
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Domain Object Change Tracking Module

Miroslav Holeček

Supervisor: Ing. Martin Ledvinka, Ph.D.
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492242Personal ID number:Holeček MiroslavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and TechnologyStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Domain object change tracking module

Bachelor’s thesis title in Czech:

Modul sledování změn doménových objektů

Guidelines:

1. Become familiar with the topics of change tracking in domain objects and semantic web technologies.
2. Compare different ways of tracking changes to domain objects (e.g, storing complete snapshots, change vectors).
Discuss their suitability in different use cases.
3. Design a domain object change tracking module for information systems based on Semantic Web technologies.
4. Implement the designed solution. The implementation should support change tracking on objects compatible with the
JOPA library.
5. Evaluate the solution by integrating it with the TermIt terminology editor.

Bibliography / sources:

[1] D. Allemang, J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Morgan
Kaufmann, 2011
[2] Hibernate Envers, https://hibernate.org/orm/envers/, 2021
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Ledvinka, Ph.D. Knowledge-based Software Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 02.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Martin Ledvinka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
Most of all, I would like to thank my su-
pervisor Martin Ledvinka for exemplary
guidance and leadership, my family and
friends for extensive support, and my col-
leagues from the faculty not only for all
the joyful times discussing our theses.

Declaration
I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright
Act, as amended, in particular that the
Czech Technical University in Prague has
the right to conclude a license agreement
on the utilization of this thesis as a school
work under the provisions of Article 60 (1)
of the Act.

In Prague in May 2022.

v

Abstract
This bachelor’s thesis describes the analy-
sis, design and beginning of the implemen-
tation of an application module allowing
domain object change tracking in the con-
text of the semantic web and linked data.
One of the key requirements is compatibil-
ity with the Spring framework and JOPA,
a database library developed by the KBSS
group at Czech Technical University’s Fac-
ulty of Electrical Engineering. In spite
of that, the module has to be reusable
in other environments, which constrains
the permissible degree of vendor lock-in.
An approach utilizing change vectors was
chosen due to their low storage demands.
Relational databases were selected as the
backing storage solution based on superior
performance and their alternative, NoSQL
stores, lacking benefits exploitable by the
module. An imperative API was designed
and implemented in a prototype written in
the Java programming language, focusing
on extensibility. The module’s usability
was evaluated by integrating it into an
existing application, TermIt.

Keywords: change tracking, database
auditing, data versioning, module, tool,
library, change vector, change record

Supervisor: Ing. Martin
Ledvinka, Ph.D.

Abstrakt
Bakalářská práce popisuje analýzu, návrh
a implementaci aplikačního modulu slou-
žícího pro sledování změn doménových
objektů v kontextu sémantického webu
a propojených dat. Klíčovým požadav-
kem na modul je jeho kompatibilita s fra-
meworkem Spring a databázovou knihov-
nou JOPA, který byl vyvinut výzkumnou
skupinou KBSS na Fakultě elektrotech-
nické ČVUT. Zároveň však je třeba vy-
hnout se přílišné platformní závislosti, aby
modul byl lehce přepoužitelný i v jiných
prostředích. Pro ukládání změn byl vyu-
žit koncept změnových vektorů, zejména
díky prostorové nenáročnosti. Jako datové
úložiště byly pro svou výkonnost a uni-
verzalitu zvoleny relační databáze. Navr-
žené API je imperativní a implemento-
váno v jazyce Java prototypem s důrazem
na rozšiřitelnost. Použitelnost modulu je
zvalidována funkční integrací do existující
aplikace TermIt.

Klíčová slova: sledování změn, nástroj,
modul, knihovna, verzování dat,
auditování, změnový vektor

Překlad názvu: Modul sledování změn
doménových objektů

vi

Contents
1 Introduction 1
2 Change storage format 3
2.1 Change vectors 3

2.1.1 Data type ambiguity 7
2.1.2 Viewing a change log 7
2.1.3 Viewing complete revisions . . . 8

2.2 Snapshots . 8
2.2.1 Viewing a change log 9
2.2.2 Viewing complete revisions . . . 9

2.3 Verdict . 9
3 Data storage solution 11
3.1 NoSQL databases 11
3.2 Relational databases 14

3.2.1 Tackling type ambiguity 14
4 API and internal design 17
4.1 Strategies . 18
4.2 Vector API 19
4.3 Exceptions 20
4.4 API class diagram 20
4.5 Example interaction 20
5 Implementation 23
5.1 Type ambiguity handling 23
5.2 Handling collections 23
5.3 JSON columns 25
5.4 Supporting entities with differing

identifiers . 25
5.5 Separation of strategy code 26
5.6 Design disagreements and

discussions . 26
5.7 Source code and license 27
6 Evaluation 29
6.1 Unit and integration tests 29
6.2 Integration with TermIt 29
7 Conclusions and future work 31
7.1 Future work 31
Glossary 33
Bibliography 35

vii

Figures
2.1 Example class model. 3
2.2 Minimalist change vector. 3
2.3 Base version of our Person

instance. 4
2.4 First change vector, updating the
name attribute. 4

2.5 Second change vector, updating
the age attribute. 5

2.6 Third change vector, updating the
surname attribute. 5

2.7 The most up-to-date version of our
Jake object. 5

2.8 Minimalist negative-∆ vector class
schema. 6

2.9 Negative-∆ vectors for all
previously described changes. 6

2.10 The snapshots saved for all
previously described changes. 8

3.1 Illustration of the key-value
concept. Source: [1] 12

3.2 A wide-column store example.
Source: [2] . 13

3.3 Illustration of a Neo4j graph.
Source: [3]. 14

3.4 Example of a triplestore (in space).
Source: [4]. 14

3.5 Change vector class definition. . . 15

4.1 A visualization and description of
the Strategy design pattern.
Source: [5]. 19

4.2 Application class diagram. 21
4.3 Example interaction with a client

application. 22

5.1 A visualization and description of
the Template Method design pattern.
Source: [6]. 26

Tables
7.1 Glossary. 33

viii

Chapter 1
Introduction

Modern information systems often require access to both the current and
historical versions of the data they store. One of the primary reasons for
this is the need for a continuous auditing mechanism, i.e. a way to monitor
changes of a given record step by step. Some applications opt to implement
this functionality ad hoc, but for easier reusability, such functionality may
and shall be implemented in the form of an independent application module
or library.

The goal of this bachelor’s thesis is to design the inner workings of such a
reusable change-tracking application module and provide its implementation
to be used in conjunction with the JOPA1 database library developed by the
Knowledge-Based Software Systems research group at the Czech Technical
University in Prague [7] as part of the TermIt2 project by the same authors.

Several approaches exist that can be used for storing such changes, the
most prominent of which are change vectors and whole object snapshotting.
Storage and access complexity are discussed for both of these. So is the
selection of a database backend of the module, based on performance and
general fitness for the purpose. Lastly, an imperative API is proposed with
regard to reusability and ease of integration, and implemented in a prototype
of the module, which is then integrated with the TermIt application.

1Java OWL Persistence API; available from https://github.com/kbss-cvut/jopa.
2A SKOS-compliant terminology manager based on Semantic Web technologies; available

from https://github.com/kbss-cvut/termit.

1

https://github.com/kbss-cvut/jopa
https://github.com/kbss-cvut/termit

2

Chapter 2
Change storage format

As previously mentioned, two main approaches come to mind when designing
the storage format of a change tracker: change vectors and full object snap-
shots. Let us discuss both of these variants in greater detail and explain how
to perform the two main tasks at hand:..1. viewing a change log (differences between revisions);..2. viewing complete revisions.

We will use the following model, depicted in Figure 2.1, for all examples in
this chapter.

Figure 2.1: Example class model.

2.1 Change vectors

A change vector (also sometimes—more generally—known as “change record”)
is a minimal representation of a difference between multiple objects (two in
our case). In general, it might look like Figure 2.21:

Figure 2.2: Minimalist change vector.
1Of course, in real world applications, in addition to identifying the object they correspond

to, change vectors would serve a much better purpose if they included other attributes like
a timestamp of the change and an identifier of the user responsible for it. Here, we are just
illustrating the basic concept.

3

2. Change storage format.................................
An important fact that we have to note here is that a single change

vector will only be able to record a change a single attribute. If an
object differs in multiple attributes between two revisions, a change vector
will have to be created for every single changed attribute. This is by design:
if we wanted a vector to be able to hold multiple attribute changes, we
would considerably increase the complexity of designing a proper database
schema, if applicable. For example, if a relational database were used as
the vector store, a column would have to be introduced for every single
attribute being change-tracked. This column would then have to be nullable2

to accommodate for all vectors representing revisions not differing in this
attribute. However, that would cause potential inconsistencies with attributes
that themselves are of nullable types (i.e. non-mandatory attributes). This
would also essentially reduce (or eliminate altogether) the space savings when
comparing to snapshots.

As we can assume from the aforementioned Figure 2.2, the primary ad-
vantage of using change vectors is their simplicity, and, in turn, their low
storage space requirements. They do have a significant drawback, though:
the complexity of retrieving an object at a specific revision increases with
every single further change to it.

To illustrate, let us take a look at how an object could change in time. First
of all, we will define the starting object: Jacob Appleseed, age 23, instance of
the previously introduced Person class—illustrated in Figure 2.3—and the
first change to it: Jacob decides to change his official name to Jake. This
change is recorded using the change vector shown in Figure 2.4.

Figure 2.3: Base version of our Person instance.

Figure 2.4: First change vector, updating the name attribute.

To reconstruct the object at the latest revision at this point (i.e. extract the
object after the first change), we would have to apply the first change vector.
Right now, this looks fine – only one setter method has to be executed so far.
However, when we add further changes, like updating Jake’s age (Figure 2.5)
or his surname (Figure 2.6), the number of setter methods required to run

2Allowing (and in some cases even expecting) null values.

4

....................................2.1. Change vectors

(and, prior to that, vectors retrieved from the database) before we receive the
latest revision (Figure 2.7) grows linearly.

Figure 2.5: Second change vector, updating the age attribute.

Figure 2.6: Third change vector, updating the surname attribute.

Figure 2.7: The most up-to-date version of our Jake object.

Sure, it is possible to optimize this approach of applying changes by only
querying the change vector store for distinct attribute values, but in case of
complex objects with a large number of attributes, this approach still leaves
the burden of combining the change vectors on the read operation. That is
not ideal because even though historical data is important, it is usually not
as important as the most recent version(s) of the data, and thus, performance
should be optimized in favor of the read operation on the latest revisions.

One option to do so in quite an elegant way and move the burden to the
update operation would be to use negative change vectors: instead of
storing the original version of an object and incrementally updating it by
applying each change vector, the most recent version of the object would be
stored and change vectors would store the previous version of the changed
data (attribute). Such a change vector class might then look like depicted
in Figure 2.8. Our previous changes would then be recorded as shown in
Figure 2.9.

5

2. Change storage format.................................

Figure 2.8: Minimalist negative-∆ vector class schema.

Figure 2.9: Negative-∆ vectors for all previously described changes.

The vector-saving operation can then be implemented as follows (also in
code in Listing 1):

..1. Iterate over all fields and discover differences.

..2. Extract the original values of the fields and create change vectors.

..3. Save the change vectors to the database.

6

....................................2.1. Change vectors

1 import java.util.List;
2 import java.util.ArrayList;
3 import java.util.stream.Collectors;
4 import java.util.reflect.Field;
5

6 public class ChangeTracker {
7 private final PersonDao personDao;
8 private final VectorDao vectorDao;
9

10 public void compare(Object orig, Object newer) throws Exception {
11 List<Field> changed = new ArrayList<>();
12 for (var f : orig.getClass().getFields()) {
13 if (!f.get(orig).equals(f.get(newer))) {
14 changed.add(f);
15 }
16 }
17

18 List<NegDeltaVector> vectors;
19 vectors = changed
20 .stream()
21 .map(field -> new NegDeltaVector(
22 field.getName(),
23 field.get(orig)
24))
25 .collect(Collectors.toList());
26

27 personDao.save(newer);
28 vectorDao.saveAll(vectors);
29 }
30 }

Listing 1: Simple implementation using Java Reflection API.

2.1.1 Data type ambiguity

A new burden may be introduced by employing change vectors of any kind
as the format for storing changes: attributes of a given entity may very well
be of different types. Even in our simple Person class, there are string and
integer attributes. This means that our ChangeVector class’s previousValue
(or newValue, if not considering negative change vectors) can differ by its type
even between vectors concerning the same entity. While this may not cause
any trouble with some NoSQL stores (especially the ones not enforcing a
schema), it does pose an issue when considering other data storage solutions,
such as relational databases. We will be returning to this issue in the relevant
following chapter.

2.1.2 Viewing a change log

A change log is very straightforward to manipulate when using change vectors.
It is simply a matter of loading the change vectors that concern the desired

7

2. Change storage format.................................
object and sorting them appropriately, for example based on the timestamp
of the change, which is likely to be included within the change vector itself.

2.1.3 Viewing complete revisions

Reconstructing objects at a given revision, however, proves to be a slightly
more difficult task when working with change vectors, especially negative
ones. If we worked with basic forward change vectors, it would simply be a
question of querying the change vector store for all change vectors concerning
the desired object, preferably with a query to only select the most recent (up
to the historical timestamp we want to view the object at) vector for each
distinct attribute, and then applying those vectors to a base revision of the
object. It would indeed require the base revision to be stored as well, which
does not seem very logical or useful, as previously discussed in this chapter;
now, let us take a look at what the situation would be with negative change
vectors.

With them, we have to reverse our thinking slightly, but the core logic
applied is still the same: query the vector store for all vectors created after
(or at) the desired timestamp. We can again benefit from only selecting
change vectors for distinct attributes but we have to be careful to always
select the least recent ones. Then we can apply them in a similar as in the
previous paragraph, and we can use the current version of the object as the
base revision, which allows us not to be concerned with its storage.

2.2 Snapshots

Snapshots, on the other hand, are full copies of the versioned objects, including
possibly repeating values in all unchanged fields. So, for the Figure 2.1 model,
and for the same changes as in the previous section, we would store the
snapshots illustrated in Figure 2.10 in the database.

Figure 2.10: The snapshots saved for all previously described changes.

We can see that the storage space complexity is significantly higher. One
can argue whether this still is a cause for concern in 2022 but I believe it is
the approach using more space that requires a justification, not the one more
economic with it. Furthermore, this approach can essentially be implemented
on the database-interfacing layer of any application at will and does not
necessarily warrant extraction into a separate module with the sole focus on
change tracking.

8

....................................... 2.3. Verdict

This does not stand to say that snapshots do not have suitable real world
applications; quite on the contrary: an application with emphasis on viewing
full historical versions of objects or with the requirement of quickly switching
between multiple revisions of an object can benefit from using them very
much. A good example of that is WordPress3: it saves a new revision of a
post whenever it is updated, allowing the content creator to revert to an older
revision rather effortlessly. The revisions are stored in the same database
table as the current versions of the posts themselves4.

2.2.1 Viewing a change log

Because snapshots are whole revisions of objects, a change log can only be
created by comparing two objects using the same method that is used when
creating change vectors: iterating through their attributes and comparing
the old value of each one to the new value. Snapshots do hold an advantage
in this regard: multiple attributes can be changed in a single revision; when
using vectors, only one can.

2.2.2 Viewing complete revisions

In contrast to change vectors, a snapshot-based versioning system is rather
straightforward when trying to access entire older revisions. It does not
require any kind of a base revision of the object to be stored, as snapshots
are in fact instances of the object’s class themselves, so they can directly be
used in their place5

2.3 Verdict

Based on arguments presented in sections 2.1 and 2.2, change vectors (more
specifically, negative ones) were chosen to be used for the purposes of the
module as their lower storage requirements outweigh the simplicity of operat-
ing with snapshots, partly also because the primary use case of the module
is to be integrated with TermIt, a terminology management tool6, which
seems to benefit from viewing changes individually (first, in a log-like view,
and then being able to reconstruct entire revisions on demand) more than
from viewing the complete revisions immediately and then calculating their
differences.

We have only discovered two advantages of snapshots: (i) being able
to contain several changed attributes in a single revision (mentioned in
Section 2.2.1), which can be easily replicated with change vectors by grouping
them based on matching (or differing by very little) timestamps, and (ii) not

3An open source web content management system, often used to create blog-style
websites.

4https://github.com/WordPress/WordPress/blob/5.8/wp-includes/post.php#L105
5Barring the extra version-marking fields – version in our example in Figure 2.10.
6Also developed at KBSS, available from https://github.com/kbss-cvut/termit.

9

https://github.com/WordPress/WordPress/blob/5.8/wp-includes/post.php#L105
https://github.com/kbss-cvut/termit

2. Change storage format.................................
having to deal with type ambiguity as with vectors on the database level,
which is further discussed in Section 3.2.1.

10

Chapter 3
Data storage solution

Now that we have decided what storage format we are going to use, we can
move forward and take a look at our options of actually storing the data.

As mentioned in the introduction, the module is envisioned to be used in a
context of linked data. There already has been extensive research in the area
of storing linked data using several database approaches and technologies.
Most such experiments arrive at the conclusion that relational databases
are superior in performance compared to both triplestores and other, more
standard NoSQL solutions, such as the graph database Neo4j. Of course,
these experiments are based on querying raw, unversioned RDF data [8][9].
In the case of this module, which operates with relatively simple-to-index
change vectors, the performance difference should be even more pronounced.

However, raw query performance is usually not the biggest selling point for
NoSQL databases of any kind, and neither is it as important a consideration
factor in the design of the versioning module. Therefore, let us take a closer
look at some of the non-relational database solutions, their most significant
advantages and review their fitness for our use case.

3.1 NoSQL databases

Each category of these database solutions has its advantages and ideal use
cases where they excel, which we will discuss based on the sources [10][11].
In general, one of the key advantages of NoSQL is the fact that most of such
databases do not have a fixed/rigid schema and thus enable developers to
prototype against them rapidly.

Key-value stores, illustrated in Figure 3.1, are the simplest NoSQL
databases. They store a value, an arbitrary object without complex intro-
spection by the database engine, under a key—an identifier. They best suit
applications where entire objects can be manipulated based on just their iden-
tifiers; i.e. where no further access to the stored object is required. Probably
the best known example of this category is Redis1, an in-memory key-value
store often used for caching and session data storage, especially in conjunction
with Node.js applications2.

1Homepage: https://redis.io/.
2Based on data from https://www.npmjs.com/package/redis.

11

https://redis.io/
https://www.npmjs.com/package/redis

3. Data storage solution

Figure 3.1: Illustration of the key-value concept. Source: [1]

Document databases, such as MongoDB or Elasticsearch, generally
store self-describing documents in formats like JSON or XML. An example
document is provided in Listing 2. Each document has an unique identifier
(line 2 of the example), equivalent to a primary key in relational databases.
These documents are then grouped into collections, functionally equivalent to
tables in relational databases, which can then be queried based on complex
criteria that may, like in SQL, be based on all attributes of the stored objects.
They are thus suitable for storing documents with semi-lax3 structure and
querying them in a wide variety of ways. MongoDB also offers a notable
advantage of native geographical sharding and data replication capabilities.

1 {
2 "_id" : ObjectId("5d1a729568758c3d46fd0fda"),
3 "from" : {
4 "lon" : 14.3915194,
5 "lat" : 50.1003628,
6 "address" : "Evropská, Prague, Czech Republic"
7 },
8 "date" : ISODate("2019-06-21T00:00:00.000Z"),
9 "track" : {

10 "type" : "Feature",
11 "geometry" : {
12 "coordinates" : [[14.391523, 50.100334]],
13 },
14 "properties" : {
15 "description": null
16 }
17 }
18 }

Listing 2: Example MongoDB document describing a part of a public transport
route.

3Not entirely lax, as the queries still require the document structure to be stable to some
degree, but also not exactly strict, as many attributes of the documents might be missing
in some documents or contain further de-normalized data such as subdocuments or arrays.

12

.................................. 3.1. NoSQL databases

Wide-column stores operate with the concept of column families as a
replacement for tables (or collections). These families are groups of similar
rows, which are in turn groups of columns (often ones that are frequently
queried together) and have a unique key that identifies them. Not every
row has to contain all columns the other documents do, plus columns may
contain non-scalar values such as sets. That is what makes this category fit
for applications with non-normalized, but at the same time flat, data, such
as application and event logging and blog content management. The best
known wide-column store may perhaps be Apache Cassandra. An illustration
of such a store is featured in Figure 3.2.

Figure 3.2: A wide-column store example. Source: [2]

Graph databases draw a lot of attention in the context of social net-
working, where they accurately represent the relationships (arcs or edges)
between individual nodes (vertices). They may operate with both directed
and undirected graphs, where both nodes and relationships may feature any
number of particular attributes. They are applicable to where efficiency of
graph traversal is of concern, as well as applications that might benefit from
similarity-based queries. Neo4j is the most widely used graph database at the
time of writing4, and an illustration of a graph in it is displayed in Figure 3.3.

Triplestores (also known as RDF stores), represented by Apache Jena or
Eclipse RDF4J (formerly Sesame), are perhaps the most interesting mention
in this section. As the name suggests, they are based on RDF triples which are
statements consisting of a subject, predicate and object. These statements
may also be viewed as graphs: an edge (predicate) between two vertices
(subject and object). They are queried using SPARQL, the de facto standard
query language for RDF, which itself is the standard for storing linked data.

4Based on Maven Central repository artifact usage statistics, retrieved in May 2022:
https://mvnrepository.com/open-source/graph-databases.

13

https://mvnrepository.com/open-source/graph-databases

3. Data storage solution

Figure 3.3: Illustration of a Neo4j graph. Source: [3].

Figure 3.4 contains a visualization of a triplestore.

Figure 3.4: Example of a triplestore (in space). Source: [4].

3.2 Relational databases

After the short introduction to NoSQL databases, we can come to the con-
clusion that in our case, none of the presented solutions offer any significant
benefits (such as improved usability), except preventing the type ambiguity
issue (discussed in Section 2.1.1) by not enforcing a rigid schema like rela-
tional databases do. Based on that and the generally inferior performance
of NoSQL stores [9], relational databases were chosen as the more fitting
approach instead.

3.2.1 Tackling type ambiguity

Let us elaborate on the problem of dealing with an attribute that can have
different types of values as is the case with change vectors. A good starting
point is outlined in a Stack Overflow answer to a question dealing with a
similar issue, where two solutions are proposed [12]:

The first is to define a sparse table: create columns for each of the possible
types and only use the applicable column for each row (vector), inserting NULL
values elsewhere. This approach allows two options when defining the table:

14

................................. 3.2. Relational databases

either create columns for all types, regardless of whether they are actually
used in any entity class in the application, or only create columns for the
used types. The second option is prone to breaking when the entity classes
are updated, so the first one is much safer, but also much more wasteful in
terms of storage space.

To mitigate that, a sparse table can be avoided altogether by creating
multiple tables for the vectors, each having a value column of a distinct type.
Null values would not be required, but the complexity of querying such a
database would increase significantly – joins over a vast amount of tables (one
for each type) would be required when looking up changes to even a single
entity class. Combined with the fact that the enumeration of types would
have to be exhaustive (in order not to limit the attribute types an application
can use), this solution is still far from an ideal.

The second solution proposed is to introduce a new column to describe
the attribute’s type. The value of the attribute is then saved in a generic
format, such as JSON5, and stored in either a JSON or a TEXT column. It then
has to be converted to the original type when being read from the database by
the versioning module. This even allows exotic data types to be used in the
application using the module, provided there is an implementation to convert
them to and from JSON. Therefore, this solution seems appropriate in our
case. The change vector class will then be defined as depicted in Figure 3.5.

Figure 3.5: Change vector class definition.

To implement this solution in a future-proof way, the module has to be able
to process data of the most common types (such as strings and basic numeric
types), as well as provide a means for developers to extend the module’s
serialization and deserialization capabilities by implementing their own logic
for processing custom data types.

5JavaScript Object Notation, a modern common data interchange format specified in
https://datatracker.ietf.org/doc/html/rfc8259.

15

https://datatracker.ietf.org/doc/html/rfc8259

16

Chapter 4
API and internal design

Since the module is primarily being developed for usage in conjunction with
JOPA1 and TermIt2 (both developed at KBSS, the latter based on Spring
Boot), it has to be implemented in a JVM language. According to the TIOBE
index3, the most popular of these (as of January 2022) are Java, Groovy and
Kotlin, placing 3rd, 17th and 29th, respectively. Out of those three, I have
the broadest experience with Java, and while I believe that both Groovy and
Kotlin have their applications, I chose to develop the module in Java due to
personal preference and the smoothest interoperability—based on sharing
the same toolchain without introducing a Kotlin compiler, for example—with
both of the aforementioned projects.

Nevertheless, it has been an important design decision to make the module
as reusable as possible. For this reason, runtime dependencies are kept to a
minimum and SOLID4 principles are applied.

As a means to further reduce platform dependencies of the module, the
entire API is designed to be imperative. While this may go against the
convention of current Spring Boot-based applications, where developers might
expect to simply annotate their entity classes and have the module automati-
cally monitor instances for changes, it greatly reduces the potential platform
lock-in.

In order to allow implicit change tracking in their applications, developers
can leverage technologies such as Jakarta Interceptors5 or aspect-oriented
programming, for example using the AspectJ extension for Java6. TermIt
itself utilizes AspectJ, even specifically for this purpose7.

Along with the imperative API goes an annotation marking a class as an
entity whose changes can be tracked: the Audited class-level annotation. The

1https://github.com/kbss-cvut/jopa
2https://github.com/kbss-cvut/termit
3https://www.tiobe.com/tiobe-index/
4Five design principles intended to make software designs more understandable, flexible

and maintainable: the Single-responsibility, Open-closed, Liskov substitution, Interface
segregation and Dependency inversion principles. [13]

5Formerly named Java EE Interceptors, described in the Java EE 6 Tutorial – Overview
of Interceptors: https://docs.oracle.com/javaee/6/tutorial/doc/gkigq.html.

6AspectJ project homepage: https://www.eclipse.org/aspectj/.
7As seen in: https://github.com/kbss-cvut/termit/blob/v2.11.2/src/main/java/

cz/cvut/kbss/termit/aspect/ChangeTrackingAspect.java

17

https://github.com/kbss-cvut/jopa
https://github.com/kbss-cvut/termit
https://www.tiobe.com/tiobe-index/
https://docs.oracle.com/javaee/6/tutorial/doc/gkigq.html
https://www.eclipse.org/aspectj/
https://github.com/kbss-cvut/termit/blob/v2.11.2/src/main/java/cz/cvut/kbss/termit/aspect/ChangeTrackingAspect.java
https://github.com/kbss-cvut/termit/blob/v2.11.2/src/main/java/cz/cvut/kbss/termit/aspect/ChangeTrackingAspect.java

4. API and internal design
change tracker will not look for changes between instances of a class which does
not have this annotation. Entity classes can also contain fields whose changes
should not be recorded. Examples of such fields include generated values,
such as arbitrary and synthetic identifiers, and other transient fields, such as
inferred attributes of objects, like a person’s current age computed from their
birth date, which itself is stored in the database (and change-tracked). For
this purpose, another annotation is introduced: IgnoreChanges. It is to be
used on the field level. Any changes in fields annotated with IgnoreChanges
will not cause change vectors to be created.

What is also an imperative concept is the fact that the client application will
be responsible for providing a database connection. This allows, for example,
applications already using JPA to leverage the same persistence configuration
for change-tracking purposes by simply passing an EntityManager instance
to the JpaStorageStrategy constructor, instead of either having to configure
it again for the change tracker or relying on a third-party solution, such as a
dependency injection framework, which, as already mentioned, would only
cause the module to become unnecessarily vendor- or platform-locked.

To allow simple integration with enterprise Java applications, the module
should expose a primary point of interaction—the ChangeTracker class. It
serves as a facade8 for the client application to interface with the change-
tracking functionality without having to deal with the internals of the module.

When creating a ChangeTracker instance, two dependencies are required
in its constructor. Both are strategies, which we will take a closer look at in
the following section.

4.1 Strategies

While the design choices discussed in the previous chapters are binding for
the initial prototype implementation, we wanted to create an easily extensible
and reusable module. What this meant was that even though a SQL database
had been decided as the backing storage solution and JOPA entity classes as
the primary subjects of tracking, a developer using the module had to have
the option to use both a different entity persistence platform (for business
entities) and a vector storage solution of their own liking.

Thankfully, this issue is tackled relatively frequently in software develop-
ment and there is a conventional way of approaching it – the Strategy design
pattern [14], described in detail in Figure 4.1. In the module, it is used for
the two aforementioned cases: vector storage (StorageStrategy) and entity
class management (EntityStrategy). This way, a developer may create
their own implementations of both strategies and adapt the module to their
environment, such as versioning JPA entities and storing the changes in a
triplestore. Needless to say, the module does contain a JOPA entity strategy
and a JPA storage strategy reference implementation.

8Facade is a structural software design pattern that provides a simplified interface to a
library, a framework, or any other complex set of classes. [14][15]

18

..................................... 4.2. Vector API

Figure 4.1: A visualization and description of the Strategy design pattern.
Source: [5].

Furthermore, a substantial part of both the entity- and storage-related
code may be reused in implementations targeting either a different entity
framework (such as JPA) or a different solution for storing change vectors (like
a triplestore), the BaseEntityStrategy and JsonBasedStorageStrategy
classes are introduced as abstract implementations of the strategy interfaces.

4.2 Vector API

In order to properly isolate the client application from handling change-
tracking internals, such as change vector format, exposing some JSON-specific
fields, such as attributeType9, is not very desirable.

An important consideration that has not yet been taken into account is the
authorship of changes. It can be assumed that a vast majority of the module’s
applications will benefit from (and possibly even require) such functionality
(an example being any change-tracking related to audits). Based on the
requirements of TermIt, as the prototypical client application, a single field
containing the identifier of the user responsible for the change should be
enough. Such a field, provisionally named authorId, has to be added to the
vector model.

During the alteration of the existing vector class, we considered whether
there is any other metadata that may be useful to include as part of change
vectors. In fact, we considered the option of introducing a generic key-value
map of user-defined data as part of the vector, so that applications could
store their specific metadata about entities without us having to alter the
vector model ever again. However, this would require designing a “proper”

9Shown in Figure 3.5.

19

4. API and internal design
way of persisting such maps and, combined with the fact that we could not
come up with any other metadata, we agreed that the authorId field was the
sounder approach. To include this as part of the vector generation, there was
only one way of providing an author identifier (not taking into consideration
vendor lock-in-heavy options like obtaining the user from a Spring Security
Context): drilling it down all the way from the first facade method.

Because the module obviously still has to process JSON data internally, a
JsonChangeVector class is introduced, but it is not part of the public API
and should not be directly used by the client application.

4.3 Exceptions

The last part of the module’s API are exceptions. All exceptions actively
generated (thrown) by the change-tracking module inherit from the common
ChangeTrackingException class10, which itself extends RuntimeException.
This means that all module-created exceptions in are unchecked. This is in
alignment with the general trend of preferring them over checked ones, except
in justified special cases, such as recoverable conditions, which are not the
case here [16].

4.4 API class diagram

Together, the classes discussed in this chapter make up the public API of
the module. A class diagram depicting the application’s public classes and
interfaces is in Figure 4.2.

4.5 Example interaction

An example interaction with a client application is presented in the sequence
diagram in Figure 4.3.

10With the exception of NullPointerException, which may be triggered by several null
checks.

20

..................................4.5. Example interaction

Figure 4.2: Application class diagram.

21

4. API and internal design

Figure 4.3: Example interaction with a client application.

22

Chapter 5
Implementation

During development, some unexpected issues were encountered and handled.
This chapter focuses on these issues and explains the methods and rationale
used for their resolution.

5.1 Type ambiguity handling

Unconstrained generic types cannot be used for entity attributes with JPA
because the underlying implementation would not be able to accurately map
them to a corresponding column type, not even if the column type is explicitly
defined to be JSON: while this approach may be idiomatic for primitives such
as strings or numeric types, there is no predefined implicit behavior for more
complex types, such as collections or even other entities.

Consequently, the Jackson1 library was introduced as a module dependency
in order to imperatively handle the JSON conversion. Its implicit behav-
ior allows mapping JSON values not just to platform primitives, but also
collections and complex objects, such as maps or class instances. Custom
deserializers may also be registered2.

5.2 Handling collections

One of the considerations undertaken while implementing the module was
how to handle collections. Due to the limitations of JSON, all collections
(including subclasses of the Collection interface as well as arrays) have to
be serialized into JSON arrays. This, at first glance, does not seem like much
of an issue: as long as we have another column to store the type in, we should
be able to deserialize those JSON arrays directly into the original type. While
this works out of the box for arrays, i.e. storing the array type in the type
column, such as java.lang.String[] for strings, it is not as straightforward
with Java collections. To specify the element type of a collection, type
parameters are used when writing code, for example List<String>. But

1Available from https://github.com/FasterXML/jackson.
2The change tracker API allows Jackson’s behavior to be configured by optionally passing

a custom ObjectMapper instance to the constructor of JpaStorageStrategy.

23

https://github.com/FasterXML/jackson

5. Implementation....................................
because the module internally uses the getName() method of the Class class
to extract type names, and this method does not return type parameters3,
it would require a custom type name extraction implementation in order
to properly annotate the saved data. I did not want to go down this route
because it would mean designing a universal format and then manipulating
strings, such as composing them to resemble the generic type invocations in
code, which would require a recursive algorithm similar to this one:..1. If the output has not yet been initialized, initialize it as an empty string...2. Get the “root” class name (considering the List<String> example

from before, saved in the myList variable, this would mean calling
myList.getClass().getName(), which will return the name of the
List implementation that was really used4—that may for example be
"java.util.ArrayList") and append it to the output string...3. Check if there are any type parameters using the Reflection API5. If so,
append the type parameter opening character (<). If not, return...4. Retrieve the type parameter class and recursively start this algorithm
again on the retrieved class. This step is notoriously complex, if not
outright impossible without modifying the calling code6...5. Append the type parameter closing character (>) and return the string.

As we can see, this method of manually composing the strings is rather
complex and prone to breakage. Instead, I opted to use a more primitive
approach: a) serialize all collections into JSON arrays, using their respective
source classes without extracting type arguments, b) deserialize arrays into
collections based on the target collection type, and c) not handle “edge cases”
(such as nested collections).

One of the drawbacks of this decision is that complex types in collections
will likely fail to deserialize properly. I fully expected this to prove insufficient
while integrating with TermIt. Surprisingly enough, though, no such issues
have arisen in the integration process; therefore, I consider this solution
sufficient for the purposes of the initial module release. I do, however, believe
that a more complete and resilient solution should be implemented as part of
future work.

3And neither do its sibling methods getSimpleName() and getCanonicalName().
4In case of anonymous classes defined inline, such as

new List<String>() { /* methods' implementation */ }, this method call returns
"$0". If those were to be supported, this step would require a new method, traversing the
class hierarchy until it finds a collection class/interface this anonymous class inherits from.

5var t = ((ParameterizedType)myList.getClass().getGenericInterfaces()[0]);
And then var hasAnyTypeParameters = t.getActualTypeArguments().length > 0;

6Due to compile-time type erasure, as noted in a lengthy discussion on Stack Overflow:
https://stackoverflow.com/q/1901164.

24

https://stackoverflow.com/q/1901164

....................................5.3. JSON columns

5.3 JSON columns

Another interesting revelation was that while MariaDB, PostgreSQL and
H27 all support a JSON column type, they handle insertions (and SELECTs)
differently. My initial understanding was that columns defined as such were
to be used as standard VARCHAR or TEXT ones, with the added capability of
executing JSON-based queries on the stored values and validating the input
strings. This, however, is only the case for MariaDB, which, unlike other
databases (including, perhaps surprisingly, MySQL, with which it shares a
significant part of its history), introduces the JSON column type as an alias for
LONGTEXT (and automatically adds a CHECK constraint calling its JSON_VALID
function to validate the document before saving it into the column). If one
creates a JSON column in PostgreSQL, strings containing JSON cannot be
directly and implicitly inserted with JPA from a String field annotated
with a JSON column type definition8: a PSQLException is thrown when
attempting the insertion.

H2 does allow insertions with the same configuration as mentioned (at least
simple ones – complex INSERTs were not properly tested), but when reading
from the database, there may be unexpected behavior. For example, imagine
saving a string. Converting a raw string into JSON means enclosing it in
double quotes (and possibly escaping some entities, such as embedded double
quotes), e.g. "like this". After persisting and reading this value back
from the database, I expected to receive the original, double-quote-wrapped,
string again. What I got instead was "\"like this\"" – a string wrapped
within another string. A quick search on the Internet9 explained the issue.
The solution was to replace the JSON columnDefinition (the type definition)
with a TEXT one. This resulted in all the databases mentioned properly storing
and retrieving (unchanged) strings, which was the goal here.

5.4 Supporting entities with differing identifiers

Perhaps surprisingly, during the module’s conception, we have not thought of
the scenario where one the user may want to compare two entity instances
differing in their identifier. While this does not make sense in the original
use case of tracking changes across an entity’s lifetime, it may sometimes
be useful to just “diff” (find differences between) two different entities. An
example of where this may be desired is comparing two user accounts when
deduplicating database records.

7An in-memory database regarded as a default when testing JPA-related functionality
in Java applications. Homepage: https://www.h2database.com/html/main.html.

8@Column(columnDefinition = "JSON")
9Namely, a Stack Overflow answer (https://stackoverflow.com/a/59679109) based

on this GitHub issue: https://github.com/h2database/h2database/issues/2389.

25

https://www.h2database.com/html/main.html
https://stackoverflow.com/a/59679109
https://github.com/h2database/h2database/issues/2389

5. Implementation....................................

Figure 5.1: A visualization and description of the Template Method design
pattern. Source: [6].

5.5 Separation of strategy code

As mentioned in Section 4.1, in order to allow easy extension of the module,
I have extracted a significant part of the code that I envision may be reused
for other EntityStrategy and StorageStrategy to BaseEntityStrategy
and JsonBasedStorageStrategy, respectively. Both are abstract classes.
BaseEntityStrategy mostly (with one exception mentioned in the next
paragraph) just declares methods that are likely to be useful when implement-
ing a new EntityStrategy, while JsonBasedStorageStrategy also includes
definitions of methods handling the conversion to and from JSON.

Both of these abstract strategies make sparing use of the Template Method
design pattern [14], where a method implementation in the abstract class
calls an abstract method (which then is implemented in the subclasses). The
design pattern is better explained in the Figure 5.1 illustration. In the case of
JsonBasedStorageStrategy, the save(ChangeVector<?>...) method calls
the abstract saveVector(JsonChangeVector) method, which is implemented
the JPA subclass. In BaseEntityStrategy, getObjectType(Object) calls
the abstract getTypeName(Class<?>).

5.6 Design disagreements and discussions

During development, I came up with several changes to both the API and
the inner design of the module that I thought might improve its usability.
Some of them, such as allowing the comparison of entities differing in IDs

26

................................ 5.7. Source code and license

(discussed in Section 5.4), were accepted by my supervisor, while some were
rejected or heavily modified. Similarly, sometimes my supervisor came to me
with a feature request that we then discussed and came to the conclusion
that implementing it is not viable. This section strives to point out the most
interesting discussions we have had in order to include provide a better view
of what considerations have taken place as part of the development process.. ChangeTracker.compareAndSave(T, T, String) returning a boolean,

representing whether any changes have been found. This was rejected
because it could potentially create a false impression that the client
application does not have to store a new revision of the object because
the change tracker could not find any changes, even though there could
have been some, perhaps because the changed fields have been annotated
with @IgnoreChanges but persisting them in the primary database does
make business sense.. Not treating null the same as an empty collection (Set, for example):
strictly mathematically speaking, a singleton (also known as a 1-tuple or
a unit-set – a set containing a single element) is not equal to the element
itself [17]. However, in practice (at least in the case of TermIt), there is
no difference in the meaning, thus the values are to be treated as the
same (which is the module’s current behavior).

5.7 Source code and license

The module is released under the MIT open-source license with the source code
publicly available at https://github.com/kbss-cvut/change-tracker.

27

https://github.com/kbss-cvut/change-tracker

28

Chapter 6
Evaluation

In order to verify that the created change-tracking module complies with the
expected behavior and is usable in a real-world application, it was necessary
to both extensively test it and integrate it with an existing application.

6.1 Unit and integration tests

The project includes automated tests based on the de facto standard Java
test framework – JUnit 51 (the latest major release at the time of writing).
Extended mocking funcionality is provided by the Mockito library. These
components are both open source and provided under the Eclipse Public
License and MIT License, respectively.

Unit tests follow the UnitOfWork_StateUnderTest_ExpectedBehavior nam-
ing principle2 and cover most non-trivial functionality of the module. Follow-
ing a similar concept used in JOPA, I have separated integration tests from
the module’s implementation into an isolated project which includes a Maven
dependency on Spring Boot, Spring Data JPA, a JPA-compatible database
driver (H2) and KBSS’s JOPA implementation. The demo application itself
does not contain any functionality, but the intended purpose of the separate
project is to provide a clean environment for running JUnit integration tests
covering a JOPA entity’s lifecycle and saving the changes into a real (albeit
in-memory) database. Interim assertions are placed after every logical step.

6.2 Integration with TermIt

To validate the module’s fitness for real use, it was to be integrated with
TermIt, a terminology manager also developed at KBSS3. Prior to the con-
ception of this project, TermIt had already had a change-tracking module,
but a reusable solution was desired so that change-tracking could be effort-
lessly implemented in other applications and projects of the research group,

1https://github.com/junit-team/junit5
2Which is the long-term industry standard (note the year): https://osherove.com/

blog/2005/4/3/naming-standards-for-unit-tests.html.
3Available from https://github.com/kbss-cvut/termit.

29

https://github.com/junit-team/junit5
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.html
https://github.com/kbss-cvut/termit

6. Evaluation
while also centralizing its development to ease bug-fixing and new feature
implementation.

The previous change-tracking implementation included a significant amount
of automated tests. Owing to that, the integration was easy to be thoroughly
tested by retrofitting a portion of the original solution’s tests. While a number
of those are redundant with the tests included in the change-tracking project
itself, for the most part, they were retained for the sake of completeness.
Some tests had to be removed as they focused on unit-testing parts of the
original module that do not have equivalents in the newly developed library.
As it stands now, many of the retrofitted tests are not correctly named –
their class and method names were preserved even though they may have
been named based on classes and methods either that no longer exist or
were renamed to reflect the current structure of the change-tracking code. In
the future, we expect to remove or refactor these tests, but for the sake of
evaluation, they are left in this form.

While replacing the original change-tracking service in TermIt, all of its
original functionality has been preserved, with the sole exception of what
was referred to as PersistChangeRecord – a record of a database entity
(instance) being created. While discussing this with my supervisor, we arrived
at the conclusion that it would also be viable to create a record when deleting
an entity from the database. Both of these features are not possible to be
implemented concisely while retaining the current change vector schema: each
vector, as currently designed, has a (mandatory) field that identifies the entity
attribute which has changed. In the case of the entire entity changing (which
is, semantically speaking, what happens when creating or deleting), such an
identification is not possible. It sure is possible to make this field nullable and
just not provide a value whenever it is not applicable, but that does break
the cleanness of the code and schema design. Therefore, after considering
the importance of creation/deletion change vectors, we have decided against
implementing this functionality in the initial version of the change-tracking
module, and we consider it a part of potential future work.

The source code of TermIt with the change-tracking module integrated is
publicly available online as a fork of the KBSS TermIt repository on GitHub,
at https://github.com/HolecekM/termit. The modified code including
the integration is all placed in the feat/changetracking_dev branch.

30

https://github.com/HolecekM/termit

Chapter 7
Conclusions and future work

We have established that negative-delta vectors are the most fitting format
of storing changes to domain objects for our use case, based on low storage
requirements and relative simplicity of operation with them. Furthermore,
based on cited performance benchmarks and the lack of benefits from using a
NoSQL store, we have decided to use relational databases as the data storage
solution for the module. A basic yet extensible imperative API has been
designed with SOLID principles in mind and a prototype supporting basic
data types has been created along with a set of test scenarios demonstrating
the functioning of the module.

The module has successfully been designed, developed and integrated with
the TermIt terminology manager and has replaced its original change-tracking
solution. As such, all assignment goals have been fulfilled and this bachelor’s
thesis can be labeled as complete.

7.1 Future work

While the thesis itself can be considered complete, the development of the
module is far from finished: several “nice-to-have” (and generally lower-
priority) features have been discussed and placed on the roadmap, such as
change vectors, or more generally, records, of object creation and deletion,
first mentioned in Section 6.2. These are considered viable additions to the
current capabilities of the change tracker. However, implementing them will
likely require a significant overhaul of the change vector model.

As part of this overhaul, the whole concept of negative change vectors
is to be revisited: a major motivation for introducing it was reducing the
complexity of retrieving the latest object revision from the database by
decreasing the required amount of retrievals and setter method calls. This
does not take into account the fact that the tracked entities themselves and
change vectors are, at least in the case of the prototype’s integration with
TermIt, not stored in the same database, and in order to retrieve the latest
revision of an entity, it can be directly loaded from its respective database (a
triplestore) and no vectors have to be processed at all.

Section 5.2 mentions that the current handling of Java collections may prove
insufficient when the module is used with an application requiring complex

31

7. Conclusions and future work
objects in collections to be compared (for the purpose finding differences
between them). We already have a solution in mind: instead of saving the
original collection type in the attributeType column, we may instead save
the array type of the element (i.e. "String[]" for both string lists and sets)1.
When deserializing such a value, List.class would be passed to Jackson,
no matter the original collection. The rationale behind always using a List
instead of accurately reflecting the original type is that the JSON array does
preserve the order of elements and care should be taken not to lose it in the
conversion process. In the case of sets, a new Set can always be created from
a List instance without losing any information in the process. Doing the
opposite—first deserializing into a Set and then potentially converting to
a List, if required—introduces the risk of both losing the original element
order and losing some elements themselves, as a List can contain several
elements “equal to each other” (whose equals(Object) methods return true
when called on each other), while a Set cannot2. This approach breaks native
array type compatibility, so it still must be refined in order to accommodate
for all possible use-cases.

One of the next steps for this project is also the implementation a triplestore-
based StorageStrategy. This is mainly to allow TermIt to store both change
vectors and the change-tracked entities in the same database.

Another potentially useful capability that the module currently lacks is
object reconstruction. This is discussed in greater detail in Chapter 2, but
because the change tracker is not responsible for managing the entity it-
self, it will likely require a significant amount of code to be written on
the side of the client application. The change tracker already exposes the
getAllForObject(String, String) method, which allows the user to re-
trieve all change vectors pertaining to an object identified by its type and
identifier, which can serve as the basis for the object reconstruction. How-
ever, we want to examine opportunities to extract as much of this logic as
possible into the change-tracking module, as the code on the side of the client
application is likely to be very similar, no matter the client application.

1This is a simplification for the sake of readability. In reality, String[].class.getName()
(which is the approach used to obtain class names) would return "[Ljava.lang.String;".

2As per the Set interface documentation: https://docs.oracle.com/javase/8/docs/
api/java/util/Set.html.

32

https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

Glossary

Acronym Meaning
API Application Programming Interface
JOPA Java OWL Persistence API
JPA Java Persistence API
JSON JavaScript Object Notation
JVM Java Virtual Machine
KBSS Knowledge Based Software Systems Group
RDB Relational Database
RDBMS Relational Database Management System
RDF Resource Description Framework
SQL Structured Query Language

Table 7.1: Glossary.

33

34

Bibliography

[1] Clescop. (2016) Key value concept illustration. San Francisco, California.
[Online]. Available: https://commons.wikimedia.org/wiki/File:KeyValue.
PNG

[2] S. Uzunbayir, “A Comparison Between Relational Database
Models and NoSQL Trends On Big Data Design Challenges
Using A Social Shopping Application,” Ph.D. dissertation, 06
2015. [Online]. Available: https://www.researchgate.net/publication/
324261323_A_Comparison_Between_Relational_Database_Models_
and_NoSQL_Trends_On_Big_Data_Design_Challenges_Using_
A_Social_Shopping_Application

[3] (2022) Getting Started with Cypher. San Mateo, CA, United States.
[Online]. Available: https://neo4j.com/developer/cypher/intro-cypher/

[4] A. Basse, F. Gandon, I. Mirbel, and M. Lo, “Incremen-
tal characterization of RDF Triple Stores,” 04 2012. [On-
line]. Available: https://www.researchgate.net/publication/265359709_
Incremental_characterization_of_RDF_Triple_Stores

[5] A. Shvets and D. Zhart. (c2014-2022) Strategy. Kamianets-Podilskyi,
Ukraine. [Online]. Available: https://refactoring.guru/design-patterns/
strategy

[6] ——. (c2014-2022) Template Method. Kamianets-Podilskyi,
Ukraine. [Online]. Available: https://refactoring.guru/design-patterns/
template-method

[7] M. Ledvinka and P. Křemen, “JOPA: Accessing Ontologies in an
Object-oriented Way,” Proceedings of the 17th International Conference
on Enterprise Information Systems, pp. 212–221, 2015-4-27. DOI
10.5220/0005400302120221. [Online]. Available: http://www.scitepress.
org/DigitalLibrary/Link.aspx?doi=10.5220/0005400302120221

[8] D. Hernández, A. Hogan, C. Riveros, C. Rojas, and E. Zerega,
“Querying Wikidata: Comparing SPARQL, Relational and Graph
Databases,” The Semantic Web – ISWC 2016, pp. 88–103,

35

https://commons.wikimedia.org/wiki/File:KeyValue.PNG
https://commons.wikimedia.org/wiki/File:KeyValue.PNG
https://www.researchgate.net/publication/324261323_A_Comparison_Between_Relational_Database_Models_and_NoSQL_Trends_On_Big_Data_Design_Challenges_Using_A_Social_Shopping_Application
https://www.researchgate.net/publication/324261323_A_Comparison_Between_Relational_Database_Models_and_NoSQL_Trends_On_Big_Data_Design_Challenges_Using_A_Social_Shopping_Application
https://www.researchgate.net/publication/324261323_A_Comparison_Between_Relational_Database_Models_and_NoSQL_Trends_On_Big_Data_Design_Challenges_Using_A_Social_Shopping_Application
https://www.researchgate.net/publication/324261323_A_Comparison_Between_Relational_Database_Models_and_NoSQL_Trends_On_Big_Data_Design_Challenges_Using_A_Social_Shopping_Application
https://neo4j.com/developer/cypher/intro-cypher/
https://www.researchgate.net/publication/265359709_Incremental_characterization_of_RDF_Triple_Stores
https://www.researchgate.net/publication/265359709_Incremental_characterization_of_RDF_Triple_Stores
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005400302120221
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005400302120221

7. Conclusions and future work
2016. DOI 10.1007/978-3-319-46547-0_10. [Online]. Available: https:
//link.springer.com/10.1007/978-3-319-46547-0_10

[9] F. Ravat, J. Song, O. Teste, and C. Trojahn, “Efficient querying of multi-
dimensional RDF data with aggregates: Comparing NoSQL, RDF and re-
lational data stores,” International Journal of Information Management,
vol. 54, 2020. DOI 10.1016/j.ijinfomgt.2020.102089. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0268401219306097

[10] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino,
“Persisting big-data: The NoSQL landscape,” Information Systems,
vol. 63, pp. 1–23, 2017. DOI 10.1016/j.is.2016.07.009. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0306437916303210

[11] M. Svoboda, “Introduction: Big Data, NoSQL
Databases,” Database Systems 2. [Online]. Avail-
able: https://www.ksi.mff.cuni.cz/~svoboda/courses/211-B4M36DS2/
lectures/B4M36DS2-Lecture-01-Introduction.pdf

[12] G. Edmonds. (2013) Sane way to store different data types within same
column in postgres. New York City, New York, U.S. [Online]. Available:
https://stackoverflow.com/a/18233822

[13] R. C. Martin, Design Principles and Design Pat-
terns. www.objectmentor.com, 2000. [Online]. Avail-
able: https://web.archive.org/web/20150906155800/http://www.
objectmentor.com/resources/articles/Principles_and_Patterns.pdf

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Boston: Addison-Wesley, c1995. ISBN 978-0201633610

[15] A. Shvets and D. Zhart. (c2014-2022) Facade. Kamianets-Podilskyi,
Ukraine. [Online]. Available: https://refactoring.guru/design-patterns/
facade

[16] J. Bloch, Effective Java, Third ed. Boston: Addison-Wesley Professional,
2017, pp. 293–300. ISBN 978-0134686097

[17] Wikipedia contributors, “Singleton (mathematics),” 2022. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Singleton_
(mathematics)&oldid=1071184601

36

https://link.springer.com/10.1007/978-3-319-46547-0_10
https://link.springer.com/10.1007/978-3-319-46547-0_10
https://linkinghub.elsevier.com/retrieve/pii/S0268401219306097
https://linkinghub.elsevier.com/retrieve/pii/S0306437916303210
https://www.ksi.mff.cuni.cz/~svoboda/courses/211-B4M36DS2/lectures/B4M36DS2-Lecture-01-Introduction.pdf
https://www.ksi.mff.cuni.cz/~svoboda/courses/211-B4M36DS2/lectures/B4M36DS2-Lecture-01-Introduction.pdf
https://stackoverflow.com/a/18233822
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://refactoring.guru/design-patterns/facade
https://refactoring.guru/design-patterns/facade
https://en.wikipedia.org/w/index.php?title=Singleton_(mathematics)&oldid=1071184601
https://en.wikipedia.org/w/index.php?title=Singleton_(mathematics)&oldid=1071184601

	Introduction
	Change storage format
	Change vectors
	Data type ambiguity
	Viewing a change log
	Viewing complete revisions

	Snapshots
	Viewing a change log
	Viewing complete revisions

	Verdict

	Data storage solution
	NoSQL databases
	Relational databases
	Tackling type ambiguity

	API and internal design
	Strategies
	Vector API
	Exceptions
	API class diagram
	Example interaction

	Implementation
	Type ambiguity handling
	Handling collections
	JSON columns
	Supporting entities with differing identifiers
	Separation of strategy code
	Design disagreements and discussions
	Source code and license

	Evaluation
	Unit and integration tests
	Integration with TermIt

	Conclusions and future work
	Future work

	Glossary
	Bibliography

