
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Modular Dashboard
TRPUX

Patrik Dvořáček
Software Engineering and Technologies

May 2022

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492035Personal ID number:Dvořáček PatrikStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and TechnologyStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Modular Dashboard

Bachelor’s thesis title in Czech:

Modulární nástěnka pro CI

Guidelines:

1. Research and analyze the possibilities of visualizing aggregated automated test results.
2. Design a database model for representing data sources and data cards displayed to the user.
3. Implement a modular backend application for retrieving data in a unified format with sample modules for Jenkins and
TeamCity.
4. Implement a website frontend corresponding to the developed backend and displaying the retrieved data.
5. Evaluate the viability of your solution via user testing with at least 5 participants.

Bibliography / sources:

[1] P. Duvall, S. Matyas III, A. Glover, Continuous Integration: Improving Software Quality and Reducing Risk, 2007
[2] R. Fielding, REST: Architectural Styles and the Design of Network-based Software
rchitectures, 2000
[3] N. Rozentals, Mastering TypeScript: Build enterprise-ready, modular web applications using TypeScript 4 and modern
frameworks, 4th Edition, 2021

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Vaněk Department of Economics, Management and Humanities FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 11.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Michal Vaněk
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I wish to express my sincere thanks
to my supervisor, Ing. Michal Vaněk,
for his continued guidance during this
project. I am also grateful to Ing. Mar-
tin Ledvinka for his well-placed advice.
Lastly, I would like to express my grati-
tude to Ing. Victoria Usan, Ing. Ondřej
Gróf, and Bc. Hana Hrubešová for their
support and encouragement.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the prepara-
tion of university theses. In Prague
20.05.2022

. .

v

Abstrakt / Abstract

Tato bakalářská práce si kladla za
cíl popsat návrh a následný vývoj
modulárního webového prostředí pro
zobrazování informací z různých dato-
vých zdrojů. Největší důraz byl kladen
na vytvoření modulárního systému do-
volujícího následné rozšíření systému
třetí stranou, aniž by byla vyžadována
úprava již implementovaných částí.
Pro systém byly navrhnuty ukázkové
moduly pro serverovou část i webové
uživatelské prostředí, jež byly následně
předloženy uživatelům k otestování.
Dle jejich zpětné vazby je systém při-
pravený ke každodennímu používání.
Každopádně je modulární systém při-
praven na rozšíření skrze nové moduly
a uživatelská rozhraní.

Klíčová slova: Node.js, TypeScript,
React, Webová aplikace

Překlad titulu: Modulární nástěnka
pro CI (TRPUX)

The goal of this bachelor thesis was to
design and implement a modular web in-
terface for displaying information from
various data sources. The most signif-
icant emphasis was placed on creating
a modular system that allows for third
party extensions without the necessity
for updates to the already implemented
parts. Example modules were created
for both the server part and web user
interface. These were then presented
to users for testing. According to their
feedback, the system is ready for every-
day use. Nevertheless, the modular sys-
tem is prepared for extensions through
new modules and user interfaces.

Keywords: Node.js, TypeScript, Re-
act, Web Application

vi

Contents /

1 Introduction 1
1.1 Motivation 1
1.2 Aim of the Project 1

2 Analysis 3
2.1 Existing Solutions 3

2.1.1 Native Features and Plugins . 3
2.1.2 Kibana 3
2.1.3 Grafana 4
2.1.4 Mozaïk 4

2.2 Functional Requirements 4
2.2.1 Client Requirements 4
2.2.2 Administrator Re-

quirements 4
2.2.3 Developer Requirements . . . 5

2.3 Non-functional Requirements . . 5
3 Design 6

3.1 Architecture 6
3.1.1 System Context 6
3.1.2 Container 7
3.1.3 Component 7

3.2 Database 8
3.3 API 8
3.4 Web Application 9

4 Implementation 10
4.1 Database 10
4.2 Server 10
4.3 Web Application 11
4.4 Modularity 11

4.4.1 Parsers 11
4.4.2 Cards 13

4.5 Default Modules 13
4.5.1 Single Value Card 14
4.5.2 Line Graph Card 14
4.5.3 Iframe Card 15
4.5.4 Matrix Card 15
4.5.5 Jenkins Parser 15
4.5.6 TeamCity Parser 17

4.6 Testing 17
4.6.1 Server 17
4.6.2 Web Application 17

4.7 Deployment 18
5 Evaluation 19

5.1 Client Evaluation 19
5.1.1 Testing Scenario 19
5.1.2 Findings 19

5.1.3 Conclusion 20
5.2 Administrator Evaluation . . . 21

5.2.1 Testing Scenario 21
5.2.2 Findings 21

5.3 Developer Evaluation 22
5.3.1 Parser Creation 22
5.3.2 Card Type Creation 22
5.3.3 Card Creation 22
5.3.4 Authentication Man-

agement 23
5.4 Non-Functional Evaluation . . 23

6 Conclusion 24

References 25

A Glossary 27

B Container Diagram 28

C Component Diagram 29

D User Interface Preview 30

E User Manual 33

F Attached Media Contents 34

vii

/ Figures

3.1 C4 context diagram7
4.1 Single value card 14
4.2 Line graph card 15
4.3 Iframe card . 16
4.4 Matrix card. 16
4.5 Deployment diagram 18
5.1 Dashboard . 20
5.2 Administration 21
B.1 C4 container diagram 28
C.2 C4 component diagram 29
D.3 Dashboard Administration 30
D.4 User Administration 30
D.5 Server Creation Modal 31
D.6 Default Login Screen 31
D.7 Default Signup Screen 32
D.8 Card Creation Dialog 32

viii

Chapter 1
Introduction

As the size and complexity of software systems rises, so does their suite of automated
tests. This ever-growing system, in turn, complicates the ability of developers and
quality assurance engineers to react to adverse test results swiftly. With either no or ad
hoc ways to detect failures, easily fixable issues in the test environment can escalate into
critical problems in production. A graphical representation, most often in a dashboard,
is thus used to circumvent either slow analysis or disordered display of test results.
However, most of these solutions are usually tied to a particular continuous integration
environment, such as Jenkins or TeamCity.

Nevertheless, in larger organisations, two or more different test environments can
be used alongside. In turn, multiple graphical representations of test results need are
utilised. In these situations, developers again find themselves analysing various data
points at numerous origins. This creates a demand for a centralised solution to query
all relevant sources and display their results in a unified interface.

1.1 Motivation
The need for such a system has arisen at Avast Software and gave inspiration to this
project. Avast utilises a diverse suite of testing methods, continuous integration envi-
ronments [1], and reporting systems across the company, teams, and sometimes even
products. Such a fractured workspace makes developers’ day-to-day work harder, in ad-
dition to complicating a high-level overview. Furthermore, while the initial idea aimed
to unify only two of these environments, it has grown into a flexible system with more
generalised usability.

The first implementation of this project at Avast came before the inception of the
general concept and was limited in scope to a single continuous integration environment,
Jenkins. The display methods were also limited to a line graph displaying the success
rate of tests of a selected job over time. Additionally, the development was stopped
as the initial project had achieved its limited purpose. Nevertheless, the project was
restarted, and its design has gone through a couple of iterations before reaching the
current modular incarnation.

1.2 Aim of the Project
This project aims to design and implement a modular web application that collects
and displays real-time data from various sources in a dashboard. The data and system
administration, such as user and dashboard management, should be available through a
REST API. The system should also be ready to work with a custom front-end portion,
even though a single page application is implemented and provided by default.

The biggest hurdle of this project lies in the modular aspect. Because the backend
system is implemented in TypeScript [2], a strongly-typed superset of JavaScript, the

1

1. Introduction .
modules must follow the typing system’s conventions. Not only that, the implementa-
tion must be developer-friendly to encourage the creation of custom modules without
having a deep understanding of the system’s inner functionality.

On the other hand, the project also aims to make the deployment of the system
as easy as possible. This constraint implies implementing sane default values to get
the system up and running quickly in development without extensive configuration
while staying flexible enough to be viable for deployment to a large audience in a more
complex setting.

2

Chapter 2
Analysis

The requirements for the system came from interviews with stakeholders inside Avast
Software. Mainly, their needs were concerned with the various display options each of
the stakeholders had. The final design requirements contain a wide range of dashboard
configurations. For developers and quality assurance engineers, this meant detailed
statistics about individual products and test suites. At the same time, managers and
other higher-level or non-tech staff asked for top-level assessments.

During this exploration phase, the idea to broaden the project’s scope beyond soft-
ware development crystallised. Since modern people management, finance and other
administrative work is done entirely or at least partially through software, it could also
be visualised in a dashboard. And with an increased pool of possible data sources, the
modular system requirement became essential.

2.1 Existing Solutions
Implementation and deployment of existing solutions have been considered as well.
Ultimately none of them fit the given criteria either due to limitations in extendability,
missing required core features or the inability to be deployed inside an internal network.

2.1.1 Native Features and Plugins

Native features, like TeamCity Dashboard [3] or JIRA Dashboard [4], and plugins,
like BlueOcean Dashboard for Jenkins [5], were first in line to be considered, and all
were quickly discarded. Their extendability to provide different visualisation options or
retrieve data across environments was either extremely limited or non-existent. Similar
problems arose when custom plugins for these systems were proposed. They would
work exclusively with a single environment, and their extension to support different
systems would be nearly impossible. For these reasons, native solutions were discarded
completely.

2.1.2 Kibana

Kibana [6] offers extensive visualisation options and is widely adopted throughout the
industry, offering a vast knowledge base and user support. Kibana’s source code is
openly available and supports custom plugin creation. Unfortunately, Kibana is closely
tied to Elasticsearch [7], a system designed to store large amounts of data and provide
analysis over them.

Deployment of Kibana with Elasticsearch would mean forced duplication of data and
latency between data availability at the source and visualisation on the dashboard,
possibly making time-sensitive data outdated. In light of the modular spirit of the
system, this feature seemed too restrictive. Additionally, a sizable amount of resources
would have to be deployed to accommodate Elasticsearch’s needs. Thus, Kibana was
not considered for deployment.

3

2. Analysis .
2.1.3 Grafana

Grafana [8] is another dashboard system with industry-wide adoption. The open-source
version can be deployed inside an internal network, supports custom plugin development
and does not rely on a specific data storage technology. Additionally, Grafana boasts
a suite of advanced features such as alerts, data snapshots and templates.

The only downside of Grafana is its authentication system. By default, it is limited
to OAuth, LDAP, and Auth Proxy [9]. Although these options are more than suffi-
cient in most cases, they are not flexible enough for the modular system. The Auth
Proxy feature could be adapted, but it requires an external service to handle the au-
thentication, even if a simple email and password combination would be used. As the
implemented system is intended to be deployable by small teams for their purposes, a
more extendable and compact authentication is required.

2.1.4 Mozaïk
Mozaïk [10] was found to be the closest available implementation of the requirements.
Like Grafana, it is open-source, heavily extendable via user-created packages and
queries data in real-time. Even with these features, Mozaïk was not adopted. One
of the biggest hurdles would be the deployment itself - Mozaïk uses pure JavaScript
instead of the type-safe superset, TypeScript.

A complete or partial rewrite would be needed to allow the codebase to work with
plugins written in TypeScript and mitigate any possible issues from the non-type-safe
code. Furthermore, while this would be feasible, the project has not been maintained
for years. The last official release is dated April 2016, almost five years before the work
on this project started. With such a high barrier to getting it up-to-date, Mozaïk was
not considered as well.

2.2 Functional Requirements
The functional requirements can be divided into two categories: user and developer.
The former contains the needs of end-users interacting with the web interface and can
be further subdivided into clients and administrators categories. The latter pertains to
developers creating custom modules and deploying the system for end-users.

2.2.1 Client Requirements

. Account management: Users should be able to log into their accounts. Furthermore,
if enabled by the developer, new users should have an option to create an account.. Dashboard management: Users should be able to view, create, update and delete
their dashboards.. Card management: Users should be able to view, create, update and delete cards
inside their dashboards. This includes the assignment and customisation of sources
from which the data for the card should be loaded.

2.2.2 Administrator Requirements

. User management: Administrators should have the ability to create, update and
remove user accounts, including those of other administrators.. Source management: Administrators should be able to add, update and remove data
sources and load their data points.. Dashboard management: Administrators should have the ability to create, update
and remove dashboards.

4

. 2.3 Non-functional Requirements

2.2.3 Developer Requirements

. Parser creation: Developers should be able to create custom parsers. Parsers should
then be automatically loaded into the system without complex configuration.. Card type creation: Developers should be able to create custom card types. The sys-
tem should then use them without violating the type constraints set by TypeScript.. Card creation: Developers should be able to create new card components to display
the data from parsers.. Authentication management: Developers should have the ability to write custom
authentication management algorithms for the system.

2.3 Non-functional Requirements
The non-functional requirements stem from the exploration process as well as from
modern software practices.

. Open-source: Transparent codebase prevents end-user problems from being hard
or downright impossible to diagnose. In addition, anyone can suggest changes or
improvements.. Ease of use: The project should follow best modern practices both on the development
and user experience sides.. Security: The system should not be able to leak any potentially sensitive data. Fur-
thermore, the system should not become a possible attack vector inside the network
where it is hosted.. Lightweight: The system should run on most modern hardware without taking a
significant amount of resources.

5

Chapter 3
Design

3.1 Architecture

In the spirit of modularity, the client-server model was chosen [11]. As most communi-
cation in modern networks happens over HTTP, client-server structure communicating
over REST API [12] enables easy setup and maintenance. Moreover, it gives the main-
tainers a wide range of server hosting options and distributed access, including load
balancing or instance duplication.

Furthermore, the REST API allows the implementation of various client interfaces,
not only a web application. While a website is the most user-friendly means of inter-
acting with the system, the API opens the possibility to use a wide range of interfaces
for the same instance. Among others, the REST API allows for communication with
mobile applications or even other APIs that could query the system for further use.

In the following analysis, the C4 model [13] is used as the framework for architecture
visualisation. It offers four levels of abstraction to represent a system and its subsequent
components. The fourth and lowest level is generally not used, as it is too specific to
convey any generally helpful information. It is thus omitted.

3.1.1 System Context

The system context diagram [14] gives a high-level overview of the system. The diagram
can be found in the figure 3.1. The main focus of this diagram is to show the actors
using the described system and other systems interacting with the main target.

In the case of TRPUX, it contains the system itself, three actors and various data
sources abstracted as a single node. The main system consists of the backend portion
providing the REST API and an unspecified frontend.

The End User actor represents the people viewing and managing dashboards and
cards. The Administrator actors are responsible for deploying and maintaining the
system and handling the administrative tasks concerned with users and data sources.
Lastly, the Developer actor represents the creators of parsers, cards and custom au-
thentication modules for the TRPUX instance.

The External Data Sources node encapsulates the various data sources the TRPUX
instance queries for data to display. These may range from REST APIs through
databases to completely custom solutions, depending on the implementation of used
parsers.

6

. 3.1 Architecture

Figure 3.1. C4 context diagram of the system.

3.1.2 Container
As the container diagram [15] would be unreadable in a small size, it is included in the
appendix B.

The container diagram builds upon the system diagram and specifies the building
blocks of the system in detail. These containers are prominent parts of the system, e.g.
web applications. Most of the major technology choices are highlighted in this diagram
to give more specific technical details about the system.

Unlike the system diagram, the user interface is specified here as the Web Application
and Single Page Application nodes. This change is only for illustration purposes and
does not mean that the web application is the only interface that can be used in the
system.

The Administrator and User roles from the system context diagram are merged into
a single User role. Firstly, both roles should interact with the system through a web
interface or any replacement, thus duplicating relationships. Secondly, this association
allows for better clarity.

3.1.3 Component
As the component diagram [16] would be unreadable in a small size, it is included in
the appendix C.

7

3. Design .
The highest level of detail is focused on the server container. As no actors are meant

to interact with the server directly, save for direct CLI call to the REST API, they
are omitted from this diagram. Instead, the single page application and external data
sources are the only points of interaction for the system.

All of the static data, such as external data source URLs, dashboard configurations
and user information, is stored in a database. The server interacts with the database
via an object-relational mapping interface. Nevertheless, developers can choose their
database hosting option supported by the selected ORM interface.

Communication with clients is done through discreet routers. Each router has a
specific purpose, e.g. User Router serves requests concerning user accounts. A separated
design allows for a more painless development and, more importantly, a straightforward
testing strategy.

Some of the router paths are not designed to be accessible by unauthorised users or
users without administrator privileges. A security component is thus used to prevent
access to sensitive routes such as user lists or user account creation. Implementation
depends on each developer.

3.2 Database
The design of the database depends on four pillars: Server, Source, Card, and User.

The Server represents an external data source, for example, Jenkins or TeamCity
REST APIs, from which data is queried. Each server has different access constraints;
some are freely available without authentication, while others need access tokens, cre-
dentials, or particular URL parameters. Thus the Server Argument table is provided
to hold these values.

The second pillar is the Source table. This table represents a unique data source
from an external server, for example, a Build on TeamCity. Sources are divided into
distinct categories by their types which are then used to indicate compatibility with
specific Card Types. Such a constraint prevents irrelevant matches, e.g. a single value
being displayed in a matrix.

The third building block is the Card. As the name suggests, this table represents a
single card on a dashboard. Each card entity stores its size and position in the Position
table. The Connector table facilitates the connection between a card and its sources
as an N to M relationship. As with the Server, a connection can be modified with
arguments, thus creating the need for the Connector Argument table. Additionally, the
Card Type table finalises the compatibility relationship with the Source table.

The last part is the Dashboard. This table ties all cards to a single place and is
owned by a single user.

3.3 API
The API design follows the structure of the routers and functional requirements. All of
the paths return HTTP status 500 on failure and error messages indicating what went
wrong to leave users with proper feedback on their actions.

The system uses two categories of security: administrators and users. Authenticated
users have the ability to create and manage dashboards with their cards and can change
their usernames. Administrators are a subset of users and can manage data sources,
users and dashboards. The exact implementation of authentication and authorisation
is left to the developers, who can even extend this functionality.

8

. 3.4 Web Application

As the complete description of the REST API in the OpenAPI format [17] is quite
lengthy, it is included in the appendix.

3.4 Web Application
The default point of interaction bundled with the system is a Single Page Application
[18]. This approach was chosen because a Single Page Application can be compiled into
plain HTML, CSS and JavaScript files that can be served by the server providing the
service and can be easily swapped for different implementation.

9

Chapter 4
Implementation

TRPUX is designed as a framework to be executed inside the Node.js runtime [19].
A developer can import the framework inside their project, configure necessary set-
tings, implement their parsers and then execute their main file. The interactions with
the database, route handling and communication with external APIs are handled by
TRPUX. However, developers have the option to change these behaviours if needed.

4.1 Database

The TypeORM framework [20] facilitates database schema creation and subsequent
communication. This implementation allows for a versatile database deployment as
TypeORM is not hardwired to single database technology. Instead, the configuration is
exposed to developers, and the choice between the available database options is up to
them. Moreover, the database does not have to be hosted inside the same environment
or even hosted at all. The TypeORM framework provides a wide range of supported
drivers ranging from locally hosted SQLite instance or connection to a remote Post-
greSQL database.

The schema is defined through TypeORM entities. This definition allows for a unified
programming interface over various hosting options and removes the final development
environment further from low-level database management. Furthermore, entity defini-
tions can be extended with additional entities and relationships without modifying the
default TRPUX ones.

4.2 Server

The server is implemented with the Express framework [21]. Express is a lightweight
and minimalist framework for the creation of web applications and REST APIs. It is
implemented as a thin layer of abstraction above Node.js with web application-specific
features aimed at rapid development. Additionally, it boasts comprehensive community
support, an extensive library of middleware and is easily extensible.

The server is intended to be imported as a library; it exports all the necessary
functions and objects. These pertain primarily to the configuration of the server, the
database entities and the custom parser setup. Finally, the two most important exports
are the functions that create a server instance or start an instance directly.

The default routers are all implemented in separate files and are loaded automatically
after the Express middleware is initialised. However, this behaviour can be modified
if the server is instantiated through the createInstance function. The developer can
then configure the Express application with additional routers, middleware and other
options.

10

. 4.3 Web Application

Authentication and authorisation are handled by the Passport library [22]. Passport
is a modular and straightforward authentication middleware for Express that uses var-
ious authentication strategies. At the time of implementation, Passport boasted over
500 publicly available strategies in addition to having the ability to implement a custom
solution. The default strategy used by the server is custom and only checks if a correct
username is sent as a request parameter. It is not meant to be used in a production
environment.

4.3 Web Application
The web application is a single page application written in React [23]. The framework
was chosen because it is the most popular web framework today [24]. As most web
developers today are familiar with React’s concepts, the customisation of the web ap-
plication should be relatively easy. Not only that, React’s ecosystem contains more
than 190 thousand packages [25], simplifying development even further.

The application uses the Mantine component library. It provides fully featured com-
ponents with predefined design, React hooks and a notification system. The library is
fully customisable and enabled the rapid development and design of the application.
Furthermore, the developers can use the components to extend the default application
without their additions feeling out of place.

Unfortunately, single page application React projects cannot be packaged as the
Express server can be. This limitation comes from the fact that the React code is not
executed directly and is instead packaged by a build tool; in the case of TRPUX, the
tool is Snowpack [26]. This limitation means that an external configuration code cannot
be executed, and thus the developers must edit the code directly.

The communication with the REST API is facilitated by custom calls through the
Fetch API [27]. Each endpoint has its own fetch function, and some have corresponding
hook functions to be easily incorporated into custom components.

4.4 Modularity
The main focus of TRPUX is its modularity. Third-party extendability is mainly
achieved by two features: parsers and cards. While parsers are strictly on the server-
side, card types have to be registered on the server while their corresponding compo-
nents are implemented on the frontend side.

4.4.1 Parsers

Parsers are classes communicating with external data sources and parsing data for the
display in supported cards. Parser support for data source types and card types is
limited. Thus parsers only need to implement the combinations they support, giving
the developers the freedom of choice. Furthermore, even though the parser interface
was created with only a single server in mind, parsers can work with multiple server
types if the developer chooses.

Parsers need to be declared as an implementation of the BaseParser interface and
decorated with the Parser class decorator. Firstly, the interface implementation ensures
the existence of the necessary attributes. Secondly, the class decorator detects the parser
declaration at the start of execution, evaluates the declaration and adds it to the list
of registered parsers.

11

4. Implementation .
The class decorator removes the need for complicated file management or manual

registration by the developer. Each parser is automatically loaded and evaluated at
the start of execution of each project automatically, no matter where in the file system
the parser declaration resides. Unfortunately, the declaration is not detected simply by
being declared, and the parser’s declaration must be imported into a file being executed.
For example, the parser is declared in a separate folder but is then imported into the
file that creates and starts the TRPUX instance.

The most complex part of a parser is the getSource function retrieving data necessary
for a selected card. As TypeScript discourages any as a return type, the function has
to return a set type. Unfortunately, listing the types directly would make the addition
of new card types complicated. Thus, a generic solution using an interface as a map
of possible card maps was selected. An example implementation is shown in the code
snippet below.

The getSource function receives a map key as a parameter that the function uses to
determine what kind of data to retrieve. Secondly, the key indicates to TypeScript the
type of the returned value while keeping within the type safety constraints.

async getSource<T extends keyof Interfaces.CardTypeMap>(
type: T,
source: Model.Source,
args: Model.ConnectorArgument[]

): Promise<Interfaces.CardTypeMap[T]> {
if (!this.supportedSources.includes(source.type.name)) {

throw new Error(
`Type "${source.type.name}" is not supported!`

);
}

let result: any;
switch (type) {
case 'Line Graph':

result = await this.getGraph(source, args);
break;

case 'Iframe':
result = await this.getIframe(source, args);
break;

case 'Single Value':
result = await this.getSingleValue(source, args);
break;

case 'Matrix':
result = await this.getMatrix(source, args);
break;

default:
throw new TypeError(

`Card type "${type}" is not supported by this parser!`
);

}

return result as Interfaces.CardTypeMap[T];
}

12

. 4.5 Default Modules

The above code snippet is used by the example Jenkins parser. The Jenkins module
uses the REST API to retrieve the necessary data. And while the API provides most of
the used information, the internal instance reports test results in XML files that require
additional processing to adhere to the formats set out by the provided card types. As
such, the Jenkins parser uses a separate technique to request, load and parse these files
from the default communication channel.

A similar approach is envisioned for all of the third party parser modules. While a
single module is mainly meant to provide data from a single source point, be it a REST
API, database or a different kind of data source, a great degree of flexibility is afforded
to the developers. The provided examples enhance the functionality of the single source
in a meaningful way to provide the best user experience.

4.4.2 Cards

Cards are more easily extensible on the server-side than parsers since they are only
data structure definitions without logic. By default, the card types line graph, matrix,
iframe and single value are defined on the server. Any additional definitions have to be
added through declaration merging [28].

In this process, two or more interfaces with the same name are declared within the
same name. They only differ in their attributes which are then merged by TypeScript
during execution. Thus, developers can declare their custom CardTypeMap with new
card types and their names without destroying the default values.

This approach has double-edged consequences. As any of the declared attributes can
be declared again in any of the subsequent declarations, the original attributes can be
overridden. This means that developers can redefine default card types to a custom
shape. On the other hand, this redeclaration can happen unintentionally and lead to
hard-to-track-down issues for less experienced developers.

The implementation of the card components for the default web application is rela-
tively straightforward as well. The component has to be wrapped in the CustomCard
interface, which also contains the card type. The web application uses this flag to
determine which component to render inside the card.

Due to the limitation with the configuration outlined in the Web Application section
above, one more step is required to register the custom card component. This is done
by adding the component inside the CustomCard wrapper to the list of cards inside the
configuration class. Afterwards, the bundling system will include the declaration in the
final build.

4.5 Default Modules
The system provides the two types of modules described in the section above and two
customisable components: the authentication strategy and database. Both are pro-
vided through third-party libraries, Passport and TypeORM, respectively. The default
database technology is SQLite, as it does not require any additional setup. The pre-
provided authentication strategy uses simple username based authentication. These
defaults are intended to provide a quick setup during development but should be re-
evaluated for production.

Unlike the two components, TRPUX provides default card types and a parser to
give developers a better understanding of modules. Depending on the requirements of
the deployed instance, these modules can, however, be replaced or completely removed.

13

4. Implementation .
And, since the web interface is optional as well, a different rendering system can be
used altogether.

By default, all of the cards contain the name of the card in the top left corner, unless
listed otherwise.

4.5.1 Single Value Card

Single value is the simplest default display option. It’s purpose is to display a one
kind of information, either a number or a string. The most common use case for this
card is to display a status of the selected build from continuous integration environment.
Additionally, this card type could be used for a wide variety of information, for example
the current temperature, stock price or the date for the next release of a product.

The single value card can have only one source assigned at a time. An example can
be seen in the figure 4.1.

Figure 4.1. Single value card type example.

4.5.2 Line Graph Card

The line graph is meant as a representation of a selected value over a period. The
period can be set as time, for example daily active users, or with an arbitrary indexing,
e.g. last 20 builds. In the example below, the card displays the amount of failed tests
for a specific build.

The line graph can be aggregated and displays a sum of the values per index. Only
indexes with values for each source are displayed. Because the implementation uses the
Chart.js [29] library, the title is displayed in the center above the graph through the
included title functionality.

An example can be seen in the figure 4.2.

14

. 4.5 Default Modules

Figure 4.2. Line graph card type example.

4.5.3 Iframe Card
One of the requirements originating from Avast Software s.r.o. was to provide a way
to display a HTML page in one of the cards. This is due to the fact that some test
results are reported in such a format and their parsing would be too brittle for long
term use, as the layout of the results changed quite often. In turn, the iframe card type
was proposed to display these results directly.

As the iframe card only provides a way to display a foreign HTML document, it
cannot be aggregated. An example can be seen in the figure 4.3.

4.5.4 Matrix Card
As the project was initially thought of as a test result visualiser, the matrix card type as
one of the first ideas to be requested. The two dimensional matrix is meant to display
results for executions of various software versions on various platforms. For example,
at Avast Software s.r.o. the most common use case is testing of multiple editions of the
Avast Antivirus on different versions of the Windows operating system.

The matrix card can be assigned only a single data source. This is mainly due to
the fact that the card is meant to display a single execution run and the main goal is
to display each unique combination.

An example can be seen in the figure 4.4.

4.5.5 Jenkins Parser
The Jenkins parser is an example of a module acquiring data from a REST API with
an enhanced functionality. The modules uses the API to retrieve list of available build
configurations, metadata about a particular build configuration and data about a par-
ticular build run. This data is parsed into data sources and card type data to be
displayed and customised through the user interface.

15

4. Implementation .

Figure 4.3. Iframe card type example.

Figure 4.4. Matrix card type example.

Additionally, the parser is capable of downloading and parsing XML data results.
The XML data format is used by an internal test runner of Avast Software s.r.o. and
provides a unified interface for running tests in multiple environments, not only on

16

. 4.6 Testing

Jenkins. Due to this, the REST API can only be used to retrieve the URLs of the XML
files and the files have to be requested and parsed separately.

A similar mechanism is used to retrieve the HTML pages. Fortunately, no download
of the file or parsing is necessary and only the URL is passed onto the user interface in
form of a URL.

4.5.6 TeamCity Parser
TeamCity parser was the second default parser that was to be provided. Unfortunately,
the security policy at Avast did not permit the usage of the TeamCity REST API to
test the parser. The request to use the service was not granted in time and, thus, the
development time was spent on other parts of the system.

However, the parser was intended to use the REST API in almost the same way as
the Jenkins one. However, as TeamCity provides more information than Jenkins, the
customisation options would be considerably expanded.

4.6 Testing

4.6.1 Server
The server is tested with Jest [30] and Supertest [31] frameworks. Jest is used as the
test runner with support for asynchronous testing, coverage collection, and mocking
of functions or whole modules. In contrast, Supertest is used to test HTTP requests
built upon the Superagent library. Such an approach ensures that the testing requests
behave the same way as in a production scenario.

The test suite is fully automated with a test SQLite database running in memory.
Importance has been placed upon integration tests instead of unit tests, as integration
better evaluates the system’s state. Additionally, unit tests can be too brittle and would
make changes to the project more costly.

Each of the REST API endpoints is covered with tests for both successful and error-
producing requests, where applicable. As these integration tests cover most of the
functionality, the remaining coverage is focused on the parser registration process and
Source Service, as these two parts contain the main logic of the system.

4.6.2 Web Application
The web application testing approach is similar to the server’s. The limited testing
of small parts of the system is ignored in favour of integration testing. But unlike
on the server-side, the tests do not execute any function directly; instead, interacting
exclusively with the website. This ensures that the results are identical to the end-user
experience.

The chosen framework for these tests is Cypress [32]. In contrast to other frameworks,
such as Selenium [33], Cypress is native to TypeScript and executes in the same run-
loop. Additionally, the tests can run in different browsers and even in Electron [34],
although with a significant caveat. The Electron distribution bundled with Cypress is
not necessarily up-to-date, and since it runs headlessly, the results may differ from test
runs with a proper GUI.

The tests cover all of the pages and significant functionality. The approach for each
test is to be as natural as possible. This means going through the login process for
each test if required and interacting with the application in the same manner as a user
would. Such a process ensures the application is fully functional, even at the price of
an extended test run time.

17

4. Implementation .

Figure 4.5. Deployment diagram of TRPUX.

4.7 Deployment
The server-side of the project is intended to be distributed as a package through the

Node Package Manager. A version compiled to JavaScript coupled with TypeScript
typings would be uploaded to the network and downloaded by the developers. They
would then deploy their custom project inside a Node.js instance.

The only constraints would come from the Node.js version used during the devel-
opment of TRPUX and TypeORM requirements. Some language features may not be
available in versions of Node.js older than v16. TypeORM has its specific requirements,
as well as does the selected database distribution.

The web application can be bundled with the server in the built form as pure HTML,
CSS and minified JavaScript code. Due to React’s limitations, any developers aiming
to customise the code would have to download the source code and build the final
distributed package themselves.

The figure 4.5 provides a visual representation of the deployment model.

18

Chapter 5
Evaluation

The project had to be evaluated based on the function and non-functional require-
ments and their categories. These divisions are not strictly separated, as, for example,
most of the non-functional requirements have an impact on the developer experience.
Nonetheless, such categorisation has been chosen as the best way for the evaluation of
the project.

5.1 Client Evaluation

The client requirements were primarily concerned with functionality intended to be
provided by the web application interface. Fortunately, as a more profound knowledge
of the system is not required for the evaluation of any of them, the requirements could
be assessed with both users involved in the analysis process and complete outsiders.

The client requirements were reviewed through usability testing [35] with five different
users. Such an approach allows for a close simulation of real-world usage. As the tests
are constructed as scenarios, they cannot test the requirements directly. Instead, the
feedback was structured into findings categorised by their priority.

5.1.1 Testing Scenario

The following scenario was used:

1. Look at the homepage
2. Find the login page
3. Switch to the sign-up page
4. Create a new account
5. Log in
6. Create a new dashboard
7. Create a new line graph card with sources
8. Resize the card
9. Rename the dashboard

5.1.2 Findings

The findings from the usability test were divided into three categories: high, medium
and low priority. The first category of findings indicates a significant flaw preventing
the usage of the system. The medium priority represents a non-blocking problem, but
its removal would improve the user experience. The last category contains manageable
issues without the immediate need for repair.

19

5. Evaluation .
An example of the dashboard interface can be seen in the figure 5.1. The following

issues were identified:

1. Card Customisation. Priority: Medium. The card customisation was the most significant pain point for every tester. The
testers were confused by the interface and were unsure how to proceed with data
source customisation. The prime example being setup of line graph with multiple
sources. The users were not sure if the card will render separate line for each
source or combine the sources into a single line.. Recommendation: Improve the labelling and interface of card customisation.

2. Unclear Icon Navigation. Priority: Low. The navigation through icons is not clear enough at first glance. Fortunately, the
icons provide tooltips on mouse hover and do not block usability.. Recommendation: Use clearer icons.

3. Dashboard Customisation. Priority: Low. The dashboard options are hidden behind a sliding mechanism triggered by an
icon button. However, just like the icon navigation, this problem is minimised by
the provided tooltip.. Recommendation: Make the dashboard customisation more easily discoverable.

Figure 5.1. Dashboard with the default cards

5.1.3 Conclusion

The confusing configuration options were highlighted as the major letdown of the whole
project for the end-users. Not only were the Jenkins setup options improperly labelled,
but the default cards also proved to be confusing as well. The line graph, for example,
gave some testers the impression that a separate line would be drawn for each of the
sources assigned to the card. Contrarily, the default line graph aggregates all of the
sources into a single line.

20

. 5.2 Administrator Evaluation

The card feedback proved to be critical for the future of the project. While the goals
of the requirements were met, the current iteration of the web application interface
would need to be updated before being released to a broader audience. Additionally,
better documentation for the card options or help from a user experience designer would
be required.

5.2 Administrator Evaluation
Just like the client requirements, the administrator evaluation was heavily targeted
toward the user interface. The same set of testers was used, even though some context
was provided to users without prior knowledge of the project.

5.2.1 Testing Scenario

1. Find the login page
2. Log in with an administrator account
3. Find the administration page
4. Create a new server
5. Refresh sources
6. Assign a dashboard to a new user
7. Rename added server

5.2.2 Findings
Just like the client evaluation, three levels of priority were used:

1. Refresh Sources. Priority: Low. The less experienced users were not sure what the Refresh Sources button does.. Recommendation: Add an explanation of the process to the interface.

The figure 5.2 showcases the administration page of the web user interface.

Figure 5.2. Administration page of the web interface

21

5. Evaluation .

5.3 Developer Evaluation

The developer evaluation process was vastly different from the previous two processes.
The developers are not meant to be interacting with the user interface, and they are
instead meant to be working only with the provided codebase. Only users with expe-
rience in development with TypeScript were asked to give feedback on this part of the
system.

5.3.1 Parser Creation

From the developer’s perspective, the parser modules are the most critical part of their
work with the system. As TRPUX, by default, is not able to retrieve any data by itself,
this functionality has to be instead provided by the developers.

The parser creation process was praised for the way the parsers are meant to be
implemented. The Parser interface was pointed out as the best possible way for the
developers to adhere to the necessary parser requirements. On the other hand, the
provided examples of parsers were said to be either bit too simple or too complex, in
the case of the provided Jenkins parser, to follow and build upon with their code.

The main negative point of the parser examples was concerned with the retyping
of return values inside the parser. The current solution, as showcased in the Jenkins
parser, uses retyping to and from the “any” type was considered convoluted and not
totally in the spirit of TypeScript guidelines. However, as no better alternative was
proposed, the current solution stayed.

The other negative feedback was attributed to the mechanism through which a parser
is registered to the system. Class decorators are not a widely known concept in the
TypeScript ecosystem, so their functionality had to be at least partially explained for
some testers to understand. But the more significant issue was that the registration
was not fully automated, which means that the developer had to import the declaration
into a directly executed code file.

Fortunately, these issues were easily overcome by improving the documentation. And
as such, the parser creation system has been considered a success.

5.3.2 Card Type Creation

Card type creation is much easier to understand, as declaration merging is much more
prevalent than decorators. Additionally, all of the work concerning the retyping and
type safety is already provided by the system, putting even less work on the developers.

The only issue that surfaced during the evaluation of card type creation was getting
enough inspiration to construct a new card type. Most testers were short-sighted by
the already provided card types and could not come up with new and unique ideas.

5.3.3 Card Creation

Following the card type creation process, the creation of individual cards to be displayed
was relatively easy. Testers only wrote possible rendering options for their new card
types.

One major hiccup was caused by the registration of the new card type. As React
is, unlike the server code, bundled by a build tool, the process is quite convoluted in
comparison. Unfortunately, a proper remedy was not immediately available, and the
system was left in its current state.

22

. 5.4 Non-Functional Evaluation

5.3.4 Authentication Management
Authentication management is provided fully through Passport with the corresponding
functions exposed by the server in the configuration. Any of the result issues were
accredited to the functionality of Passport and deemed as not fixable.

5.4 Non-Functional Evaluation
The non-functional requirements proved to be much harder to evaluate than their func-
tional counterparts. Not only because of their more abstract nature but also due to
the personal biases of the evaluators. Nevertheless, most of the requirements were
considered a success.

23

Chapter 6
Conclusion

This project aimed to analyse, design and implement a modular system for data display.
The implementation had to follow both functional and non-functional requirements set
by the analysis and design stages.

The project has been a great learning experience for me. Starting with the analy-
sis stage, the compilation of requirements from all relevant stakeholders inside Avast
Software s.r.o. has not been straightforward and sometimes proved to be even contra-
dictory. Thankfully, there was enough time to analyse the data correctly and filter out
the essential features.

Most of the requirements have already been implemented in other, mostly separate,
works, thus giving the project a reasonable frame of reference. Even then, the work on
the project has not been straightforward. The hardest complications came unsurpris-
ingly from the modular system, especially on the web application side combining the
additional modules. With all that said, the goal of this project has been successfully
reached.

The implementation itself was the most complex stage of all. My proficiency in
TypeScript was on a good level before, but even then, I have only continued learning
during the coding process. The work on the modular aspect of the system has given me
a new perspective on the typing system of TypeScript and taught me valuable lessons
that I can utilise in future projects in general.

The main goal of the project, to create a modular system capable of being extended
on an as-needed basis, has been achieved. The current system provides ways to be
expanded with new data sources and rendered card types without disruption to the
already existing components. As such, the system can accommodate requirements that
were not implemented during the project or were discovered afterwards.

However, TRPUX can still be upgraded to provide the best user experience, even
though it is currently deployed only internally inside Avast Software s.r.o. The possible
upgrades are:

. Automated continuous deployment of newest features to the internal instance.. Implementation of additional modules based on needs of various teams inside the
company.. Application of remedies for the issues discovered during usability testing.

24

References
[1] Duvall, Paul M, Steve Matyas, and Andrew Glover. Continuous integration :

improving software quality and reducing risk. Addison-Wesley, 2007.
[2] Rozentals, Nathan. MASTERING TYPESCRIPT - FOURTH EDITION : build

enterprise-ready, modular web applications... using typescript 4 and modern frame-
works. Packt Publishing Limited, 2021.

[3] s.r.o., JetBrains. TeamCity Dashboard. [cit. 2022-05-12]. Available from https://
www.jetbrains.com/help/hub/Dashboard.html.

[4] Atlassian. What is a Jira dashboard? | Jira Software Cloud. [cit. 2022-05-09].
Available from https://support.atlassian.com/jira-software-cloud/docs/
what-is-a-jira-dashboard/.

[5] Community, Jenkins. Blue Ocean Dashboard. [cit. 2022-05-09]. Available from
https://www.jenkins.io/doc/book/blueocean/dashboard/#dashboard.

[6] B.V., Elasticsearch. What is Kibana? [cit. 2022-05-12]. Available from https://
www.elastic.co/what-is/kibana.

[7] B.V., Elasticsearch. What is Elasticsearch | Elastic. [cit. 2022-05-12]. Available
from https://www.elastic.co/what-is/elasticsearch.

[8] Labs, Grafana. Introduction to Grafana. [cit. 2022-05-09]. Available from https://
grafana.com/docs/grafana/latest/introduction/.

[9] Labs, Grafana. Auth Proxy. [cit. 2022-05-09]. Available from https://grafana.
com/docs/grafana/latest/auth/auth-proxy/.

[10] Benitte, Raphaël. Mozaïk | Mozaïk. [cit. 2022-05-12]. Available from http://
mozaik.rocks/.

[11] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based
Software Architectures. 2000. Ph.D. Thesis.

[12] Gupta, Lokesh. What Is REST – Learn to Create Timeless REST APIs. [cit. 2022-
05-12]. Available from https://restfulapi.net/.

[13] Brown, Simon. The C4 model for visualising software architecture. Available from
https://c4model.com/.

[14] Brown, Simon. System Context Diagram. [cit. 2022-05-09]. Available from
https://c4model.com/#SystemContextDiagram.

[15] Brown, Simon. Container Diagram. [cit. 2022-05-09]. Available from https://
c4model.com/#ContainerDiagram.

[16] Brown, Simon. Component Diagram. [cit. 2022-05-09]. Available from https://
c4model.com/#ComponentDiagram.

[17] Software, SmartBear. OpenAPI Specification - Version 3.0.3 | Swagger .
[cit. 2022-05-12]. Available from https://swagger.io/specification/.

[18] Smith, Steve, Tarun Jain, David Pine, Youssef Victor, Genevieve Warren,
Pablo Marcano, and Maira Wenzel. Choose between traditional web apps and

25

https://www.jetbrains.com/help/hub/Dashboard.html
https://www.jetbrains.com/help/hub/Dashboard.html
https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-dashboard/
https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-dashboard/
https://www.jenkins.io/doc/book/blueocean/dashboard/#dashboard
https://www.elastic.co/what-is/kibana
https://www.elastic.co/what-is/kibana
https://www.elastic.co/what-is/elasticsearch
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/introduction/
https://grafana.com/docs/grafana/latest/auth/auth-proxy/
https://grafana.com/docs/grafana/latest/auth/auth-proxy/
http://mozaik.rocks/
http://mozaik.rocks/
https://restfulapi.net/
https://c4model.com/
https://c4model.com/#SystemContextDiagram
https://c4model.com/#ContainerDiagram
https://c4model.com/#ContainerDiagram
https://c4model.com/#ComponentDiagram
https://c4model.com/#ComponentDiagram
https://swagger.io/specification/

References .
single page apps. [cit. 2022-05-12]. Available from https://docs.microsoft.
com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-
traditional-web-and-single-page-apps.

[19] Foundation, Node.js. About | Node.js. [cit. 2022-05-12]. Available from https://
nodejs.org/en/about/.

[20] Community, TypeORM. TypeORM - Amazing ORM for TypeScript and
JavaScript (ES7, ES6, ES5). Supports MySQL, PostgreSQL, MariaDB,
SQLite, MS SQL Server, Oracle, WebSQL databases. Works in NodeJS,
Browser, Ionic, Cordova and Electron platforms. [cit. 2022-05-12]. Available from
https://typeorm.io/.

[21] Foundation, OpenJS. Express - Node.js web application framework. [cit. 2022-
05-12]. Available from https://expressjs.com/.

[22] Hanson, Jared. Passport.js. [cit. 2022-05-12]. Available from https://www.pass-
portjs.org/.

[23] Meta Platforms, Inc. Main Concepts of React. [cit. 2022-05-12]. Available from
https://reactjs.org/docs/hello-world.html.

[24] Statista. Most used web frameworks among developers globally 2020 | Statista.
[cit. 2022-05-12]. Available from https: / / www . statista . com / statis-
tics/1124699/worldwide-developer-survey-most-used-frameworks-web/.

[25] npm, Inc. List of React Related Packages on NPM . [cit. 2022-05-09]. Available
from https://www.npmjs.com/search?q=react.

[26] Schott, Fred. Snowpack. [cit. 2022-05-12]. Available from https://www.snow-
pack.dev/.

[27] Contributors, MDN. Fetch API - Web APIs | MDN . [cit. 2022-05-12]. Available
from https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API.

[28] Microsoft. Documentation - Declaration Merging. [cit. 2022-05-09]. Available
from https: / / www . typescriptlang . org / docs / handbook / declaration-
merging.html.

[29] Contributors, Chart.js. Chart.js | Open source HTML5 Charts for your website.
[cit. 2022-05-20]. Available from https://www.chartjs.org/.

[30] Facebook, Inc. Jest · Delightful JavaScript Testing. [cit. 2022-05-12]. Available
from https://jestjs.io/.

[31] visionmedia. visionmedia/supertest. [cit. 2022-05-12]. Available from https://
github.com/visionmedia/supertest.

[32] Cypress.io. End to End Testing Framework. [cit. 2022-05-12]. Available from
https://www.cypress.io/how-it-works/.

[33] Conservancy, Software Freedom. About Selenium. [cit. 2022-05-12]. Available
from https://www.selenium.dev/about/.

[34] Foundation, OpenJS, and Electron Contributors. Electron | Build
cross-platform desktop apps with JavaScript, HTML, and CSS.. [cit. 2022-05-12].
Available from https://www.electronjs.org/.

[35] Moran, Kate. Usability Testing 101. Available from https://www.nngroup.com/
articles/usability-testing-101/.

26

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://nodejs.org/en/about/
https://nodejs.org/en/about/
https://typeorm.io/
https://expressjs.com/
https://www.passportjs.org/
https://www.passportjs.org/
https://reactjs.org/docs/hello-world.html
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.npmjs.com/search?q=react
https://www.snowpack.dev/
https://www.snowpack.dev/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://www.chartjs.org/
https://jestjs.io/
https://github.com/visionmedia/supertest
https://github.com/visionmedia/supertest
https://www.cypress.io/how-it-works/
https://www.selenium.dev/about/
https://www.electronjs.org/
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/

Appendix A
Glossary

API . An application programming interface is a connection between computers
or between computer programs. It is a type of software interface, offering a
service to other pieces of software.

CSS . Cascading Style Sheets is a style sheet language used for describing the
presentation of a document written in a markup language such as HTML.
CSS is a cornerstone technology of the World Wide Web, alongside HTML
and JavaScript.

GUI . The graphical user interface is a form of user interface that allows users to
interact with electronic devices through graphical icons and audio indicator
such as primary notation, instead of text-based UIs, typed command labels
or text navigation.

HTML . The HyperText Markup Language or HTML is the standard markup lan-
guage for documents designed to be displayed in a web browser. It can
be assisted by technologies such as Cascading Style Sheets and scripting
languages such as JavaScript.

HTTP . The Hypertext Transfer Protocol is an application layer protocol in the
Internet protocol suite model for distributed, collaborative, hypermedia in-
formation systems.

LDAP . The Lightweight Directory Access Protocol is an open, vendor-neutral, in-
dustry standard application protocol for accessing and maintaining dis-
tributed directory information services over an Internet Protocol network.

ORM . Object–relational mapping in computer science is a programming technique
for converting data between type systems using object-oriented program-
ming languages.

REST . Representational state transfer is a software architectural style that was
created to guide the design and development of the architecture for the
World Wide Web. REST defines a set of constraints for how the architecture
of an Internet-scale distributed hypermedia system, such as the Web, should
behave.

URL . A Uniform Resource Locator (URL), colloquially termed a web address, is a
reference to a web resource that specifies its location on a computer network
and a mechanism for retrieving it.

XML . Extensible Markup Language is a markup language and file format for stor-
ing, transmitting, and reconstructing arbitrary data. It defines a set of
rules for encoding documents in a format that is both human-readable and
machine-readable.

27

Appendix B
Container Diagram

Figure B.1. C4 container diagram of TRPUX.

28

Appendix C
Component Diagram

Figure C.2. C4 component diagram of the TRPUX server.

29

Appendix D
User Interface Preview

Figure D.3. Dashboard administration page.

Figure D.4. User administration page.

30

. .

Figure D.5. Server creation dialog.

Figure D.6. Default login screen.

31

D User Interface Preview .

Figure D.7. Default sign-up screen.

Figure D.8. Card creation setup.

32

Appendix E
User Manual

. Requirements. Operating System: Windows, MacOS or Linux. Node.js runtime v16 or newer. Available port to provide the REST API on. Server Setup. Create a new Node.js project. Add the @trpux/server package as dependency. Import the createServer function. Optionally pass custom configuration as a argument to the function. Start the project either through the ts-node package or compile to JavaScript and
execute the resulting build

33

Appendix F
Attached Media Contents

. The file bachelor.pdf is the digital version of this work. The directory source_code contains the source code of the project. The directory openapi contains the OpenAPI specification of the REST API and it’s
visualisation.

34

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Motivation
	Aim of the Project

	Analysis
	Existing Solutions
	Native Features and Plugins
	Kibana
	Grafana
	Mozaïk

	Functional Requirements
	Client Requirements
	Administrator Requirements
	Developer Requirements

	Non-functional Requirements

	Design
	Architecture
	System Context
	Container
	Component

	Database
	API
	Web Application

	Implementation
	Database
	Server
	Web Application
	Modularity
	Parsers
	Cards

	Default Modules
	Single Value Card
	Line Graph Card
	Iframe Card
	Matrix Card
	Jenkins Parser
	TeamCity Parser

	Testing
	Server
	Web Application

	Deployment

	Evaluation
	Client Evaluation
	Testing Scenario
	Findings
	Conclusion

	Administrator Evaluation
	Testing Scenario
	Findings

	Developer Evaluation
	Parser Creation
	Card Type Creation
	Card Creation
	Authentication Management

	Non-Functional Evaluation

	Conclusion
	References
	Glossary
	Container Diagram
	Component Diagram
	User Interface Preview
	User Manual
	Attached Media Contents

