
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Multiconstellation GNSS Receiver

Signal Tracking

Anastas Nikolov

Supervisor: Ing. Jiří Svatoň, PhD.
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492112Personal ID number:Nikolov AnastasStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Radioelectronics

Open Electronic SystemsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Multiconstellation GNSS Receiver, Signal Tracking

Bachelor’s thesis title in Czech:

Multikonstelační GNSS přijímač, sledování signálu

Guidelines:

The thesis objective is a GNSS signal feedback tracking system analysis. The student will develop an SDR-like MATLAB
simulation environment to simulate general GNSS signal processing at first. These simulations will be used to compare
and debug the existing real HW multi-constellation GNSS receiver designed in the department. The work will come out of
the traditional GPS L1 CA signal. However, the goal is to deploy the simulation environment to receive other signals like
Galileo E1 (testing of data vs. pilot and BPSK-like vs. BOC approach) and the BPSK 10 class signals. These results will
be potentially implemented to the HW receiver platform.

Bibliography / sources:

[1] Borre, K., Akos, D. M., Bertelsen, N., Rinder, P., Jensen, S. H., A software-defined GPS and Galileo receiver: a
single-frequency approach, Springer Science & Business Media, 2007.
[2] Kaplan, E. D., Hegarty, C., Understanding GPS/GNSS: principles and applications, Third Edition, Artech house, 2019.
[3] Ziedan, N., Global Navigation Satellite System (GNSS) Receivers for Weak Signals, Artech house, 2006.
[4] Hrdina, Z., Pánek, P., Vejražka, F., Rádiové určování polohy: Družicový systém GPS, Praha: ČVUT, 1995, ISBN
80-01-01386-3.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jiří Svatoň, Ph.D. Department of Radioelectronics FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 21.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Stanislav Vítek, Ph.D.

Head of department’s signature
Ing. Jiří Svatoň, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to express gratitude to my
supervisor, Ing. Jiří Svatoň, PhD., for his
guidance and expertise. His insight was
invaluable for writing this thesis.
It was a great pleasure to work on this
thesis and I hope that reader will find it
both informative and enjoyable.

Declaration
I declare, that I have worked up the
submitted work independently and that I
have mentioned all the sources used in
accordance with methodical instruction
about adhering ethical principles when
preparing university final works.
In Prague, 20. 5. 2022.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.
V Praze dne 20. 5. 2022

.

v

Abstract
Signal tracking is a vital part of any GNSS
receiver. It is a crucial part to remain syn-
chronized with the incoming signal and to
be able to demodulate transmitted data.
However, many engineers approach feed-
back systems as a black box, and this
thesis aims to describe lock loops used in
GNSS receivers in detail.
To support this thesis, Software Defined
Radio like simulator was developed to help
analyze the feedback systems.
One of the more significant problems with
GNSS lock loops is that they are tied to-
gether. When one loop does not work
correctly, the whole system crumbles. A
generator of authentic GNSS signals was
developed and implemented as part of the
SDR-like simulator to make isolated test-
ing of individual loops possible. These
signals have customizable properties such
as permanent carrier/code wipe off, which
allows us to test individual loops sepa-
rately.
Towards the end of the thesis, imple-
mented lock loops are compared with the
theory of general feedback systems. It is
illustrated that they behave according to
the theoretical background even though
it may not be apparent in some cases.
Finally, it is demonstrated that the de-
veloped SDR-like simulator is correctly
tracking live GNSS signals recorded at
CTU in Prague.

Keywords: GNSS, signal
tracking,feedback loops, GPS, Galileo,
DLL, FLL, PLL

Supervisor: Ing. Jiří Svatoň, PhD.

Abstrakt
Sledování signálu je důležitou součástí kaž-
dého GNSS přijímače. Jde o klíčovou sou-
část, která umožňuje zůstat v synchroni-
zaci s příchozím signálem a demodulovat
přenášená data. Mnoho inženýrů však při-
stupuje k zpětnovazebním systémům jako
k černé skříňce a cílem této práce je tyto
systémy používané v GNSS přijímačích
podrobně popsat.
Souběžně s touto prací byl vyvinut simu-
látor podobný softwarově definovanému
rádiu, který pomáhá analyzovat zpětno-
vazební systémy.
Jedním z významnějších problémů se
zpětnovazebními smyčkami v GNSS při-
jímačích je jejich provázanost. Když
jedna smyčka přestane správně fungovat,
zhroutí se celý systém. Proto byl vyvi-
nut generátor autentických GNSS signálů,
který byl implementován do vyvíjeného si-
mulátoru, aby bylo možné testovat jednot-
livé smyčky izolovaně. Tyto signály mají
nastavitelné vlastnosti, jako je trvalé od-
stranění nosné/kódu, což nám umožňuje
testovat jednotlivé smyčky odděleně.
Ke konci práce jsou implementované
smyčky porovnány s teorií obecných zpět-
novazebních systémů. Je ukázáno, že se
chovají v souladu s teorií, přestože to v ně-
kterých případech nemusí být zřejmé. Na
závěr je demonstrováno, že vyvinutý simu-
látor podobný SDR správně sleduje živé
signály GNSS zaznamenané na ČVUT v
Praze.

Klíčová slova: GNSS, seldování signálu,
zpětnovazební smyčky, GPS, Galielo,
DLL, FLL, PLL

Překlad názvu: Multikonstelační GNSS
přijímač — sledování signálu

vi

Contents
1 Satellite Navigation 1
1.1 Doppler navigation systems 1
1.2 Code systems 1
1.2.1 Active code systems 1
1.2.2 Passive code systems 2

2 Radio Transmission 3
2.1 Complex Signal Reconstruction . . 3
2.1.1 Simulation 4
2.1.2 Doppler effect 5

2.2 GNSS Signal Structure 7
2.2.1 Binary Phase Shift Keying . . . 7
2.2.2 Binary Offset Carrier 8
2.2.3 Code Division Multiple Access 9

2.3 GNSS Receiver 9
3 GNSS Signal Acquisition 11
3.1 Concept . 11
3.2 Serial Search Algorithm 11
3.3 Parallel in Code Phase Search
Algorithm . 12

4 Lock Loop Feedback Tracking 15
4.1 Carrier Tracking 15
4.1.1 Phase Lock Loop
Discriminator 15

4.1.2 Frequency Lock Loop
Discriminator 16

4.2 Code Tracking 17
4.2.1 Delay Lock Loop Discriminator 17

4.3 Loop Filters 20
4.3.1 PLL Filter 22
4.3.2 FLL Filter 22
4.3.3 FLL-assisted-PLL Filter 22
4.3.4 DLL Filter 23

4.4 Dynamic Stress Error 24
4.4.1 Error due to Velocity 24
4.4.2 Error due to Acceleration . . . 25
4.4.3 Error due to Jerk 25

5 Generating Authentic GNSS
Signal 27
5.1 Motivation 27
5.2 Generating Ideal GNSS Signal . . 27
5.3 Observation Model 28
5.3.1 Additive White Gaussian Noise 28

5.4 Adding Dynamic Stress 29
5.5 Implemented GNSS Signals 29

6 Lock Loops Implementation 33
6.1 Lock Loops for Discrete Signals . 33
6.1.1 Phase Lock Loop 33
6.1.2 Delay Lock Loop 34
6.1.3 Frequency Lock Loop 35

7 Lock Loop Testing 37
7.1 Loop Testing with Custom GNSS
Signal . 37

7.2 First Order Filters 37
7.3 Second Order Filters 44
7.4 Third Order Filters 47
7.5 Assisted Loops 49
7.6 Noise Bandwidth 49
7.7 Ordinary vs. Costas PLL 52
7.8 Tracking Live GNSS Signal 54
8 Conclusion 61
A SDR Source Code 63
B Bibliography 65

vii

Figures
2.1 Transmitter-Receiver of a complex
signal . 4

2.2 In-phase branch of the signal 4
2.3 Quadrature branch of the signal . 5
2.4 In-phase branch, Doppler effect . . 6
2.5 Quadrature branch, Doppler effect 7
2.6 Digital channel block diagram [3,
p. 87] . 9

3.1 Cross Ambiguity Function 12
3.2 Parallel in code phase search
algorithm block diagram [3, p. 83] 13

4.1 Costas loop used to track the
carrier wave [3, p. 111] 15

4.2 Replica 1/2 chip late 19
4.3 Replica aligned 19
4.4 Replica 1/2 chip early 20
4.5 Block diagrams of: (a) first-, (b)
second-, and (c) third-order analog
loop filters [2, p. 473] 21

4.6 Block diagrams of (a) first, (b)
second, and (c) third-order digital
loop filters excluding last integrator
(the NCO) [2, p. 475] 22
4.7 Block diagrams of FLL assisted
PLL filters: (a) second-order PLL
with first-order FLL as- sist, and (b)
third-order PLL with second-order
FLL assist [2, p. 477] 23

4.8 1st order filter response to linear
signal . 24

4.9 2nd order filter response to
quadratic signal 25

4.10 3rd order filter response to cubic
signal . 26

5.1 BPSK: GPS L1 C/A
auto-correlation 30

5.2 BOC: Galileo E1C
auto-correlation 31

6.1 Second order PLL using bilinear
transform integrator 33

6.2 Third order PLL using bilinear
transform integrator 34

7.1 DLL Discriminator: fd = 510 Hz,
1st order filter 38

7.2 Correlator: fd = 510 Hz, 1st order
DLL . 39

7.3 DLL Discriminator: fd growing
linearly, 1st order filter 39

7.4 FLL Discriminator: fd = 510 Hz,
1st order filter 40

7.5 Correlator: fd = 510 Hz, 1st order
FLL . 41

7.6 FLL Discriminator: fd growing
linearly, 1st order filter 41

7.7 Correlator: fd growing linearly, 1st
order FLL . 42

7.8 PLL Discriminator: fd = 5 Hz, 1st
order filter . 43

7.9 PLL Discriminator: fd growing
linearly, 1st order filter 43

7.10 FLL: fd = 520 Hz, 2nd order
filter . 44

7.11 2nd order FLL filter: frate = 100
Hz/s . 45

7.12 FLL Discriminator: frate = 100
Hz/s, 2nd order filter 45

7.13 PLL Discriminator: fd growing
linearly, 2nd order filter 46

7.14 DLL Discriminator fd growing
linearly, 2nd order filter 47

7.15 3rd order DLL filter: fd growing
linearly . 48

7.16 DLL Discriminator fd growing
linearly, 3rd order filter 48

7.17 Correlator: fd = 1510 Hz,
FLL-assisted-PLL filter 49

7.18 Correlator: SNR = -21 dB, Bn =
100 Hz . 50

7.19 Correlator: SNR = -21 dB, Bn =
5 Hz . 50

7.20 Bn = 100 Hz: 1st order steady
state error . 51

7.21 Bn = 10 Hz: 1st order steady
state error . 52

7.22 Correlator: Ordinary PLL 53
7.23 Correlator: Costas PLL 53
7.24 Trimble Sky Plot: GPS 54
7.25 Correlator: Live Signal - Zenith 55

viii

7.26 2nd order FLL filter: Live Signal -
Zenith . 55

7.27 2nd order DLL filter: Live Signal -
Zenith . 56

7.28 Correlator: Live Signal - Horizon 57
7.29 FLL-assisted-PLL filter: Live
Signal - Horizon 57

7.30 Trimble Sky Plot: Galileo 58
7.31 Correlator: Live Signal - Galileo
13 . 59

7.32 PLL discriminator: Live Signal -
Galileo . 59

7.33 2nd order DLL filter: Live Signal -
Galileo . 60

Tables
4.1 Ordinary PLL Discriminators [2,
p. 460] . 16

4.2 Costas Loop Discriminators [2,
p. 461] . 16

4.3 Common FLL Discriminators [2,
p. 462] . 17

4.4 GNSS code loop discriminators
and their characteristics [2, p. 466] 18

4.5 Loop Filter Characteristics [2,
p. 474] . 21

5.1 GNSS signals supported by the
simulator . 29

7.1 Lock loop filters settings: GPS 18 54
7.2 Lock loop filters settings: GPS 10 56
7.3 Lock loop filters settings: Galileo
13 . 58

ix

Chapter 1
Satellite Navigation

Most navigational systems are made of a beacon and onboard equipment. In
satellite navigation, the satellite is the beacon [1].

1.1 Doppler navigation systems

Doppler navigation systems are based on the Doppler effect due to the
movement of satellites, transmitting at a constant frequency. If satellite A
is transmitting at frequency f0, then the signal on the receiver end will be
of frequency fd 6= f0. The received signal is input into a frequency mixer
together with a signal from a local oscillator of frequency f0. Output signal
of the frequency mixer is of frequency f0 − fd.
Together with time-stamps that are contained in the signal, it is possible to
determine the position or speed of the user and/or time synchronization.

1.2 Code systems

Code systems are the most widely used. Time-stamps and ephemerides
(position of the satellite in 3D-space) are extracted from the signal.
There are two types of code systems - active and passive.

1.2.1 Active code systems

The user needs an active radio because active communication with a reference
station is needed. These are typical request-response systems. The reference
station sends a request with a user ID. Satellites serve as a middleman - they
get the user’s request and the station’s response. The station evaluates delays
of responses from multiple satellites and calculates the position of the user
(positions of satellites are known from ephemerides, so the only unknown is
the position of the user).
Active code systems have disadvantages too. For example, they are not very
secure (the user has to be active), and the system can be overloaded [1].

1

1. Satellite Navigation
1.2.2 Passive code systems

The user calculates the distance from the satellite from the time that has
passed between signal transmission and reception. With this information
together with ephemerides, the user can determine his position.
The problem is that the time base of the user is shifted by an unknown time
interval. This interval ∆t can be transformed to a distance b = c∆t [1]. This
has quite an unpleasant consequence - instead of three equations for three
unknowns, we now have to deal with four.
Usually, we approach this by synchronizing the satellite signal with a local
copy. When in sync, we know the delay τm between the start of the received
and local sequence. From τm, pseudorange is calculated. To solve our system
of equations, we need at least four satellites.

2

Chapter 2
Radio Transmission

This chapter introduces basics of radio communication theory.

2.1 Complex Signal Reconstruction

Since only real signals can propagate through space, it might not be clear if
it is even possible to use complex signals for radio communication. Assume
a complex signal of form s (t) = a+ jb | a, b ∈ R, that we want to transmit.
We multiply this signal by carrier e−2πjf0t, where f0 is the carrier frequency.
Using Euler formula we can write it as cos (2πf0t)− j sin (2πf0t). As stated,
only real signals can be transmitted, so let’s just do that.

Re
[
(a+ jb) ·

(
e−2πjf0t

)]
=

= Re [(a+ jb) · (cos (2πf0t)− j sin (2πf0t))] =
= a cos (2πf0t) + b sin (2πf0t)

(2.1)

The imaginary part is not lost and can be retrieved by the receiver. Ideally,
the signal is transmitted without any additional noise and without the Doppler
effect (or we can also say that the Doppler effect is known and incorporated
in f0). We split the received signal into two branches - In-phase (I) and
Quadrature (Q).

I (t) = (a cos (2πf0t) + b sin (2πf0t)) · cos (2πf0t) =
= a cos2 (2πf0t) + b sin (2πf0t) cos (2πf0t) =

= a

2 (1 + cos (4πf0t)) + b

2 sin (4πf0t)
Lowpass−−−−−→ 1

2a = 1
2Re [s (t)]

(2.2)

Q (t) = (a cos (2πf0t) + b sin (2πf0t)) · (sin (2πf0t)) =
= a cos (2πf0t) sin (2πf0t) + b sin2 (2πf0t) =

= a

2 sin (4πf0t) + b

2 (1− cos (4πf0t))
Lowpass−−−−−→ 1

2b = 1
2Im [s (t)]

(2.3)

3

2. Radio Transmission
By combining the two branches we get

s (t) = 1
2 (I (t) + jQ (t)) (2.4)

2.1.1 Simulation

We can use Simulink to demonstrate this. In the figure below is our system
model that does all of the calculations mentioned above, s (t) = 5 + j.

Figure 2.1: Transmitter-Receiver of a complex signal

Figure 2.2: In-phase branch of the signal

4

.............................2.1. Complex Signal Reconstruction

Figure 2.3: Quadrature branch of the signal

2.1.2 Doppler effect

Let us now consider the same signal, but the transmitter is moving, causing a
Doppler shift that is unknown to the receiver. We shall denote the frequency
shift caused by the Doppler effect fd. For the sake of compactness we will
introduce ∆f = f0 + fd. There is also an unknown phase shift ϕ. Nothing
changes on the transmitter-end (apart from the shift in frequency and phase),
leaving us with:

s(t) = a cos (2π∆f t+ ϕ) + b sin (2π∆f t+ ϕ) (2.5)

Neither the frequency nor the phase shift is known to the receiver, meaning
that we will be multiplying the I and Q branches by carriers of frequency f0.

I (t) = (a cos (2π∆f t+ ϕ) + b sin (2π∆f t+ ϕ)) · cos (2πf0t) =

= a

(
e2πj∆f t+jϕ + e−2πj∆f t−jϕ

2 · e
2πjf0t + e−2πjf0t

2

)
+

+ b

(
e2πj∆f t+jϕ − e−2πj∆f t−jϕ

2j · e
2πjf0t + e−2πjf0t

2

)
Lowpass−−−−−→

a
e2πjfdt+jϕ + e−2πjfdt−jϕ

4 + b
e2πjfdt+jϕ − e−2πjfdt−jϕ

4j =

= a

2 cos (2πfdt+ ϕ) + b

2 sin (2πfdt+ ϕ)

(2.6)

5

2. Radio Transmission

Q (t) = (a cos (2π∆f t+ ϕ) + b sin (2π∆f t+ ϕ)) · sin (2πf0t) =

= a

(
e2πj∆f t+jϕ + e−2πj∆f t−jϕ

2 · e
2πjf0t − e−2πjf0t

2j

)
+

+ b

(
e2πj∆f t+jϕ − e−2πj∆f t−jϕ

2j · e
2πjf0t − e−2πjf0t

2j

)
Lowpass−−−−−→

a
−e2πjfdt+jϕ + e−2πjfdt−jϕ

4j + b
e2πjfdt+jϕ + e−2πjfdt−jϕ

4 =

= b

2 cos (2πfdt+ ϕ)− a

2 sin (2πfdt+ ϕ)

(2.7)

With unknown frequency/phase shift, we cannot reconstruct the signal. In
the figures below, we once again simulated our system. Here f0 = 20Hz and
fd = 5Hz.

Figure 2.4: In-phase branch, Doppler effect

6

................................ 2.2. GNSS Signal Structure

Figure 2.5: Quadrature branch, Doppler effect

2.2 GNSS Signal Structure

There are two main requirements for GNSS signals - precise measurement of
the exact time the signal was received and transmission of navigation data.
Typically, Binary Phase Shift Keying (BPSK) modulation is used, but some
modern GNSS systems use Binary Offset Carrier (BOC), which has some
pleasant properties that will be discussed later.
Modern GNSS systems use pilot signals. The total power of one signal is
split into two components - data and pilot. Since the pilot component is not
modulated by navigation data, it provides easier signal tracking.
Many of the modern GNSS systems utilize secondary codes, a periodic
binary sequence that reduces interference between individual GNSS systems.
Sometimes, secondary codes are called synchronization codes as they are used
for bit synchronization in GNSS receivers.

2.2.1 Binary Phase Shift Keying

Generally, a signal formed by linear modulation can be mathematically
described by the following formula.

s(t) =
∑
n

qng(t− nTq) (2.8)

Modulation is uniquely defined by symbol pulse g(t) and channel symbols
qn, for BPSK qn ∈ {±1}, Tq is the symbol period. In radio electronics, we
commonly work with complex envelope of the signal, which for the small price
of losing information about the carrier frequency, simplifies mathematical

7

2. Radio Transmission
operations. For data and pilot components, we arrive at

s̃d(t) = 2
√
Pd(t)prn(t)

s̃p(t) = 2
√
Pprn(t)

(2.9)

where P is the power of the signal, d(t) is signal with navigational data
and prn(t) is pseudo-random noise.

d(t) =
∞∑

n=−∞
qng(t− nTq)

prn(t) =
∞∑

n=−∞
q′ng(t− nT ′q)

(2.10)

Here, modulation pulse g is REC pulse with period Tq, respectively T ′q.
Nominal chip frequency is then fchipn = 1/T ′q (eg. 1.023 MHz for GPS L1
and Galileo E1C).
Few more steps are required to acquire the signal that can be modulated onto
the carrier. First, the data sequence (qn) has to be re-sampled (let us denote
it as q̂n) to match the speed of q′n. These are then multiplied, creating new
sequence ξn = q̂n · q′n.

ξ(t) =
∞∑

n=−∞
ξng(t− nT ′q) (2.11)

The carrier wave can be modulated with this signal, the complex envelope
then takes form

s̃d(t) = 2
√
Pξ(t) (2.12)

2.2.2 Binary Offset Carrier

To reduce interference with other signals, modern GNSS systems (such
as Galileo) are using BOC modulation, which utilizes the so-called digital
subcarrier to concentrate signal power within specific parts of the band. Two
variants of BOC modulation are used, and their complex envelopes look like
this.

s̃sin(t) = 2
√
Pd(t)prn(t)sign

(
sin
(2π

2Tsc
t

))
s̃cos(t) = 2

√
Pd(t)prn(t)sign

(
cos

(2π
2Tsc

t

)) (2.13)

Where Tsc = 1
2fs

and fs is the sub-carrier frequency.

8

....................................2.3. GNSS Receiver

2.2.3 Code Division Multiple Access

The GNSS satellites share the same communication channel at the same time.
Some multiple access technique is needed to distinguish between individual
signals. While GLONASS uses frequency division multiple access (FDMA),
GPS and Galileo are using a technique that allows the use of common carrier
frequency. This is possible by assigning each satellite a unique pseudo-random
noise (PRN) code. These have low cross-correlation properties (and high
auto-correlation properties) with PRN codes of other satellites. Now it is
clear why this technique is called code division multiple access (CDMA). Due
to mentioned correlation properties of PRN codes, we can recover the original
signal with little interference from other signals.

2.3 GNSS Receiver

The signal processing for satellite navigation systems is based on a channelized
structure. This is true for both GPS and Galileo [3, p. 87].
Before the receiver can allocate channels to individual satellites, it must
first determine which satellites are currently visible. This is done by signal
acquisition (see chapter 3).
When a satellite is acquired, a digital channel is assigned to track it. The
channel can be represented with the following block diagrams.

Figure 2.6: Digital channel block diagram [3, p. 87]

The incoming signal is first multiplied by a locally generated carrier wave
and its π/2 shifted version to split the signal into in-phase and quadrature
branches. These are multiplied by three versions of the local PRN code replica

9

2. Radio Transmission
- each with some phase offset. The resulting signals are integrated and output
for further processing in discriminators.

10

Chapter 3
GNSS Signal Acquisition

The purpose of the acquisition is to determine visible satellites and coarse
values of carrier frequency and code phase of the satellite signals [3, p. 92].

3.1 Concept

The signal acquisition is the primary estimate of replica alignment before the
transition to a stable state of tracking of the alignment by feedback loops.
These work correctly only in a certain pull-in range, and the acquisition
provides a starting point in this range that can be further refined.
The satellites are distinguishable by 32 unique PRN sequences. To generate
a PRN replica perfectly aligned with the incoming code, it is necessary to
find the code phase. Then the incoming code can be removed from the signal.
For this purpose, the PRN is designed to have high correlation when aligned
perfectly and almost no correlation, even for small lag. The third parameter
is the carrier frequency. The "clean" carrier frequency is predetermined, but
there is always some deviation due to the Doppler effect. The frequency can
deviate up to ±10 kHz [3, p. 92]. The acquisition algorithm provides only a
coarse estimate of this deviation. Still, the error should not be higher than
500 Hz.

3.2 Serial Search Algorithm

This is the least hardware-demanding method as it requires a single correlator.
However, it has to go through all of the parameters serially.
This algorithm has to search through all possible frequencies (as stated, the
worst case is ±10 kHz) in steps of some ∆doppler (this can be the usually
tolerated 500 Hz). It also has to search through all possible code phases (1023
possibilities for each frequency step. If we use our example numeric values,
this results in 41 943 combinations that the algorithm has to evaluate. The
likelihood function can be written as

R(τ, fd) =
∫ Tcode

τ=0
x(t)prn(t− τ)e2πjfdtdt (3.1)

11

3. GNSS Signal Acquisition................................
where x(t) is the observed signal and prn is the local replica of PRN code.

The estimated parameters are then

(τ̂ , f̂d) = argmax
τ,fd

|R(τ, fd)| (3.2)

Figure 3.1: Cross Ambiguity Function

3.3 Parallel in Code Phase Search Algorithm

The parallel search algorithm operates in the frequency domain. This is
possible due to the Wiener-Kinchin theorem, which defines a connection
between spectral and correlation characteristics of the signal. The algorithm
computes a circular cross correlation of observed signal and local replica
of PRN. The circular cross correlation is done in frequency domain usign
fast Fourier transform (FFT). The block diagram (fig. 3.2) of parallel in
code phase search algorithm can be mathematically expressed with equation
3.3. The output of acquisition script (estimated parameters) are found using
equation 3.4.

12

........................ 3.3. Parallel in Code Phase Search Algorithm

Figure 3.2: Parallel in code phase search algorithm block diagram [3, p. 83]

R(t, fd) =
∣∣∣IFFT{FTT{x(t)} · FFT{prn(t)e2πjfdt}}

∣∣∣2 (3.3)

(τ̂ , f̂d) = argmax
τ,fd

|R(τ, fd)| (3.4)

This method parallelises the search for the code phase (we don’t need to
step through 1023 different code phases as in serial search). The complexity
of FFT increases logarithmically with a growing number of samples, which is
why this method is very popular.

13

14

Chapter 4
Lock Loop Feedback Tracking

4.1 Carrier Tracking

We use two feedback loops to track the carrier wave signal - phase lock loop
(PLL) and frequency lock loop (FLL). While secondary codes in pilot signal
components of new signals like E1C are known sequences, in standard signals
like GPS L1 with data or data channel like E1B we do not have a priori
knowledge of navigation data modulated on the primary codes. Thus ordinary
PLL is out of the question as it is sensitive to 180° phase shifts that occur
every navigation bit transition. For this reason, Costas loops (which are
insensitive to data modulation, see figure 7.23) are used.

Figure 4.1: Costas loop used to track the carrier wave [3, p. 111]

4.1.1 Phase Lock Loop Discriminator

PLL discriminator outputs phase error. The table below compares the error
outputs of four different PLL discriminators. In an operational environment,
the PLL discriminator error signals are indeed periodic [2, p. 460].

15

4. Lock Loop Feedback Tracking

Table 4.1: Ordinary PLL Discriminators [2, p. 460]

Table 4.2: Costas Loop Discriminators [2, p. 461]

4.1.2 Frequency Lock Loop Discriminator

FLL discriminator outputs frequency error. The table below compares com-
mon FLL discriminator algorithms. In an operational environment, the FLL
discriminator error signals are also periodic. However, their amplitudes are
severely attenuated beyond the frequency limits of their pull-in ranges by the
narrow bandwidths of their FLL tracking loops. In the presence of noise in
the prompt I and Q signals, the slopes of all of the FLL discriminator outputs
tend to flatten as the noise levels increase. Thus, they are linear only near
the 0-Hz error region [2, p. 464].

16

.................................... 4.2. Code Tracking

Table 4.3: Common FLL Discriminators [2, p. 462]

4.2 Code Tracking

The goal of a code tracking loop is to keep track of the code phase of a specific
code in the signal [3, p. 113].
The code tracking loop used in GNSS receivers is called the early-late delay
lock loop (DLL). This loop correlates the received signal with three replicas
generated (usually) with ±1

2 chip spacing, although, for BOC modulation,
it is much narrower. These values are then compared to determine which
correlates the most. We can increase or decrease the current code phase
accordingly with this information.

4.2.1 Delay Lock Loop Discriminator

There are four code loop discriminators with different characteristics that
might interest us. These are called delay lock loop (DLL) discriminators. All
of these use the early (E) and late (L) correlator phases, and the coherent
version also uses a prompt (P) signal. The coherent DLL provides superior
performance when the carrier loop is in PLL [2, p. 465]. Under these circum-
stances, the signal and noise are in the I branch, and there is mostly noise in
the Q branch.
The table 4.4 shows these four discriminators and their characteristics. All
of the DLL discriminators can be normalized. Normalizing them removes
sensitivity to signal amplitude fluctuations which boost performance under
rapidly changing C/N0. In consequence, the normalized DLL is independent
of automatic gain control performance.

17

4. Lock Loop Feedback Tracking

Table 4.4: GNSS code loop discriminators and their characteristics [2, p. 466]

The normalized early minus late envelope discriminator is very popular
because its noise-free output error is linear over a ±1-chip range and has a pull-
in range of almost ±1.5-chip. However, the dot product power discriminator
slightly outperforms it [2, p. 467].
Narrow early to late correlator separations are used to reduce multi-path
error and measurement noise. The cost is reduced code tracking loop dynamic
stress tolerance. If we use carrier-aided code tracking, then the carrier loop
removes most of the code loop dynamic stress, thus enabling narrow correlator
spacing, resulting in smaller code loop filter noise bandwidths after reaching
a steady state.
The figure below visualizes how the early, prompt and late envelope amplitudes
change as the phase of the replica code progresses compared to the received
BPSK signal. For our purposes, the signal is without noise.

18

.................................... 4.2. Code Tracking

Figure 4.2: Replica 1/2 chip late

Figure 4.3: Replica aligned

19

4. Lock Loop Feedback Tracking

Figure 4.4: Replica 1/2 chip early

When the replica is aligned perfectly with the incoming signal (fig. 4.3),
then E = L, and there is no DLL error. In case the replica and received signal
are out of phase (fig. 4.2 and 4.4), then E 6= L and envelopes are unequal
proportionally to the code phase error between the replica and the signal.
From the difference in amplitudes of the early and late envelopes, the code
loop discriminator can determine the amount of error and even the direction
(early or late). The error is filtered and applied to the NCO (output frequency
is increased/decreased to correct the replica code generator phase).

4.3 Loop Filters

The objective of the loop filter is to reduce noise, thus producing an accurate
estimate of the original signal. Loop filter order and noise bandwidth (Bn)
determine the loop filter’s response to signal dynamics. The order and noise
bandwidth are determined based on the expected environment, receiver com-
ponent noise contributions and desired precision. The loop filter is part of
the feedback loop, meaning there are stability issues associated with the loop
order. The Loop filter’s output signal is subtracted from the original signal
producing an error signal that is filtered and used to correct carrier and code
replica signals.

20

..................................... 4.3. Loop Filters

Figure 4.5: Block diagrams of: (a) first-, (b) second-, and (c) third-order analog
loop filters [2, p. 473]

Table 4.5: Loop Filter Characteristics [2, p. 474]

21

4. Lock Loop Feedback Tracking
4.3.1 PLL Filter

The PLL filter is typically second-order for moderate dynamic applications or
third for higher dynamics. If second-order is used, it has one digital bilinear
transform integrator and NCO. In the case of the third order, two digital
bilinear transform integrators are used in combination with NCO.

Figure 4.6: Block diagrams of (a) first, (b) second, and (c) third-order digital
loop filters excluding last integrator (the NCO) [2, p. 475]

Costas PLL suffers squaring loss. This can only be reduced by increasing T
[2, p. 476]. However, modern GNSS signals have pilot channels that operate
with pure PLL discriminator, theoretically having zero squaring loss.

4.3.2 FLL Filter

FLL filter is typically one order lower than PLL but requires one more
integrator. This is caused by FLL producing frequency error, but NCO
fixes only phase error. Thus, the first order FLL has one digital bilinear
transform integrator and NCO, and the second order FLL has two digital
bilinear transform integrators and NCO.

4.3.3 FLL-assisted-PLL Filter

GNSS receivers that only rely on FLL are not as precise as receivers with
PLL, leading to higher bit error rates in data demodulation. GNSS receivers
that do not support FLL are vulnerable to sudden high dynamic stress. If we

22

..................................... 4.3. Loop Filters

have limited resources and still want to have the benefits of both FLL and
PLL, so-called FLL-assisted-PLL may be the solution.

Figure 4.7: Block diagrams of FLL assisted PLL filters: (a) second-order PLL
with first-order FLL as- sist, and (b) third-order PLL with second-order FLL
assist [2, p. 477]

If the PLL error input is zeroed, the filter becomes pure FLL. If the FLL
error is zeroed, it becomes pure PLL.
Here follows the loop closure process:

. Close in pure FLL

. Apply error inputs from both discriminators as an FLL assisted PLL
until phase lock

. Convert to pure PLL until phase lock is lost

4.3.4 DLL Filter

Since DLL should always be aided by a carrier loop (meaning that there is
almost no dynamic stress left to track), it is typically first order, and its noise
bandwidth should be very narrow (typically less than 1 Hz in steady state).
If one were to use DLL without carrier aiding, its noise bandwidth would
have to be increased as there is still dynamic stress left, and the loop would
not reach a steady state with narrow noise bandwidth.

23

4. Lock Loop Feedback Tracking
4.4 Dynamic Stress Error

This section compares responses of filters (first, second and third-order) to
various input signals. This section aims to show why we need to carefully
choose the order of individual filters (PLL, DLL, FLL) and what needs to be
considered when doing so. There is always some non-zero velocity between the
transmitter (satellite) and receiver (user) in the real environment. This has
some unpleasant consequences when trying to keep the local replica aligned
with the incoming signal.

4.4.1 Error due to Velocity

Consider that there is a constant non-zero velocity between receiver and
transmitter. This motion causes a linear rate of change in phase. To correct
this, we choose to implement a first-order filter (fig. 4.6). The estimated
phase, actual phase and steady state error can be seen in the figure below.
The resulting signal is offset by a certain amount. This is caused by dynamic
stress and can be evaluated using the formula from table 4.5. The second-
order filter (and third-order) does not suffer from this, as can be seen from
its response.

Figure 4.8: 1st order filter response to linear signal

24

................................. 4.4. Dynamic Stress Error

4.4.2 Error due to Acceleration

When the transmitter starts accelerating, the error of the first-order filter
starts to grow linearly. The second-order filter is still on track, but this time
there is some offset as there was in the previous case for the first-order filter.
Similarly, this error can be calculated from table 4.5. Again, the third-order
filter has no such offset.

Figure 4.9: 2nd order filter response to quadratic signal

4.4.3 Error due to Jerk

Jerk is telling us how much acceleration is changing in time. This is typically
encountered when the transmitter, as well as receiver, are moving. This
time, even the second-order filter cannot help us as its error grows linearly
(notice that the error of the first-order filter now grows quadratically). Only
a third-order filter (which will be off by a certain amount) can handle this
dynamic stress.

25

4. Lock Loop Feedback Tracking

Figure 4.10: 3rd order filter response to cubic signal

26

Chapter 5
Generating Authentic GNSS Signal

This chapter describes the process behind authentic GNSS signal generation
and the motivation behind it. The procedure is not GNSS signal exclusive,
but slight modifications may be needed to simulate other signals.

5.1 Motivation

It might not be clear why we would want to generate our own GNSS signal
when there is access to real GNSS signals at any point of the day. There are
few open-source software-defined radios that demonstrate acquisition available
on the internet. Some even have signal tracking and data demodulation, but
none generate their own GNSS signal (at least not in their published version),
so why bother? For acquisition, this would probably not be worth the trouble.
We would be good to go with some simple snippet that generates phase-shifted
C/A code on frequency/phase-shifted carrier buried in noise. Only to verify
that the acquisition script gets the frequency and prompt right, then straight
to working with the real signal.
Nevertheless, developing feedback systems is a much more complicated task.
It can be very challenging to find problems in the design even when we have
complete control over the signal fed into the system, let alone when we do
not, and to top it off, the signal is buried in noise completely.
To design the feedback loops and debug them with ease, we will be generating
custom-made signals that we have complete control over.

5.2 Generating Ideal GNSS Signal

In the beginning, we start with the ideal case. No noise, no dynamic stress,
only C/A code (and optionally navigation data) modulated onto a carrier
wave. We could calculate the pseudo-random sequence every time, but it is
much easier to have it stored in a look-up table and load it depending on the
specified satellite.
The signal is already generated sampled with provided sampling frequency as
it would be found on the output of receiver ADC.
For this ideal scenario, we can generate the signal block by block with the

27

5. Generating Authentic GNSS Signal
length of PRN sequence period each, modulate each block onto the carrier
wave and store it to a pre-allocated signal vector. This is not such a good idea
when dynamic stress is present, which will be discussed later in this chapter.
When choosing this approach, we have to make sure that the phase remains
continuous throughout the signal. It will have devastating consequences when
attempting signal tracking if phase discontinuities are present.

5.3 Observation Model

Before the signal reaches the receiver antenna, it has to propagate through the
real environment, picking up noise and other unpleasant properties that make
it difficult to process. We create a simple observation model that passes the
signal through a channel with additive white gaussian noise to approximate
this. Multi-path propagation and amplitude scaling is neglected.
The observation model then looks like this

x[k] = e2πj(fd[k]t[k]+ϕ)s[〈k − n〉mod 1023] + w[k] (5.1)

Here ϕ is some arbitrary phase shift, fd is Doppler frequency vector and w
is the AWGN vector.
It is not guaranteed that the sampled signal starts with the first bit of the
C/A code, so we shift the signal by some samples before outputting it.

5.3.1 Additive White Gaussian Noise

The amount of noise is specified by C/N0 [dB-Hz]. First, calculate the power
of the signal.

P = 1
N

N∑
k=1

s[k] · s̄[k] (5.2)

Then transform the provided C/N0 to signal-to-noise ratio.

SNR = 10
(cn0−10 log10(fsampling))

10 (5.3)

Now we have enough information to calculate variance of the noise signal.

N0 = P

SNR

σ2 = N0
2

(5.4)

The variance is half of the noise power because we are dealing with a
complex signal. Next, vector of normally distributed random numbers is
generated and the resulting noise vector takes form of

w = σ · (randn + j · randn) (5.5)

28

................................ 5.4. Adding Dynamic Stress

To verify, C/N0 is calculated from the signal and newly generated noise,
and compared to the desired value.

5.4 Adding Dynamic Stress

Due to the physical reality, the transmitted signal suffers from dynamic stress
(e.g., there is non-zero mutual velocity between transmitter and receiver
as the satellites are constantly moving, causing Doppler shift). Dynamic
stress affects not only the carrier wave but C/A code also. Apparent chip
frequency changes with variable Doppler frequency, so it must be re-calculated
constantly.

fchip = fchipn + fd
fchipn
fcarrier

(5.6)

Where fchip is the apparent chip frequency, fchipn is the nominal chip
frequency (1.023 MHz for L1 and E1C) and fcarrier is frequency of the carrier
wave (1.57542 GHz for L1 and E1C).
Note that the Doppler frequency is not constant, and as feedback loops
process the signal at millisecond basis, generating the signal ’block-by-block’
is not possible (changes of fd would be too sudden). In reality, the Doppler
frequency is some continuous function of time. Our simulator approximates
it sample by sample, which is sufficient. This is the reason we generate the
signal sample by sample. In return, we no longer care about the continuity of
the carrier phase as it is always continuous with this approach.

5.5 Implemented GNSS Signals

Developed simulator supports GNSS signals listed in the following table.

Carrier frequency Chip frequency Code length Code period
GPS L1 C/A 1575.42 MHz 1.023 MHz 1023 1 ms
GPS L5I 1176.45 MHz 10.23 MHz 10230 1 ms
Galileo E1C 1575.42 MHz 1.023 MHz 4092 4 ms

Table 5.1: GNSS signals supported by the simulator

All three are fairly similar. Galileo E1C and GPS L1 C/A have the same
carrier and chip frequency, but E1C has four times longer PRN, thus having
four times longer code period. GPS L5I has the longest code, it also has the
highest chip rate, so the code period is the same as that of L1 C/A.
GPS L1 C/A is the only one not having secondary code. However, secondary
codes are of no concern to this thesis so we will not talk about them in great
detail. They behave like navigation bits, but we have a priori knowledge of
the secondary code sequence.
The biggest difference between these three signals is the modulation. GPS L1

29

5. Generating Authentic GNSS Signal
and L5 both use BPSK modulation, and Galileo E1C uses CBOC modulation
(we have described BOC and BPSK in chapter 2). Their difference is best
seen from their auto-correlation functions. Explaining CBOC is beyond the
scope of this thesis, and it can be approached just like BOC with minimum
losses.

Figure 5.1: BPSK: GPS L1 C/A auto-correlation

The auto-correlation function of BPSK signal is very similar to that of
rectangular pulse. This is caused by the correlation properties of C/A code
- high correlation when aligned perfectly and almost no correlation when
misaligned.
In case of BOC, the auto-correlation function looks a little different. It has
more peaks and the main peak is quite narrow compared to BPSK.
We can track BOC signals the same way like BPSK signals by shifting one of
the lobes to center frequency. If we do not do this, we have to at least halve
the correlator width - the peak of BOC signal’s correlation function is narrow
compared to BPSK (see figures 5.1 and 5.2).

30

.............................. 5.5. Implemented GNSS Signals

Figure 5.2: BOC: Galileo E1C auto-correlation

31

32

Chapter 6
Lock Loops Implementation

This chapter covers the implementation and performance of feedback loops
used for carrier and code tracking.

6.1 Lock Loops for Discrete Signals

We need to transform the filters from figure 4.5 to equations that can be used
in software implementation. First, replace the continuous integrators with
their discrete approximation. We can choose from boxcar accumulator or
bilinear transform accumulator, then write the equations using LTI system
analysis.

6.1.1 Phase Lock Loop

For second and third-order PLL, the bilinear transform accumulator will be
used. The LTI system takes the following form.

Figure 6.1: Second order PLL using bilinear transform integrator

The dsc_out[k] signal is the discriminator output in k-th iteration of the
loop. We begin with equation for the only accumulator (acc[k]).

acc[k] = ω2
0Tdsc_out[k] + acc[k − 1] (6.1)

Here ω0 is the natural frequency of the filter, determined from table 4.5
and T is the time interval between samples. This interval varies depending

33

6. Lock Loops Implementation
on coherent accumulation length.
For the filter output (filt_out[k]) we get

filt_out[k] = 1
2 (acc[k] + acc[k − 1]) + a2ω0dsc_out[k] (6.2)

The filter output is then fed back to the carrier NCO like this

f_est = f_basis + filt_out[k] (6.3)
Where f_basis is frequency detected by acquisition and f_est is used in

the next iteration to generate carrier replica.

ex = cos (2π · f_est · t + phase_est)− j sin (2π · f_est · t + phase_est) (6.4)

To ensure continuous phase throughout iterations, phase_est is calculated
from the argument of the goniometric functions.
Similarly for third order PLL we get

Figure 6.2: Third order PLL using bilinear transform integrator

One additional equation is needed for the third order filter.

acc[k] = ω3
0Tdsc_out[k] + acc[k − 1]

acc2[k] = T

(1
2 (acc[k] + acc[k − 1]) + a3ω

2
0dsc_out[k]

)
+ acc2[k − 1]

filt_out[k] = 1
2 (acc2[k] + acc2[k − 1]) + b3ω0dsc_out[k]

(6.5)

The first accumulator is sometimes called acceleration accumulator and the
second one velocity accumulator. As the name suggests, estimated velocity
(acceleration) is stored in the first (second) accumulator. This is very useful
for verifying that the loop is working as expected.

6.1.2 Delay Lock Loop

The delay lock loop is implemented identically to the phase lock loop. The
only difference is how the filter output is fed back to the code NCO.

34

............................ 6.1. Lock Loops for Discrete Signals

The phase lock loop is used to refine the estimate of the carrier frequency,
whereas the delay lock loop refines the estimate of the code frequency. As
frequency basis, we will now use the nominal chip frequency, to which we
add the output of the DLL filter. Consequently, the code period varies across
iterations, meaning there needs to be a re-sampling of the code replica done
in each iteration of the tracking loop. Again as in the case of PLL, the
code NCO implemented in software does not have the luxury of over-flowing
hardware registers. Thus, the continuity of the code phase (displacement of
the prompt) must be tracked manually.

6.1.3 Frequency Lock Loop

Since the FLL discriminator outputs frequency error (unlike PLL/DLL, which
produces phase error), the design requires one extra integrator. In return,
the filter will usually be one order lower than that of PLL. Even in cases of
extreme dynamic stress, we do not expect the rate of change of frequency to
be higher than quadratic, meaning the second-order FLL filter should be able
to withstand it.

35

36

Chapter 7
Lock Loop Testing

We have discussed general feedback systems and their performance under
varying dynamic stress. This chapter aims to test the implemented lock
loops on actual GNSS signals - from our custom generator, generated with
laborathory signal generator and live GNSS signals recorded on SDR while
working on this thesis.

7.1 Loop Testing with Custom GNSS Signal

This section explains basic setups to test feedback loops most efficiently.
Before testing the whole system, we want to test individual loops separately,
which is not possible with real signal.
Carrier tracking requires the code to be wiped off. However, this is not
possible without DLL when the Doppler shift is present. We can easily
prevent that by locking chip frequency on its nominal value, resulting in
replica code being perfectly aligned at all times. Now we are free to test
PLL/FLL with an arbitrary course of Doppler frequency function and phase
bias.
On the other hand, code tracking requires the carrier to be removed. This is
achieved simply by replacing the carrier with 1 in signal generation, equivalent
to having an ideal frequency and phase synchronization. At this point, nothing
stops us from testing DLL with dynamic stress affecting only the C/A code.
The pre-detection integration time (PDI) in the following tests is always set
to one code period (as it would be before bit synchronization). We can do this
since tracking with longer PDI is essentially the same. The only difference is
in the discriminator used (we use discriminators insensitive to bit transition
before the synchronization).

7.2 First Order Filters

To test first-order DLL, let us start with a simple scenario - constant Doppler
frequency fd = 510 Hz, code phase bias of 3 samples and assuming carrier is
wiped off.
There is a constant steady-state error (fig. 7.1) even for constant Doppler

37

7. Lock Loop Testing
frequency. This is because DLL is tracking phase, not frequency. We know
that f = dϕ

dt . For constant frequency, the phase changes linearly. According
to section 4.4, a constant steady-state error is expected. The loop is unable
to keep the local replica aligned with incoming code, resulting in the late
version having higher energy, as can be seen from the correlator (fig. 7.2).

Figure 7.1: DLL Discriminator: fd = 510 Hz, 1st order filter

When the Doppler frequency starts to grow linearly, so does the error (fig.
7.3) as expected from theoretical background. This scenario is beyond the
capabilities of first-order DLL, and we have to switch to second order. Before
we move to that, we will run similar tests for the carrier tracking loop.
The signal set-up remains the same (fd = 510 Hz), but assuming code wipe-off
this time, and it is the first order FLL we are testing.

38

.................................. 7.2. First Order Filters

Figure 7.2: Correlator: fd = 510 Hz, 1st order DLL

Figure 7.3: DLL Discriminator: fd growing linearly, 1st order filter

39

7. Lock Loop Testing
The constant frequency offset is not causing any steady state error (fig.

7.4). Since FLL directly integrates frequency (not phase as in the case of
DLL and PLL), its filter response is equivalent to constant input.

Figure 7.4: FLL Discriminator: fd = 510 Hz, 1st order filter

At first glance, the correlator (fig. 7.5) output does not seem right. This
has a simple explanation, FLL synchronizes frequency, not phase. We can
imagine the constellation points rotating until the lock is reached due to
frequency offset. When FLL locks, the constellation points remain at their
position, but it is not guaranteed that said position is on the real axis.

40

.................................. 7.2. First Order Filters

Figure 7.5: Correlator: fd = 510 Hz, 1st order FLL

Figure 7.6: FLL Discriminator: fd growing linearly, 1st order filter

We can see the expected steady state error after adding a linear profile to

41

7. Lock Loop Testing
the Doppler frequency (fig. 7.6). Consequently, the energy in the correlator
flows from the in-phase to the quadrature branch as there is still some constant
frequency offset (fig. 7.7).

Figure 7.7: Correlator: fd growing linearly, 1st order FLL

When testing PLL, we expect similar results to DLL as, again, it is the
phase we are tracking (only the phase of the carrier wave this time). We
have to be much more careful with Doppler frequency, high frequencies are
causing rapid phase changes, and we could quickly end up outside of the
pull-in region, rendering the loop useless.
With this in mind, we choose fd = 5 Hz at first and a carrier phase bias of π/4
radians. Again, we can see a constant steady state error (fig. 7.8) due to the
linear rate of change of the carrier phase. Now we add the constant rate of
change to fd, simulating constant acceleration. Expectedly, the steady-state
error now grows linearly (fig. 7.9).

42

.................................. 7.2. First Order Filters

Figure 7.8: PLL Discriminator: fd = 5 Hz, 1st order filter

Figure 7.9: PLL Discriminator: fd growing linearly, 1st order filter

43

7. Lock Loop Testing
7.3 Second Order Filters

Upgrading to second-order filters should bring better performance under
increasing dynamic stress. Starting this time with FLL, our interest focuses
on filter response rather than the discriminator itself.
After the steady state is reached, we can see (fig. 7.10) that the frequency
offset (due to acquisition resolution) is 20 Hz. After all, the Doppler frequency
for this example was set to 520 Hz, and the acquisition script estimated 500 Hz.
Another piece of information is given to us by the accumulator. It stabilizes
on zero after reaching the steady state, meaning the Doppler frequency is
constant (there is no acceleration).

Figure 7.10: FLL: fd = 520 Hz, 2nd order filter

However, carefully look at what happens when we set fd = 0 Hz and let it
grow linearly. The filter output (fig. 7.11) tells us how the mutual velocity
developed in time. From the accumulator, we see that the rate of change in
frequency was 100 Hz/s. Notice that the discriminator shows no steady state
error (fig. 7.12) as second-order FLL has no problem even when accelerating
occurs.

44

................................. 7.3. Second Order Filters

Figure 7.11: 2nd order FLL filter: frate = 100 Hz/s

Figure 7.12: FLL Discriminator: frate = 100 Hz/s, 2nd order filter

Loops that are tracking phase (be it code phase or carrier phase) will
perform slightly worse in a sense that there will be constant steady state

45

7. Lock Loop Testing
error for acceleration scenario because phase has quadratic growth here.
To no surprise, both DLL (7.14) and PLL (fig. 7.13) perform as predicted. If
we want to remain synchronized with incoming signals in scenarios comparable
to our test environment, we are forced to choose third-order lock loops. They
come with their own limits and unpleasant properties, as discussed in the
following section.

Figure 7.13: PLL Discriminator: fd growing linearly, 2nd order filter

46

.................................. 7.4. Third Order Filters

Figure 7.14: DLL Discriminator fd growing linearly, 2nd order filter

7.4 Third Order Filters

When dealing with strong dynamic stress, only third-order filters usually
can withstand it without steady state error. However, this comes at a
cost; otherwise, we would only use third-order filters over anything else. As
demonstrated later in this section, they take much more time to stabilize, and
their transient response is very abrupt. If the noise bandwidth is not chosen
carefully, the initial response can massively overshoot, and steady state might
not be reached.
Using the same set-up as for the second-order DLL, there is no steady state
error (7.16), although it took nearly 15 seconds for the loop to reach steady
state (fig. 7.15). One could argue that raising noise bandwidth would yield
faster stabilization. On the contrary, this is a double-edged sword when noise
is present (this will be the subject of a later section in this chapter).

47

7. Lock Loop Testing

Figure 7.15: 3rd order DLL filter: fd growing linearly

Figure 7.16: DLL Discriminator fd growing linearly, 3rd order filter

48

....................................7.5. Assisted Loops

7.5 Assisted Loops

As mentioned in section 4.3.3, sometimes we cannot afford both PLL and
FLL in our design. FLL-assisted-PLL brings robustness of FLL and precision
of PLL. For demonstration purposes, let us set fd = 1510 Hz and carrier
offset π/4 radians. There is no phase offset after the loop reaches steady state,
so maximum energy is concentrated in the in-phase branch (7.17), allowing
precise demodulation.

Figure 7.17: Correlator: fd = 1510 Hz, FLL-assisted-PLL filter

7.6 Noise Bandwidth

The filter’s noise bandwidth (Bn) affects two crucial things - how fast the
steady state is reached and how much noise is let in. We will try to show
now why it is a tough compromise to make when choosing the right Bn for
our filter. Second-order FLL (fd = 1550 Hz, 50 Hz/s rate) stabilizes almost
immediately when we set Bn = 100 Hz, but look what happens when we add
some noise to our generated signal (fig. 7.18).
Lowering the Bn to just 5 Hz gives us more precise result. However it takes a
while for the loop to reach steady state (fig. 7.19).

49

7. Lock Loop Testing

Figure 7.18: Correlator: SNR = -21 dB, Bn = 100 Hz

Figure 7.19: Correlator: SNR = -21 dB, Bn = 5 Hz

Another important property of noise bandwidth is that Bn is inversely
proportional to steady state error (i.e., decreasing Bn increases steady state

50

................................... 7.6. Noise Bandwidth

error). Decreasing Bn to 10 Hz should increase steady state error to 1.25 Hz,
which is exactly what happens when we do so (figs. 7.20 and 7.21).
Choosing noise bandwidth is no easy task. It heavily depends on the operating
environment, filter order, and even what we are tracking (FLL, PLL and DLL
have different typical values of Bn. Depending on the Bn value, we refer to
the filter as wide, narrow, or very narrow.
Steady state error can be calculated from 4.5. Relation between Bn and
steady state error is hidden inside filters’ natural frequency ω0, which might
not be evident immediately.

Figure 7.20: Bn = 100 Hz: 1st order steady state error

51

7. Lock Loop Testing

Figure 7.21: Bn = 10 Hz: 1st order steady state error

7.7 Ordinary vs. Costas PLL

This section serves as a quick explanation of why the Costas loop is needed
before bit synchronization. Figures 7.22 and 7.23 show how ordinary vs.
Costas PLL perform with navigation data present.
Ordinary and Costas discriminators are listed in tables 4.1 and 4.2. As stated
in section 4.1, we cannot use ordinary PLL before bit synchronization. The
navigation data bit or secondary code bit causes a 180°phase shift. When
using ordinary PLL, the shift makes it concentrate energy into the quadrature
branch instead of the in-phase branch. For Costas PLL, only the sign of
changes, but the energy is still concentrated in the in-phase branch.
After bit synchronization, we can switch to ordinary PLL, which has the
benefit of not suffering squaring loss [2, p. 476]. The coherent integration
time is then increased, but the process remains the same in principle. This is
why we did not implement bit synchronization in this thesis.

52

............................... 7.7. Ordinary vs. Costas PLL

Figure 7.22: Correlator: Ordinary PLL

Figure 7.23: Correlator: Costas PLL

53

7. Lock Loop Testing
7.8 Tracking Live GNSS Signal

We have designed the lock loops, and have tested them on signals generated
from our simulator and from laborathory generator (which is not documented
in this thesis as it is not that interesting compared to tracking real GNSS
signal).
The signal was recorded on May 10th at 14:33:28 local time (UTC+2). Satel-
lites shall be chosen according to Trimble sky plot [https://www.gnssplanning.com/#/skyplot].

Figure 7.24: Trimble Sky Plot: GPS

First satellite chosen is G18, because it is the closest one to zenith and
should be easy to track (less dynamic stress compared to satellites closer to
horizon). The lock loop filter set-up can be found in table 7.1.

Order Bn [Hz]
DLL 2 2
PLL x x
FLL 2 5

Table 7.1: Lock loop filters settings: GPS 18

As can be seen from figures 7.25 and 7.26 the loop stabilizes after around
one second.

54

.............................. 7.8. Tracking Live GNSS Signal

Figure 7.25: Correlator: Live Signal - Zenith

Figure 7.26: 2nd order FLL filter: Live Signal - Zenith

55

7. Lock Loop Testing

Figure 7.27: 2nd order DLL filter: Live Signal - Zenith

Next we choose satellite that is closer to horizon. For satellite number 10,
the Doppler frequency should be much higher.

Order Bn [Hz]
DLL 2 2
PLL 2 15
FLL 1 15

Table 7.2: Lock loop filters settings: GPS 10

This time we have used FLL-assisted-PLL, and as can be seen from 7.28,
it has no problem to track a satellite even if it is close to horizon.

56

.............................. 7.8. Tracking Live GNSS Signal

Figure 7.28: Correlator: Live Signal - Horizon

Figure 7.29: FLL-assisted-PLL filter: Live Signal - Horizon

We can use the same recording to track Galileo E1C. Again, we will use
Trimble Sky Plot to choose a visible satellite.

57

7. Lock Loop Testing

Figure 7.30: Trimble Sky Plot: Galileo

The satellite number 13 is almost directly above our antenna. We could
use this to test PLL without any assistence. The Doppler frequency must be
low, so we can searcher shorter frequency range with denser grid. Resulting
acquisition estimate will be more precise, giving us better chance to land
inside PLL’s pull-in range.

Order Bn [Hz]
DLL 2 2
PLL 3 15
FLL x x

Table 7.3: Lock loop filters settings: Galileo 13

The loops lock effortlessly after few hundred milliseconds. We can see the
quality of the received signal from figure 7.31. It is due to the fact that the
signal has to travel the shortest distance through atmosphere compared to
the GPS recordings. Also, there are basically no obstacles as the satellite is
directly above the antenna.

58

.............................. 7.8. Tracking Live GNSS Signal

Figure 7.31: Correlator: Live Signal - Galileo 13

Figure 7.32: PLL discriminator: Live Signal - Galileo

59

7. Lock Loop Testing

Figure 7.33: 2nd order DLL filter: Live Signal - Galileo

60

Chapter 8
Conclusion

In this thesis, we have described feedback systems used in GNSS receivers.
We have illustrated how general feedback systems work and have used it as
a benchmark in a later chapter, where implemented lock loops have been
tested. Chapter 5 described the process behind a generation of authentic
GNSS signals that have been used while implementing the lock loops. In
chapter 7, we have tested the implemented lock loops and verified that their
behavior is in accordance with the general feedback system. We have utilized
the custom GNSS signal to correctly design these loops and moved to tests
on signals generated from laboratory generator as well as real GNSS signals
for comparison.
Developed Matlab simulator supports authentic signal generation of GPS
L1 C/A, GPS L5I and Galileo E1C signals. User can set-up almost any
combination of tracking loops, even assistance between them. There are
numerous discriminators implemented and user can switch between them
even mid program. All relevant information is either printed to console or
plotted and saved.

61

62

Appendix A
SDR Source Code

gnss
figures

thesis
exported_figures.zip .2 src

acq.m
codes_E1C.mat
codes_L1CA.mat
codes_L5I.mat
discriminators.m
filters.m
initTracking.m
rtz.m
sdr.m
signalGen.m
tracking.m

README.md
Up-to-date version of the source code can be found here: https://gitlab.

fel.cvut.cz/nikolana/gnss

63

https://gitlab.fel.cvut.cz/nikolana/gnss
https://gitlab.fel.cvut.cz/nikolana/gnss

64

Appendix B
Bibliography

[1] F. Vejražka, P. Pánek, Z. Hrdina. Rádiové určování polohy. [Družicový
systém GPS] České Vysoké Učení Technické v Praze, Fakukta Elektrotech-
nická, 1995.

[2] E. D. Kaplan, C. J. Hegarty. Understanding GPS/GNSS. [Principles and
Applications] Artech House, 2017

[3] K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, S.H. Jensen. A Software-
Defined GPS and Galileo Receiver [A Single-Frequency Approach]
Birkhäuser, 2007

[4] P. Kovář, Družicová navigace. [Od teorie k aplikacím v softwarovém
přijímači] České vysoké učení technické v Praze, Česká technika - nakla-
datelství ČVUT, 2016.

[5] European Space Agency: Navipedia
https://gssc.esa.int/navipedia/

65

	Satellite Navigation
	Doppler navigation systems
	Code systems
	Active code systems
	Passive code systems

	Radio Transmission
	Complex Signal Reconstruction
	Simulation
	Doppler effect

	GNSS Signal Structure
	Binary Phase Shift Keying
	Binary Offset Carrier
	Code Division Multiple Access

	GNSS Receiver

	GNSS Signal Acquisition
	Concept
	Serial Search Algorithm
	Parallel in Code Phase Search Algorithm

	Lock Loop Feedback Tracking
	Carrier Tracking
	Phase Lock Loop Discriminator
	Frequency Lock Loop Discriminator

	Code Tracking
	Delay Lock Loop Discriminator

	Loop Filters
	PLL Filter
	FLL Filter
	FLL-assisted-PLL Filter
	DLL Filter

	Dynamic Stress Error
	Error due to Velocity
	Error due to Acceleration
	Error due to Jerk

	Generating Authentic GNSS Signal
	Motivation
	Generating Ideal GNSS Signal
	Observation Model
	Additive White Gaussian Noise

	Adding Dynamic Stress
	Implemented GNSS Signals

	Lock Loops Implementation
	Lock Loops for Discrete Signals
	Phase Lock Loop
	Delay Lock Loop
	Frequency Lock Loop

	Lock Loop Testing
	Loop Testing with Custom GNSS Signal
	First Order Filters
	Second Order Filters
	Third Order Filters
	Assisted Loops
	Noise Bandwidth
	Ordinary vs. Costas PLL
	Tracking Live GNSS Signal

	Conclusion
	SDR Source Code
	Bibliography

