of which can easily be added in the future.

We have designed and subsequently implemented a working browser ex-
tension. Apart from that, a significant part of our work presented getting
deeply familiar, analyzing, and ultimately making non-trivial changes in the
repositories of Annotace, TermIt UI, and TermIt Server and ensuring all four
software components are adequately integrated for our use case. Additionally,
our implementation also required making changes to the open-source library
of Mark.js, enabling wrapping annotation text in pages.

The critical architectural and later implementation challenge we faced
was handling annotation resolution when starting our work. Our proposed
solution presented a complete paradigm shift from it was handled previously,
where annotations would be saved along as part of its underlying HTML
document. While daunting at first, we were able first to validate our selector
design with a proof of concept extension and subsequently implemented a
full-fledge solution that handles annotation resolution well, even in evolving
Web documents.

An unknown factor whent starting our work also presented how well users
will respond to TermIt Annotate compared to TermIt’s previous annotation
functionality. With the conclusion of the usability study, this question has
also been answered – current TermIt’s users have positively welcomed the
extension. Some users see it as a better alternative for their needs already,
and for others, more minor adjustments will be needed to make it fully ready.

47

7. Conclusions
7.2 TermIt Annotate and its future

This section briefly summarizes the current state of the TermIt Annotate
browser extension and its path forward.

7.2.1 Chrome Web Store

We have submitted the TermIt Annotate browser extension to the Chrome
Web Store (CWS), a public marketplace for the Google Chrome browser
extensions. Our submission has since been approved and published for the
public to see. While there are still some minor shortcomings, as described is in
Section 6.3.4, the extension is functional and meets its defined requirements.

Before it is deemed ready for use on a production deployment of TermIt,
we have published its current testing version in this way. A per specified
in Section 7.2.1.

For future versions, the CWS’s item can easily be updated. Once the
time comes for it to it be used in a production TermIt environment (or any
other new TermIt environment), all that suffices is to add the environments’
parameters in the “/src/annotator/component/shared/InstanceSelection.tsx”
file in the termit-extension repository and upload the updated code to CWS.

Regarding other browsers, there are slight incompatibilities with other major
browsers, but those could be quickly addressed. Notably, some browsers, such
as Mozilla Firefox, have not switched to the Manifest v3 specification yet [30],
meaning that at the minimum, the manifest.json file will need to be adjusted.

Public testing account

As outlined above, we have published the extension to the public in the
Chrome store, and the following information can be used for anybody to try
it out as a logged-in user.. Extension Chrome Store Link: https://chrome.google.com/webstore/

detail/termit-annotate-semantic/penpnbbgbibnedeecnkbnemoilfdjlbh. Instance to select: “Testování”. Username: “termitAnnotateUser”. Password: “termitAnnotateDemo”

7.2.2 Future work

With any piece of software these days, there is always so much to be improved,
added, optimized, or adjusted in an infinite number of ways. In addition, users’
requirements and business needs change over time, and so do other related
software systems and technical specifications, requiring a constant effort by
the developers to keep the software running smoothly and staying relevant.

48

https://chrome.google.com/webstore/detail/termit-annotate-semantic/penpnbbgbibnedeecnkbnemoilfdjlbh
https://chrome.google.com/webstore/detail/termit-annotate-semantic/penpnbbgbibnedeecnkbnemoilfdjlbh

.............................7.2. TermIt Annotate and its future

Figure 7.1: The Chrome Web Store listing of TermIt Annotate

This is especially true when developing a user-facing product running in a
Web browser.

In this sense, of course, TermIt Annotate is no different. Despite our best
efforts during the implementation, there is so much left to do for the product
to be the best it can be, both from the end-user’s perspective and from a
technical standpoint. Nevertheless, we must not get overwhelmed by this
impression, as chasing perfection is a futile effort, especially when it comes to
software development.

That being said, we have identified the following areas of improvement to
focus on next.

Flexible vocabulary and annotation selection

Currently, each annotated website is strictly tied to a single vocabulary. That
may sometimes pose a problem for the user, who would like to annotate
with multiple vocabularies simultaneously or iteratively, one at a time, as
their needs change. At a minimum, the user should be allowed to annotate
their website multiple times with the same vocabulary, which is currently not
possible either.

UI/UX improvements

As apparent from users’ feedback so far and our observations, the overall user
experience is pleasant, but there are still quirks and minor issues here and
there to address to make users’ lives easier. This applies to the annotation
popup and the sidebar’s menus and buttons.

49

7. Conclusions
Sidebar functionality

While the current sidebar works well, there could be simple additions of
functionality that would make it a lot more functional. Firstly, the list of
occurrences should be sortable alphabetically, its position in the document,
time of creation, or otherwise. When there are not found annotations, it
should be possible to modify the annotation such that it now appears on
the website that has evolved. Finally, bulk deleting of annotations should be
possible for all suggested annotations and an arbitrary subset of annotations
filtered out in the sidebar.

Bug fixing and test coverage

There are minor, miscellaneous bugs to be fixed that either emerged as re-
ported during the user study or observed during our usage of the extension.
For example, the user can delete annotations through the sidebar in anony-
mous mode. However, once logged in and asked to annotate the page again
with a vocabulary, those same deleted annotation suggestions appear. Also,
no unit or integration tests have been written to test the extension. This
should also be an essential next task to focus on.

50

Bibliography

1. WOLFE, Joanna; NEUWIRTH, C M. From the margins to the center -
The future of annotation. Journal of Business and Technical Communi-
cation. 2001, vol. 15, pp. 333–334.

2. IDE, Nancy. Introduction: The Handbook of Linguistic Annotation. In:
2017, p. 1. Available from doi: 10.1007/978-94-024-0881-2_1.

3. LEDVINKA, Martin; KŘEMEN, Petr; SAEEDA, Lama; BLAŠKO,
Miroslav. TermIt: A Practical Semantic Vocabulary Manager. 2020.

4. Otevřená data II - Ministerstvo vnitra České republiky [online] [visited on
2022-05-19]. Available from: https://www.mvcr.cz/clanek/otevrena-
data-ii.aspx.

5. Browser Extensions - Mozilla | MDN [online]. [N.d.] [visited on 2021-12-
21]. Available from: https://developer.mozilla.org/en-US/docs/
Mozilla/Add-ons/WebExtensions.

6. What are extensions? - Mozilla | MDN [online] [visited on 2021-12-
21]. Available from: https://developer.mozilla.org/en-US/docs/
Mozilla/Add-ons/WebExtensions/What_are_WebExtensions.

7. Goodbye, Desktop Apps. Modern web applications are replacing. . . |
by Shalitha Suranga | Level Up Coding [online] [visited on 2021-12-
21]. Available from: https://levelup.gitconnected.com/goodbye-
desktop-apps-bf4d2c0438c4.

8. Create and publish custom Chrome apps extensions - Google Chrome
Enterprise Help [online] [visited on 2021-12-21]. Available from: https:
//support.google.com/chrome/a/answer/2714278?hl=en.

9. PoolParty Semantic Suite - Your Complete Semantic Platform [online]
[visited on 2021-12-21]. Available from: https://www.poolparty.biz/.

10. Chrome Web Store - Annotate the Web. Available also from: https:
//chrome.google.com/webstore/category/collection/annotate_
the_web.

11. Weava Highlighter - Free Research Tool for PDFs Webpages [online]
[visited on 2021-12-21]. Available from: https://www.weavatools.
com/.

51

https://doi.org/10.1007/978-94-024-0881-2_1
https://www.mvcr.cz/clanek/otevrena-data-ii.aspx
https://www.mvcr.cz/clanek/otevrena-data-ii.aspx
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_are_WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/What_are_WebExtensions
https://levelup.gitconnected.com/goodbye-desktop-apps-bf4d2c0438c4
https://levelup.gitconnected.com/goodbye-desktop-apps-bf4d2c0438c4
https://support.google.com/chrome/a/answer/2714278?hl=en
https://support.google.com/chrome/a/answer/2714278?hl=en
https://www.poolparty.biz/
https://chrome.google.com/webstore/category/collection/annotate_the_web
https://chrome.google.com/webstore/category/collection/annotate_the_web
https://chrome.google.com/webstore/category/collection/annotate_the_web
https://www.weavatools.com/
https://www.weavatools.com/

7. Conclusions
12. Diigo - Better reading and research with annotation, highlighter, sticky

notes, archiving, bookmarking more. [Online] [visited on 2021-12-21].
Available from: https://www.diigo.com/.

13. Home : Hypothesis [online] [visited on 2021-12-21]. Available from: https:
//web.hypothes.is/.

14. Mosaic User’s Guide: Annotations [online]. [N.d.] [visited on 2021-12-
21]. Available from: https://www.desy.de/web/mosaic/help-on-
annotate-win.html.

15. There’s a Feature That Was Supposed Be in Web Browsers From the
Very Beginning, but It Was Dropped at the Last Minute [online] [visited
on 2021-12-21]. Available from: https://www.businessinsider.com/
theres- a- feature- that- was- supposed- be- in- web- browsers-
from-the-very-beginning-but-it-was-dropped-at-the-last-
minute-2012-10.

16. Semantic Web - W3C [online] [visited on 2021-12-21]. Available from:
https://www.w3.org/standards/semanticweb/.

17. SPARQL Query Language for RDF [online] [visited on 2022-05-20].
Available from: https://www.w3.org/TR/rdf-sparql-query/.

18. SHADBOLT, Nigel; HALL, Wendy; BERNERS-LEE, Tim. The semantic
web revisited. IEEE Intelligent Systems. 2006, vol. 21, no. 3, p. 96. issn
15411672. Available from doi: 10.1109/MIS.2006.62.

19. Ontologies - W3C [online] [visited on 2021-12-21]. Available from: https:
//www.w3.org/standards/semanticweb/ontology.

20. Data - W3C [online] [visited on 2022-05-17]. Available from: https:
//www.w3.org/standards/semanticweb/data.

21. RDF 1.1 Concepts and Abstract Syntax [online] [visited on 2021-12-21].
Available from: https://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/.

22. OWL 2 Web Ontology Language Document Overview (Second Edition)
[online] [visited on 2021-12-21]. Available from: https://www.w3.org/
TR/owl2-overview/.

23. SKOS Core Guide [online] [visited on 2022-05-20]. Available from: https:
//www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/.

24. GraphDB Downloads and Resources [online] [visited on 2022-01-10].
Available from: https://graphdb.ontotext.com/.

25. LEDVINKA, Martin; KREMEN, Petr. JOPA: Stay Object-Oriented
When Persisting Ontologies. 2015, pp. 408–428. isbn 978-3-319-29132-1.
Available from doi: 10.1007/978-3-319-29133-8_20.

26. React – A JavaScript library for building user interfaces [online] [visited
on 2021-12-21]. Available from: https://reactjs.org/.

52

https://www.diigo.com/
https://web.hypothes.is/
https://web.hypothes.is/
https://www.desy.de/web/mosaic/help-on-annotate-win.html
https://www.desy.de/web/mosaic/help-on-annotate-win.html
https://www.businessinsider.com/theres-a-feature-that-was-supposed-be-in-web-browsers-from-the-very-beginning-but-it-was-dropped-at-the-last-minute-2012-10
https://www.businessinsider.com/theres-a-feature-that-was-supposed-be-in-web-browsers-from-the-very-beginning-but-it-was-dropped-at-the-last-minute-2012-10
https://www.businessinsider.com/theres-a-feature-that-was-supposed-be-in-web-browsers-from-the-very-beginning-but-it-was-dropped-at-the-last-minute-2012-10
https://www.businessinsider.com/theres-a-feature-that-was-supposed-be-in-web-browsers-from-the-very-beginning-but-it-was-dropped-at-the-last-minute-2012-10
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1109/MIS.2006.62
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/
https://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/
https://graphdb.ontotext.com/
https://doi.org/10.1007/978-3-319-29133-8_20
https://reactjs.org/

.............................7.2. TermIt Annotate and its future

27. Chrome Developers. Architecture overview [online] [visited on 2021-
12-20]. Available from: https : / / developer . chrome . com / docs /
extensions/mv3/architecture-overview/.

28. Overview of Manifest V3 - Chrome Developers [online] [visited on
2021-12-21]. Available from: https://developer.chrome.com/docs/
extensions/mv3/intro/mv3-overview/.

29. Manifest V2 support timeline - Chrome Developers [online] [visited on
2021-12-21]. Available from: https://developer.chrome.com/docs/
extensions/mv3/mv2-sunset/.

30. Manifest v3 in Firefox: Recap Next Steps | Mozilla Add-ons Community
Blog [online] [visited on 2022-05-20]. Available from: https://blog.
mozilla . org / addons / 2022 / 05 / 18 / manifest - v3 - in - firefox -
recap-next-steps/.

31. Content scripts - Chrome Developers [online] [visited on 2022-05-17].
Available from: https://developer.chrome.com/docs/extensions/
mv3/content_scripts/#isolated_world.

32. Popups - Mozilla | MDN [online] [visited on 2021-12-21]. Available
from: https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/user_interface/Popups.

33. Message passing - Chrome Developers [online] [visited on 2021-12-21].
Available from: https://developer.chrome.com/docs/extensions/
mv3/messaging/.

34. Redux - A predictable state container for JavaScript apps. | Redux
[online] [visited on 2022-05-20]. Available from: https://redux.js.
org/.

35. React vs Angular, which one is more popular among JavaScript de-
velopers [online] [visited on 2021-12-21]. Available from: https : / /
www.peerbits.com/blog/react-vs-angular-which-one-popular-
javascript-developers.html.

36. Zákony pro lidi - Sbírka zákonů ČR v aktuálním konsolidovaném znění
[online] [visited on 2022-01-12]. Available from: https://www.zakonyprolidi.
cz/.

53

https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://developer.chrome.com/docs/extensions/mv3/intro/mv3-overview/
https://developer.chrome.com/docs/extensions/mv3/mv2-sunset/
https://developer.chrome.com/docs/extensions/mv3/mv2-sunset/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#isolated_world
https://developer.chrome.com/docs/extensions/mv3/content_scripts/#isolated_world
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface/Popups
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/user_interface/Popups
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://developer.chrome.com/docs/extensions/mv3/messaging/
https://redux.js.org/
https://redux.js.org/
https://www.peerbits.com/blog/react-vs-angular-which-one-popular-javascript-developers.html
https://www.peerbits.com/blog/react-vs-angular-which-one-popular-javascript-developers.html
https://www.peerbits.com/blog/react-vs-angular-which-one-popular-javascript-developers.html
https://www.zakonyprolidi.cz/
https://www.zakonyprolidi.cz/

54

Appendix A
Tutorial

55

A. Tutorial

Figure A.1: 1. step of the tutorial – A brief introduction to TermIt Annotate

Figure A.2: 2. step of the tutorial – Start page annotation through the sidebar

56

....................................... A. Tutorial

Figure A.3: 3. step of the tutorial – Confirm suggested annotations and create
your own

Figure A.4: 4. step of the tutorial – Use sidebar to keep things in grip

57

A. Tutorial

Figure A.5: 5. step of the tutorial – See your annotations in time

Figure A.6: 6. step of the tutorial – Take full advantage of TermIt’s semantic
vocabulary platform

58

....................................... A. Tutorial

Figure A.7: 1.step of the tutorial, a brief introduction to TermIt Annotate.

59

60

Appendix B
Proof of concept

In order to verify that the proposed architecture can be implemented as spec-
ified, we implemented a proof of concept of the browser extension preceding
the implementation of our work. Its main focus was on implementing the
CSS selector functionality as described in Section 4.2.1 and ensuring that this
approach is indeed the correct one. Fortunately, this has proven to be the
case.

B.1 Functionality

The proof of concept is a Google Chrome browser extension that effectively
has a single piece of functionality: to annotate (highlight) terms on all visited
pages automatically. Terms to be highlighted are created by calling Annotace
Service, which has been adjusted to return annotations in the form of CSS
selectors instead of modified HTML. While not covering the vast majority
of requirements in Sections 4.1.1 and 4.1.2, it is enough to put CSS selector
annotations to the test comprehensively.

B.2 Tracked metrics

The following metrics were collected, displayed on the current page, and ag-
gregated for further analysis to track the effectiveness of annotation selectors.

B.2.1 Elements selection

This metric indicates the success rate of selecting elements where annotations
occur. When using the supplied CSS selector to get the element, there can
be one of three outcomes:. Success – exactly one element is returned.. Failure – no elements are returned. While this number can be minimized

by generating reliable selectors, a failure can sometimes happen for
reasons outside our control. For example, there can be a temporary
element on the page when sending the page’s HTML for analysis to the

61

B. Proof of concept

Figure B.1: Screenshot of using the extension annotations on the page https:
//www.zakonyprolidi.cz/cs/2006-499.

Annotace service. Later, that element disappears, and once Annotace
returns and page highlighting starts, it can no longer be selected..Overselected failure – more than one element is selected. This can
occur when the generated selector(s) is not unique enough, which can be
eliminated through better implementation.

B.2.2 Term annotation

A selected element can contain multiple terms to be annotated. This metric
measures the success rate of the individual terms being annotated within
the selected elements’ HTML. A term annotation can have the following
outcomes.. Success – exactly one term is annotated.. Failure – no terms are annotated in the text. A matching text is not

found at the specified position within the element..Overselected failure – more than one term is highlighted. This never
happens with the current implementation as we keep the annotation’s
offset within the parent element.

B.2.3 Testing

To put our proof of concept extension to the test, we have visited 50 different
web pages with it and aggregated the results into Table 5.1. It shows that
the success rate of both tracked metrics has been over 99.5%, out of 7380
elements and 19604 annotations.

62

https://www.zakonyprolidi.cz/cs/2006-499
https://www.zakonyprolidi.cz/cs/2006-499

................................... B.2. Tracked metrics

Successes Failures Overselected Success rate
Elements selection 7347 32 1 99.553%
Term annotation 19538 66 0 99.663%

Table B.1: Proof of Concept aggregate selector test results.

The pages that the extension was tested on were selected at our discretion,
with the main focus being normative documents in Czech, such as those on
zakonyprolidi.cz [36] or zakony.cz. Other pages included social media sites,
discussion forums, search engine results, and news sites. More testing will
need to be done to ensure our implementation’s correctness. However, our
tests have proven that this is undoubtedly the correct path forward.

63

64

Appendix C
Test scenario

This section describes all steps of the test scenario and users’ feedback for
each section...1. Tutorial.Description: When the extension is first installed, its dedicated

tutorial page is automatically open. It gives the user insight into
how to use the extension in consise chronological steps, aimed at
getting the user up to speed quickly. The tutorial is included in
Appendix A.. User rating: 3.8/5 (Ratings: 3, 3, 4, 4, 5). User feedback:. The tutorial is illustrative, it describes the key features of the

plugin. I like the inclusion of an animated image...2. Anonymous annotation and login. Description: Once the user has completed the tutorial, they were
instructed to navigate to a page with a Czech legal document (at
zakonyprolidi.cz1) that was assigned to them. They could annotate
the page with automatic suggestions and create their annotations.
Afterward, to save progress, they were redirected to log in to TermIt.. User rating: 3.4/5 (Ratings: 3, 3, 3, 4, 4). User feedback:. I am missing an instruction / help / tip for manual annotation

of the page (ie a tip for manual text marking). In the "Annota-
tor" tab, I miss the button for (re) running (automatic) page
annotation..3. Annotation as a logged in user

1An example of a tested page: https://www.zakonyprolidi.cz/judikat/nscr/29-icdo-20-
2018

65

C. Test scenario.....................................
.Description: Once the user loggs into their TermIt account, they

were redirected back to the page they were annotating anonymously
before, where they were asked to pick a vocabulary to annotate
with. Afterward, they could to operate fully on existing annotations
as well as create their own.. User rating: 4.0/5 (Ratings: 3, 4, 4, 4, 5). User feedback:. After logging in and deleting new term suggestions, I can’t

restart the page annotation.. The definition of the annotation in the text cannot be edited - I
can only delete the annotation and recreate it.. Everything worked nicely, except that I could not annotate the
same page again.. I like that the overlapping annotations are suitably graphically
differentiated...4. Sidebar panel and TermIt integration.Description: Users were asked to use the sidebar panel to filter a

certain type of annotations and show their location on the page.
Afterward, they are assigned a definition to a term, click through
the term’s link to show it in TermIt UI, and then finally open the
same page again, linking to that term’s definition.. User rating: 4.6/5 (Ratings: 4, 4, 5, 5, 5). User feedback:. The delete button for annotations in the sidebar could have a

tooltip with the information that it is a deletion of the annotation
(so that someone does not feel that they delete the term in
TermIt)...5. Termination. Description: Finally, users were asked to navigate to other previously

annotated page as listed in the sidebar, and then are able disable
the extension through the sidebar panel and see how the current
page reacts.. User rating: 4.8/5 (Ratings: 4, 5, 5, 5, 5). User feedback:. It’s nice that the extension is easy to turn on / off.. Visually very nice, I missed being able to filter through annotated

websites.

66

Appendix D
Description of electronic attachmens

...
/

termit-ui......................TermIt UI’s code with our changes
termit.....................TermIt Servers’s code with our changes
annotace........................Annotace’s code with our changes
termit-extension..................Broser extension’s source code

config.............................webpack build configuration
public..static assets
releases...................................past released builds
scripts................................build and helper scripts
src.....................................extensions’ source code

background background script files
content...........................content script - annotator
shared................................shared typescript files
styles .. CSS styles
termit-ui-common shared typescript files
tutorial................................extension’s tutorial

.eslintrc.js. ES Lint configuration file

.gitignore.................................Files outside of git

.package-lock.json........................Files outside of git

.package.json..............................Files outside of git

.README.MD.................Repository description, setup guide

.tailwind.config.js...............TailwindCSS configuration

.tsconfig.json. TypeScript configuration

Existing repository changes description

This is to describe what changes have been done in the 3 already existing
repositories that we have submitted in the attachment on top of the extension
that was written from scractch.. termit-ui changes: – Added src/util/Extension.ts for syncing with

browser extension, added src/model/Website.ts to represent ad website,
made other minor changes to sync logged-in status and account for
Website object, vs only files previously. Please refer to here for an

67

D. Description of electronic attachmens
exact diff of the changes: https://github.com/alanbuzek/termit-ui/
pull/1/files. termit changes: As extensively described in this work, added Web-
site, TermWebsiteOccurrence and WebsiteOccurrenceTarget entities, also
added a few endpoints to store these entities. Please refer to here for an
exact diff: https://github.com/alanbuzek/termit/pull/1/files. annotace changes: Added “/annotate-to-occurrences” endoint and
“transformAnnotationOutputToOccurrences” method. Please refer to
here for an exact diff: https://github.com/alanbuzek/annotace/
pull/1/files

68

https://github.com/alanbuzek/termit-ui/pull/1/files
https://github.com/alanbuzek/termit-ui/pull/1/files
https://github.com/alanbuzek/termit/pull/1/files
https://github.com/alanbuzek/annotace/pull/1/files
https://github.com/alanbuzek/annotace/pull/1/files

	Introduction
	Annotations
	TermIt
	Motivation
	Goal

	Related work
	Vocabulary management
	Pool Party Semantic Suite

	Web annotation extensions
	Weava Highlight
	Diigo Web Collector
	Hypothes.is

	Summary

	Background
	Semantic Web
	RDF
	OWL
	SKOS

	TermIt
	TermIt's current architecture
	Annotation workflow
	Annotator

	Used technologies
	React
	Browser extensions

	Architecture
	Requirements
	Functional requirements
	Non-functional requirements

	TermIt-wide architectural changes
	Annotation resolution redign
	TermIt Server changes
	Annotations as Term occurrences
	TermIt UI changes
	Annotace changes

	Extension architecture
	Key factors
	Content Script
	Browser storage
	Background script and syncing with TermIt UI

	Extension's annotator
	Basic structure
	Control flow and state management
	The case for Redux

	Annotation resolution
	Initial annotation flow
	Dropped annotation suggestions
	Ensuring selector robustness

	Implementation
	React justification
	TermIt UI code reuse
	Sidebar performance optimizations
	Vocabularies caching
	Website URL matching
	Hypothes.is inspiration
	Annotation selector caveats
	Mark.js

	Evaluation
	Annotation resolution robustness
	Unchanged Web pages

	Evolving Web pages
	Expectations
	Testing

	User study
	Testing environment
	User group
	Test scenario and feedback
	User study results

	Conclusions
	Evaluation
	TermIt Annotate and its future
	Chrome Web Store
	Future work

	Bibliography
	Tutorial
	Proof of concept
	Functionality
	Tracked metrics
	Elements selection
	Term annotation
	Testing

	Test scenario
	Description of electronic attachmens

