
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Web application for ontology comparison

Lukáš Vévar

Supervisor: Ing. Petr Křemen, Ph.D.
Field of study: Software Engineering and Technology
May 2022

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483767Osobní číslo:LukášJméno:VévarPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Webová aplikace pro porovnávání ontologií

Název bakalářské práce anglicky:

Web application for ontology comparison

Pokyny pro vypracování:
OWL ontologies are shared conceptual models of knowledge. The goal of the thesis is to design, implement and evaluate
a web service and a web user interface for comparing OWL ontologies over an existing OWLDiff system.
1. Become familiar with OWL, ontology comparison techniques and theOWLDiff system (https://github.com/kbss-cvut/owldiff).
2. Design and implement a REST web service that allows comparing existing web ontologies, either present on the web
or provided through file upload. The web service will be able to serve results in a suitable RDF diff format.
3. Design and implement a web application using the REST web service to mimic the comparison operations of current
OWLDiff.
4. Evaluate the efficiency of the web service on selected existing ontologies from the Semantic Government Vocabulary
(https://slovník.gov.cz/) and relate it to the performance of the standalone version of OWLDiff.
5. Evaluate the usability of the web application by a user study with several ontology designers.

Seznam doporučené literatury:
- P. Kremen, M. Smid and Z. Kouba, "OWLDiff: A Practical Tool for Comparison and Merge of OWL Ontologies," 2011
22nd InternationalWorkshop on Database and Expert Systems Applications, 2011, pp. 229-233, doi: 10.1109/DEXA.2011.62
- S. Abburu. A Survey onOntology Reasoners and Comparison. International Journal of Computer Applications 57(17):33-39,
November 2012.
- OWL 2 Web Ontology Language Primer, P. Hitzler, M. Krötzsch, B. Parsia, P. Patel-Schneider, S. Rudolph, Editors, W3C
Recommendation, October 27, 2009, http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Křemen, Ph.D. skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 07.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Křemen, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 1CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor, Ing.
Petr Křemen, Ph.D., for guidance, great
feedback and for the opportunity to write
a thesis on this topic.

Declaration
I declare that this work is all my own
work, and I have cited all sources I used
in the bibliography.

Prague, May 15, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 15. května 2022

v

Abstract
Comparing two different ontologies is dif-
ficult task, since same knowledge in one
ontology can be written differently in an-
other ontology, but have same meaning.
OWLDiff tool can compare ontologies and
find differences between them using mul-
tiple algorithms, however OWLDiff has
only a standalone application. The main
goal of this thesis is design and imple-
mentation of a user interface and separate
API, which will mediate all functionalities
of OWLDiff. The result is a web appli-
cation which allows ontology engineers
compare or merge two different versions
of the same ontology. Designed API runs
in Java using framework Spring and user
interface is built using React with help
of prebuilt components from Material UI.
Usability of the web application is tested
in performance testing and with help of
volunteering experienced ontology engi-
neers in user testing.

Keywords: OWLDiff, Ontology
comparison, Web application, Spring,
SpringBoot, React, User testing

Supervisor: Ing. Petr Křemen, Ph.D.
Knowledge Based Software Systems
Group,
Department of Computer Science,
FEE CTU

Abstrakt
Hledání rozdílů mezí ontologiemi je ná-
ročný problém, jelikož stejná znalost za-
chycená v ontologii může být zapsána
různými způsoby. Nástroj OWLDiff umí
nacházet rozdíly mezi ontologiemi po-
mocí různých algoritmů. Tento nástroj
má ovšem pouze samostatnou aplikaci.
Hlavním cílem této bakalářské práce je
vytvoření návrhu a následná implemen-
tace uživatelského rozhraní a samostat-
ného API, které bude zprostředkovávat
všechny funkcionality OWLDiffu. Výsled-
kem je webová aplikace umožňující pracov-
níkům z ontologiemi ontologie porovnávat
nebo mergovat. Navržené API běží v ja-
zyce Java za pomocí frameworku Spring
a uživatelské rozhraní je vytvořeno po-
mocí knihovny React s využitím kompo-
nent z frameworku Material UI. Použitel-
nost aplikace je ověřována výkonostním
a uživatelském testováním ze strany zku-
šených odborníků s ontologiemi.

Klíčová slova: OWLDiff, Porovnání
ontologií, Webová aplikace, Spring,
SpringBoot, React, Uživatelské testování

Překlad názvu: Webová aplikace pro
porovnávání ontologií

vi

Contents
1 Introduction 1
1.1 Goal of the work 2
2 Web Ontology language 5
2.1 Syntax . 5
2.2 Description logic and OWL2
Profiles . 6

2.3 Axioms . 7
3 OWLDiff 9
3.1 Diff algorithms 10
3.2 Merge . 10
4 Analysis 13
4.1 Research of similar solutions . . . 13
4.1.1 ecco . 13
4.1.2 bubastis 14
4.1.3 ELH-forgetting 14
4.1.4 Protege 4 14
4.1.5 Research summary 14

4.2 Functional requirements 15
4.3 Non-functional requirements . . . 16
5 Analysis of used technologies 17
5.1 Backend - Java 17
5.1.1 Spring . 17

5.2 Frontend - Javascript 18
5.2.1 HTML + CSS 18
5.2.2 Typescript 18
5.2.3 React + JSX 18
5.2.4 NPM . 18
5.2.5 Gatsby 19
5.2.6 Material UI 20

6 Solution design 21
6.1 Architecture introduction 21
6.2 Communication architecture . . . 22
6.3 Backend architecture 22
6.3.1 Layers . 23
6.3.2 Components 23
6.3.3 API architecture 24

6.4 Frontend design concepts 26
6.5 Design . 28
7 Implementation 31
7.1 Integrating API into OWLDiff . . 31
7.1.1 Using algorithms 31
7.1.2 Axiom tree hierarchy as JSON 32

7.2 Implementing endpoints 33
7.3 Tree model on user interface . . . 33

7.3.1 Encountered problem 34
7.4 Deployment 35
8 Testing 37
8.1 Performance testing 37
8.1.1 RAM usage 38
8.1.2 OWLDiff standalone
comparison 38

8.2 User testing 39
8.2.1 Testing scenario 39
8.2.2 Asked questions 40

8.3 Test recap 41
9 Conclusion 43
9.1 Future work 43
Bibliography 45
A Acronyms 49
B User testing 51
C List of the attachments 55
C.1 Attached files 55
C.2 Github link 55

vii

Figures
2.1 Example ontology in OWL2
RDF/XML document 6

2.2 Example ontology in form of RDF
graph . 7

2.3 OWL2 example of class A. 8
2.4 Axioms of example class A 8
2.5 Axiom hierarchy tree example . . . 8

3.1 Ontology comparison result 11
3.2 Selection of axioms before
merging . 11

5.1 Example of simple React
component with JSX HTML
rendering . 19

6.1 Solution design draft 22
6.2 Backend architecture 27
6.3 Design of main layout for user
interface . 29

6.4 Design after comparison is done
and displayed 29

6.5 Design of merge window 30

7.1 Generated diagram of modules
with their dependencies to each
other . 32

7.2 NodeModel visitor diagram 33
7.3 Basic expandable list, top level
item can be expanded using arrow on
the left. 34

7.4 TreeView component example . . 34
7.5 Visual explanation of how
virtualization work (source [2]) . . . 35

Tables
4.1 Research of similar solutions . . . 15

5.1 Comparison of React
environments 20

6.1 Comparison of API architectures 24

8.1 Performance testing results table 38
8.2 OWLDiff standalone performance
comparison with created web
application . 39

B.1 Test scenario steps form ready to
fill out . 52

B.2 Results for all recipients from test
scenario testing 53

B.3 Results for all recipients from
question answering 54

viii

Chapter 1
Introduction

Over the past decades, the Internet has grown exponentially. The amount of
data created are in trillions of megabytes per day. It was impossible for search
engines to handle so much information. That is where the idea of Semantic
Web1 came in. Semantic web defined tools and ways how to represent and
structure data. Therefore, using these tools it was possible to turn plain text
into knowledge.

Development of data science and artificial intelligence required to structure
knowledge and give it some form. With the ability of Semantic Web to
create Linked data2 it was possible to build first knowledge graphs[6]. The
knowledge graph represents a collection of entities (real-world objects), events,
or abstract concepts (e.g., documents) and linked descriptions between them.
In other words, every entity, event or concept inside the knowledge graph
can have a description and this description contains not only plain text data
but also relationships to other entities, events or concepts. Each relationship
and data inside descriptions must be readable to both people and computers.
This representation help understand data as knowledge.

The absolute basics of knowledge graphs are ontologies. As mentioned, to
achieve readability and most importantly same understanding of knowledge for
any user, where the user can be human or a software inside a computer, there
is a need to universally specify a model. Ontology is a model for knowledge,
which consists of concepts and relationships between those concepts. These
concepts of knowledge must be formal and defined[9]. The main concepts are:

.Classes — general entities and objects (usually nouns) in the domain
of interest. Similarities from object-oriented designs. Class hierarchy is
allowed.

.Relationship types — all kinds of relationships that can exist between
classes. Relationships are divided based on their purpose and meaning.

1"The Semantic Web is a vision for the future of the Web in which information is given
explicit meaning, making it easier for machines to automatically process and integrate
information available on the Web." [9]

2Several technologies that together create standards for connecting data and create
relationships between them[35]

1

1. Introduction
.Properties — properties of classes that are used for better description

of knowledge.

So far there is no single ontology that describes all the knowledge in
the world. Instead ontologies are made withing domains or are made to
specific use cases within an organizations. Ontologies are not only used for
knowledge graphs, but almost anywhere where is need to improve knowledge
management.

1.1 Goal of the work

Ontologies are created within some domain by ontology engineers, usually
represented with OWL2 (more explained in chapter 2). The problem occurs
though, when someone tries to make a new version of an existing ontology and
wants to compare what knowledge is different in both versions. Even though
ontologies represented with OWL2 are written in textual files, the classical
diff comparison for textual files is not ideal. The reason being that the
same knowledge can be written differently, also saying how is the knowledge
different using just textual diff is time-consuming and requires people to have
strong experience with ontologies. Also, OWL2 ontologies can be stored in
different file types and still describe the same knowledge.

Therefore, there is need for logical comparison based on classes, relationships
and properties from ontologies. Project OWLDiff (more in section 3) uses
specific algorithms to compare two different versions of the same ontology.
However, OWLDiff is not avaliable directly on the Internet in form of web
application and users must download the standalone application, if they want
to use this tool.

The main goal of this work is to extend OWLDiff project with a new
module. This module will create REST API3, which will provide comparison
and merge functionality from OWLDiff as a web service. Next there will be
implementation of a user interface - web application communicating with
created API. User interface should be well-arranged and user-friendly. The
created API should be able to serve all functions of OWLDiff and should be
runnable even without the user interface.

Secondary goals are: researching of similar solutions, testing usability of
created user interface, comparing performance with standalone OWLDiff
application with testing of all kinds and sizes of OWL2 ontologies...1. Research of similar projects focusing on ontology comparison accessible

as web applications...2. Design and implementation of REST API which will mediates all func-
tions of OWLDiff...3. Design and implementation of web user interface communicating with
created REST API.

3Interface that will allow other application to communicate with.

2

................................... 1.1. Goal of the work..4. Performance testing and defining limits of the created web application...5. User testing of created web application and determine usability for
ontology engineers.

3

4

Chapter 2
Web Ontology language

In order for ontologies to be created, a formal language have been developed.
OWL2 is an extension for original Web Ontology language (OWL)[36] that
supports many syntaxes. The core of OWL2 are RDF triples1, so it is also
possible to view any OWL2 document as an RDF graph. An example ontology
of OWL2 document written in RDF/XML syntax (more in subsection 2.1)
can be seen in figure 2.1. The following ontology describes a man named
John and a woman named Mary being parents to another man named John
jr. Knowledge has base in domain example.com. RDF graph2 of the same
ontology can be seen on figure 2.2

2.1 Syntax

Syntax[36] is a collection of symbols and letters that together create docu-
ments. OWL2 can be stored in different syntaxes. Only one is mandatory
(RDF/XML), others are optional.

. RDF/XML — all OWL2 tools must be able to read this syntax. It allows
mapping to RDF graphs.

.OWL/XML — ontology structure is written as XML file. It is used in
XML-based tools.

. Functional — formal syntax for ontologies. It thoroughly maps profiles,
classes and properties.

.Manchester — compressed and easily readable for people, however not
suitable for all OWL2 ontologies.

. Turtle — ontology syntax with alternative RDF mapping.

1Basic model for decomposing information into following statement: subject - predicate
- object[37]

2The graph has been made using GraphViz online tool[8]

5

2. Web Ontology language

Figure 2.1: Example ontology in OWL2 RDF/XML document

2.2 Description logic and OWL2 Profiles

OWL and OWL2 ontologies are based on description logic[12]. All the
reasoning operations are defined using description logic. For example, ba-
sic reasoning operations are: checking if knowledge is correct, checking if
knowledge is equal or redundant to another and checking if knowledge has
meaning. There are logic reasoning programs and tools which help to work
with ontologies using description logic.

It is not the aim of this work to go into details of this topic. However,
it is important to note three different OWL2 Profiles[36], that are defined
using description logic. Each profile brings advantages for different kinds of
applications.. OWL 2 EL — useful for large applications with huge amount of classes

with big amount of properties. EL provides ability to handle existential
restrictions.[12]. OWL 2 QL — should be used when ontologies are not too complex, but
are used to structure huge amount of data. It decreases query3 execution

3Query is a command that is run over a knowledge graph to get data from it. Time to

6

....................................... 2.3. Axioms

Figure 2.2: Example ontology in form of RDF graph

time..OWL 2 DL — majority of ontologies use this profile. It supports all
reasoning operations. Includes all OWL constructs however, with some
restrictions.

2.3 Axioms

OWL2 ontologies can be described with statements claiming to be true in
that ontology. These statements are called axioms. A collection of axioms
can form a hierarchy.

Let’s consider following OWL2 example class written in RDX/XML syntax
shown in figure. 2.3

Axioms from example OWL2 class from figure 2.3 can be seen in following
figure 2.4 written in Manchester syntax (more in subsection 2.1).

It is possible to create a whole hierarchy tree structure from this class.
Figure 2.5 shows that. Since class A is a subclass of B, C and D, it is possible
to see it under all of those classes (please note, other classes may have their
own axioms, that were not shown in this example).

get results can be different based on size of knowledge graph or complexity of ontology
describing it.

7

2. Web Ontology language

Figure 2.3: OWL2 example of class A

Figure 2.4: Axioms of example class A

Figure 2.5: Axiom hierarchy tree example

8

Chapter 3
OWLDiff

OWLDiff[13] has been created as a tool for comparing differences between two
ontologies and merging two ontologies into one new ontology. At the time of
creating OWLDiff, there were no accessible tools for comparing two versions
of the same ontology in human-friendly form. The aim of OWLDiff project
was to develop a tool for OWL2 ontologies similar to diff for text files.[31] It
was originally designed to compare two different versions of the same ontology.
OWLDiff project has many modules, one of which is standalone application.
This standalone application is independently executable and provides all
features of OWLDiff to users.

Comparing and merging of two ontologies is quite difficult without any
visual interpretation, even in readable syntaxes. Main reason is that knowledge
inside ontology can be written differently but can have the same meaning.
OWL family supports many syntaxes. In specifications or documentations,
there is often used functional syntax. On the Internet, in compact human-
friendly form, it is possible to find Manchester syntax. Since OWL2 is usually
stored as XML or RDF syntax, OWLDiff focuses on mapping files with
extension owx, owl or rdf (meaning, RDF/XML and OWL/XML syntax).
However, it supports other file types as well, for example ttl (Turtle syntax).

OWLDiff takes two OWL2 files from the user. Firstly it takes the original
ontology and after that the update ontology. Then it uses diff algorithms
to check, if both ontologies are semantically equivalent. If not, the user is
able to see axiom differences in form of axiom lists. The user can switch to
different views, like hierarchy tree, which structures axioms into expandable
lists by parent axioms. Each axiom is displayed in selected syntax. Default
syntax is Manchester, because of its readability feature, however the user can
switch to DL syntax.

For each axiom, there is also a note, describing its role in both ontologies.
There are three roles distinguished:. Common - Axiom is in both ontologies.. Separate - Axiom has no connection to the other ontology.. Inferred - Axiom is present in one ontology and not in the other, but can

be derived. The axioms, which were used for deriving are described in
the notmere.

9

3. OWLDiff.......................................
. CEX - Axiom that were found different by CEX algorithm (more in

section 3.1

By default, the result contains only the different axioms, however user can
check an option for showing common axioms. Before merging, user can select
axioms from original and update ontology, to delete or to add into merged
ontology. For OWL2 files with EL profile, user can use CEX algorithm for
finding differences, however this option is not default.

By default, the merged file is saved into the same location, as the original
ontology. Therefore, the original is lost and replaced with the merged one.
However, the user can specify location for the merged file, and keep the
original unchanged.

3.1 Diff algorithms

Ontology comparison process is divided into two steps. In the first step,
OWLDiff runs syntactic diff and entailment check. Second part is optional
CEX algorithm and can be done only if both of the ontologies profile is EL.
Algorithms are run with help of logic reasoning tool, which is a library that
is able to get logic meaning from axioms inside ontologies.

Syntactic diff is very similar to diff between textual files. Basically, it
checks whether axioms of ontology in OWL2 files are same or different (it also
depends on syntax of those OWL2 files). The system creates two arrays: one
with all axioms, that are in original but are not in update. And another array
with all axioms, that are in update but are not in original. In standalone
OWLDiff version, axioms from both arrays are marked with green color,
which indicates differences.

Entailment check runs for every axiom in both arrays. It checks if axiom
can be derived from the other ontology. If there are any axioms with this
feature, it creates another array for each ontology. Then it places axioms
into a respective array based on which ontology it may be redundant from.
In standalone OWLDiff version, axioms in both arrays are marked with red
color, which indicates redundant axioms. These axioms are recommended for
deletion. Also, detail of how was the derived axiom derived is written below
the all axioms.

CEX algorithm[14] only works with ontologies with profile EL. It finds out
all axioms that are different, even when the difference cannot be found from
syntactic diff and cannot be seen from class hierarchy.

3.2 Merge

Before merging, user can select axioms to keep from original and axioms to
delete from update. After clicking the merge button, a popup screen with
summary shows up. User can select file path for saving. By default, the
merged file goes into the same location as the original ontology. Therefore,
the original ontology is overwritten by default.

10

....................................... 3.2. Merge

Figure 3.1: Ontology comparison result

Figure 3.2: Selection of axioms before merging

11

12

Chapter 4
Analysis

In order to design the desired solution to accomplish the goal of this work, there
needs to be specified requirements. OWLDiff standalone application will be
the main source from which the requirements will be mostly derived. However,
another good help for defining the complete solution will be research of already
existing solutions and pointing out their good features and deficiencies.

4.1 Research of similar solutions

The aim of this section is to find out similar projects for finding differences
between OWL ontologies. At this time, there are a lot more similar solutions
than it was before, when OWLDiff was developed. However, most solutions
are based only on some form of syntactic diff. Results may be different from
OWLDiff only because of different approach to syntactic diff. Only small
part of searched solutions have some kind of user interface and are available
as a web solution.

Since the result of this work (section 1.1) will be REST API and web
application with user interface for comparing OWL2 ontologies, the focus of
the research was only on solutions implementing similar web application or
REST API. Exception was made at the project Protege 4 (4.1.4), which does
not have a web application, but it is more than 10 years actively developed,
open-source and popular among ontology engineers. This research was done
with aim to help understand user expectations and get ideas for features.

4.1.1 ecco

Very soon after release of OWLDiff, researches from Manchester university
started developing a similar solution, based on OWL API[27] library. OWLDiff
uses the same library for handling ontologies. Ecco[25] is able to find syntactic
differences between axioms in ontologies and whether these differences have
any logical effect. It finds and shows the source of each difference, which is
used for categorization of the difference. Categories determine the strength
of the axiom, so it can help the user improve its specificity. On-line website
was not working at the time of research, however the user interface can be
found inside the standalone application.

13

4. Analysis
4.1.2 bubastis

Simple tool only able to check syntactic differences, using OWL API. Ad-
vantage of this project is on-line available GUI. Bubastis[15] is able to check
whether class is modified, newly added or deleted from update ontology.

4.1.3 ELH-forgetting

Interesting tool for ontology logical comparison using forgetting method[40].
It has two functions, first is very similar to syntactic diff, however it also
uses forgetting method, and it shows which axioms are explicit or implicit in
the update ontology. Another function takes one ontology and tries to forget
selected axioms, then it is possible to generate new ontology from remaining
axioms a check its differences with original one.

4.1.4 Protege 4

Protege[30] is a complex tool for work with knowledge-based systems and
ontologies. It has several functions for comparing ontologies. It shows
different axioms in form of lists and each difference is categorized whether
it was created, renamed, modified or deleted. Even when this tool does not
have a web based version, it had to be mentioned, because it is one of the
most popular ontology editors, and it is free and open-source.

4.1.5 Research summary

One of the goal of this work is to implement REST API. There were no
project found that provides this feature. Only two projects have accessible
web application. So only two projects provided a good source of inspiration.
Also, none of these solutions have good way to prevent errors, user can upload
anything and then gets unreadable error.

The following table shows pointed out positive feature, user interface design
idea and overall user experience (UX) note that were taken as inspiration
from each project. Mentioned are also things to avoid - deficiencies.

14

................................4.2. Functional requirements

Name Feature Design idea UX Deficiencies

ecco

categorization
of axioms, user
can see if axiom
is more specific
in original or in
update ontology

checkboxes
for selection

explanations
in tooltip at
each axiom
seems helpful

too much
specialized

terms

bubastis
shows if axiom

is deleted
modified or
newly added

results are
seperate in

boxes

ability to
choose diff
options

confusing
and

repeated
errors

ELH
unique

forgetting
method

left panel
with tools

clear way
how to
upload

ontologies

not great
visualisation
of axioms

Protege 4

complex tool
that has

ability to diff,
merge and
even show
RDF graph

great
way to

show axiom
hierarchy
in form of

tree

tool might
not be
easy to
learn

does not
have web
application

Table 4.1: Research of similar solutions

What was learned from this research is that OWLDiff web application will be
unique in its way to provide simple web accessible solution for users to compare
ontologies. While creating requirements for OWLDiff web application, results
from this research were taken into an account.

4.2 Functional requirements

Requirements that describe how the application behaves are called Functional
requirements (FR). In this case, most of functional requirements are based
on OWLDiff standalone module.. FR1 - OWLDiff web application will serve the user interface, where users

can directly upload ontologies into the system and get different axioms
in form of tree created from axiom hierarchy.. FR2 - User interface will distinguish common, separate and derived
axioms using colors.. FR3 - User interface will have option to show or hide explanations. These
explanations will be shown at each axiom.. FR4 - User interface will have option to use CEX algorithm. Affected
axioms will be shown in specific color and have CEX description displayed.. FR5 - User interface will have option to switch between syntaxes.

15

4. Analysis
. FR6 - User interface will have option to show or hide common axioms.. FR7 - User interface will make possible to select axioms to keep or select

axioms to delete before merging.. FR8 - OWLDiff web application will generate merged ontology from
update ontology and selected axioms.. FR9 - OWLDiff web application will allow downloading merged ontology
in specified ontology file type and optionally changed filename.. FR10 - OWLDiff web application will have available API. It will make
possible for external systems to upload ontologies and get their different
axioms or merge selected axioms from ontologies into the final ontology.
REST API mediates all options that are possible in user interface.. FR11 - Accepted file types of ontologies will be owl, obo, ttl, owx, omn
and ofn. File types are based on supported OWL2 syntaxes (2.1).. FR12 - Computing of differences between ontologies and merging of two
ontologies will be done using OWLDiff.

4.3 Non-functional requirements

Requirements that describe how should application behave, so the desired
usage is fulfilled are called Non-functional requirements (NFR). Most of these
requirements are focused on quality and usability of the application.. NFR1 - Application will be easily deployable on any server.. NFR2 - All kinds of errors must be shown to the user, so the user knows

what is happening.. NFR3 - When an error occurs the user can clear the state and web
application with REST API will continue to work.. NFR4 - User interface will be able to display many differences from
ontologies, there should be no limit for number of differences. API
should limit the size of ontology based on hardware capacities of the
device where is the API running.. NFR5 - User must be informed if the size of the ontology is too big to
handle by the server. Or if computational time will take too long.

16

Chapter 5
Analysis of used technologies

Selection of technologies has been affected by defined requirements. In some
cases, the final choice has been made based on experience with a given
technology. It is not the aim of this chapter to go deep into analysis of all
possible option and finding the perfect candidate. Therefore, comparison
between possible options is not presented in most cases, however always an
explanation is provided.

Whole OWLDiff web application will be divided into two parts. First
part realizes the API and will use OWLDiff for computing the comparison
of ontologies. This part will be called the Backend (explanation and more
detail for this division is inside chapter 6). Second part will be responsible
for building user interface. Let’s call that part the Frontend.

5.1 Backend - Java

Java[26] is the perfect programming language for creating a service running
on nearly any device, because once it is compiled, it creates a package which
can be deployed on any server supporting Java. Also, it is one of the most
popular object-oriented language with huge community. Applications running
on Java are highly scalable. The main reason why Java was chosen is that
OWLDiff is all written in Java.

� Reason: OWLDiff written in Java

5.1.1 Spring

Java has a lot of backend frameworks, however each of them has differences and
different uses. One of the biggest and most versatile backend frameworks is
Spring.[34] It is very easy to build API endpoints, or services using simple
annotations. It comes with built-in service SpringBoot, which helps to create
standalone applications, that just run on its own.

� Reason: Popularity, easy to use for building REST API

17

5. Analysis of used technologies..............................
5.2 Frontend - Javascript

For the frontend part, options are more limited. Since the aim of this project
is to build a website, Javascript[11] comes to mind. It is a lightweight, cross-
platform and interpreted programming language, therefore it is supported
by all modern browsers. Javascript helps to create interactive websites. With
it huge community support, there are avaliable multiple frameworks and
libraries.

� Reason: Supported by all modern browsers

5.2.1 HTML + CSS

Plain Javascript does not make much sense, because it does not display
anything by its own. Javascript only helps make website interactive. To
build the actual structure of website and style each element, there is used
a combination of HTML programming language[39] and CSS Cascading
Style Sheets.

� Reason: Provide means to create a component structure for web appli-
cation

5.2.2 Typescript

Typescript [20] is a superset of the Javascript. The main benefit of typescript
is that it catches any type errors and syntax mistakes made by developer,
before the website is generated and published. Another big feature of Type-
script is simply adding types to your code, which helps make code more
readable and easy to develop.

� Reason: Makes Javascript code easier to develop and scale

5.2.3 React + JSX

One of the most popular frameworks for creating user interfaces in Javascript
is React.[19] React has been developed by Facebook with aim to create a simple
component based framework. Using React, there is an option to use JSX,
which is an extension for Javascript for writing HTML code inside javascript
files.

� Reason: Easy to learn, huge community, great for dynamically changing
data (in this case axioms).

5.2.4 NPM

Node package manager is the largest software registry for Javascript li-
braries, frameworks and tools. All libraries, frameworks or tools are called
packages and developers can search for them on official NPM website[24]. All

18

................................. 5.2. Frontend - Javascript

Figure 5.1: Example of simple React component with JSX HTML rendering

packages are maintained by their authors directly from Github. Managing
packages can easily be done with short commands directly from the command
line of a computer. Reason why NPM is used is simple installation of React,
Typescript and all libraries that might be used during development.

� Reason: Provider with the largest database of Javascript libraries, easy
to use and ideal for React development.

5.2.5 Gatsby

There are few main options to prepare React based development environment.[7]
For creating a single-page application with all its content generated with single
Javascript file, there is create-react-app bundle. Another popular option is
Next.js, this framework is for server-rendered applications with backend in
Node.js[18], which is javascript based system. Since OWLDiff is written in
Java, the Next.js framework is not ideal. Last option is Gatsby.js[7].

Gatsby framework is built on top of React with aim to develop static web
pages. This means the website will be fast to load, and easily readable by
any browser. Another big advantage of Gatsby is its better support for SEO1

because unlike create-react-app it doesn’t generate whole page in javascript
file, but it creates whole HTML structure inside HTML files. Lastly, the
main advantage of Gatsby is clean, readable and scalable code, thanks to its
routing2 solutions.

� Reason: Faster website loading, easier developing pages, supports SEO,
great option for public web applications.

1Search Engine Optimization - several methods with only one goal, to show website on
top of search engine results.

2Page routes are defined urls avaliable on the website and what components should be
rendered when user visits those urls.

19

5. Analysis of used technologies..............................
Detailed comparison of React environments is shown in the following table:

Difference create-react-app Next.js Gatsby.js

website
rendering

single-page
application
(everything
dynamically
rendered

inside one element)

server-side
rendering,

requires Javascript
as backend

multiple page
application,
statically

prerendered

SEO almost no
SEO support

great SEO for
dynamic content

great SEO for
static, but

also dynamic
content

page
routing

routing must
be extra

programmed
routes are
generated

router are
generated

simple
config
files

difficult
to configure
complex
libraries

templates with
config examples

and simple
configuration
management

templates with
config examples

and simple
configuration
management

Table 5.1: Comparison of React environments

Considering the implemented web application should be possibly available
to public, the SEO seems like a good added value. Also, generated routing
and easy configuration makes it ideal candidate for more pleasant coding.

5.2.6 Material UI

One of the big advantages of React is to create reusable components. Not
long after React was developed, the community started creating libraries
and frameworks with a number of designed components for people to use.
The biggest design framework for React is Material UI[33]. With its great
documentation it is easy to use and with a growing community it is constantly
evolving and improving. Some developers might argue that web applications
built using Material UI look all the same, however the simplicity yet still
wide choice of components make it a clear choice for this work. Material UI
components can be styled using classic CSS or using their invented dynamically
generated classes, which makes it easy for developers to style components
directly inside Javascript code.

� Reason: Wide choice of components, nice looking out of the box, easily
configurable, great documentation

20

Chapter 6
Solution design

This chapter describes architecture and key components of this work. From
the goal of work, it is clear that the whole work should be divided into two
parts. First part should be focused on implementing REST API service which
allows comparing ontologies and second part should implement user interface
that should mediate same functions like OWLDiff standalone.

However, both parts should be somehow communicate, because user inter-
face needs REST API to display results for the user. We can call the REST
API service backend, because it will not be directly visible for users, and it
will handle connection with OWLDiff.

The user interface will be mentioned as frontend because it will show
visual elements for users and will allow users to interact with the backend.

6.1 Architecture introduction

When talking about how both parts should communicate, there should be
first defined if frontend and backend will be inside a single application, or
they should be separate. Backend was decided to be written in Java with
Spring framework, due to OWLDiff being written in Java as well. In order
to use all OWLDiff functions without no additional work, it is clear that
backend should be another module inside OWLDiff project.

Question is if frontend should be inside that module as well? There are
two major options:[1]. Server-side rendering - backend creates pages and prepopulate them

with data. When the user opens a specific URL, the browser fetches the
whole page from the backend. There is smaller delay as the whole page
is rendered with all the data. The backend doesn’t need API as data for
user interface are directly written into the user interface.. Client-side rendering - pages are rendered inside users’ browsers and
data are fetched from backend afterwards. Improves user experience for
dynamic web applications. Expects backend to have API.

Since one of the goals of this work is to make public API anyway, and it
is expected for the result of comparison being re-rendered after user selects
different options, clear selection is Client-side-rendering.

21

6. Solution design....................................
6.2 Communication architecture

Now it is possible to have a clear view on communication between frontend
and backend. Frontend creates pages that will be accessible for users from
their browsers. Pages will communicate with created API - backend. Frontend
and backend does not need to necessarily run on the same server. External
services communicating with API can act as frontend itself and they will not
run on the same server. Therefore communication architecture will be type
of Client-server [3].

Server will be backend running on any computer and frontend will be
running on the same computer or any different computer, but still they must
be able to communicate with each other. The frontend will send requests to
the backend and get response for each of them. Backend will be waiting for
requests and then respond to them. Requests and responses are usually done
with HTTP protocol[16].

It is important to note in this section, that backend will communicate with
OWLDiff directly thanks to backend being in the same project as OWLDiff.
Backend will only extend existing OWLDiff with another module.

Considering frontend - client is running on Gatsby which provides React
and backend - server is a Springboot application running Spring framework
which will communicate with OWLDiff, we can have already certain idea how
whole solution is separated. Figure 6.1 shows that.

Figure 6.1: Solution design draft

6.3 Backend architecture

It is not the aim of this work to deeply compare all possible architectures,
however in choosing the right candidate, one thing must be considered. It is
a fact that backend application should consist of at least two parts, first part
communicating with OWLDiff and parsing results and second part being API
endpoints.

However, these parts are not entirely independent, and they communicate
with each other directly. Therefore, it makes more sense to structure backend
into layers. Another reason is the fact, that the most common architectural
pattern for Springboot applications is Layered architecture[32].

Layered architecture decompose components inside the application based
on their role. It is not specified the number of layers or clear role of each layer.

22

................................. 6.3. Backend architecture

What is important is that each layer has specific responsibility. Another
important note is that layers should have defined order and flow of data
should by default follow that order (there can be exceptions).

One of the key features is separation of concerns among components.
Components inside a specific layer should implement only the logic assigned
to that layer. This makes it easy to develop, maintain and test the whole
application, thanks to well-defined component scope.

6.3.1 Layers

The top level layer should handle incoming requests, therefore it must im-
plement API endpoints. These endpoints are functions that accept HTTP
requests coming from outside of the application. Classes implementing these
endpoints are called controllers. Controllers are usually inside a layer called
Presentation layer .

Presentation layer will communicate with another layer that handles main
logic of backend. For example, when the user uploads ontologies via API
endpoint inside presentation layer, that endpoint will call a function inside
the second layer. The layer that handles main logic is called business layer,
but in this case the Service layer , because it will consist of classes called
Services, that handles the main logic of backend.

Layered architecture can have more layers, like Persistence layer or Database
layer, which both handles saving of data into some storage. OWLDiff web
application does not have need for that. Instead, the Service layer directly
calls OWLDiff functions and maps results using parser into specific objects
that are returnable by endpoints.

6.3.2 Components

As mentioned, Presentation layer will consist of a controller with endpoints
and Service layer will consist of a Service connecting OWLDiff and Presen-
tation layer. However, there is a need for specific Data Transfer Objects
(DTO), that does not belong to specific layer because it will be used by both
Presentation and Service layer. These objects will be used to hold and transfer
data in the form of parameters. Service layer will create those DTO objects
from results from OWLDiff and pass them to Presentation layer, which will
use them as return type of endpoints.

Another shared component will be SessionConfig. It will be necessary to
extend the default Session behavior. Once a comparison result from OWLDiff
is done and returned to user, it must be used later when user changes some
parameters and wants to get just a slightly different result (for example if
user runs comparison and gets different axioms, but then he asks to get also
common axioms, the same comparison result should be used). It is also
possible that a user will run comparison using an external service, but then
he will want to show the result inside the user interface. For that, it is needed
to pull his session from that external service and give it to the user interface.

23

6. Solution design....................................
6.3.3 API architecture

API is an acronym for Application Programming Interface, meaning it is an
intermediary between two different applications.[22] For example, when a user
opens a web application like Facebook on his browser, the browser starts
communicating with Facebook API. Usually, one application sends a request
to the API and the API returns a response or the other way round. One
of a reasons applications prefer using API instead direct communication is
security. Application is never fully exposed to other software programs.

API endpoint is a place where the communication takes place. API can
have multiple endpoints based on their functions and purposes. If part
of communication is sending some resources, then the resources live inside
endpoints.

There are few different API architectures. A specific API architecture was
chosen based on following comparison from selected options[17]:

Difference REST
JSON-RPC,
XML-RPC SOAP

approach works withresources
works with
actions

(functions)

resources
avaliable as
functions

transfer
protocol HTTP HTTP,

WebSockets
HTTP, UDP
and others

formatting
type

JSON, XML
plain text

files
and others

JSON for
JSON-RPC,
XML for
XML-RPC

only XML

key
strengths

flexible,
scalable and
cacheable

simple to
implement

standardized
rules and

high
security

weaknesses
not suitable

for all
environments]

small set
of commands

more complex,
worse performance

Table 6.1: Comparison of API architectures

The chosen API architecture was REST , as it is sort of a middle class
between all the options. It offers great flexibility, sufficient set of methods
,and it is simple to handle files over HTTP protocol. These features will be
needed for handling ontologies.

Now it is possible to define endpoints which will be needed to implement
to accomplish the goal of this work:

uploadAndCompareOntologies - This endpoint accepts two files, one file
being the original ontology and another is the update ontology. Files
can be any type that is supported by OWLDiff (owl, obo, ttl, owx, omn,
ofn). Endpoint returns current session and comparison, meaning two
arrays of different axioms. One describing what is different in original

24

................................. 6.3. Backend architecture

ontology, another describing what is different in update ontology. Other
optional parameters will be show or hide common axioms, usage of CEX
algorithm, syntax of axioms and selection of displayed view (hierarchy
tree or lists)..Method - POST. Request body form data. originalFile - original ontology file in binary. updateFile - update ontology file in binary. diffType - algorithm to use (syntactic, entailment or cex). diffView - how the axioms should be shown and ordered (axiom

list, classified view, frame view). syntax - in what syntax should the axioms be written (manch-
ester or DL). generateExplanations - boolean, if set to true show explanations
to each axiom. showCommon - boolean, if set to true it will also show common
axioms, not only different. Return codes and data. 200 - returns result of comparison, and session information. 400 - error from OWLDiff saying the computation went wrong
with message explaining the error. 500 - any other internal server error

getComparison - Simple endpoint that expects uploadAndCompareOn-
tologies to be run first. Accepts parameter with session identifier and
returns comparison that was computed using uploadAndCompareOn-
tologies endpoint. There is one main reason for this endpoint. If the
user uses API to compute the differences without a user interface, but
then he wants to view the differences in clear visualized form inside the
user interface, the user interface should be able to connect to his session
and use the computed comparison instead of computing it again. (for
large ontologies computation can take a long time).Method - GET. URL path parameter. id - id of session. Return codes and data. 200 - returns result of comparison for specified seesion. 404 - error saying the session does not exist. 500 - any other internal server error

mergeOntologies - This endpoint expects uploadAndCompareOntologies
endpoint to be run first as well, because it needs the comparison of

25

6. Solution design....................................
ontologies to make the merge. It accepts two arrays, the first being
array of axioms that should be added from the original ontology and
the second being array of axioms that should be removed from update
ontology. Returns a merged ontology. Optional parameters are file type
and file name of merged ontology..Method - POST. Request body form data. id - id of session. fileName - optional specification of file name for merged ontol-

ogy, default is file name of update ontology. format - optional file type format for merged ontology, default
is file type of update ontology. add - array of axioms to add to merged ontology from original
ontology. remove - array of axioms to delete from update ontology which
is the base for merged ontology. Return codes and data. 200 - returns file of merged ontology based on comparison from
specific session. 400 - error from OWLDiff saying the computation went wrong
with message explaining the error. 404 - error saying the session does not exist. 500 - any other internal server error

Detail of complete backend architecture is shown inside figure 6.2. The fig-
ure shows also specific API endpoints inside Presentation layer, main service
with parser inside Service layer and specific DTO objects that will be used in-
side the backend. Pointed out are also SessionConfig and CORSConfiguration
objects that defines how SpringBoot should behave.

6.4 Frontend design concepts

The advantage of Client-Server architecture is that backend and frontend does
not need to run on the same machine. Or backend does not need frontend
to run (meaning, it is possible to run API without the need to run user
interface). However, if they run on the same machine, then frontend can act
as an another layer of the Layered architecture - user interface layer.

Frontend implementation does not have a specific architecture by itself,
because it is possible to see it as an another layer. But it is important to
point out key design concepts[19] that should be followed:

. Stateless components

26

............................... 6.4. Frontend design concepts

Figure 6.2: Backend architecture

.Description - React components should be stateless. Meaning,
components have no lifecycle and don’t save any state to the memory.
Components should look like a basic Javascript function returning
a React component.. Reason - Components are more elegant, easier to understand and
test. Stateful components will not be supported in the future..React hooks, conditional rendering. Description - Used to dynamically re-render stateless components.. Reason - Complex components become easier to understand..Controlled components. Description - Parent component can control child components and
respond to their behavior.. Reason - Overwriting default behavior and handle callbacks from
child components.. Loose coupling

27

6. Solution design....................................
. Description - Parent component can control child components and

respond to their behavior.. Reason - Overwriting default behavior and handle callbacks from
child components..Compound components.Description - Sets of components that work together to achieve
a common goal, they belong to each other.. Reason - Components like menu or hierarchy tree of axioms should
be assembled from smaller components. (For example, single menu
items or single tree items)

Last but not least, Gatsby makes easier creating pages with their routes.
To achieve that, there should be directory called "pages" and inside it there
should be components, that are meant to present whole page.

6.5 Design

Design of the user interface for each page was based on results from research
of similar solutions, section 4.1. The main goal was to make the user interface
easy to understand and easy to use.

Important was that users will know where and how to upload ontologies
and that differences will be displayed clear in the form of a tree formed from
axiom hierarchy. OWLDiff supports different views, like just a list of axioms,
so the tree must look understandable even when there will be no hierarchy of
axioms and so it should look more like a list than a tree.

For creating design mocks, the Figma[5] software was used. It has a large
community, and it was even possible to find an official design components
library for Material UI.

Following figures 6.3, 6.4 and 6.5 shows the simple design that will be used
as foundation for implementation. Please note that these are not finished
looks and result of implementation may be different. Also, these screens
does not show all the states of application that will be possible in completed
implementation, details were not clear at the time of design. Designs should
be tentative and result can be slightly different.

28

....................................... 6.5. Design

Figure 6.3: Design of main layout for user interface

Figure 6.4: Design after comparison is done and displayed

29

6. Solution design....................................

Figure 6.5: Design of merge window

30

Chapter 7
Implementation

This chapter goes through encountered problems with selected solutions and
details of how the solution was implemented. Even though API and user
interface are two different parts of the solution, the API inside the backend
had to be implemented first because the user interface needs to communicate
with the API using HTTP requests.

7.1 Integrating API into OWLDiff

OWLDiff project uses Apache Maven[21] as a build tool. Maven helps to
manage dependent libraries and modules. API had to be integrated into
OWLDiff project, which is structured into several modules:. owldiff-parent - Holds information about the whole project like developers,

organization, license and Maven repository.. owldiff-core - The core of OWLDiff, it contains all the algorithms for
comparing ontologies, functions for merging of two ontologies and helper
functions for structuring the output of comparison.. owldiff-standalone - Current runnable version of OWLDiff in form of
a standalone application.. owldiff-cli - Terminal based version which only supports syntactic diff
between two ontologies with no extra options.. owldiff-protege-plugin - Plugin version that was used for integration with
Protege 4.

Another module has been added with given name owldiff-api. This is the
module where the designed API is implemented. A generated diagram of
modules structure with their dependencies can be seen on figure 7.1.

7.1.1 Using algorithms

OWLDiff core module has a communication interface, but it expects Java
Swing to be setup for displaying output. Meaning, in order to display axioms,

31

7. Implementation....................................

Figure 7.1: Generated diagram of modules with their dependencies to each other

comparison result and merge window the Java Swing layout needs to be used
for user interface. However, since the aim of this work was to build a web
application, which is not possible to make with Java Swing, it was necessary
to access algorithms directly.

Each of the algorithms returns a list of axioms that are different in original
ontology and a list of axioms that are different in update ontology. OWLDiff
implements a tree model (called NodeModel) object that holds axioms, classes
and properties (referred to as nodes) and structure them into tree from
their hierarchy. This model was also used to structure lists of axioms from
algorithms.

7.1.2 Axiom tree hierarchy as JSON

One of the biggest encountered problems in implementing the API was to
figure out how to return the axiom hierarchy tree to users. Spring has
a default mapper that can maps basic object into JSON[28] like String or
Integers. JSON would be preferable output from API endpoints, however it
was impossible to return tree node model that holds axiom in tree structure.
It had to be mapped into JSON String with Jackson library. However, it was
more complicated.

Reason, being the fact, that the tree node model was generated by OWLDiff,
and it was designed to be generic and nested. The issue with nested objects is
that the Jackson never knows when the nesting ends. If an object of a generic
class has a reference to another object of the same generic class, implying that
the another object has also reference to an object of the same generic class
and so on, the Jackson gets into a loop when it tries to return this nested
structure as a JSON String.

Luckily, the tree model from OWLDiff was designed by visitor design
pattern. All it needed to be done was to implement a visitor that would visit

32

................................7.2. Implementing endpoints

each of the nested objects and get data about the axiom it holds. This visitor
would then take each node and write its name, type and description into the
specified place. This place would be nodeModelDataDTO, which is already
returnable by Jackson in form of a JSON String.

The implemented visitor and its behavior is shown on diagram 7.2.

Figure 7.2: NodeModel visitor diagram

7.2 Implementing endpoints

The only issue that occurred while implementing endpoints for the API was
the format of returning ontology from merge endpoint. It was clear from
design to cover all formats that are accepted by OWLDiff to be accepted by
API as well.

In uploadAndCompareOntologies endpoint, the ontology files for compari-
son are parsed to OWLOntology objects with OWLOntologyManager from
OWLApi library. These OWLOntology objects are then saved into session
and when the user decides to use merge endpoint for merging ontologies, he
gets the modified update ontology.

User can select file type of this modified ontology, to do that the formatter
had to be implemented. This formatter was highly inspired by similar
formatter from ROBOT[10] tool. ROBOT uses OWLApi as well as OWLDiff
does, so it was simple to create an enum which returns a specific format for
each file type.

7.3 Tree model on user interface

While implementing the user interface, there was only one issue worth men-
tioning. It was rendering of tree model of axioms into the screen.

33

7. Implementation....................................
Material UI comes with a prebuilt component called TreeView (figure 7.4),

which helps developers create nested expandable lists. An example of a basic
expandable list can be seen on figure 7.3. Top level item can be expanded
using the arrow on the left. Expanded items are shown under the top level
item.

Figure 7.3: Basic expandable list, top level item can be expanded using arrow
on the left.

If there are multiple expandable lists under another parent item, then they
form a tree hierarchy.

Figure 7.4: TreeView component example

TreeView component was used to display axioms in form of a tree.

7.3.1 Encountered problem

It is important to note that at the time of implementation of this work, the
TreeView component was still under development from Material UI. Even
when the used TreeView component was stable, it lacked some configuration.
The important one being some kind of pagination or lazy loading of not
visible items.

To specify the problem, when a parent item in TreeView has hundreds if
not thousands of child items, the expanding can take a while or even overload
the browser. This is because all the child items are rendered after expansion.
However, if there are thousands of child items, only a small part will be
visible and to see the rest user must scroll down the page. Therefore, it is
not needed for all child items to be rendered.

This issue was solved with library react-window, which allows React virtu-
alization. Virtualization in React is still rather new concept that developers
improve. What it means is that when the rendered page is too large for

34

..................................... 7.4. Deployment

browser to handle (and it is not necessary to render all of it) React renders
only the visible part and the rest keeps ready for showing (figure 7.5). When
user scrolls down the page it positions the hidden elements to the visible part
of page using CSS and show them to the user.

This is useful for rendering super large tables or lists.

Figure 7.5: Visual explanation of how virtualization work (source [2])

React-window library was integrated into Material UI TreeView for all lists
that have more than 100 child items. This was useful for large ontologies or
when axioms were shown as plain lists (meaning the hierarchy is ignored and
all axioms are in a single list).

7.4 Deployment

The final part of implementation was deployment on home server. It was
necessary to properly test all the functions and verify that all functional and
non-functional requirements has been fulfilled. Also, it made user testing
much easier (more in chapter 8).

Hardware of the server is Raspberry Pi 4 model B with 1GB RAM. This
will be important in testing chapter 8. Server has public domain address
assigned to it, which makes it easy to access it from anywhere in the world.

API was created with SpringBoot in Java, therefore server needs Java to
be installed. One of the biggest advantages of using SpringBoot is the fact,
that it uses built-in Tomcat[29] configured to be running on specific port.
Basically, SpringBoot applications can run on its own.

User interface are static HTML and CSS files which are presented to user
on the specified URL address. They are served to users with Nginx[4]. Nginx

35

7. Implementation....................................
will help manage incoming HTTP requests from the clients1. When the client
makes HTTP request to the domain address, Nginx will serve him the user
interface files.

1Client can be a browser inside a computer, external service or basically any application
from any computer around the world

36

Chapter 8
Testing

This chapter describes the approach that was used to test the API and user
interface with results of each testing. Testing was divided into two main
parts: performance testing and user testing.

Performance testing focuses on ability to handle all types and sizes of
ontologies. Result should be deduction of limits.

User testing defines a testing scenario with specific test cases. These tests
are then performed by volunteering ontology engineers. Purpose of this testing
is defining future work and checking usability of the implemented solution.

8.1 Performance testing

Main goal of performance testing is to define limits for size of ontologies or
number of differences. Since testing was done on two different machines (one
being notebook with 8GM RAM, other being Raspberry Pi 4 server with
1GB RAM).

OWLDiff and API are written in Java, meaning most of the logic is handled
by Java. Java heap memory lives in RAM, which means all the objects are
temporarily stored in RAM. This is an issue for big ontologies, as comparison
of ontologies creates an object for each axiom, class or property. Session holds
most of the information which is partially stored on RAM as well. Even when
sessions are cleared after configured timer, it is still possible to overload the
server with multiple computations at the same time.

Part of this testing is also comparison between OWLDiff standalone appli-
cation and implemented API + user interface.

For this purpose, there were compared following example ontologies from
the Semantic Government Vocabulary[23] and OBO foundry[38] on syntactic
diff:..1. OWL DL ontology with size of 1MB..2. OWL DL ontology with size of 10MB..3. OWL DL ontology with size of 100MB..4. OWL DL ontology with size of 500MB

37

8. Testing ...5. OWL EL ontology with size of 10MB

8.1.1 RAM usage

Two different versions of example ontologies numbered 1.-4. with sizes 1MB,
10MB, 100MB and 500MB and also the 5. ontology type of EL with size of
10MB have been tested on implemented solution. Following table captures
computational time in minutes (min) and seconds (s) of the initial syntactic
diff. Basically the first computation that is done after user uploads original
and update ontology.

Number Size Notebook Raspberry Pi 4 server
1. 1MB 0.7s 4s
2. 10MB 20s 1min 12s
3. 100MB 2min 23s 17min 14s
4. 500MB 14min 47s no result
5. 10MB 24s 2min 15s

Table 8.1: Performance testing results table

No result for number 4. on Raspberry Pi 4 server was caused because
computation took too long for browser to handle. The response for the request
didn’t return under 30min so the browser timed out the request.

There is clear difference between both pieces of hardware. The main cause
is probably RAM but is hard to define as most computation takes place
inside OWLDiff and a logic reasoner. It is not the aim of this work to define
computational hardware requirements of OWLDiff and logic reasoners. But
it is still clear that implemented solution will more reliably run on stronger
devices with high capacity of RAM memory.

Defining limits must be done specifically for each device that would run the
API with user interface. Also considered might be actual preferences from
future users. Based on feedback from supervisor, the limit for Raspberry Pi 4
server was set on 30MB per ontology. Reason being that computation higher
than 5 minutes is too confusing for users, because it is more possible they
might close the web application early with conclusion that it is simply not
working.

8.1.2 OWLDiff standalone comparison

Same example ontologies 1.-5. have been tested on OWLDiff standalone
application and computation time of initial syntactic diff has been compared
with computation time on implemented API + user interface. The following
table captures computational time in minutes (min) and seconds (s) of the
initial syntactic diff on both applications.

Both applications were run on the same machine (the notebook) separately.

38

..................................... 8.2. User testing

Number Size API + user interface OWLDiff standalone
1. 1MB 0.7s 0.7s
2. 10MB 20s 19s
3. 100MB 2min 23s 2min 10s
4. 500MB 14min 47s 13min 30s
5. 10MB 24s 23s

Table 8.2: OWLDiff standalone performance comparison with created web
application

Both applications use OWLDiff for computation logic, therefore it is un-
derstandable that computational times of initial syntactic diff are almost the
same. OWLDiff standalone is a little faster mostly thanks to results being
directly displayed in the app. In the API solution the results are first sent to
user interface which uses React to render them in the browser.

However, this test proves that implemented solution behaves same as
OWLDiff standalone version. The only difference is in the way of displaying
results to users.

8.2 User testing

The implemented API and user interface web application should provide an
accessible way for any user or service to compare two different versions of the
same ontologies from anywhere in the world. However, it is expected that
mostly ontology engineers might use the application.

Therefore, the testing scenario with test cases was prepared for people
already having experience with OWL ontologies and then the testing was
performed on volunteering ontology engineers. After the testing was done,
the ontology engineers were given questions which should summarize their
feedback for usability of each function.

8.2.1 Testing scenario

Testing scenario was designed with purpose to introduce main functionalities
to users. Main functionalities are: comparison of two different versions of one
ontology and merging of selected axioms of each version into one resulting
ontology.

Testing scenario was divided into several steps - test cases. Each test
case represent an action user must perform in order to continue to the next
test case. It was not possible to split testing scenario into two separate
test scenarios, because merging of ontologies is dependent that user already
successfully performed the comparison.

Test cases were selected in the the following order:

39

8. Testing
Open the web application in any browser -> Upload original ontology
-> Upload updated ontology -> Check that different axioms in form
of a tree have rendered on the screen -> Expand axioms that are
expandable, have nested child axioms -> Click show common button ->
Check that tree now also shows common axiom and different axioms
together -> Click merge button -> Select axioms to merge -> Create
merged ontology
Detailed description of each step can be seen in the appendix table B.1.

Results from a total of two recipients that attended this scenario testing are
in the appendix table B.2.

All test cases were successfully passed, with exception to single test case for
one recipient (Different axioms did not show for one ontology, only message
"No axioms to display"). Main feedback from performing the test cases was
that computing take a long time. It is possible to see from performance
testing (section 8.1) that this was caused mainly because of weak hardware
running the web application.

8.2.2 Asked questions

Recipients were asked 10 questions, trying to collect their overall feedback
when using the application. Only closed questions were asked, because they
can be easily analyzed and user don’t have to type too much (which results
in higher response chance to all questions).

Combination of single-word answers YES or NO and rating scale 1-10,
when 1 being the worst experience and 10 the being the best were used. Each
question included place to write down a note. Notes were highly useful when
defining deficiencies of implemented solution and future work.

Detail of each questions with answers from recipients are in appendix table
B.3. The main points based on answers are:. Recipients had no problem uploading the ontologies.. Explanation for colors of axioms should be more visible and clear as the

different colors of axioms cause confusion.. Recipients find showing common axioms useful.. The default list view of axioms is only usable if the amount of expected
differences between ontologies is very small..Web application and created API would be used for several scripts.. The view showing axioms in form of tree based on which class they
belong to is useful..Merging of ontologies were not clear and recipients were confused what
will happen after merging.. Recipients would use this web application in their everyday work, however
they would like to improve displaying of different axioms.

40

......................................8.3. Test recap
. The user interface was easy to learn, but people not having experience

with ontologies might find it confusing and would have no idea what is
being done.

8.3 Test recap

Testing showed that even when implemented solution accomplishes the goal
of this work it still needs some improvements to be used by wider public.
User interface should be more clear and intuitive in a way that everyone can
understand it, not only ontology engineers. And overall performance of the
implemented API should be further tested and optimized.

Performance leaks might come from OWLDiff itself, however analysis of
algorithms and usage inside OWLDiff was not part of this work. Deployment
of the web application should be done on strong device, because comparison of
small ontologies or ontologies with small amount of differences is not enough
to be used in everyday work for ontology engineers.

Overall, the implemented solution met the expectations (functional and
non-functional requirements), however performance issues for big ontologies
were visible only after the solution was done and deployed.

41

42

Chapter 9
Conclusion

The main goal of this thesis was to design and implement a web application for
comparison and merging of two different ontologies. Part of web application
was the API, which allows external services to perform the comparison. The
work followed up on the project OWLDiff, which is a tool, written in Java, that
allows comparison and merging of two different ontologies. OWLDiff comes
with a standalone application, which serve as the main basis for the design
of the web application. Another inspiration came from research of similar
solutions - available web applications allowing comparison of ontologies.

The designed API was written in Java with Spring framework, using the
Layered architecture. User interface was a React web application using
Material UI as a main source of components. API communicates directly
with OWLDiff and uses OWLDiff for all computations. Together API and
user interface forms a client-server architecture

Usability of implemented solution was tested with performance testing and
user testing. Results from performance testing were not satisfactory as it came
clear the computation takes a long time for big ontologies. Feedback from
volunteering ontology engineers attending the user testing was helpful and
proved that the application accomplishes its goal, however the user interface
should be more clear.

9.1 Future work

Future work should include improvements on user interface, so it is more clear
and viable for ontologies with big amount of ontologies. Also, explanations of
each function should be added, different axioms should be on a same row for
each ontology, so the difference is more clear and the colors of axioms should
be better explained. Merging process should be more clear for users of what
will exactly happen.

Also, performance needs optimization as well, part of it should be analysis
of current OWLDiff implementation efficiency and definition of requirements
for server where the application is deployed based on desired performance.

43

44

Bibliography

[1] Guillaume Breux. Client-side vs. server-side vs. pre-rendering
for web apps, Sep 2018. https://www.toptal.com/front-end/
client-side-vs-server-side-pre-rendering(Last visited on: 2022-
05-04).

[2] Houssein Djirdeh and Jason Miller. Virtualize
large lists with react-window. https://web.dev/
virtualize-long-lists-react-window/(Last visited on: 2022-
05-15).

[3] Inc. Encyclopædia Britannica. Client-server architecture. https://www.
britannica.com/technology/client-server-architecture(Last
visited on: 2022-05-04).

[4] Inc. F5 Networks. Advanced load balancer, web server & reverse proxy,
Jan 2022. https://www.nginx.com/(Last visited on: 2022-05-02).

[5] Inc. Figma. The collaborative interface design tool. https://www.figma.
com/(Last visited on: 2022-05-04).

[6] Ontotext Fundamentals. What is a knowledge graph?, Jul
2021. https://www.ontotext.com/knowledgehub/fundamentals/
what-is-a-knowledge-graph/(Last visited on: 2022-01-08).

[7] Inc. Gatsby. Fastest static-site generation web framework. https:
//www.gatsbyjs.com/(Last visited on: 2022-05-02).

[8] The Graphviz. Graphviz online. https://dreampuf.github.io/
GraphvizOnline/(Last visited on: 2022-05-02).

[9] Jeff Heflin. OWL web ontology language use cases and requirements.
W3C recommendation, W3C, February 2004. https://www.w3.org/TR/
2004/REC-webont-req-20040210/.

[10] Rebecca C Jackson, James P Balhoff, Eric Douglass, Nomi L Harris,
Christopher J Mungall, and James A Overton. Robot: a tool for
automating ontology workflows. BMC bioinformatics, 20(1):1–10, 2019.

45

https://www.toptal.com/front-end/client-side-vs-server-side-pre-rendering
https://www.toptal.com/front-end/client-side-vs-server-side-pre-rendering
https://web.dev/virtualize-long-lists-react-window/
https://web.dev/virtualize-long-lists-react-window/
https://www.britannica.com/technology/client-server-architecture
https://www.britannica.com/technology/client-server-architecture
https://www.nginx.com/
https://www.figma.com/
https://www.figma.com/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.gatsbyjs.com/
https://www.gatsbyjs.com/
https://dreampuf.github.io/GraphvizOnline/
https://dreampuf.github.io/GraphvizOnline/
https://www.w3.org/TR/2004/REC-webont-req-20040210/
https://www.w3.org/TR/2004/REC-webont-req-20040210/

9. Conclusion......................................
[11] JavaScript.com. Javascript.com. https://www.javascript.com/(Last

visited on: 2022-05-02).

[12] Leif Harald Karlsen. Descriptive logic presentation. https:
//www.uio.no/studier/emner/\matnat/ifi/INF3170/h15/
undervisningsmateriale/dl1.pdf(Last visited on: 2022-01-16).

[13] Kbss-Cvut. Kbss-cvut/owldiff: OWL comparison tool. https://github.
com/kbss-cvut/owldiff(Last visited on: 2022-01-15).

[14] Boris Konev, Dirk Walther, and Frank Wolter. The logical difference
problem for description logic terminologies. In International Joint Con-
ference on Automated Reasoning, pages 259–274. Springer, 2008.

[15] James Malone. An ontology diff tool bubastis. https://www.ebi.ac.
uk/efo/bubastis/(Last visited on: 2022-01-06).

[16] MDN. An overview of HTTP - MDN. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Overview(Last visited on: 2022-05-04).

[17] mertech. Know your api protocols: SOAP vs. REST vs. JSON-RPC.
https://www.mertech.com/blog/know-your-api-protocols(Last
visited on: 2022-05-08).

[18] Inc. Meta Platforms. Create a new react app. https://reactjs.org/
docs/create-a-new-react-app.html(Last visited on: 2022-01-15).

[19] Inc. Meta Platforms. React – a javascript library for building user
interfaces. https://reactjs.org/(Last visited on: 2022-05-02).

[20] Microsoft. Javascript with syntax for types. https://www.
typescriptlang.org/(Last visited on: 2022-05-02).

[21] Frederic P Miller, Agnes F Vandome, and John McBrewster. Apache
Maven. Alpha Press, 2010.

[22] MuleSoft. What is an API? (application programming interface). https:
//www.mulesoft.com/resources/api/what-is-an-api(Last visited
on: 2022-05-08).

[23] OpenData MVCR. Semantic government vocabulary. https://
opendata-mvcr.github.io/ssp/(Last visited on: 2022-05-15).

[24] Inc. npm. NPM. https://www.npmjs.com/(Last visited on: 2022-05-
03).

[25] University of Manchester. Ontology diffing ecco, Jul 2021. http://owl.
cs.manchester.ac.uk/research/diff/(Last visited on: 2022-01-06).

[26] Oracle. Oracle - java. https://www.java.com/en/(Last visited on:
2022-05-02).

46

https://www.javascript.com/
https://www.uio.no/studier/emner/\matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf
https://www.uio.no/studier/emner/\matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf
https://www.uio.no/studier/emner/\matnat/ifi/INF3170/h15/undervisningsmateriale/dl1.pdf
https://github.com/kbss-cvut/owldiff
https://github.com/kbss-cvut/owldiff
https://www.ebi.ac.uk/efo/bubastis/
https://www.ebi.ac.uk/efo/bubastis/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://www.mertech.com/blog/know-your-api-protocols
https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.mulesoft.com/resources/api/what-is-an-api
https://opendata-mvcr.github.io/ssp/
https://opendata-mvcr.github.io/ssp/
https://www.npmjs.com/
http://owl.cs.manchester.ac.uk/research/diff/
http://owl.cs.manchester.ac.uk/research/diff/
https://www.java.com/en/

..................................... 9.1. Future work

[27] owlcs. Owl api. http://owlcs.github.io/owlapi/(Last visited on:
2022-05-02).

[28] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and
Domagoj Vrgoč. Foundations of json schema. In Proceedings of the 25th
International Conference on World Wide Web, pages 263–273. Interna-
tional World Wide Web Conferences Steering Committee, 2016.

[29] Apache Tomcat Project. Apache tomcat®. https://tomcat.apache.
org/(Last visited on: 2022-05-02).

[30] Protegeproject. Protegeproject/owl-diff-engine: Engine for calculat-
ing differences between two owl ontologies. https://github.com/
protegeproject/owl-diff-engine(Last visited on: 2022-01-06).

[31] Jaromír Pufler. Owldiff documentation, 2008. https://kbss.felk.
cvut.cz/tools/owldiff/(Last visited on: 2022-05-01).

[32] Mark Richards. Software architecture patterns. https://www.
oreilly.com/library/view/software-architecture-patterns/
9781491971437/ch01.html(Last visited on: 2022-05-04).

[33] Material UI SAS. The react component library you always wanted.
https://mui.com/(Last visited on: 2022-05-03).

[34] Spring. Spring makes java simple. https://spring.io/(Last visited
on: 2022-05-02).

[35] W3C. What is linked data? https://www.w3.org/standards/
semanticweb/data(Last visited on: 2022-01-15).

[36] W3C. OWL 2 web ontology language document overview (second edi-
tion). Technical report, W3C, December 2012. https://www.w3.org/
TR/2012/REC-owl2-overview-20121211/.

[37] W3Schools. XML/RDF. https://www.w3schools.com/xml/xml_rdf.
asp(Last visited on: 2022-01-16).

[38] OBO Technical WG. The open biological and biomedical ontology (OBO)
foundry.

[39] WHATWG. Html standard. https://spec.whatwg.org/(Last visited
on: 2022-05-03).

[40] Yizheng. Gdhzlz/elh-forgetting: This tool could compute the logical diff
between two large-scaled elh-ontology. https://github.com/gdhzLZ/
ELH-forgetting(Last visited on: 2022-01-06).

47

http://owlcs.github.io/owlapi/
https://tomcat.apache.org/
https://tomcat.apache.org/
https://github.com/protegeproject/owl-diff-engine
https://github.com/protegeproject/owl-diff-engine
https://kbss.felk.cvut.cz/tools/owldiff/
https://kbss.felk.cvut.cz/tools/owldiff/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://mui.com/
https://spring.io/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3schools.com/xml/xml_rdf.asp
https://www.w3schools.com/xml/xml_rdf.asp
https://spec.whatwg.org/
https://github.com/gdhzLZ/ELH-forgetting
https://github.com/gdhzLZ/ELH-forgetting

48

Appendix A
Acronyms

API Application Programming Interface
CEX Centralized exchange
CORS Cross-Origin Resource Sharing
CSS Cascading Style Sheets
CTU Czech Technical University
DL Description logic
DTO Data Transfer Object
FEE Faculty of Electrical Engineering
FR Functional Requirement
GB Gigabyte
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
JSON JavaScript Object Notation
JSX JavaScript XML
KBSS Knowledge Based Software Systems Group
NFR Non-functional requirements
NPM Node package manager
OWL Web Ontology Language
RAM Random Access Memory
RDF Resource Description Framework
REST Representational state transfer
RPC Remote procedure call
UDP User Datagram Protocol
UI User Interface
URL Uniform Resource Locator
XML Extensible Markup Language

49

50

Appendix B
User testing

Following appendix contains imports from Excel file that was sent to volun-
teering testers. Answers are formatted so each question/test case has answers
from all recipients.

Table B.1 describes test scenario with each step description. This scenario
was sent to recipients to fill out. Results from scenario testing can be seen in
table B.2.

After scenario testing was done, recipients were asked 10 closed questions.
Description of each question with answer from all recipients can be seen in
table B.3.

51

B. User testing

T
es

t
st

ep
T

es
t

st
ep

de
sc

ri
pt

io
n

de
ta

il
E

xp
ec

te
d

re
su

lt
St

at
us

(P
A

SS
/F

A
IL

)

1.
op

en
we

bs
ite

O
pe

n
yo
ur

ch
os
en

br
ow

se
r
on

fo
llo

w
in
g
we

bs
ite

:
ht
tp
:/
/d

ev
do

m
.o
rg
/

lo
ad

ed
us
er

in
te
rfa

ce

2.
se
le
ct

or
ig
in
al

C
lic
k
"U

PL
O
A
D

O
R
IG

IN
A
L
O
N
T
O
LO

G
Y
"

bu
tt
on

an
d
fin

d
or
ig
in
al

on
to
lo
gy

fro
m

te
st

da
ta

fo
ld
er
,

se
le
ct

it
an

d
cl
ick

"O
PE

N
".

bu
tt
on

tu
rn
ed

in
to

te
xt

of
or
ig
in
al

on
to
lo
gy

fil
en
am

e

3.
se
le
ct

up
da

te
C
lic
k
"U

PL
O
A
D

U
PD

AT
ED

O
N
T
O
LO

G
Y
"

bu
tt
on

an
d
fin

d
up

da
te

on
to
lo
gy

fro
m

te
st

da
ta

fo
ld
er
,

se
le
ct

it
an

d
cl
ick

"O
PE

N
".

bu
tt
on

tu
rn
ed

in
to

te
xt

of
up

da
te

on
to
lo
gy

fil
en
am

e

4.
on

to
lo
gy

tr
ee

ha
s
re
nd

er
ed

W
ai
t
til
ll
oa
di
ng

fin
ish

an
d
yo
u
se
e
w
hi
te

bo
xe
s
w
ith

te
xt

in
sid

e
th
em

,r
en
de
re
d
un

de
r
up

lo
ad

bu
tt
on

s.
w
hi
te

bo
xe
s
w
ith

on
to
lo
gy

da
ta

re
nd

er
ed
,o

nt
ol
og
yI
D

sh
ou

ld
be

on
th
e
to
p
of

th
em

5.
op

en
ax

io
m
s

In
sid

e
w
hi
te

bo
xe
s
yo
u
sh
ou

ld
se
e
ax

io
m
s.

A
xi
om

s
th
at

ar
e
ex
pa

nd
ab

le
ha

ve
ar
ro
w

po
in
tin

g
do

w
n
on

th
e
le
ft.

C
lic
k
on

th
at

ar
ro
w
,y

ou
sh
ou

ld
ex
pa

nd
m
or
e
ax

io
m
s,

if
th
ey

ha
ve

ar
ro
w

as
we

ll,
ex
pa

nd
th
em

as
we

ll.
T
hi
s
w
ill

lo
ok

lik
e
ax

io
m

tr
ee
.

th
er
e
sh
ou

ld
be

no
pe

rfo
rm

an
ce

dr
op

s
w
he
n
op

en
ni
ng

su
bt
re
es

of
ax

io
m
s

6.
sh
ow

co
m
m
on

O
pe

n
to
ol
s
w
ith

cl
ick

in
g
on

"S
H
O
W

T
O
O
LS

"o
n
to
p
le
ft.

C
lic
k
"S
ho

w
co
m
m
on

"o
n
to
p
of

th
e
to
ol
ba

r.
Lo

ad
in
g
sh
ou

ld
sh
ow

up
.

le
ft

to
ol
ba

r
ha

s
op

en
ed

an
d
Sh

ow
co
m
m
on

ha
s

tu
rn
ed

bl
ue

(s
el
ec
te
d)

7.
re
pe

at
st
ep
s
4
an

d
5

R
ep

ea
t
st
ep
s
4
an

d
5.

Lo
ad

in
g
sh
ou

ld
ag
ai
n
ta
ke

sim
ila

r
tim

e
lik

e
yo
u
ha

d
to

wa
it

at
st
ep

4.
ax

io
m

tr
ee

sh
ou

ld
be

bi
gg
er

an
d
co
nt
ai
ns

bl
ac
k
ax

io
m
s

8.
se
le
ct

di
ffe

re
nt

V
ie
w

C
lic
k
"C

ha
ng

e
V
ie
w
"i
n
th
e
to
ol
ba

r
an

d
se
le
ct

C
la
ss
ifi
ed

fra
m
e
vi
ew

co
nfi

rm
at
io
n
di
al
og

sh
ou

ld
po

p
up

9.
re
pe

at
st
ep

4
an

d
5

C
lic
k
"C

on
tin

ue
"i
n
th
e
di
al
og

an
d
re
pe

at
st
ep
s
4
an

d
5

ax
io
m
s
in

th
e
tr
ee

sh
ou

ld
be

m
or
e
ne
st
ed
,a

nd
th
er
e

sh
ou

ld
be

di
ffe

re
nt

su
bt
re
es

10
.
cl
ick

m
er
ge

on
to
lo
gi
es

C
lic
k
"M

er
ge

on
to
lo
gi
es
"i
n
th
e
to
ol
ba

r
m
er
ge

on
to
lo
gi
es

di
al
og

sh
ou

ld
op

en

11
.
se
le
ct

ax
io
m
s

Se
le
ct

an
y
ax

io
m
s
or

cl
ick

"S
el
ec
t
al
l"
in

le
ft

or
in

th
e
rig

ht
pa

rt
of

di
al
og
,t

he
n
cl
ick

"C
O
N
T
IN

U
E"

bu
tt
on

in
bo

tt
om

le
ft

in
th
e
ne
xt

sc
re
en

yo
u
sh
ou

ld
se
e
se
le
ct
ed

ax
io
m
s

12
.
cr
ea
te

m
er
ge

on
to
lo
gy

If
yo

u
wa

nt
yo
u
ca
n
ty
pe

cu
st
om

fil
en
am

e
an

d
se
le
ct

cu
st
om

fil
e
ty
pe

,c
lic
k
"M

ER
G
E"

bu
tt
on

re
su
lt
m
er
ge
d
on

to
lo
gy

fil
e
sh
ou

ld
do

w
nl
oa
d

O
th
er

te
st
in
g
fe
ed
ba

ck
:

Ta
bl
e
B
.1
:
Te

st
sc
en
ar
io

st
ep
s
fo
rm

re
ad

y
to

fil
lo

ut

52

..................................... B. User testing

Test step number Status from
recipient #1

Status from
recipient #2

1. PASS PASS
2. PASS PASS
3. PASS PASS
4. PASS PASS

5. PASS
FAIL
"No axioms to display"
for one ontology

6. PASS PASS
7. PASS PASS
8. PASS PASS

9. PASS
PASS
but with major rendering
issues

10. PASS
PASS
but with major rendering
issues

11. PASS PASS
12. PASS PASS

Other testing
feedback

Everything
worked ok

Computation takes a while
and would display color legend
at all times. Merge dialog can end
up as a very long scrollbar.

Table B.2: Results for all recipients from test scenario testing

53

B. User testing

Question Answer from recipient #1 Answer from recipient #2
Did you know where and how
to upload ontologies? (yes/no) yes yes

Did you understand the OWLDiff
web application is trying
to compare two ontologies? (yes/no)

yes yes

On scale 1-10 (1 being the worst,
10 being the best), how much
were the differences between
ontologies clear in form
of axiom list?

9

7
It took me some time,
but after some initial confusion
it becomes quite clear.
The confusion is probably due to
the colors explanation being
initially hidden.

Did you find SHOW COMMON
axioms useful? (yes/no) yes yes

On scale 1-10 (1 being the worst,
10 being the best), how would
you rate List View visualization
(the default one) usable for big
ontologies?

1
Usable only for very
small number of differences

8
It is just a guess, I do
not compare ontologies
on daily basis

On scale 1-10 (1 being the worst,
10 being the best), how much
would you use OWLDiff web
application for visual
comparison of two ontologies?

7
I would like to use it in scripts
to launch web browser from
command-line and pre-upload files.

10

If you would use this project for
comparing two ontologies. Would
you use other views, or would
the default List View be sufficient?
(yes/no)

yes
Any axioms that relate to a class
are better to see together, so
person see at once important context.

yes

On scale 1-10 (1 being the worst,
10 being the best), how much did
you find the merging process clear?

6
Only after hitting merge button
to see view what will be done
made it clear.

3
I don’t understand why
the selector for original
means “add” and for the update
means “remove”. I would
expect both do the same.

Would you use this application
as a tool in your everyday work?
If yes, please describe how it
would help you. (yes/no)

yes
Yes but not sure, due to the
issue in „Classified frame view“
where opened classes are not
aligned in same row.

yes
Probably mainly when
there are changes in a
domain ontology we use

Do you find user interface easy
to learn and use?

no
person that do not know
what is CEX or explanations
I feel like have no chance to
understand well.

yes
But there are major
rendering and performance
issues.

Table B.3: Results for all recipients from question answering

54

Appendix C
List of the attachments

C.1 Attached files. source-code.zip

– source code of implemented API and user interface. README.md

– file describing how to run the code locally or build the application

C.2 Github link

Implemented solution can be found on Github inside forked OWLDiff project:

https://github.com/luvave/owldiff

55

	Introduction
	Goal of the work

	Web Ontology language
	Syntax
	Description logic and OWL2 Profiles
	Axioms

	OWLDiff
	Diff algorithms
	Merge

	Analysis
	Research of similar solutions
	ecco
	bubastis
	ELH-forgetting
	Protege 4
	Research summary

	Functional requirements
	Non-functional requirements

	Analysis of used technologies
	Backend - Java
	Spring

	Frontend - Javascript
	HTML + CSS
	Typescript
	React + JSX
	NPM
	Gatsby
	Material UI

	Solution design
	Architecture introduction
	Communication architecture
	Backend architecture
	Layers
	Components
	API architecture

	Frontend design concepts
	Design

	Implementation
	Integrating API into OWLDiff
	Using algorithms
	Axiom tree hierarchy as JSON

	Implementing endpoints
	Tree model on user interface
	Encountered problem

	Deployment

	Testing
	Performance testing
	RAM usage
	OWLDiff standalone comparison

	User testing
	Testing scenario
	Asked questions

	Test recap

	Conclusion
	Future work

	Bibliography
	Acronyms
	User testing
	List of the attachments
	Attached files
	Github link

