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Abstract

This bachelor thesis deals with the de-
sign and implementation of a distributed
MES (Manufacturing Execution System)
suitable for the control of an industrial
production line in the Testbed for Indus-
try 4.0 at CTU CIIRC. Its aim is to cre-
ate a distributed MES, whose individual
instances will be directly connected to
the individual components of the produc-
tion line, instead of traditional control
(according to the automation pyramid:
ERP −→ MES −→ SCADA −→ PLC −→ de-
vices). The implementation is written in
Python 3.10 programming language. It
uses the OPC UA protocol to commu-
nicate with production line components.
The implementation is fully integrated
with other software components (Digital
Twin, AI planner, ERP system) that have
been developed for Testbed in the past.
It also has a web interface that facilitates
control and visualization of the manufac-
turing process (both the entire process
and individual MES instances). Testing
on the production line has shown that the
system is fully functional and meets all
specified requirements.
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OPC UA, HTTP/REST, AI, Digital
Twin
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Intelligent Systems for Industry and
Smart Distribution Networks
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Czech Technical University in Prague

Abstrakt

Tato bakalářská práce se zabývá návrhem
a implementací distribuovaného MESu
(Manufacturing Execution System) vhod-
ného pro řízení průmyslové výrobní linky
v Testbedu pro Průmysl 4.0 při ČVUT
CIIRC. Jejím cílem je vytvořit distribuo-
vaný MES, jehož jednotlivé instance bu-
dou propojeny přímo s jednotlivými kom-
ponentami výrobní linky, namísto tradič-
ního řízení (dle automatizační pyramidy:
ERP −→ MES −→ SCADA −→ PLC −→ za-
řízení). Implementace je napsaná v pro-
gramovacím jazyce Python 3.10. Ke ko-
munikaci s komponentami výrobní linky
používá protokol OPC UA. Implementace
je plně integrovaná s dalšími softwaro-
vými komponentami (Digitální dvojče, AI
plánovač, ERP systém), které byly v mi-
nulosti pro Testbed vyvinuty. Dále má
také webové rozhraní, které umožňuje sys-
tém ovládat a visualizovat stav výrobního
procesu (jak celého procesu, tak jednot-
livých instancí MESu). Testování na vý-
robní lince prokázalo, že systém je plně
funkční a splňuje všechny specifikované
požadavky.

Klíčová slova: MES, Průmysl 4.0,
Python, OPC UA, HTTP/REST, AI,
Digitální dvojče
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Chapter 1

Introduction

“Currently, we are witnessing the 4th industrial revolution that is related to
the smart automation based on the use of Cyber-Physical Systems in industry,
which are complemented with the Internet of Things and Artificial Intelligence
(AI) technologies, that are customized for industrial application” [1]. This
new Industry 4.0 (I40) requires development of new digitalized and highly
flexible/modular systems in all areas of industry at all levels of the industrial
pyramid1. One of the crucial systems is Manufacturing Execution System
(MES) that is responsible for interpreting orders from the Enterprise Resource
Planning (ERP) and executing their production. “The main functionalities
of the MES are data acquisition and abstraction, detailed scheduling of oper-
ations, resource allocation and control, dispatching production to machines
and workers, controlling product quality, and managing the maintenance of
equipment and tools” [14].

A state-of-the-art MES should follow the I40 trends and comply with the
I40 requirements [15] such as:

. Plan/schedule tasks in the production line according to its current state.. Employ advanced AI planning.. Implement advanced optimization algorithms for replanning/rescheduling
the production and maintenance plans in case of failure. Facilitate integration of autonomous equipment.

1https://www.researchgate.net/figure/The-automation-pyramid-according-to-the-ISA-
95-model-The-five-levels-0-5-are-defined_fig2_326224890
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1. Introduction .....................................
. Use Open Platform Communication Unified Architecture (OPC UA) [6]

for communication with industrial components.

The most prominent approach to designing a MES that would meet these
requirements is the Multi-Agent or holonic paradigm. One of the proposed
architectures is PROSA [4] which is based around the use of holons, au-
tonomous units each having a specific function facilitating the production
process using negotiation among themselves. An adaptation of this architec-
ture is ADACOR [5] which has been utilized in several pilot studies. However
this approach proved very difficult to implement in industrial practice as
discussed in [7]. There is also an ongoing project in Testbed for Industry 4.0
at CIIRC CTU2 trying to implement a Multi-Agent MES. This MES has
been in development for about three years with many technological barriers
still to overcome.

There are two main motivation factors for this thesis. Firstly, a new
MES system is needed in Testbed for Industry 4.0 to make use of newly
developed technologies such as central PyAutomationML[11] configuration
and description file and Digital Twin. A MES which would enable better
visualization of the production process and more control over it. Secondly,
there is currently a gap in the market for MESes suitable for controlling I40
production lines.

Therefore the aim of this thesis is to design and implement a MES for
the experimental production line located at Testbed. The MES should be
written in Python 3, use OPC UA for communication, and make use of
currently available systems at Testbed. It should be a distributed system
to allow for greater flexibility and robustness and have a web interface to
facilitate visualization and control. However, given the problems connected
to development of Multi-Agent MESes so far, the MES should build on the
concepts currently utilized in industry and try to extend them with the use
of advanced AI planning, Digital Twins and decentralization instead of trying
to change the paradigm entirely.

2https://www.ciirc.cvut.cz/cs/teams-labs/testbed/
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Chapter 2

Testbed for Industry 4.0

In this chapter, all the components previously implemented in Testbed for
Industry 4.0 at CIIRC CTU1 are specified. These components and their
respective interfaces/message types are depicted in Figure 2.1. This figure
also shows how the proposed MES should fit into the existing system and
interact with it. The individual components are further described in the
following sections.

I have developed some of the systems described in this chapter. All such
systems were developed during my previous work. They are related to this
thesis, but they are not to be considered part of the thesis.

1https://www.ciirc.cvut.cz/cs/teams-labs/testbed/
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2. Testbed for Industry 4.0 ................................

Figure 2.1: Testbed production line architecture

2.1 Testbed Production Line

The production line consists of three KUKA2 Agilus robots, one KUKA Iiwa
robot, and one KUKA Cybertech robot (which was added during my work on
the thesis). A Montrac monorail transportation system (Montrac3) connects
the robots and their workstations. There are currently four shuttles operating
on Montrac, but the number of shuttles can be flexibly changed (Montrac
can operate one to six shuttles). The physical structure of the line can be
seen in Figure 2.2. Resources (robots and shuttles) can be controlled via their
individual OPC UA4 interfaces. A photo of the real production line can be
seen in Figure 2.3.

2https://www.kuka.com/
3https://www.montratec.de/en/
4https://opcfoundation.org/about/opc-technologies/opc-ua/
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............................... 2.2. Digital Twin and Planner

Figure 2.2: Testbed production line structure

2.2 Digital Twin and Planner

“Digital Twin (DT) refers to the virtual copy or model of any physical entity
(physical twin) both of which are interconnected via exchange of data in
real time. Conceptually, a DT mimics the state of its physical twin in
real time and vice versa. Application of DT includes real-time monitoring,
designing/planning, optimization, maintenance, remote access, etc.” [16]

In Testbed a digital twin together with an AI planner [9] [12] is also
implemented. The digital twin contains a specification of the current state
of the production line in PDDL (Problem Domain Definition Language5)
format. Along with the state, the digital twin has a domain specification
which forms a mathematical model of the production line written in PDDL.
It contains declarations of types, constants and predicates, and definitions
of all PDDL actions that can be performed by the digital twin/production
line. Each action is parameterized and specified by its pre-conditions and
effects. An example of domain and state/problem specification can be seen
in Figure 2.4. The digital twin contains an interpreter that can apply these
PDDL actions (usually committed by MES) on the specified PDDL state,
thus changing it. In this way a real-time state synchronized with the real
production line can be kept by the digital twin. Using the interpreter the
digital twin can also validate if a PDDL action can be safely executed on
the real production line in a given PDDL state. Given a feasible PDDL goal
(see Fig. 2.5) with current PDDL state the planner generates a production
plan to reach this goal. The production plan (LispPlan [19] e.g. Fig. 2.6)
consists of individual PDDL actions comprising a DAG (Directed Acyclic
Graph) represented in Lisp syntax6. In this DAG, vertices are tasks/actions
and edges are dependencies among these tasks/actions where the start of

5https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
6https://lisp-lang.org/
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2. Testbed for Industry 4.0 ................................
the edge is the requirement that needs to be satisfied before the target of
the edge can be executed. Visualization of such DAG can be seen in Figure
4.3. This plan can then be interpreted by a MES. The services of the digital
twin and the planner described above are accessible using HTTP/REST 7

GET/POST requests [19].

2.3 ERP

I have also implemented an Enterprise Resource Planning (ERP) system
for the Testbed production line. In this context, it serves only to manage
products, orders, and resources. It contains a database of products available
to be made on the production line. This database can be updated with new
products during run-time. The ERP also uses the planner to visualize which
products can be produced/are available on the production line in its current
state. The availability of products is updated using the planner whenever the
state of the production line/digital twin changes. Currently, only 3D printed
cars can be assembled on the production line. These cars are assembled
from three parts, a cabin, a body and a chassis (part variants can be seen
in Fig. 2.7). Each part can have different colors and the selection of these
colors and also the part shapes can be easily extended. The cars in different
color combinations can be ordered from the ERP systems website (see Fig.
2.8). These orders are queued for production on the Testbed production
line. Next order to be processed by the production line can be obtained via
a HTTP/GET request. The ERP returns an order in the form of a PDDL
goal (e.g. Fig. 2.5). This goal can be directly passed on to the planner.
After completing production of an order, the ERP can be notified using
a HTTP/GET request. The ERP keeps records of all orders (queued, in
production, and already produced). Another feature of the ERP is that it has
an interface for communication with the digital twin and enabling/disabling
resources (robots, shuttles) that can be used in planning/production.

2.4 PyAutomationML configuration

All the resources and related software components located at the Testbed
production line are configured in a central PyAutomationML file [11]. PyAu-
tomationML is an extension of AutomationML open format. “AutomationML
is a comprehensive XML based object-oriented data modeling language. It

7https://restfulapi.net/
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................................ 2.5. Virtual Production Line

allows the modelling, storage and exchange of engineering models covering a
multitude of relevant aspects of engineering. AML provides a comprehensive
set of flexible mechanisms and innovations to model today’s engineering
aspects as well as future engineering aspects to come. Its language character-
istics allow to model existing or new domain models.” [2]

Each robot and shuttle are described in the PyAutomationML configura-
tion file along with the specification of OPC UA servers controlling them
according to the best-practice recommendation [3]. This means that there is
a one-to-one correspondence to any interface that controls a resource in the
PyAutomationML file. Furthermore, translations between PDDL actions and
variable changes in the resources (via OPC UA interface) are also defined in
the configuration file. These translation descriptions would not be possible
without the Python extension provided by PyAutomationML.

The URLs and interfaces of the digital twin, planner, ERP and virtualiza-
tion can be also found in the configuration file.

2.5 Virtual Production Line

During my previous work I have also implemented a virtualized version of
the Testbed production line. Its purpose is to aid the development of new
systems and make the debugging of new software easier. This virtualization
has the same OPC UA interface as the real production line which makes it
easily interchangeable with the real line from the perspective of a control
system. This is achieved using the central PyAutomationML configuration
file. It also automatically checks if the actions submitted via the OCP UA
interface are feasible/valid using the digital twin. This makes it perfect for
debugging.

9



2. Testbed for Industry 4.0 ................................

Figure 2.3: Testbed production line
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Figure 2.4: An example of a PDDL domain and state adopted from [12]
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2. Testbed for Industry 4.0 ................................

(:goal
(and

(exists
(?P1 − POSITION ?P2 − POSITION ?P3 − POSITION ?S −

RESOURCE)
(and

(RESOURCE_CONTAINS_PART_AT ?S
PART−TYPE−T−TRANSPORT
PART−BLACK−CHASSIS ?P1)

(RESOURCE_CONTAINS_PART_AT ?S
PART−TYPE−T−TRANSPORT
PART−YELLOW−DUMPER ?P2)

(RESOURCE_CONTAINS_PART_AT ?S
PART−TYPE−T−TRANSPORT PART−SILVER−CABIN
?P3)

(IS_SHUTTLE ?S)
(RESOURCE_IN_STATION ?S S200)

)
)

)
)

Figure 2.5: PDDL goal example

12



................................ 2.5. Virtual Production Line

(define
(task building_truck)
(:location testbed.ciirc.cvut.cz)
(define

(task 0)
(:location montrac)
(:action (SHUTTLE_SWAP_AND_LOCK SHUTTLE2 SHUTTLE5

S200 S23)))
(define

(task 1)
(:requirements 0)
(:location R3)
(:action (ROBOTIC_PICK R3 SHUTTLE2 S23 X0_Y5_Z7_R0

PART−WHITE−STAKEBED PART−TYPE−T−TRANSPORT))
)
(define

(task 2)
(:requirements 1)
(:location R3)
(:action (ROBOTIC_PLACE R3 R3_TABLE SVR3 X2_Y6_Z7_R0

PART−WHITE−STAKEBED PART−TYPE−T−STORAGE)))
(define

(task 3)
(:requirements 1 2)
(:location R3)
(:action (ROBOTIC_PICK R3 SHUTTLE2 S23 X0_Y21_Z7_R90

PART−BLUE−CABIN PART−TYPE−T−TRANSPORT))
)
(define

(task 4)
(:requirements 2 3)
(:location R3)
(:action (ROBOTIC_PLACE R3 R3_TABLE SVR3 X−9_Y2_Z9_R90

PART−BLUE−CABIN PART−TYPE−T−STORAGE))
)
(define

(task 5)
(:requirements 0)
(:location montrac)
(:action (SHUTTLE_SWAP_AND_LOCK SHUTTLE3 SHUTTLE5

S100 S200)))
(define

(task 6)
(:requirements 5)
(:location R20)
(:action (ROBOTIC_PLACE R20 SHUTTLE5 S100 X0_Y5_Z7_R0

PART−SILVER−TANK PART−TYPE−T−TRANSPORT))
)

)

Figure 2.6: LispPlan example (corresponds to the LispPlan visualized in Fig.
4.3, 4.2)
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Figure 2.7: Parts that can be used to assemble the 3D printed car
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Figure 2.8: ERP order web page
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Chapter 3

Algorithms

With regard to the requirements on an Industry 4.0 MES and the existing
systems in Testbed, I designed two algorithms. First, we have the initialization
Algorithm 1 used to extract the necessary configuration information from the
central PyAutomationML configuration file and start the MES. The second is
the algorithm to interpret and process a LispPlan using a distributed MES 2.
This general algorithm is also used in an article [10] submitted for IEEE SMC
20221 that I am a co-author of.

3.1 Initailization

The initialization procedure described in Algorithm 1 has two arguments.
The first argument, location, is the MES instance identifier in the form of
a PDDL location [19]. The second argument, config_file, is a path to the
central PyAutomationML configuration file. The file is then opened as config
(line 2). After that, the configuration for the MES instance specified by
location is found (line 3). Then all the specifications of resources (that the
MES controls) are found (lines 6–12). Following this, the digital twin and
ERP configurations are found. Using this information, an instance of MES is
created. Finally, the web server controlling the MES instance is created and
started.

1https://ieeesmc2022.org/
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3. Algorithms .....................................
Each instance of MES (that is uniquely identified by its location) is started

by Algorithm 1 at its specified domain. All instances together form a network
of MESes – distributed MES. An example of such a network of MES instances
and I40 devices can be found in Figure 5.1. In this figure, MES0 is considered
as a main MES instance and is the only instance that can accept a new
LispPlan from the ERP and afterwards redistribute parts of it to subordinate
MESes. As can be seen in the figure, this redistribution continues gradually
on all instances of the network with each instance communicating only with
its parent and direct children. After redistribution, each instance starts
processing its part of the LispPlan using the devices available to it. The
processing of a LispPlan by such a network of MESes is described in Algorithm
2. This algorithm is used by all instances in the network.

Algorithm 1: Initialize the MES instance
1 procedure initialization(location : string identifying MES, config_file : path

to PyAutomationML);
2 config = Load config_file;
3 mes_config = Find the MES configuration in config using location;
4 mes_opcua_clients = ∅;
5 mes_resources = ∅;
6 foreach OPC UA server in config do
7 resources = Find all resources in config that belong to both location and

OPC UA server ;
8 if resources ̸= ∅ then
9 rc = OPC UA client for OPC UA server ;

10 Add rc to mes_opcua_clients;
11 foreach resource in resources do
12 Add resource to mes_resources;

13 dt = Find Digital Twin specification in config;
14 erp = Find ERP specification in config;
15 mes = Instantiate MES with: mes_opcua_clients, mes_resources, config_file,

dt;
16 Start the web server with: mes, config_file;

3.2 LispPlan execution

The procedure MES described in Algorithm 2 has two arguments: plan which
is a LispPlan or its redistributed part and source which is URL of a MES where
the LispPlan was delegated from or None if plan is the main LispPlan. First, all
parts of plan that can be delegated to another MES instance are redistributed
and the addresses of these MES instances are stored in mes_pool (lines 5–8).
After that, all remaining tasks that were not delegated are processed by the

18



.................................. 3.2. LispPlan execution

MES instance using the resources that are under its control (lines 9–33). The
tasks are all processed concurrently in separate threads. First, the task state
is initialized to QUEUED, then after all requirements for processing the task
are met, the state is set to IN_PRODUCTION and the task is executed on the
production line. If its processed successfully its state is set to DONE otherwise
it is set to FAILED. Each change in task state is immediately communicated
to all MES instances in mes_pool. Also all task updates received from other
MES instances are reflected in the currently processed plan and redistributed
to MES instances in mes_pool. The procedure ends if either all tasks are
DONE or FAILED. If any of the tasks fail the procedure can be restarted after
the problem that caused the failure is fixed.

3.2.1 Correctness and termination

First I will prove the partial correctness, then termination of Algorithm 2
and last the total correctness. For the sake of simplicity, let us assume that
the plan is a finite DAG with states of the tasks as vertices and requirements
as directed edges.

Definition: The requirements of vertex v are met if all vertices that have
an edge directed to vertex v are in the DONE state.

Definition: DAG G is consistent if every vertex v from G is in one of the
following states:

. QUEUED if the requirements of v are not met. IN_PRODUCTION if the requirements of v are met and v has not yet been
successfully processed. DONE if the requirements of v are met and v has been successfully pro-
cessed in state IN_PRODUCTION

Definition: Step is when Algorithm 2 changes a consistent DAG G into a
consistent DAG G′ where G′ differs form G in at least one vertex’s state.

Partial correctness means that step of Algorithm 2 is correct.
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We prove partial correctness by exhaustion. From state QUEUED a vertex’s

state is changed to IN_PRODUCTION only if all the requirements are satisfied
(line 13). From state IN_PRODUCTION the state is changed to DONE only if the
processing of vertex was successful (lines 19, 23, 24). If the processing was
not successful the problem is resolved manually and the whole algorithm is
failed. Therefore, after doing a state change/step on a consistent DAG the
resulting DAG is also consistent or the algorithm failed.

To prove termination let us assume that the processing of a vertex is finite.
Because there is only a finite number of possible combinations of vertex states
for a finite DAG G and because transitions between vertex states are possible
only in one direction (a reverse change of state is not possible) the number
of steps (each will change G by definition) for G must be also finite (same
combinations of vertex states in G cannot be reached by doing steps).

To prove total correctness let us assume that the input DAG G has all
vertices in state QUEUED or IN_PRODUCTION if they do not have any input
edges. Such G is consistent by definition and is the result of parallel execution
of code on lines 12–14. By induction, after doing a finite number of steps the
algorithm will terminate with G’ in a consistent state or failed. If it has not
failed all vertices of G’ must be in state DONE. This statement can be proved
by contradiction.

Figure 3.1: An example of distributed MES network with I40 devices
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Algorithm 2: Processing of a LispPlan with distributed MESes.

1 procedure MES(plan: LispPlan, sourcea: identification of where the plan came
from)

2 mes_pool = ∅ /*A set that can contain only MESes that are direct children or
parent.*/;

3 if source is not None then
4 Add the parent MES from source to mes_pool;
5 foreach task in plan using DFS or BFS orderingb do
6 if task is not yet delegated and there is another ready MES m that is ablec to

process task then
7 Delegate the task and all its sub-tasks to MES m as a new standalone

sub-LispPlan;
8 Add MES m to mes_pool;

9 foreach task in plan where task is not delegated to another MES do
10 if task can be processed by the current MES then
11 begin a new thread as t
12 Set the state of task to QUEUED and sync it with MESes from mes_pool;
13 wait until all task requirements are fulfilledd;
14 Set the state of task to IN_PRODUCTION and sync it with MESes from

mes_pool;
15 if task contains an action then
16 if the action is successfully validated by the Digital Twin then
17 Process the action on the real hardware;
18 if the action is processed successfully then
19 Set the state of task to DONE and sync it with MESes from

mes_pool;
20 Commit changes to the Digital Twin;
21 terminate t;

22 else
23 wait until all its sub-tasks are processed or some sub-task is failed;
24 if all sub-tasks were processed successfully then
25 Set the state of task to DONE and sync it with MESes from

mes_pool;
26 terminate t;

27 Set the state of task to FAILED and sync it with MESes from mes_pool;
28 Report an error and resolve the problem with the Digital Twin;
29 terminate t;

30 else
31 /*task cannot be processed on the current MES infrastructure*/;
32 Set the state of task to FAILED and sync it with MESes from mes_pool;
33 Report an error and terminate the MES procedure.

34 repeat
35 if task state changese then sync plan and redistribute the change to MESes in

mes_pool;
36 until plan is completedf or MES is stopped;

ato distinguish between a main LispPlan (source==None) or a redistributed part of that
LispPlan on a specific sub-MES.

bany parent must be processed prior to its children
cdetermined from task location
dall tasks specified in requirements are in DONE state and the parent task is in

IN_PRODUCTION state
esync is received from another MES
fAll tasks including all sub-tasks in plan are in DONE state.
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Chapter 4

PyMES Implementation

I implemented a distributed MES, called PyMES, using the algorithms
described in Chapter 3. This chapter describes how I implemented PyMES.
It contains information on the overall functionality of the system and specific
solutions and classes that I programmed, and their relation to the algorithms
described in Chapter 3. A high level overview of classes described in this
chapter and their relations can be seen in UML1 notation in Figure 4.1.

Figure 4.1: Class diagram of the PyMES in UML notation

1https://www.uml.org/
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4.1 Parallelization

PyMES takes a LispPlan (e.g. Fig. 2.6) and controls the production line
according to it. Because the resources on the production line can be operated
in parallel, PyMES must allow parallel execution and supervision of tasks.
Natural ways to deal with asynchronous code execution in Python 3 are either
Multithreading or Multiprocessing [8]. I chose to use Multithreading2 because
it makes access to shared variables easier and safer (due to GIL3). Also, the
application is not very computation intensive and is very I/O intensive, which
means that the overall performance of the application will not be negatively
affected by the sequential nature of Python Thread implementation (due to
GIL). Because of this, most functions in this application are made (thread
safe) so they can be called from multiple threads without negative interference
and side effects.

4.2 LispPlan

To work with LispPlans easily in Python 3 I needed a suitable data structure
to access the LispPlan. I chose to implement a tree structure consisting of
objects corresponding to individual tasks in the LispPlan. To accomplish this,
I have created two classes Task and Plan that can be found in planning.py.
To deal with the requirements that can be located in a different part of the
LispPlan/PyMES instance, I implemented the ExternalTask class that has
the basic properties of the Task class but does not contain any execution
specific task data.

4.2.1 Task class

The Task class inherits from the NodeMixin class from the publicly available
Python Anytree module4. This allows us to construct a Task tree structure
that is one-to-one with the structure of tasks in a LispPlan. Each Task
instance represents one task in the plan and contains information about both
– its parent task and children tasks. This means that from any given Task

2https://docs.python.org/3/library/threading.html
3Global Interpreter Lock
4https://anytree.readthedocs.io/en/2.8.0/
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instance, all its subtasks are also available. Task class has the following
attributes:

__init__(task_id, plan, location, requirements, action, parent, chil-
dren, virtual)

1 Store arguments to their respective attributes;
2 Create local identifiers (with prefix local_ )from the absolute identifiers

passed as arguments;

. virtual which is set to True if Task is not to be rendered during visual-
ization otherwise False.. task_id contains the tasks absolute identifier5 string from the LispPlan
and needs to be passed as an argument on initialization of the object.. plan which contains the Plan class instance to which the task belongs
and needs to be passed as an argument on initialization of the class.. location contains the absolute location string from the LispPlan and can
be passed as an optional argument on initialization of the class.. requirements containing a list of the Task/ExternalTask class instances
corresponding to the requirements 5 of the LispPlan and can be passed
as an optional argument (default is empty list) on the initialization of
the class.. action which contains the task’s PDDL action and can be passed as an
optional argument on initialization (default is None) of the class.. parent which contains the parent task and can be passed as an optional
argument (default is None) on initialization of the class.. children which contains the list of child tasks and can be passed as an
optional argument (default is empty list) on the class initialization.. state contains the information about tasks status. Possible values are
”queued”, ”in_production”, ”done” or ”failed”. At initialization of
the class the value is set to ”queued”.. delegated which is set to True if Task has been delegated to another
PyMES otherwise False..mes which is set to True if Task is the same as the location of the PyMES
instance, otherwise False.

5See specification of LispPlan [9]
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As tasks in a LispPlan support both local or absolute identifiers Task

class, it also has its local identifier that is stored in attributes with local_
prefix in its name (e.g., let us assume that a class instance has an attribute
location containing ’R2.TESTBED.CIIRC.CVUT.CZ’ and then it also has the
corresponding attribute local_location containing ’R2’). The following thread-
safe methods are available for this class:

. set_state(state: String) method is used to set the state attribute of the
task in a thread safe manner6.. get_state() −→ String method is used to retrieve the state attribute of
the task in a thread-safe manner.. can_be_processed() −→ String method which returns ”y” if all the re-
quirements for the task to start processing have been satisfied; otherwise
String name of the first requirement that has not been satisfied.. view(order_by: String) method displays a picture of the plan using
Graphviz7 tool in a new window. It has an optional argument order_by
(the default is tasks). A detailed description can be found in the text
below.. render(order_by: String) −→ String method returns PNG 7 as String.
It contains a picture of the plan rendered by the Graphviz tool. It
has an optional argument order_by (the default is tasks). A detailed
description can be found in the text below.. get_lisp() −→ String method returns a new LispPlan representing Task
and all its sub-Tasks, thus allowing us to split the LispPlan.

Because LispPlan has a recurrent structure, a conventional directed graph8

is not suitable to represent it without a loss of information about task
inheritance. Therefore, I used Supergraphs [13] to display LispPlans. To create
SuperGraphs in Python, I used a custom module that can be found in the file
supergrapher.py. It converts a supergraph represented by a Python dictionary
into an image using Graphviz 7. The SuperGraph dictionary is constructed
recursively when calling the method view or render from the Task class on
all its subtasks. Two options are available for plan visualization. Either the
graph edges represent the parent-child connections between tasks (order_by
argument value is ”tasks”) or they link the task with its requirements
(order_by argument value is ”requirements”). The difference can be seen
in Figures 4.2 and 4.3. Using the second option allows us to easily see the

6Using a Threading Lock
7https://graphviz.org/
8https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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...................................... 4.2. LispPlan

sequence in which the tasks will be processed. In these images, the tasks are
also color-coded. Gray tasks are yet to be processed, yellow are in processing,
green are already processed, and red are failed. For better readability, these
colors are picked from a palette suitable for color-blind people.

Figure 4.2: Supergraph example parent-child (visualization of LispPlan 2.6)
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Figure 4.3: Supergraph example requirements (visualization of LispPlan 2.6)

4.2.2 ExternalTask class

Each ExternalTask instance represents one requirement of a task in a plan
and contains only information about its id and state. This class is used for
requirements from a different plan that cannot be instantiated as a Task class.
ExternalTask class has attributes:

__init__(task_id: String)
1 virtual = True;
2 task_id = task_id;
3 local_task_id = task_id;
4 state = ”queued”;

. virtual which is set to True and means that the task will not be rendered
during visualization.. task_id contains the tasks absolute identifier9 string from the LispPlan
and needs to be passed as an argument on the initialization of the object.. local_task_id also contains the tasks absolute identifier same as task_id.. state contains the information about tasks status. Possible values are
”queued”, ”in_production”, ”done” or ”failed”. At initialization of
the class the value is set to ”queued”.

9See specification of LispPlan [9]
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4.2.3 Plan class

The Plan class encapsulates the tree structure created from the Task class
instances and provides some additional information and methods relevant to
the LispPlan as a whole. I decided to implement this class to save memory on
data that are common to all tasks. It also makes it clear whether the whole
plan or just a subset of tasks are being referenced and, therefore, it makes the
code more readable. It has the following additional attributes and methods:

__init__(plan: String, plan_id: String, update_callback: Function)
1 Store arguments to their respective attributes;
2 root = construct_tree(plan);
3 link_requirements();

. external_tasks which is a dictionary that is filled with instances of the
ExternalTask class for all the requirements that were not found in the
LispPlan on initialization.

. root stores the tree constructed by construct_tree().

. plan_id attribute which contains the unique identifier of a plan and
needs to be passed as an argument on initialization of the class. The
identifier is obtained from the ERP along with the PDDL goal.

. update_callback attribute which can contain a function to be called every
time a task belonging to the plan changes its state. It can, for example,
display the plan on screen using the view method. It can be passed as
an optional argument on initialization of the class.

. iter_pre_order() −→ List method which returns a list of all tasks and
subtasks when traversing the task tree depth-first from left to right.

. construct_tree(plan: String) −→ Task method is automatically called
on initialization of a Plan class. It takes a LispPlan string as an argu-
ment and returns the initialized task tree. The task tree is constructed
recursively.

. link_requirements() method is automatically called on initialization of a
Plan class. It links the corresponding Task or ExternalTask instances to
the requirements attribute of the tasks in the task tree stored in root.
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4.3 PlanList class

When a LispPlan is delegated (see Alg. 2 line 7) to another PyMES instance
(according to the locations) it can be split into multiple parts (several tasks
can have same location as can be seen in Fig. 2.6 tasks 0 and 5). To handle
collection of these LispPlan parts and their recombination into Plan class
instances I have implemented a thread-safe class called PlanList that can be
found in planning.py. It has following methods and attributes:

__init__()
1 Initialize list;
2 Initialize lock;

. list is a Python List that stores the individual parts of LispPlan as Tuples
(String part of the LispPlan, String its unique identifier from obtained
from the ERP order). The unique identifier is useful for debugging and
would be necessary for handling multiple LispPlans.. lock is a Python Threading Lock used to make the list thread-safe.. push((plan: LispPlan, id: String): Tuple) method is used to add a new
LispPlan along with its unique identifier to list.. pop() −→ Plan method takes all LispPlans with the same identifier from
list, combines them into one LispPlan String l, removes them from list,
creates a Plan class instance from l and returns it. If there are more
parts with different identifiers, the first part/identifier is used.

4.4 Resources

Communication with the resources is done via OPC UA using the module
opcua10. To interact with the production line easily, I have implemented three
classes ResourceClient, Location, and Resource. These can be found in the
files resource_client.py, locations.py, and resource.py, respectively.

10https://python-opcua.readthedocs.io/en/latest/
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4.4.1 ResourceClient class

The ResourceClient class encapsulates opcua client which handles the connec-
tion to the resources. It also takes care of creating, removing and servicing
subscriptions of opcua variables. Each class instance corresponds to one
OPC UA client connected to only one server. Currently, the client connects
to the server anonymously. Each client services one or more Resource class
instances. The class has a Python Logger11 built in to record communication
via the OPC UA interface. The class has the following attributes:

__init__(aml_root: AmlElement)
1 aml_root = aml_root;
2 Load attributes from aml_root;
3 Initialize opcua_client;
4 Start queue_worker_thread;

. aml_root which contains the client identifier and needs to be passed as
an argument on initialization of the class.. name which contains the client identifier and is found automatically on
initialization using aml_root.. endpoint which contains the endpoint of the OPC UA server to which
the client connects and is found automatically on initialization using
aml_root.. opcua_client which contains the opcua12 client instance with endpoint
used for communication over OPC UA.. client_queue an asynchronous Python Queue13 class instance where all
opcua subscription events from the server are pushed. This is necessary
because only simple operations, such as pushing an event to the queue,
can be done in the opcua subscription handler. Each ResourceClient has
its own client_queue.. queue_worker_thread is a Python Thread that continuously takes the
events from client_queue and pushes them to the resource_queue of the
Resource class instance to which the event belongs to. It is automatically
started upon initialization of the class.

11https://docs.python.org/3/library/logging.html
12https://python-opcua.readthedocs.io/en/latest/
13https://docs.python.org/3/library/queue.html
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4.4.2 Resource class

The Resource class represents the robots and shuttles available at the produc-
tion line. Each Resource class instance corresponds to one of the production
lines resources. This class is responsible for task execution. It has a Python
Logger built in to record the operations performed by the resource. The
Resource class has the following attributes:

__init__(client: ResourceClient, aml_root: AmlElement)
1 Store arguments to their respective attributes;
2 Initialize variables;
3 Start queue_worker_thread;

. client which is the ResourceClient class instance that controls the resource
via the OPC UA and needs to be passed as an argument on initialization
of the class.. aml_root which is the PyAutomationML element that stores all the
necessary information about the resource and needs to be passed as an
argument on initialization of the class.. state which stores the current state of the resources (available or busy).. resource_queue an asynchronous Python Queue object where all opcua
subscription events relevant to this specific resource are pushed by the
corresponding ResourceClient instance via the queue_worker_thread.
Each resource has its own resource_queue.. variables which is a list of all the opcua variable class instances only (not
object or folder nodes).

The main feature of this class is the process_task method. This method
takes a Task class instance as an argument and handles its execution on
the production line. First, the PDDL action is translated into a dictionary
containing opcua variable identifiers and values that need to be written to the
respective variables. This is done via the translation methods provided in the
PyAutomationML configuration file. After that, all the values are written to
the corresponding OPC UA server variables, then the operation is started
via setting the DataReady variable to True. After that the resource waits
until all events signaling that the resource has finished the operation are sent
or until a timeout is reached. Last, the method returns True if the operation
finished successfully and False otherwise. this method implements the code
on line 17 in Algorithm 2.

32



................................ 4.5. DigitalTwinClient class

4.4.3 Location class

The Location class instances represent the individual PDDL locations[19].
This class is an intermediate step (in task execution) necessary to handle
compound operations that use more than one resource. An example of
operation with two resources can be found in task 0 in LispPlan 2.6 that uses
the resources SHUTTLE2 and SHUTTLE5. The class has a Python Logger
built in for debugging. The class has the following attributes:

__init__(aml_root: AmlElement, resources: List)
1 Store arguments to their respective attributes;

. aml_root is the element of PyAutomationML that contains configuration
information for the location. aml_root needs to be passed as an argument
on initialization of the class.. name which contains the PDDL identifier of the location and is set
automatically on initialization using aml_root.. resources which contains the Resource class instances available to the
Location and needs to be passed as an argument on initialization of the
class.

This class also has a execute_task() method that has one argument task
of class Task. It implements processing of task as described in the code at
lines 11–29 in Algorithm 2. The method processes task’s operation using the
appropriate Resource class instances calling the method process_task() of the
Resource class.

4.5 DigitalTwinClient class

I have implemented a simple Python class called DigitalTwinClinet. It can be
found in the file called digital_twin.py. DigitalTwinClient class handles the
communication with the digital twin and planner using HTTP/REST. It takes
the digital twin configuration PyAutomationML element as an initialization
argument. It provides the following methods to interact with the digital twin
and planner:
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__init__(aml_root: AMlElement)

1 Load configuration from aml_root)

. check_action() returns True if the action passed as its argument is
valid/executable in the current state of the digital twin and False
otherwise. It is used in Algorithm 2 line 16.. get_state() −→ String returns the current PDDL state.. do_action(action: String) −→ Bool returns True if the action passed as
its argument was successfully committed to the digital twin and False
otherwise. It is used in Algorithm 2 line 20.. check_goal(goal: String) −→ Bool takes a PDDL goal as an argument
and returns True if the goal is reachable from the current PDDL state
and False otherwise.. get_plan() −→ String takes a PDDL goal as an argument and returns a
LispPlan as String to fulfill this goal if such plan exists otherwise returns
None.

4.6 PyMESClient class

For communication with other PyMES class instances i have written the
PyMESClient class located in py_mes_client.py. Each instance of this class
communicates with one instance of PyMES. It the has following methods and
attributes:

__init__(address: String)
1 Store arguments to their respective attributes;

. address which is the URL of the PyMES instance and needs to be passed
as an argument on initialization of the class.. get_mes_location() −→ String method returns the location identifier of
the PyMES instance at address if it can be reached otherwise returns
None.
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. add_task(task: Task) method takes argument task of class Task, con-
structs a LispPlan from task and its sub-tasks using the method get_lisp()
and sends it via HTTP/REST to the the PyMES class instance running
at address where it is pushed to plan_list of the PyMES class instance.
It is used in Algorithm 2 line 7.. update_task(task_id: String, state: String) method sends an update
(task identifier and its state) passed as its argument to the PyMES
instance running at address. It is used for plan sync in Algorithm 2 (lines
12, 14, ...).

4.7 PyMES class

Using all the classes described above, I have written a PyMES class which
implements the main executive part of the system. This class is responsible
for taking a LispPlan and executing it. It also contains a Logger for debugging.
It can be found in the file py_mes.py. It has the following attributes and
methods:

__init__(aml_config: AmlElement)
1 Store arguments to their respective attributes;
2 Load configuration from aml_config) Initialize plan_list as PlanList instance;
3 Initialize twin as DigitalTwinClient instance;
4 clients, resources = build_clients();
5 locations = build_locations();
6 Start task_worker_thread;
7 Start plan_worker_thread;

. name attribute contains its arbitrary String identifier.. location attribute contains the PDDL location of the PyMES instance.. state attribute where the information about the current state of the
MES is stored. Possible states are ”stopping”, ”stopped”, ”running”,
”pausing” and ”paused”.. update_callback attribute which can be set to a function that gets called
upon a PyMES instance state update.. plan_list is a PlanList instance where LispPlans are pushed using
HTTP/REST by other PyMES instances.. clients is a list that contains all the ResourceClient class instances.
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. resources is a list that contains all the resources connected to the clients.

. locations is a list that contains all the locations under its supervision.

. twin contains the DigitalTwinClient class instance.

. process_current_plan() method is used to execute a LispPlan. It roughly
implements the code in Algorithm 2.

. task_update_queue is a Python Queue14 where all synchronization up-
dates from other PyMES instances are pushed.

. task_worker_thread a Python Thread that takes the events from
task_update_queue updates currently executed plan accordingly and re-
distributes the update to other PyMES instances using the PyMESClient
class instances stored in connected_meses (corresponds to mes_pool
from Alg. 2). It implements the code on lines 34–36 in Algorithm 2.

. start_event is a Python Threading Event that can be set by another
PyMES instance to start plan execution.

. plan_worker_thread a Python Thread that pops a Plan from plan_list
when start_event is set and starts its execution according to Algorithm
2. During the execution of a plan the MES can be paused and resumed
by setting the PyMES state. In the same way the processing of the plan
can be terminated by stopping the PyMES. This is done from a web
interface.

. cleanup() method should be called upon exiting any program using the
PyMES class. This method handles the correct disconnection of the
clients and termination of running threads.

. build_clients() −→ Tuple method gets called automatically on initial-
ization. It constructs and returns a Tuple containing a list of all the
ResourceClient instances and a dictionary of all Resource instances cur-
rently available. This is done using the information about the available
servers and resources obtained from the PyAutomationML configuration
file.

. build_locations() −→ List method gets called automatically on initial-
ization. It constructs and returns a List containing all the Location
instances with their respective resources assigned. This is done using the
information about the available servers and resources obtained from the
PyAutomationML configuration file.

14https://docs.python.org/3/library/queue.html
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4.8 Web interface

To control PyMES instances I have created a simple web server (each instance
has its own web server). It has two pages (<web server address/index>
and <web server address/plan>). From the first page (see Figure 4.4) the
MES can be started, stopped, paused and resumed. When the START button
is pressed a new goal/order is requested from the ERP, then a plan is retrieved
from the planner and pushed to the plan_list and PyMES is started (−→
process_current_plan() method is called). The other buttons can modify the
state of PyMES accordingly. The second page (see Figure 4.5) displays the
current state of the plan that is being processed. It displays the image created
by the view() method provided by the Plan/Task and it is automatically
updated.

The website back-end is implemented using the Python framework Flask15

and Flask-SocketIO16. The front-end is created using the templating engine
Jinja217 for HTML518 templates, Bootstrap 519 for styles and responsive de-
sign and Javascript20. Asynchronous communication and updating the pages
in real time is achieved using WebSockets21. The control commands (buttons)
and updates are passed to the PyMES class instance using WebSockets.

Figure 4.4: PyMES main web page (MES currently paused)

15https://flask.palletsprojects.com/en/2.0.x/
16https://flask-socketio.readthedocs.io/en/latest/
17https://palletsprojects.com/p/jinja/
18https://html.com/
19https://getbootstrap.com/docs/5.0/getting-started/introduction/
20https://www.javascript.com/
21https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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Figure 4.5: PyMES plan visualization web page (Plan currently being processed)

4.9 Initialization

Each instance of PyMES has to be started explicitly at the desired location.
This is done using the function init_mes in init_mes.py. The function takes
a single string argument mes_location that specifies the PDDL location[19]
where the PyMES should be running. First, the PyAutomationML configura-
tion file is loaded, and using mes_location the configuration of the PyMES
instance is found. Using this configuration, a PyMES class is instantiated.
Finally, a Flask-SocketIO web server is launched. This process corresponds
to Algorithm 1.
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Chapter 5

Testing and evaluation

5.1 Testing on the virtual production line

During the development of PyMES I have used the virtual production line
extensively and it has proven to be an invaluable tool. Using the virtual
line I was able to test various parts of the system during my work without
depending on the real production line. This saved a lot of my time and allowed
me to test even when the Testbed production line was under construction.
It also allowed me to easily customize the testing setup in ways that would
be very hard or even impossible to implement on the real production line.
Thanks to that I was able to debug the algorithm of PyMES before the first
test on the real production line. One of the PyMES configurations, that I
was using, can be seen in Figure 5.1.
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5. Testing and evaluation ................................

Figure 5.1: PyMES structure used in testing

5.2 Testing on the real production line

After completing my PyMES implementation and debugging it using virtu-
alization, I moved to testing on the real production line. However, before I
could start testing, I had to integrate a new KUKA Cybertech robot that
was recently added to the production line. Due to the design of PyMES, I
only needed to add the description of the new robot to the PyAutomationML
configuration file and the system was functional.

Testing took an entire week and consisted of more than a hundred pro-
duction runs. As expected, during my testing on the virtual line, I was
not able to detect and fix all the bugs. The first major problem was that
the handling of OPC UA variable data types was done incorrectly in my
implementation. However, I was not able to debug this before, because on
one hand the OPC UA servers running on the Siemens PLCs in Testbed
strictly exact variable data types and on the other hand the Python OPC UA
server implementation, I used in testing, does not provide type checking by
default. Therefore, Python servers can even change the server variable data
type to the data type of a variable that is written by OPC UA client.

Another bug I found was that when translating a swap shuttle operation
(e.g., Task 0 in Fig. 2.6) I reversed their starting station with their destination.
I would have expected to notice this during my virtual testing, however, the
virtual line uses the same configuration file as PyMES and the actions were
at the time committed to the digital twin from the virtualization. This meant
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that PyMES switched the action during translation to OPC UA one way
and the virtualization switched it back during translation from OPC UA so
everything worked fine. There were some other bugs in the code, but none of
them major and I was able to quickly fix all of them.

During testing, I also found that the color scheme I used was not suitable
for colorblind people 1, so I updated it to one suitable for colorblind people, as
can be seen in this thesis. Apart from that, the system worked without issues
for three days during “ceremonious opening” [17] of new Testbed and during
open days. I have used PyMES in three different instance configurations (one
of them can be seen in Fig. 5.1) and with over forty different production plans.
During this testing, there were 46 occasions when the line had to be stopped
for various reasons (e.g. a visitor entered the safety area of the production
line). In 30 cases PyMES recovered on its own after resuming the production
line from the safety stop, in 16 cases the stop caused desynchronization of the
digital twin which had to be manually resolved and the production had to be
re-planned (without the need to reset PyMES), and in 0 cases PyMES had to
be reset. This can be seen in Table 5.1. One of the factors that increased the
number of cases in which manual resolution was necessary, was that PyMES
currently does not have any information about the state of the emergency
stop. This means that PyMES in some cases sends a new operation/action to
a device while the production line is stopped (because of emergency) and then
such operation/action cannot be processed. This could be resolved by some
changes in the communication protocol between PyMES and the components
of the production line.

Overall, PyMES proved to be a viable solution for controlling an Industry
4.0 production line. It is robust and allows for flexible problem resolution
which, in many cases, can be done without human intervention. It also
supports dynamic reconfiguration of the production line resources without
the need to change the PyMES code.

Solution Automatic
recovery

Manual
Recovery

Total
system reset

Number of cases 30 16 0

Table 5.1: Emergency stop resolution with PyMES

1As was pointed out to me by one of my colleagues at Testbed, who is colorblind
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5.3 Future work

As PyMES will continue to be used in Testbed, there are many improve-
ments/additions that I would like to implement in PyMES. Some of them
are, for example:

. Continue in the direction of decentralization and implement distributed
Digital Twins and Planners.. Use cytoscape2 instead of graphviz for nicer and interactive plan visual-
ization.. Implement better visualization debugging.. Implement automatic visualization of the distributed PyMES network
(as can be seen in Fig. 5.1.

2https://cytoscape.org/
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Chapter 6

Conclusion

In this thesis, I designed and implemented a distributed MES for the produc-
tion line at Testbed for Industry 4.0 at CIIRC CTU. The implementation
is written in Python 3.10 and is called PyMES. PyMES uses the protocol
OPC UA to communicate with individual components of the production line.
PyMES also has a web interface to facilitate visualization of the production
process and control of the system. It is integrated with the existing digital
twin and the planner available for the production line. This allows PyMES to
track the state of the production line in real time, compute production plans
(LispPlans) on-the-fly according to the current state of the production line
and validate any operation before actually executing it. PyMES is designed
to take production orders from the ERP (which I implemented prior to my
thesis). It also uses a central PyAutomationML configuration file to facilitate
changes in the configuration of the production line without touching the
code of PyMES and related I40 components. PyMES is also distributed, so
there can be multiple instances running at the same time, each controlling
a part of the production line. Specifications of the individual instances of
PyMES are written in the configuration file. This allows the production line
to be extended with new production stations without the need to change the
functionality of the rest of the line.

After implementation, I intensively tested PyMES on both the virtual
production line and the real production line in Testbed. The first production
runs revealed some bugs in the code, such as incorrect handling of OPC UA
data types or incorrectly formatted synchronization messages. However, after
fixing these bugs, PyMES worked correctly. Also, a new robot was added to
the production line, which allowed me to verify the flexibility of PyMES and
Testbed Industry 4.0 infrastructure. Due to the design of PyMES this change
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only entailed adding the specification of this new robot to the aforementioned
configuration file. After that, PyMES was deployed during open days at
Testbed performing more than a hundred production runs without any failures
on the side of PyMES, Digital Twin, Planner or ERP.
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Appendix B

PyMES code

The code of the PyMES implementation can be found attached to this thesis
in the directory /code. The code is written in Python 3.10 and formatted
according to PEP 8 [18]. Package requirements of the project can be found
in the file requirements.txt in the /code directory. An example PyMES
configuration can be run using the script start.sh from the /code directory.
The requirements for running the example configuration are: Digital Twin
and Planner running at the address specified in the PyAutomationML config-
uration file, ERP running at the address specified in the PyAutomationML
configuration file, and the real or virtual production line as specified in the
PyAutomationML configuration file.
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Appendix C

Testbed specification

Because the Testbed specification [19] is not publicly available it can be found
attached to this thesis as a PDF file
REST_interface_for_accessing_TWIN_and_Planner_DRAFT.pdf.
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