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Abstract
The goal of this thesis is to get acquainted
with the basics of the over-the-air digi-
tal communication on the physical layer.
For this purpose a simple transmitter
with convolutional coder, QPSK modu-
lator, channel model and receiver with
Viterbi decoder are algorithmically de-
signed in program MATLAB. Emphasis
is placed on synchronization of frequency
offset and delay. Then the channel simula-
tor is replaced with a real transmitter and
receiver pair. For this objective, we use
the USRP N210 software defined radios
from the company Ettus Research™. [5]

Keywords: digital communication,
convolutional code, digital modulation,
QPSK, synchronization, Zadoff–Chu
sequence, Pseudorandom-Noise sequence,
Viterbi algorithm, SDR

Supervisor: prof. Ing. Jan Sýkora, CSc.

Abstrakt
Cílem této práce je seznámit se se základy
bezdrátové digitální komunikace na fy-
zické vrstvě. Tyto znalosti jsou ověřeny al-
goritmickým návrhem vysílače s konvoluč-
ním kodérem a QPSK modulací, modelu
kanálu a přijímače s Viterbiho dekodérem
v programu MATLAB. Důraz je kladen
na synchronizaci zpoždění a frekvenčního
offsetu. Následně je model kanálu nahra-
zen reálným vysílačem a přijímačem, k
tomuto účelu použijeme USRP N210 soft-
warově definovaná rádia od firmy Ettus
Research™. [5]

Klíčová slova: digitální komunikace,
konvoluční kód, digitální modulace,
QPSK, synchronizace, Zadoff–Chu
sekvence, Pseudorandom-Noise sekvence,
Viterbiho algoritmus, SDR

Překlad názvu: Implementace fyzické
vrstvy komunikačního systému v rádiové
testovací platformě
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Chapter 1
Introduction

The task of communication is generally to get data from one place to another.
The need of communication is very high among people and an effort for a
fast and reliable communication gave birth to today’s interconnected world
of Internet, mobile networks and fast electronic devices.

Most communication nowadays is digital thanks to its high precision and
possibility to use advanced coding, error detection and repairing algorithms.
Digital data denotes the data which is discrete both in time and value, mostly
bit sequences.

The goal of this thesis is to get acquainted with the basics of the over-the-
air digital communication on the physical layer. For this purpose we will
algorithmically design a simple transmitter, a channel simulator and a receiver
with a signal parameters estimator for a chosen combination of methods in
the program MATLAB. Then the channel simulator will be replaced with a
real transmitter and receiver. For this objective we will use the Universal
Software Radio Peripheral (USRP 210 ) software defined radio (SDR) from
the company Ettus Research™. [5]
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Chapter 2
Fundamentals of digital communication

2.1 System model

The digital communication model generally consists of a coder, modulator,
channel, channel parameters estimator, demodulator or signal basis decom-
poser and decoder. In this model we use a linear channel with additive white
gaussian noise (AWGN ) which already contains signal conversion from the
complex envelope to the real signal, real channel model and conversion back
to the complex envelope (this is usually done in the analog part of hardware).

Figure 2.1: Block diagram of the system model

2.2 Coding

In order to attain better error performance of digital communication (over
noisy channels), the input data b are modified by appropriately adding
redundant information, this process is called coding. The degree of redundancy
in the original data can be indicated by the code rate Rc, it is defined as
the ratio between dimensions of input k-bit data elements and encoded n-bit
elements, called codewords. [1, p. 2]

Rc = k

n
(2.1)

Most used classical codes are linear codes, convolutional codes and trellis
codes. In these days they are largely replaced in more powerful applications
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2. Fundamentals of digital communication .........................
by more sophisticated techniques such as turbocodes, polar codes or LDPC
codes. [7] Next we will discuss only convolutional codes since they are easy to
implement and their performance is close to channel capacity in many cases.
[1, p. 491]

2.2.1 Convolutional codes

Convolutional codes over binary data can be easily implemented by passing
the input data bn into shift registers of length K (called the constraint length
of the convolutional code). The elements of the actual output codeword
element cn are then computed as linear combinations of the elements of the
actual input data and the older data from the registers. This process can be
generalized over different fields, however, we will continue over the Galois
field GF(2). Rewritten to the matrix form it gives the formula

cn =
K∑

i=0
Gibn−i (2.2)

similar to the convolution where Gi are generator matrices.

2.3 Digital modulation

Digital data, mostly bit sequences, cannot be transmitted through the space
in their original form because space and materials show continuous physical
properties. They must first be appropriately converted to the continuous
signal which can travel through the particular medium and can later be
transformed back to the original digital data. This conversion is called digital
modulation. Our goal is to construct it to be reliable and fast.

Generally, most of modulations can be written as a sum of modulation
pulses g shifted in time (in multiplies of symbol periods Ts), dependent on the
actual (coded) data symbol cn and on all previous data symbols contained
in the modulator state σn. Dependency on the data can be summarized by
creating a new complex-valued variable called channel symbol qn.

s(t) =
∑

n

g(cn,σn, t − nTs) =
∑

n

g(qn, t − nTs) (2.3)

qn = q(cn,σn) (2.4)

There exist some exceptions: for example, the sum can be replaced by the
product (CPM modulation). [2]

Digital modulations can be divided according to their mathematical prop-
erties. The main division can be done with regard to linearity and memory.
Linearity in linear modulations defines pulse g(qn, t − nTs) dependence on
the channel symbol qn to be linear. Absence of memory removes dependence
on the modulator state σn from q(cn,σn); thus every channel symbol (and so
pulse) depends only on the actual data symbol cn. Memory included in mod-
ulation can be used for error correction and signal properties improvement;
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.................................. 2.3. Digital modulation

however, an important part of the memory in the modulator can be replaced
by the memory added beforehand in coding. [2] From this point on, we will
consider only one-dimensional (1D) modulations (scalar g, σn and qn).

2.3.1 Linear memoryless modulations (1D)

Linearity implies that a modulation consists only of shifted copies of one
pulse g(t − nTs), each multiplied by the respective channel symbol qn which
(from the memoryless property) depends only on the actual data symbol cn.
As a result we get the simplest form of digital modulation. The formula can
be written as

s(t) =
∑

n

qng(t − nTs) (2.5)

qn = q(cn) (2.6)

The particular linear modulation is defined by the set of its possible values
of channel symbols qn in Equation 2.6.

If we consider qn to be only real numbers, we define the set of all possible
qn of Mq = 2k values as

qn ∈ {±1, ±2, . . . , ±(Mq − 1)} (2.7)

This modulation is called pulse amplitude modulation (PAM ).
Another approach is to make the absolute value of qn constant and discern

only its phase, thus
qn ∈ {e

j 2π
Mq

i}Mq−1
i=0 (2.8)

This modulation is called phase shift keying (PSK ) or MPSK where M = Mq

denotes number of possible constellation points (2PSK is often called BPSK
and 4PSK shifted by π

4 QPSK ). It should be emphasised the energy of each
symbol is identical.

The combination of these two approaches gives an often used modulation
called quadrature amplitude modulation (QAM ) wherein channel symbols can
lie in rectangular grid intersections.

It should be pointed out that the mean value of the channel symbols should
be zero. This minimizes the mean symbol energy (and transmitted power)
while keeping the difference energy between the sent pulses.

2.3.2 Nyquist condition

In order to subsequently demodulate symbols, we strive to avoid the inter-
symbol interference (ISI ). It can be achieved by making all sent symbols
in different times mutually orthogonal. This property is guaranteed by the
Nyquist condition. From this definition we can write its basic form.

RE
g1,g2 [m − n] =

∫ ∞

−∞
g1(t − nTs)g∗

2(t − mTs)dt = 0, ∀n ̸= m (2.9)
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2. Fundamentals of digital communication .........................
Nyquist condition can be then derived in the frequency domain

∑
n

SE
g1,g2(f − n

Ts
) = TsRE

g1,g2 [0], ∀f (2.10)

where RE
g1,g2 represents the pulses’ correlation function and SE

g1,g2 the power
spectral density (PSD).[2]

For linear modulations where only one pulse g(t) is used, this formula gets
simpler as g1(t) = g2(t) = g(t). This condition strictly restricts the number of
usable pulses (orthogonal to their shifted copies). At the same time it gives
us an easy method for their construction. It states that the orthogonal pulse
must have a constant sum of its shifted PSDs.

The easiest way to create an orthogonal pulse is to divide this constant into
rectangular functions which represent those particular shifted PSDs. Thus
the PSD of this pulse is

SE
g(f) =

{
TsRE

g[0], |f | ≤ 1
2Ts

0, otherwise
(2.11)

and the pulse can be for example:

g(t) =
sin( πt

Ts
)

πt
Ts

= sinc( t

Ts
) (2.12)

Such pulse is noncausal so first it must be cut and delayed, however it decays
as 1/t thus the delay must be large to cover the pulse’s energy. Moreover, a
small mistiming error in sampling at the demodulator will result in an infinite
series of ISI components whose sum does not converge. [1, p. 607]

Another pulse widely used in digital communications fulfilling this condition
is the root raised cosine pulse (RRC ). It has been constructed with the goal
to suppress the shortcomings from the first pulse. It decays as 1/t3 and its
sum of ISI components converges to a finite value. It is defined in spectrum
as

Fg(f) =


√

Ts, |f | < 1−α
2Ts√

Tscos(πTs
2α (|f | − 1−α

2Ts
)), 1−α

2Ts
≤ |f | < 1+α

2Ts

0, 1+α
2Ts

≤ |f |
(2.13)

where α ∈< 0, 1 > is the roll-off factor that describes the frequency overlaps.
In the time domain this pulse can be described by

g(t) = 1
√

Ts(1 − 16α2 t2

T 2
s

)
(
sin((1 − α) πt

Ts
)

πt
Ts

+
4αcos((1 + α) πt

Ts
)

π
) (2.14)

(singular points at t ∈ {0, ± Ts
4α} can be defined by limit). [2]
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................................2.4. Communication channel

Figure 2.2: Root raised cosine pulse [6]

2.3.3 Discrete samples realization

Digital signal processing done on microprocessors is performed discretely in
time on signal samples since the transformation to the continuous voltage is
done as one of last procedures. Because of this, it is necessary to implement
the modulation on signal samples.

The goal is to get the modulated signal samples s[k] = s(kTp) on the
sampling period Tp from samples of the modulation pulse g[k] = g(kTp) and
channel symbols qn. We start by substituting from Equation 2.5

s[k] = s(kTp) =
∑

n

qng(kTp − nTs) (2.15)

For simplicity, the symbol period is usually chosen as an integer multiple of
the sampling period. This ratio is denoted Ns.

Ts = NsTp (2.16)

After substitution we get

s[k] =
∑

n

qng(kTp − nNsTp) =
∑

n

qng[k − nNs] (2.17)

Now, as g[k − m] = δ[k − m] ∗ g[k] we can write

s[k] =
∑

n

qnδ[k − nNs] ∗ g[k] = (
∑

n

qnδ[k − nNs]) ∗ g[k] (2.18)

From this we can conclude that the modulation samples can be easily
computed as the convolution of upsampled modulation symbols and the
modulation pulse.

2.4 Communication channel

The communication channel is generally any form of media which can connect
the transmitter and the receiver; it may be a pair of wires, or an optical fiber,

7



2. Fundamentals of digital communication .........................
or an underwater channel with an acoustical wave transmission, or any storage
media. [1, p. 3] In our case the channel will be an environment capable of
electromagnetic wave propagation, specifically the air, in combination with
the hardware of the communication system.

Besides apparent parameters, such as time delay and signal amplitude
attenuation, communication channels suffer from additive noise. The additive
noise is usually produced by components of the communication system, but it
also comes from the environment. The effects of noise may be minimized by
increasing the power of the transmitted signal and by the appropriate design
of the signal and its demodulator. [1, p. 3, 4]

The simplest usable complete mathematical description of a communication
channel is the additive white gaussian noise (AWGN) channel with constant
signal delay τ , the amplitude attenuation α and the frequency offset fo of
oscillators. The complex AWGN we denote by w(t). Since we work on the
complex envelope of the real transmitted signal, we have to consider another
parameter, the complex angular rotation (or the phase) φ. Although this
parameter depends only on the signal delay τ and the carrier frequency
fc (including fo), it cannot be computed from these thanks to high carrier
frequencies which make enormous phase estimation errors from negligible
delay estimation errors. [1, p. 290] The resulting mathematical model can be
thus expressed as

x(t) = αejφej2πfo(t−τ)s(t − τ) + w(t) (2.19)

where s(t) is the sent signal and x(t) the received signal.

2.4.1 Stochastic AWGN channel description

White gaussian noise

Complex white gaussian noise in the complex envelope w(t) is the white
gaussian process in its both real and imaginary components. The white
property defines constancy of its power spectral density Sw = 2N0 so it can
be characterized by the noise spectral density N0 (or by variance σw) and
probability density function (PDF).

pw(w) = 1
πσ2

w

exp(−|w|2

σ2
w

) (2.20)

Dependency only on the absolute value of the noise’s value implies the noise
to be rotationally invariant, thus the noise does not change properties after
multiplication by any complex exponential. Its constant power spectral
density is often measured relatively to signal power as the signal-to-noise
ratio (SNR) or normalised to Eb/N0, where Eb is the mean power needed for
transmission of one bit.

Projection of AWGN w(t) into an orthonormal signal basis of the constel-
lation space yields resulting noise in the constellation space wg,n. In our case
the basis is shifted modulation pulses g(t − nTS) from subsection 2.3.2. This

8



................................2.4. Communication channel

noise preserves its gaussian character and zero mean value. Its variance equals
the power spectral density of the continuous noise (from Karhunen-Loève
expansion). [1, p. 78]

σ2
wg,n

= Sw = 2N0 (2.21)

Moreover, every element is independent of the others, so for the whole vector
the joint PDF can be computed

pwg (wg) =
∏
n

pwg,n(wg,n) =
∏
n

1
2πN0

exp(−|wg,n|2

2N0
)

= 1
πn(2N0)n

exp(−∥wg∥2

2N0
)

(2.22)

It should also be mentioned, that the noise samples also have gaussian
character, zero mean, but they have a different variance than the noise in the
constellation space. Samples can be viewed as coefficients of the decomposition
of the continuous noise w(t) into the sampling functions sinc( t−Tp

Tp
) shifted

by the sampling period Tp

sinc(t) = sin(πt)
πt

(2.23)

σ2
wk

= 2N0
Tp

(2.24)

Their joint PFD is thus

pw(w) =
∏
k

pwk
(wk) = 1

πn(2N0
Tp

)n
exp(−∥w∥2

2N0
Tp

) (2.25)

Likelihood function

In search of the unknown input data and channel parameters, we start by
describing the channel input-output relation. In the stochastic channel we
can use the probability of the channel output samples x conditioned by the
knowledge of random and unknown parameters

p(x|θ,ω,w) (2.26)

where θ denotes the input data (thus also the input signal s) and ω channel
parameters α, τ , φ and fo. Conditioning the output probability by knowledge
of all parameters and data can be interpreted as knowledge of the output x

x = αejφsτ,fo + w (2.27)

This becomes deterministic with known probability.

p(x|θ,ω,w) = δ(x − (αejφsτ,fo + w)) (2.28)

9



2. Fundamentals of digital communication .........................
where sτ,fo represents the transmitted signal samples shifted in time by τ
and in frequency by fo.

sτ,fo [k] = s[k − τ ]ej2pifoTp(k−τ) (2.29)

In the next step we marginalize the conditional probability over the AWGN
distribution because in the real applications we are usually not able to
determine its random instantaneous value, whereas its PDF is known.

p(x|θ,ω) =
∫ ∞

−∞
p(x|θ,ω,w)pw(w)dw

=
∫ ∞

−∞
δ(x − (αejφsτ,fo + w))pw(w)dw

= pw(x − αejφsτ,fo)

(2.30)

By substituting Equation 2.25 we obtain the formula for the channel likelihood
function (LF) on the signal samples level

Λ(x,θ,ω) = p(x|θ,ω) = c exp(−∥x − αejφsτ,fo∥2

2N0
Tp

) (2.31)

where
c = 1

πn(2N0
Tp

)n
(2.32)

As we will later search for its maximum position, we can define the channel
log-likelihood function (LLF) which shares the same extrema positions with
the LF.

Λ′(x,θ,ω) = −∥x − αejφsτ,fo∥2 (2.33)

Derivation of LF and LLF on the constellation space level is identical
yielding

Λg(xg,θ,ω) = c exp(−∥xg − αejφsg,fo∥2

2N0
) (2.34)

where
c = 1

πn(2N0)n
(2.35)

and
Λ′

g(xg,θ,ω) = −∥xg − αejφsg,fo∥2 (2.36)

2.5 Channel parameters estimation

In order to estimate the channel parameters, maximizing of the channel
likelihood function from the Equation 2.31 can be used. This approach can be
interpreted as finding such channel coefficients, that the received output was
the most likely one. This method is called the maximum likelihood estimator
(MLE). It can be derived that MLE is asymptotically unbiased and efficient
with the observation length. For a linear channel with AWGN it applies to
any observation length. [3]

10



.............................2.5. Channel parameters estimation

Estimated parameters and the data could be estimated all at once by
marginalizing the LF over transmitted data, however for better results (es-
pecially for higher SNR), synchronization sequences called pilot signals are
used. [1, p. 317] They determine the signal s in the LF; moreover, they can
be selected appropriately so that the channel parameters can be estimated
more precisely.

2.5.1 Cramér–Rao lower bound

The theoretical boundary of accuracy of an estimator (of a deterministic
parameter) can be computed by Cramér–Rao lower bound (CRLB). It can
be used to assume whether the estimator can be theoretically implemented,
and eventually to which maximal precision the real estimator can be tuned.

The theorem states that if the regularity condition

E
[

∂ ln p(x|θ)
∂θ

]
= 0 (2.37)

holds, then for any unbiased estimator of θ, the lower variance boundary of
the estimate θ̂ can be determined as

var
[
θ̂
]

≥
(

−E
[

∂2 ln p(x|θ)
∂θ2

])−1

=
(

E
[(

∂ ln p(x|θ)
∂θ

)2])−1

(2.38)

The proof can be found in [3].

2.5.2 Signal detection

we need to test the hypothesis of signal presence in order to determine whether
the estimator supplied the actual parameters of the transmitted signal, or
there was no signal received (so the estimate is only random data). For this
objective we use the Neyman-Pearson theorem, which provides a method of
detection with maximized detection probability, given false alarm probability.

Neyman-Pearson theorem

For the given false alarm probability PFA, the binary hypothesis detector
maximizes detection probability PD if the decision is the likelihood ratio test

ŝ =
{
s(0), Λ(x) ≤ γ

s(1), Λ(x) > γ
(2.39)

where s(i) are signals whose presence is tested as hypotheses. The likelihood
ratio is

Λ(x) = p(x|s(1))
p(x|s(0))

(2.40)

and the threshold γ is defined by relation

PFA =
∫
x:Λ(x)>γ

p(x|s(0))dx (2.41)

The proof can be found in [3].
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2. Fundamentals of digital communication .........................
2.6 Demodulation and decoding

The process of acquiring the transmitted message from the received signal
samples x is called either data detection (for uncoded data) or decoding (more
sophisticated method for coded data). These are done in the constellation
space of the pulse g, therefore in the basis {g(t − nTs)}n. Coefficients of
decomposition of x(t) to the basis are computed by the continuous dot product,
and they can be approximated by the discrete dot product from the x(t)
samples x and the shifted modulation pulse samples gn.

xg,n =
∫ ∞

−∞
x(t)g∗(t − nTs)dt ≈ Tpxg

H
n (2.42)

Both detection and decoding find the data estimate b̂ according to the
chosen optimality criterion which can be mathematically described by min-
imizing the metric ρ(x, b̌) over every possible message b̌. The process of
calculation of the metric is called the demodulation.

b̂ = arg min
b̌

ρ(x, b̌) (2.43)

Setting a goal to minimize the mean message error probability leads us to
the Maximum a posteriori estimator. For equiprobable messages (or messages
with unknown probability) this again gives the Maximum likelihood estimator
MLE with already derived likelihood function in Equation 2.31 where we
already know the channel parameters estimate ω̂. [2] As already mentioned
maximization of the LF equals to maximization of the LLF, therefore we
choose the metric to be

ρ(x, b̌) = −Λ′(x, b̌,ω) ≈ −Λ′(x, b̌, ω̂) = ∥x − α̂ejφ̂sτ̂ ,f̂o
∥2 (2.44)

It is similar in the constellation space

ρ(xg, b̌) ≈ −Λ′
g(xg, b̌, ω̂) = ∥xg − α̂ejφ̂sg,f̂o

∥2 (2.45)

The process of obtaining the message estimate can then be interpreted as
choosing the one message whose signal has the minimal error energy to the
received signal. As the norm consists of the sum of non-negative elements,
the minimization can be perceived element-wise.

ρ(xg, b̌) =
∑

n

∆ρn+1(xg,n, sg,n) (2.46)

∆ρn+1(xg,n, sg,n) = |xg,n − α̂ejφ̂sg,f̂o,n|2 = |e−jφ̂e−j2πf̂oTsnxg,n − α̂qn|2 (2.47)

Detection is then minimization of Equation 2.46 for uncoded data (this
means that the xg,n and qn are dependent only on the actual bn). The sum
can then be easily minimized by minimization of its elements one by one
choosing appropriate bn (the one with the nearest channel symbol qn to the
equalized xg,n) for each received symbol. This operation can be viewed as

12



.............................. 2.6. Demodulation and decoding

dividing the constellation space into decision regions by the distance to the
nearest possible modulation symbol. Then the symbol estimate b̂n is decided
according to the decision region of the received symbol. For BPSK and QPSK
modulations the decision regions are

(a) : BPSK decision regions (b) : QPSK decision regions

Figure 2.3: BPSK and QPSK decision regions

Decoding for the coded data has to minimize Equation 2.46 with the
difference that each xg,n and qn depend on the actual bn and generally on
all previous {bi}n−1

i=0 contained in the modulator state σn. Solving such
a problem by brute-force computing ρ(xg, b̌) for every b̌ has exponential
computational complexity (thus not usable for decoding). Because of this
more sophisticated methods for decoding must be used, taking into account
the particular structure of the coder.

2.6.1 Viterbi algorithm

The method mostly used for decoding trellis and convolutional codes (with
linear computational complexity) is called the Viterbi algorithm. It minimizes
ρ(xg, b̌) by taking into account causality of each qn and xg,n(bn, σn) by
minimizing the sum step by step from n = 0 (as it was coded) for every
possible modulator state. The algorithm consists of two phases.

Recurrent phase

In the first phase, let us consider the step n = N when partial metrics
ρN (xg, σN ) for all possible modulator states {σ

(i)
N }i are already minimized.

Then there can be computed new minimized metrics for all modulator states
{σ

(i)
N+1}i as

ρN+1(xg, σN+1) = min
σ̌N ,b̌N

[ρN (xg, σ̌N ) + ∆ρN+1(xg, b̌N , σ̌N )] (2.48)

where ∆ρN+1(xg, b̌N , σ̌N ) is computed from Equation 2.47 where

qN = qN (b̌N , σ̌N ) (2.49)

13



2. Fundamentals of digital communication .........................
are computed from the particular coding and modulation. In this process
there are also stored previous modulator states for each state.

Forward phase

The second phase starts at the last state σNend (either the one with the
minimal metric or the one determined by a given ending flush sequence).
Then according to the saved previous modulator states the optimal path
leading to the last state with the minimal metric is found. Knowing the
optimal path, each data estimate b̂n can be separated from the transitions of
modulator states.

14



Chapter 3
Theory application

3.1 Parameters estimation

In order to estimate the parameters from section 2.5, we can maximize the LF
directly by finding its maximum over all parameters. However, it considerably
increases the computational complexity, therefore we strive to divide the
problem, for example, by searching only for a particular subset of parameters
at a time.

3.1.1 Delay estimation

In estimation of the signal delay we start by marginalizing the LF from
Equation 2.31 over φ, assuming the uniform distribution in the interval
φ ∈ [0, 2π).

p(x|s, τ, fo, α) =
∫ ∞

−∞
p(x|s, τ, fo, α, φ)p(φ|s, τ, fo, α)dφ

=
∫ 2π

0
p(x|s, τ, fo, α, φ) 1

2π
dφ

= 1
2π

∫ 2π

0
c exp

−∥x − αejφsτ,fo∥2

2N0
Tp

dφ

(3.1)

As the time and frequency shifts do not change the norm of pilot signals s,
and x is the received signal (thus constant to wanted parameters), we can
write

p(x|s, τ, fo, α)

= c

2π
exp

−∥x∥2+α2∥s∥2

2N0
Tp

∫ 2π

0
exp

2αℜ
[
⟨x, sτ,fo⟩ e−jφ]

2N0
Tp

dφ

= c2(α)
∫ 2π

0
exp

2α|⟨x, sτ,fo⟩| cos [arg ⟨x, sτ,fo⟩ − φ]
2N0
Tp

dφ

= c2(α)I0

(
αTp

N0
|⟨x, sτ,fo⟩|

)
(3.2)
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3. Theory application ..................................
where I0 is the modified Bessel function of first kind.

The next step would be marginalization of the resulting LF over the
frequency offset fo.

p(x|s, τ, α) =
∫ ∞

−∞
p(x|s, τ, fo, α)p(fo|s, τ, α)dfo (3.3)

However, this step is hard to compute analytically due to the location of
fo in the Bessel function and unknown PDF of the frequency offset. The
approximation of the marginalized LF could be computed by assuming fo

to be uniformly distributed on a given frequency interval. The mean value
could then be approximated numerically as an average of the LF over a set
of given frequency offsets.

However, this approach is computationally even more difficult than mini-
mizing Equation 3.2 directly (with coarse fo estimation), because in the latter
method we can take advantage of monotonicity of increasing I0, and minimize
its argument only.

τ̂ , f̂o = arg max
τ,fo

|⟨x, sτ,fo⟩| (3.4)

The distance between fo should be chosen so that the resulting uncompen-
sated offset would not much affect the ability of the delay estimator. It is
good to choose it so that the sequence could not be rotated more than 90◦.

Zadoff–Chu sequences

For the delay estimation we use the Constant Amplitude Zero Autocorrelation
sequences (CAZAC ), specifically the Zadoff–Chu sequences. Its property of
zero cyclic autocorrelation function (except for the multiples of its period)
gives us a good way of precisely determining the signal delay by searching for
a significant peak in the cross-correlation function with the received signal.
As the cross-correlation function is not cyclic, at least two periods of the
sequence are used in the transmitted signal (one main sequence surrounded by
two halves); however, other smaller peaks will still occur in it (see Figure 3.1).

For M and N coprime numbers and q an even number, Zadoff–Chu se-
quences with period N are defined as

sn =
{

exp(jπ M
N n(n + q)), N even

exp(jπ M
N n(n + 1 + q)), N odd

(3.5)
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................................ 3.1. Parameters estimation

(a) : Zadoff–Chu sequence (b) : Zadoff–Chu sequence
cross-correlation

Figure 3.1: Zadoff–Chu sequence and its cross-correlation

The peak autocorrelation property, however, implies constant spectral
properties with wide bandwidth, so it is useful to modulate the sequence
at least by a rectangular pulse (repeating each element). Ratio Ns is often
chosen the same as in the following data modulation.

Pseudorandom-Noise sequences

Other sequences widely used in digital communications are the Pseudorandom-
Noise (PN ) sequences. They are binary, periodic sequences with a long period,
easily generated by a shift register and a few XOR gates, mapped to elements
{−1, 1}. They show autocorrelation properties similar to the Zadoff–Chu
sequences. From their noise-like characteristic their autocorrelation ideally
should be zero except for the multiplies of period. [1, p. 798]

Furthermore, their detection (and delay estimation) should be more resis-
tant to an uncompensated frequency offset in the received signal as compared
to the Zadoff–Chu sequences. (Their gradually increasing frequency is un-
pleasantly compatible with frequency offset, which then cannot be estimated
in Equation 3.4 and spoils the delay estimation as well.)

Their generation can be described by a diagram like in Figure 3.2 or by a
generator polynomial that determines the feedback lines.

Figure 3.2: PN sequence generator[1, p. 797]

The goal is to generate a sequence with a maximum period preserving the
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3. Theory application ..................................
smallest length of the shift register. The sequences with maximized period
are called maximum-length sequences, attaining length of N = 2m − 1 bits
generated by an m-stage shift register (this implies, that all states of the shift
register, except zeros only, are part of the main cycle). Their autocorrelation
function is then periodic and can have one of two values. [9, p. 63]

R[k] =
{

1, k = Nl, l ∈ Z
− 1

N , otherwise
(3.6)

As in Zadoff–Chu sequences, wide bandwidth of PN sequences is limited
by modulation. It is appropriate to directly use the BPSK modulation.

3.1.2 Frequency offset estimation

For the finer frequency offset fo estimation we return to Equation 3.4. Know-
ing the delay estimate τ̂ we can substitute it, and from Equation 2.29 we
derive

f̂o = arg max
fo

|⟨x, sτ̂ ,fo⟩| = arg max
fo

|
∑

k

x[k]s∗
τ̂ [k]e−j2πfoTpk|

= arg max
fo

|DtFT [x[k]s∗
τ̂ [k]] (foTp)|

(3.7)

As samples of the discrete Fourier transform (DtFT) are computed by the
FFT algorithm we can quickly compute coarse frequency offset

f̂oTp ≈ arg max|FFTshifted [x[k]s∗
τ̂ [k]]| (3.8)

For better accuracy, the DtFT samples can be analytically interpolated
(around the maximum from FFT of length N) using the following formula.
[8]

X(f) = 1 − e−j2πf

N

N−1∑
m=0

FFT [x[k]s∗
τ̂ [k]] (m)

1 − e−j2π(f−m)/N
(3.9)

For a precision estimate (how many DtFT samples should be computed) we
will later develop the Cramér–Rao lower bound for fo (in section 3.3).

For a good approximate of the frequency offset we use a harmonic signal
whose Fourier transform forms a significant peak at its frequency (analogically
to the Zadoff–Chu sequence). It is convenient to use a constant signal, since
its frequency peak lies in zero and it is easy to generate.

sτ̂ [k] = 1 (3.10)

3.1.3 Amplitude attenuation estimation

For the used frequency pilot signal the attenuation of amplitude can be
easily estimated from the modulus of the frequency peak in the computed
DtFT. This value expresses the energy of the signal which is not changed by
frequency offset and phase, it can be computed as

|DtFT [x[k]] (f̂oTp)| = |
〈
x, sτ̂ ,f̂o

〉
| ≈ |

〈
αejφs + w, s

〉
| ≈ αEs (3.11)
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................................... 3.2. Signal detection

α̂ = |DtFT [x[k]] (f̂oTp)|
Es

(3.12)

Similarly α̂ could be computed even from the delay estimation sequence,
but the precision would be better from the former sequence since the delay
estimate is identical, and the frequency estimate is more precise.

3.1.4 Phase estimation

The phase φ is harder to estimate, since even a relatively low uncompensated
frequency offset gradually changes the phase’s value; moreover, the presence
of phase noise and slight changes in frequency of oscillators in the transmitter
and receiver makes the estimate even worse.

Especially for longer data transmissions, it is necessary to continually
update the phase estimate. It can be done either by repeating a pilot signal,
or by continuously tracking the phase directly on the modulated signal in
constellation space.

For the QPSK modulated data signal, the tracking of the phase can be
achieved by marginalization of the LF from Equation 2.34 over QPSK data
(constellation symbols). Than the phase estimate can be written as

φ̂[n] = 1
4 arg

 n∑
k=n−W +1

x4
g,k,f̂o

− π

4 + m
π

2 , m ∈ Z (3.13)

where W denotes the length of the sliding window. The formula’s derivation
can be found in [4].

Since this method can determine the phase without knowledge of its
shift mπ

2 , the initial value has to be known, and later values can then be
tracked from its property of continuity. The initial value of the phase can be
determined similarly as the attenuation of the amplitude from the phase of
the frequency peak in the computed DtFT of the frequency pilot signal.

φ̂0 = arg
(
DtFT [x[k]] (f̂oTp)

)
(3.14)

3.2 Signal detection

For detection of the signal presence in the frame we will use the Neyman-
Pearson theorem from subsection 2.5.2.

As the estimator determines the delay estimate (with coarse frequency
estimation) from the maximum of |⟨x, sτ,fo⟩| and gives its maximum √

y =
|
〈
x, sτ̂ ,f̂o

〉
|, we can use it as an indicator bearing the information about the

signal presence in the Neyman-Pearson theorem (for easier derivation we take
its squared value).
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3. Theory application ..................................
At first, we define the hypotheses, and accordingly their assumed signals

s(0) and s(1) (synchronized in frequency and time)H0 . . . y = |
〈
s

(0)
τ̂ ,f̂o

, sτ̂ ,f̂o

〉
|2 = |

〈
s(0), s

〉
|2 = |⟨0 + w, s⟩|2

H1 . . . y = |
〈
s

(1)
τ̂ ,f̂o

, sτ̂ ,f̂o

〉
|2 = |

〈
s(1), s

〉
|2 = |

〈
αejφs + w, s

〉
|2

(3.15)

Now, we substitute
ξ = ⟨w, s⟩ (3.16){

H0 . . . y = |ξ|2

H1 . . . y = |
〈
αejφs, s

〉
+ ξ|2 = |αejφEs + ξ|2

(3.17)

In the next step we define normalized ξ′ with the variance of two, so that
we could later describe normalized y′ by the Noncentral Chi-Square PDF
(described in [1, p. 46]).

ξ′ =
√

2
σξ

ξ (3.18)

where

σ2
ξ = E

[
|ξ|2

]
= E

[∑
k

∑
k′

wks∗
kw∗

k′sk′

]
= σ2

wk
Es (3.19)

Then we can write
H0 . . . y′ = 2y

σ2
ξ

= |
√

2
σξ

ξ|2 = |ξ′|2

H1 . . . y′ = 2y
σ2

ξ
= |

√
2

σξ
αejφEs +

√
2

σξ
ξ|2 = |

√
2

σξ
αejφEs + ξ′|2

(3.20)

Subsequently, the Noncentral Chi-Square PDF of y′ can be expressed as

p(y′|s0) = 1
2e− y′

2 U(y′) (3.21)

p(y′|s1) = 1
2e− y′+λ′

2 I0(
√

λ′y′)U(y′) (3.22)

where U(y′) denotes the unit step function, and for λ′ we can write

λ′ = |
√

2
σξ

αejφEs|2 + 02 = 2α2E2
s

σ2
ξ

= 2α2Es

σ2
wk

(3.23)

Then the likelihood ratio is

Λ(y′) = p(y′|s1)
p(y′|s0) = e− λ′

2 I0(
√

λ′y′)U(y′) (3.24)

and the Neyman-Pearson theorem states that the hypothesis H1 (the signal
is present) should be chosen if and only if Λ(y′) > γ

H1 . . . Λ(y′) > γ (3.25)
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............................. 3.3. CRLB of the frequency offset

It is convenient to utilize monotonicity of increasing I0 and find a constant β
so that

H1 . . . y′ > β (3.26)

This information tells us that the detector should detect the signal if and
only if the y′ (and so y) cross a lower boundary of detection.

The β can then be computed

PF A =
∫ ∞

β
p(y′|s0)dy′ =

∫ ∞

β

1
2e− y′

2 U(y′)dy′ = e− β
2 (3.27)

β = −2 ln (PF A) (3.28)

Thus for the unnormalized y

H1 . . . y >
βσ2

ξ

2 = − ln (PF A) σ2
wk

Es (3.29)

To conclude, the detector should detect the signal if and only if the
y = |

〈
x, sτ̂ ,f̂o

〉
|2 from the parameters estimator is greater than a constant

computed according to Equation 3.29.
This detector, however, needs a high value of false alarm probability PFA

to reliably detect the sequence. The probability of detection can be computed
as

PD =
∫ ∞

β
p(y′|s(1))dy′ (3.30)

For used both Zadoff–Chu and PN sequences this problem can be mitigated
by utilizing its zero cyclic autocorrelation values around the maximum. This
is done by setting the PFA relatively high (for example 0.1) with filtering
false alarms by controlling low values of y near the maximum by an upper
boundary.

3.3 CRLB of the frequency offset

As we know DtFT samples of the pilot signal for frequency offset (subsec-
tion 3.1.2), but do not know the precision to which we should interpolate it,
we compute the maximal theoretical precision.

For the Cramér–Rao lower bound of the frequency offset we need to get rid
of all other parameters than fo in the LF. As already done before, the phase
φ can be marginalized (Equation 3.2). Marginalization of other parameters,
however, is analytically either unrealizable or difficult for computation. So as
the delay and amplitude estimation is already done before, it can be used
as approximation (the variance should then work out to be smaller than it
actually is).

p(x|s, τ̂ , fo, α̂) = c2(α̂)I0

(
α̂Tp

N0
|⟨x, sτ̂ ,fo⟩|

)
(3.31)

The next step is getting the derivative of the logarithm of the LF.

ln p(x|s, τ̂ , fo, α̂) = ln c2(α̂) + ln I0

(
α̂Tp

N0
|⟨x, sτ̂ ,fo⟩|

)
(3.32)
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3. Theory application ..................................
∂ ln p(x|s, τ̂ , fo, α̂)

∂fo
=

I1
(

α̂Tp

N0
|⟨x, sτ̂ ,fo⟩|

)
I0
(

α̂Tp

N0
|⟨x, sτ̂ ,fo⟩|

) α̂Tp

N0

∂|⟨x, sτ̂ ,fo⟩|
∂fo

(3.33)

where the last element can be computed as

∂|⟨x, sτ̂ ,fo⟩|
∂fo

= 1
2|⟨x, sτ̂ ,fo⟩|

∂

∂fo
(⟨x, sτ̂ ,fo⟩ ⟨sτ̂ ,fo ,x⟩)

= 1
2|⟨x, sτ̂ ,fo⟩|

( ∂

∂fo
(⟨x, sτ̂ ,fo⟩) ⟨sτ̂ ,fo ,x⟩

+ ⟨x, sτ̂ ,fo⟩ ∂

∂fo
(⟨sτ̂ ,fo ,x⟩)

)
= 1

|⟨x, sτ̂ ,fo⟩|
ℜ
[
⟨x, sτ̂ ,fo⟩∗ ∂

∂fo
⟨x, sτ̂ ,fo⟩

]
(3.34)

Now we can substitute the particular pilot signal for which we use the
constant signal sτ̂ [k] = 1 (sτ̂ ,fo [k] = 1ej2πfoTpk).

⟨x, sτ̂ ,fo⟩ =
∑

k

x[k]e−j2πfoTpk (3.35)

∂

∂fo
⟨x, sτ̂ ,fo⟩ = −j2πTp

∑
k

kx[k]e−j2πfoTpk (3.36)

The variance of estimate f̂o can then be computed for a given set of
predicted f̂o and α̂ by Equation 2.38, The expectation operation in it will
have to be computed numerically by random generation of φ and w according
to

x = α̂ejφsτ̂ ,f̂o
+ w (3.37)
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Chapter 4
Implemented models

4.1 System blocks implementation

The digital communication system can be implemented block-wise from
blocks outlined in section 2.1. These blocks will be used for construction
of the simulation model in MATLAB and subsequently for the real signal
transmission. Parameters for the blocks and MATLAB simulator will be set
to resemble those in the SDR (see subsection 4.3.1).

4.1.1 Convolutional code

The convolutional coder (described in subsection 2.2.1) is implemented in
function conv_code. It creates coded data c from input data b with the
constraint length of 2 and code rate 1/2.

Used generator matrices Gi are three changeable matrices; in the code they
are merged to the variable G.

G0 =
[
1
1

]
,G1 =

[
0
1

]
,G2 =

[
1
1

]
(4.1)

Computation of the coded data c is done conveniently by convolution and
modulo operation of the input data b and reversed rows of G.

1 c = zeros(2, parameters.b_number+2); %conv adds +2 elements
2

3 c(1,:) = conv(b, parameters.G(1,[3,2,1]));
4 c(2,:) = conv(b, parameters.G(2,[3,2,1]));
5

6 c(:,[parameters.b_number+1,parameters.b_number+2]) = [];
7 c = mod(c, 2);

Variable b_number denotes the length of the data b sequence.

4.1.2 QPSK modulation

Coded data c is modulated by the QPSK modulation in function modulation
into the modulated signal s. Ratio Ns between symbol period Ts and sampling
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4. Implemented models .................................
period Tp is selected Ns = 4.

Ts = Ns · Tp = 4Tp (4.2)

Codewords c are converted into (complex) channel symbols q, as described
in subsection 2.3.1. c(:,n) and q(n) elements are mapped directly because
both can have one of four values. s is then computed as convolution of q
upsampled by Ns and pulse g according to the method presented in subsec-
tion 2.3.3 and scaled by appropriate modulation_Gain = 143.57, so that
the largest possible sample would fit into the int16 datatype (computed in
modulation_gain.m). Described modulation process is shown below.

1 q = zeros(1, parameters.b_number);
2 for n = 1:parameters.b_number
3 q(n) = 1/sqrt(2)*(-1 +2*c(1, n) + 1i*(-1+2*c(2, n)));
4 end
5

6 q_upsampled = zeros(1, ...
parameters.Ns*parameters.b_number-parameters.Ns+1);

7 q_upsampled(1:parameters.Ns:parameters.Ns * ...
parameters.b_number) = q; %upsampling

8 s = conv(q_upsampled, g);
9 s = s*parameters.modulation_Gain;

As symbol pulse g, the RRC pulse sampled around zero time is used.
Parameters of the pulse are alpha = 0.5 (roll-off factor) and L = 10, where
L · Ns gives the number of samples of the pulse. RRC pulse is generated in
function RRC.

4.1.3 Pilot signals

The generation of pilot signals for the parameters estimation is implemented
in function pilot_signal. The type of pilot signal for delay synchro-
nization (Zadoff–Chu or PN sequence) can be chosen in input variable
parameters.pilot.type. The second pilot signal for frequency synchro-
nization is constant (for simplicity 1) with a length of 1024. Both signals are
normalized to the maximum of int16 datatype by Gain = 32767.

Zadoff–Chu sequence

The Zadoff–Chu pilot signal is generated with parameters M = 3, N = 31,
q = 0. Two periods (one main period surrounded by two halves) of the
sequence modulated by rectangular pulse of length rec_factor = 4 are used,
giving the total length of 248. (see subsection 3.1.1)

PN sequence

The second signal used for delay synchronization is a maximum-length PN
sequence with a 5-stage shift register and length of 31 (chosen intentionally
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with the same length as the Zadoff–Chu sequence). Its generator polynomial
coefficients are [1, 0, 0, 1, 0, 1]. Two periods modulated to the total length of
248 by rectangular pulse are used as well.

4.1.4 AWGN channel simulation

The simulator of AWGN channel with constant signal delay tau, amplitude
attenuation alpha, frequency offset freqoffset, and phase phi is done
straightforwardly in function AWGN_channel.

The function takes the original signal s_complete, multiplies it with alpha
and complex exponentials, one with phi and the second element-wise with
freqoffset. Then it places this sequence into a frame of length Frame, adds
AWGN noise to the whole frame and stores the output into the variable x.

1 %add alpha, phi
2 x_notdelayed = s_complete * channel_parameters.alpha ...

*exp(1i*channel_parameters.phi);
3

4 %add freq shift
5 k = 0:parameters.N_s_complete-1;
6 x_notdelayed = x_notdelayed.*exp(1i ...

*2*pi*channel_parameters.freqoffset*k);
7

8 %add delay tau
9 x = zeros(1,channel_parameters.Frame);

10 x(channel_parameters.tau+1: ...
channel_parameters.tau+parameters.N_s_complete) = ...
x_notdelayed;

11

12 %add noise
13 w = sqrt(2*channel_parameters.N0/parameters.Tp)* (randn([1, ...

channel_parameters.Frame])+ 1i*randn([1, ...
channel_parameters.Frame]))/sqrt(2);

14 x = x + w; %add w

4.1.5 Parameters estimation and signal detection

The estimation of unknown channel parameters is done in two different
ways with two pilot signals (Zadoff–Chu and PN sequence) since the delay
estimation without known frequency offset is the key step to the whole data
reception. At the same time there are problems either with computational
complexity (when we estimate delay and frequency offset at the same time)
or with delay estimation accuracy (when we ignore the frequency offset).

Joint estimator for delay and frequency offset

Estimating both delay and frequency offset as derived in Equation 3.4 can be
done with both Zadoff–Chu and PN sequences. This approach is implemented
in function estimation_joint.
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As stated in subsection 3.1.1, the sequence should not be rotated more than

90◦ in the duration of estimation, so the step in tested frequency offsets should
be chosen sufficiently small (however smaller steps increase the computational
time).

π

2 ≥ ∆φ = 2π∆foTpL (4.3)

L in Equation 4.3 denotes the number of pilot signal samples in one (searched)
period. L = 124. Thus

∆fo ≤ fp

4L
≈ 394 Hz (4.4)

Since the estimation should lie at most 394 Hz from a tested frequency offset,
the step in tested frequency offsets can be two times greater. We choose
the frequency step f_step = 750 Hz with an adequate maximum offset of
max_f_offset = 3750 Hz.

In this approach, however, a problem occurred with the Zadoff–Chu se-
quence whose LF (cross-correlation) is nearly constant with frequency offset
(thanks to its inner structure of linearly increasing frequency). Then the
frequency offset could not be estimated, and without this knowledge there
occurs delay estimation error. On the other hand, the PN sequence is not
based on changing frequency and its LF decreases with present frequency
offset.

(a) : frequency offset 0 Hz (b) : frequency offset 1500 Hz

Figure 4.1: Cross-correlation of used modulated Zadoff–Chu sequence
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(a) : frequency offset 0 Hz (b) : frequency offset 1500 Hz

Figure 4.2: Cross-correlation of used modulated Pseudorandom-Noise sequence

Iterative estimator of delay and frequency offset

The unpleasant property of constant LF in the Zadoff–Chu sequence over
frequency offset can be simply utilized. If the LF will have a maximum for
any frequency offset, then the delay can be coarsely estimated. With a coarse
delay estimate, the section of received signal containing the frequency offset
pilot signal can be found. Knowing the frequency offset, the delay estimate
can be easily corrected.

This approach can be found in function estimation_iterative. It does
not work for the PN sequence since its LF maximum diminishes with the
present frequency offset. It is significantly faster than the joint estimator
described above with possible usage of longer sequences.

Signal detection

The signal detection (described in subsection 2.5.2) should be realized from
the Neyman-Pearson theorem. It is implemented in script NeymanPearson.m,
where the lower boundary β and normalized correlation y′ for noise signals
are computed. For this, generated noise with normal distribution, then the
same rounded noise, and lastly the received noise with the same variance are
used.

The outcomes went not as expected for the received noise. For the given
false alarm probability PFA = 0.1 the computed false alarm checking gives the
true false alarm probability of PFA ≈ 0.4. The suspicion fell on the discrete
received values, but this was mitigated as the generated noise with normal
distribution and its discrete version (obtained by rounding) give the expected
values of the false alarm probability.

The solution was found by setting up the lower and upper boundaries (of
the unnormalized y) reasonably from received values to threshold_up = 3
107 and threshold_low = 2 107.
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CRLB for frequency offset estimation

For the possible precision of the frequency offset estimation we compute
the CRLB (according to the method presented in section 3.3) using values
covering the predicted range of values of the frequency offset and the amplitude
attenuation (see subsection 4.3.1).

The computation of CRLB standard deviations of fo is implemented in
MATLAB script CRLB.m. It gives following values

var
[
θ̂
]

fo = 0 fo = 500 fo = 1000 fo = 2000 fo = 3000 fo = 4000

α = 10−4 1.4182 1.4212 1.4442 1.4038 1.4257 1.4189
α = 10−3 0.1415 0.1416 0.1397 0.1413 0.1428 0.1416
α = 10−2 0.0143 0.0141 0.0141 0.0142 0.0142 0.0143
α = 10−1 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014
α = 100 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 4.1: Computed CRLB of fo standard deviations

From the table above we can deduce that the frequency offset estimate
should be realizable and its results will ideally have extremely small errors of
units of hertzs. (However, the standard deviations will be greater because of
neglected phase noise.)

Frequency offset estimation

The frequency offset estimation is equally implemented in functions
estimation_joint and estimation_iterative.

According to subsection 3.1.2, the FFT of the received frequency offset
pilot signal is computed first, then more precise DtFT is computed around
the FFT maximum frequency.

The FFT precision alone for the length of the pilot signal of 1024 and given
fp is

∆fo = 1
1024fp = 190.7349 Hz (4.5)

The DtFT interpolation around the FFT maximum frequency is done
symmetrical by N = 2n points. The number of DtFT points interpolated
from FFT was chosen to be N = 32, this yields the frequency offset precision
of

∆f ′
o = ∆fo

N
≈ 6 Hz (4.6)

which should be attainable considering the CRLB computed above.

4.1.6 Signal decomposition and equalization

Received signal decomposition x_g into the basis of shifted modulation pulse
g is computed in function g_decomposition.

28



............................. 4.1. System blocks implementation

The signal is first equalized by the estimated delay tau, amplitude attenu-
ation alpha (then the x_g can be directly compared in amplitude to channel
symbols q and the maximum position of the LLF does not change), and
frequency offset freqoffset with another phase component accumulated
during the duration of the pilot signal for frequency offset estimation.

Then the signal is decomposed according to Equation 2.42.
Lastly, the phase of the signal is equalized in the constellation space by

the method for QPSK phase synchronization described in subsection 3.1.4.
Such an equalized decomposed signal can be directly compared to the

channel symbols q and detected according to the QPSK decision regions in
Figure 2.3. This approach, however, does not consider prior data coding,
so it can be later used for comparison of error rates between the coded and
uncoded data.

4.1.7 Viterbi decoder

The sent data b from the equalized received signal samples in constellation
space x_g is acquired by function decoding_Viterbi. This function decodes
the data according to the Viterbi algorithm described in subsection 2.6.1.
Generator matrices of the convolution code Gi can be seen in subsection 4.1.1.

From the knowledge of Gi we can define the modulator states as

σ(i)
n =


σ

(0)
n , bn−2 = 0, bn−1 = 0

σ
(1)
n , bn−2 = 0, bn−1 = 1

σ
(2)
n , bn−2 = 1, bn−1 = 0

σ
(3)
n , bn−2 = 1, bn−1 = 1

(4.7)

(starting from one in the MATLAB code), and make trellis of the used convo-
lutional code with transitions depending on the particular origin modulator
state σn and actual data symbol bn. To each transition it is possible to com-
pute the respective codeword cn from Equation 2.2 and the QPSK channel
symbol qn from Equation 2.8 (shifted by π

4 ).

Figure 4.3: Transitions in modulator states
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bn = 0 bn = 1

σ
(0)
n cn =

[
0
0

]
cn =

[
1
1

]

σ
(1)
n cn =

[
0
1

]
cn =

[
1
0

]

σ
(2)
n cn =

[
1
1

]
cn =

[
0
0

]

σ
(3)
n cn =

[
1
0

]
cn =

[
0
1

]
(a) : Codeword of each transition

bn = 0 bn = 1
σ

(0)
n qn = −1−j√

2 qn = 1+j√
2

σ
(1)
n qn = −1+j√

2 qn = 1+j√
2

σ
(2)
n qn = 1+j√

2 qn = −1−j√
2

σ
(3)
n qn = 1−j√

2 qn = −1+j√
2

(b) : QPSK channel symbol of each
transition

Table 4.2: Codeword and QPSK channel symbol of each transition

The function thus first generates qn for all σ
(i)
n and bn and stores them

to the variable channel_symbols. Then it recursively computes all possible
ρ

(i)
n+1 for every state σ

(i)
n+1 according to Equation 2.48 (with the difference that

xg has already been equalized by all parameters including amplitude) and
for each state chooses the minimal one ρ

(i)
n+1 (rho_new) and saves its origin

state into paths.

1 %Recurrent phase
2 for n = 1:parameters.b_number
3 for m = 1:8
4 delta_rho(m) = 1/2*(abs(channel_symbols{m} - ...

x_g(n))).^2;
5 end
6 for m = 0:1 %b_{n-1}
7 for p = 0:1 %b_n
8 if ( rho_old(0+m +1) + delta_rho(0+m+1,p+1) <= ...

rho_old(2+m +1) + delta_rho(2+m+1,p+1) ) ...
%b_{n-2} = 0

9 rho_new(2*m+p+1) = rho_old(0+m +1) + ...
delta_rho(0+m+1,p+1);

10 paths(2*m+p+1,n+1) = 0+m+1; %came from 0+m+1 ...
sigma_n to this sigma_{n+1}

11 else %b_{n-2} = 1
12 rho_new(2*m+p+1) = rho_old(2 +m +1) + ...

delta_rho(2+m+1,p+1);
13 paths(2*m+p+1,n+1) = 2+m+1; %came from 2+m+1 ...

sigma_n to this sigma_{n+1}
14 end
15 end
16 end
17 rho_old = rho_new; %all 4 at once
18 end

This process starts at the defined state σ0 = σ
(0)
0 . This is done manually

by setting all other ρ
(i)
0 at infinite values.

Then the optimal path is found backwards from the saved origin states.
Because all transitions with bn−1 = 1 lead to states σ

(1)
n and σ

(3)
n , it is very
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easy to find b̂ (b_result in code) by tracking these states.

1 %Forward phase
2 b_result = zeros(1,parameters.b_number);%without 2 ending zeros
3 state = 1; %ending state (after flush sequence 00)
4 for n = parameters.b_number:-1:1
5 if (state == 2 || state == 4)
6 b_result(n) = 1;
7 end
8 state = paths(state,n+1);
9 end

10 b_result(parameters.b_number-1:parameters.b_number) = []; ...
%without 2 ending zeros

4.2 MATLAB simulation

According to the overall system model in section 2.1, the simulator in MAT-
LAB script BC_MATLAB_simulation.m consists of blocks of coder, QPSK
modulator, pilot signal generator, AWGN channel model simulator, parame-
ters estimator, signal basis decomposer and Viterbi decoder. All these blocks
work on a per-frame principle; each one block processes its data as a complete
frame.

Firstly, the script reads bit-wise data b from the saved file (image logotx.
jpg of size 3.58 KB) and loads system parameters by function parameters_
load. Then it codes the data by conv_code to c and modulates c by
modulation to s. After this it merges s with the generated pilot signal pil_s
to the complete signal s_complete ready for the channel simulation (or ready
for the transmission by the SDR in the next chapter).

Then it simulates the channel by function AWGN_channel with parameters
similar to those measured in the SDR (the variance of noise σwk

= 400 is
taken larger for a better demonstration).

Then it estimates the channel parameters by function estimation_joint
which works for the PN pilot signal or by estimation_iterative which works
for the Zadoff-Chu pilot signal (see subsection 4.1.5). Then decomposition
and decoding done by functions g_decomposition and decoding_Viterbi
follow.

Lastly, the received data are saved (to the file: logorx.jpg), and graphs
and the received image are rendered. This includes graph of the original,
decoded data, and errors (with the computed error rate for this data) in
Figure 4.4 (zoomed). Next graph in Figure 4.5 shows the used RRC pulse,
modulated signal, and this signal after the AWGN channel simulation. The
graph in Figure 4.6 shows delay estimation, Figure 4.7 then shows the double
frequency offset estimation, and Figure 4.8 shows the phase estimation done
by tracking this phase. The last graph in Figure 4.9 shows the received
decomposed x_g in the constellation space with the computed error rate of
detection (green points denote detection errors).
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Figure 4.4: Comparison of sent and received data (zoomed)

Figure 4.5: Used RRC pulse and modulated signal

Figure 4.6: Estimation of delay
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Figure 4.7: Estimation of frequency offset

Figure 4.8: Phase estimation

Figure 4.9: Decomposed received signal in constellation space
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4.3 SDR implementation

In this section the channel model from the implemented simulator will be
appropriately replaced with a radio transmitter and a receiver connected by
a real over-the-air channel. Software defined radios (SDR) will be used for
both the transmitter and the receiver.

4.3.1 Ettus USRP N210 SDR

SDRs used for the signal transmission are USRP N210 from the company
Ettus Research™. [5]

These radios can be used both as receivers and transmitters. In receiver
mode they process the signal, sample it by 14-bit 100 MHz ADC, decimate
it and convert resulting samples into the complex envelope. These samples
are each sent as two numbers in int16 datatype over the LAN network. In
transmitter mode this process is reversed with the difference of usage of a
16-bit DAC.

For our purposes we used the Internal option for PPSSource, and Clock-
Source so that the radios’ clocks would not be synchronized by a wire (as
it is in real communication). Gains of radios are set experimentally to 0 at
the transmitter and 16 at the receiver so that the signal would be reasonably
strong against the noise when the antennas are placed close to each other, and
similar to noise when they are farther apart. Interpolation and Decimation
factors were set to 512, yielding the sampling frequency fs = 195.3125 kHz.
The center frequency was chosen at 2.45 GHz.

It was found out that the variance of received noise samples does not depend
much on the Gain in the receiver; it was computed in noise_var_f_o.m for
the used Gain of 16, that the variance is σwk

≈ 4.1. Simultaneously, it was
found out that the frequency offset contains values of hundreds or thousands
of Hz; in noise_var_f_o.m the value was computed at fo ≈ 543 Hz (from
sent constant signal) with frequency peak in the power spectral density in
Figure 4.10. This value, however, significantly fluctuates over time. The
amplitude attenuation was measured α = 4.9 10−4.
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Figure 4.10: PSD with measured frequency offset

4.3.2 Data transmission using SDRs

The data transmission using SDRs differs mainly in separation of the code
parts responsible for transmitting and receiving. Transmission is man-
aged by the system object comm.SDRuTransmitter and reception by comm.
SDRuReceiver.

There are implemented two models of data transmission using these objects.

Picture transmission

The picture transmission implemented in scripts BC_pict_tx.m and BC_pict_
rx.m resembles the MATLAB simulation script. The structure of the trans-
mitter is the same with a difference that the modulated data signal with
pilot signals (s_complete) is passed to the transmitter object. It is done all
without dividing of the data or the signal.

The receiver then reads two frames (x and buffer, slightly longer than
the transmitted signal) and detects the delay pilot signal presence in the
older frame x with the channel parameters estimation. If a pilot signal is
present the located data signal is decomposed, decoded, saved, and graphs
and the the received picture are rendered. As the pilot signal can be located
everywhere in the frame, the data signal is separated from both x and buffer.
Then the buffer is loaded into x and new signal is read to buffer. If there
is no signal detected in x the data processing is skipped and new data are
loaded. This process is endlessly repeated.

Figure 4.11 shows a performed delay estimation, we should point out
the change of amplitude which can bring a problem for the set boundaries
of detection. Figure 4.12 shows the phase estimation, the phase is clearly
nonlinear with a visible carrier frequency change.
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Figure 4.11: Estimation of delay (true)

Figure 4.12: Phase estimation (true)

Arbitrary file transmission

The arbitrary file transmission implemented in scripts BC_file_tx.m and
BC_file_rx.m is an attempt for a generalization of the dedicated picture
transmission. It can transmit an arbitrary file long up to 16 MB with name
long up to 20 characters.

The transmitter loads the file first and cut it into packets of length 1 KB
(including the header), then it sends these packets one by one in the same
way as the previous transmitter. All headers consist of the number of that
actual packet (using two bytes), the zeroth packet’s header also includes the
length of the whole file in bytes (using three bytes) and the name of the file
(using 20 bytes).

The receiver works similarly as the previous receiver with a difference that
in the end it reads the header of the received packet and determines the
following file operations. When the zeroth packet is received the number
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of packets is computed and a file is generated. Name of the new file is the
transmitted one with the prefix rx1_ (or with a higher number in case of
existence of such file name)

This process is not made flawlessly, corrupted headers and undetected
packets are partially solved by writing zeros into the file when a packet with
higher number arrives (at most 2 packets can be filled by zeros at a time).
Moreover, it is not solved a problem with pilot signals lying in the end of
packets, these pilot signals are ignored, this problem could be solved similarly
as for data by reading the end of such pilot signal from the buffer.

An example of an output of this process can be seen in Figure 4.13, the
sent bitmap image (logotx.bmp) is 199 KB long.

Figure 4.13: Received bitmap image
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Chapter 5
Conclusion

In chapter 2 we got acquainted with the fundamental theory and basic
principles of a simple digital communication. This included data coding,
digital modulation, channel model description, signal synchronization and
subsequent decoding as well as fundamental limits and conditions.

Next, in chapter 3 we used the theory to develop particular tools for the
signal parameters estimation and signal detection.

Finally, in chapter 4 we used the prepared resources for the simulation of a
digital communication in MATLAB. Then we used software defined radios
for a true over-the-air communication.

In this project many things could be improved and development further.
The algorithms and functions were implemented illustratively and they should
be later optimized. Next, the exploited effect of an uncompensated frequency
offset on Zadoff–Chu sequences (in subsection 4.1.5) should be mathematically
proved. Another improvements could be done in script BC_file_rx.m for an
arbitrary file transmission (see subsection 4.3.2).

To conclude the goal of basic transmission in the test bed was accomplished.
Moreover, the scripts render various graphs so they can be used as visual
examples of implemented methods.

The next work could be focused on an implementation of the verified
methods in real-time low-level applications, for example, in a microcontroller.
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Appendix A
Attached files

/
computations

CRLB.m
modulation_gain.m
NeymanPearson.m
noise_var_f_o.m
x_const_Gain16.txt
x_noise_Gain16.txt

figures
BPSK_QPSK_dec_regions.m
PN_f_o.m
zadoffchu.m
zadoffchu_f_o.m

implementation
AWGN_channel.m
BC_file_rx.m
BC_file_tx.m
BC_matlab_simulation.m
BC_pict_rx.m
BC_pict_tx.m
conv_code.m
decoding_Viterbi.m
estimation_iterative.m
estimation_joint.m
g_decomposition.m
modulation.m
parameters_load.m
pilot_signal.m
RRC.m
logotx.bmp
logotx.jpg
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