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Abstract
This bachelor’s thesis goal is the applica-
tion of the WPNC and estimation and
detection theory principles in a simple
network topology.

The reader will first get acquainted
with the necessary theoretical fundamen-
tals, then with the case for the topology
"Two-Way Relay Channel". Next chapter
demonstrates the practical implementa-
tion in the program Matlab. The last
chapter focuses on the numerical results
of the said program.

Keywords: WPNC, BPSK, QPSK,
Two-Way Relay Channel

Supervisor: prof. Ing. Jan Sýkora, CSc.

Abstrakt
Cílem této bakalářské práce je aplikování
principů WPNC a teorie detekce a esti-
mace v jednoduché komunikační topologii.

Čtenář bude nejdříve seznámen s ne-
zbytnými teoretickými základy, následně
s problematikou pro příklad u topologie
"Two-Way Relay Channel". Poté dojde
k demonstraci praktické implementace v
programu Matlab. Poslední kapitola se
zabývá výsledky výpočtů v již zmíněném
programu.

Klíčová slova: WPNC, BPSK, QPSK,
Two-Way Relay Channel

Překlad názvu: Bezdrátové síťové
kódování fyzické vrstvy v jednoduchých
síťových topologiích s realistickými
modely kanálu
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Chapter 1
Introduction

This thesis deals with the WPNC and detection and estimation theory
fundamentals applied to simple network topology, "Two-Way Relay Channel."

The communication between two sources is conveyed with the help of a
relay node. The relay node can broadcast the coded information containing
data from both sources even when both sources are not perfectly synchronized.
The synchronization imperfection amounts to integers of the symbol period.
As the sources are unaware of what the imperfection amounted to, the relay
node will transmit a header as part of the data payload containing all the
additional information the sources need to decode the data correctly.

Each data payload starts with modulated CAZAC sequence that helps with
detection and estimation. The nodes will firstly use the Neyman-Pearson
theorem to detect the modulated CAZAC sequence in the received signal.
After the signal is assumed to be present, the nodes will use the Maximum-
Likelihood estimators to estimate the following channel parameters: a random
phase shift and delay equal to the integers of the symbol period. With the
knowledge of the parameters, the signal processing can happen.

In the first chapter, the needed theoretical background is established. Starting
with the digital communication basics, we will touch on some fundamentals re-
garding the estimation and detection theory and end with a light introduction
to the basics of WPNC.
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1. Introduction .....................................
1.1 Introduction to digital communication

1.1.1 Digital communication scheme

This section will briefly describe every important function block in the digital
communication scheme and its function in transmitting information in the
form of a binary sequence from source to destination. In later sections, each
block will be covered more in-depth, along with practical implementation.
This introduction is inspired by [1, p. 1 - 3].

Firstly the information itself in the form of a binary sequence noted as d
goes to the encoder, where it is converted into a "better," more resistant
sequence that makes it easier for the receiver to overcome the effects of
channel parameters when decoding the data. The encoder does so by adding
redundancy to binary information sequence and thus creates a longer sequence
c.

Secondly the encoded sequence c passes to the digital modulator that
maps the sequence into continuous-time signal wave-forms s(t) using chosen
modulation pulse with desired characteristics.

Then the signal transmits through the communication ether via the com-
munication channel. The channel is corrupted by random variables and
lowers the quality of the transmitted signal. Its effects are described using
input-output models.

The corrupted signal x(t) then gets to the receiver’s end, where it gets
processed in a digital demodulator and decoder from which we get the message
estimation d̂. The hat notation will denote estimation as used in [5] and [6].

Encoder
Digital

modulator

Channel

Digital
demodulator Decoder

Output message

Input message

d c

s(t)

x(t)

ĉ d̂

Figure 1.1: Digital communication scheme
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..........................1.1. Introduction to digital communication

1.1.2 Signal properties

Here some essential terms around signals and their properties will be defined.
The terms are signal energy and a signal vector space representation. The
definitions are taken from [1, p. 25, 26] and [1, p. 30, 31] respectively.

Signal energy

The definition of continuous-time signal s(t) energy is in equation 1.1.

ϵs =
∫ ∞

−∞
|s(t)|2dt (1.1)

We can also define the cross-energy of two signals as their inner product
1.2.

⟨s1(t), s2(t)⟩ =
∫ ∞

−∞
s1(t)s∗

2(t)dt = ϵs1,s2 (1.2)

Vector space representation

In this part I will show that we can represent continuous-time signal s(t) as
a vector s with all its properties remained intact. This representation makes
the signal processing much easier.

Let us have a set of signals called basis signals {ξi(t)}N
i=0. We say that this

set is orthogonal if the cross-energy of any two different signals is zero 1.3.

⟨ξi(t), ξi′(t)⟩ =
∫ ∞

−∞
ξi(t)ξ∗

i′(t)dt = 0 ∀i ̸= i′ (1.3)

We can then represent our own signal as a linear combination of these
signals 1.4.

s(t) =
N∑

i=0
siξi(t) (1.4)

Each constant si is equal to the inner product of the signal s(t) and the
basis signal ξi(t) 1.5.

si = ⟨s(t), ξi(t)⟩ (1.5)

3



1. Introduction .....................................
1.2 Encoding

The goal of an encoder is to somehow transform the binary information
stream into another sequence that makes it easier for the receiver to decrypt
the original information even when the transmission of the information is
corrupted, typically by noise. One such type of coding that will be touched
upon is convolutional coding. The following definitions and relations are taken
from [1, p. 491, 492].

1.2.1 Convolutional code

The convolutional code is obtained by passing the message sequence through
a linear finite shift register. At any time slot, the machine operates with
k-bits long sub-sequence of the whole sequence d and produces an n-bits long
encoded sequence. The code rate of such register is defined as Rc = n

k .
The convolutional encoder can be fully described by its function generators

gi. The output of such function generator is an inner product with the data
sequence of length k. In general the convolutional encoder has n function
generators gi that can be written in a n × k matrix G.

An example of the generator matrix G is in equation 1.6 and the rela-
tion between coded data c and data bits d is in equation 1.7. Lastly the
implementation scheme of the coding is in figure 1.2.

G =
(

1 1
1 0

)
(1.6)

cn,1 = dn−1 + dn

cn,2 = dn
(1.7)

+ cn,1

cn,2

dn−1

dn

Figure 1.2: Implementation of the convolutional coding

1.3 Modulation

Now let us take a look at general principles of modulation in digital commu-
nication systems, the modulation pulses, their desired properties, and lastly,
at one such type of modulation in more detail. The relations are taken from
[5, presentations 01 and 02].

4



..................................... 1.3. Modulation

1.3.1 General principles

Digital modulation in its core is a transformation of discrete binary and in
our case encoded data symbols c = [..., cn, ...] into a continuous-time signal
s(t). The relation between between symbols and the signal is described in
1.8.

s(t) =
∑

n

g(cn, σn, t − nTs) =
∑

n

g(qn, t − nTs) (1.8)

The Ts is a symbol period, cn is n-th encoded data symbol, σn is n-th
modulator state, qn is n-th channel symbol that depends on data symbol and
modulator state qn = q(cn, σn). Lastly g(t) is a continuous-time modulation
pulse.

For memoryless modulation, the modulator state becomes useless because
there is no memory between data symbols, and therefore the relation for
channel symbol qn simplifies into qn = q(cn).

Another simplification is using a linear modulation. In linear modulation,
the modulation pulse g(t) depends only on time and is multiplied by channel
symbol qn. With this, we can rewrite the relation into the equation 1.9.

s(t) =
∑

n

qn(cn)g(t − nTs) (1.9)

1.3.2 Modulation pulses

As we could see in the previous equation, the overall continuous-time signal a
linear memoryless modulator creates is a simple sum of scaled time-shifted
modulation pulses. However, there is one condition the pulse must satisfy so
that the differently time-shifted signals do not affect each other. We will call
this condition a Nyquist condition.

The modulation pulse g(t) is Nyquist if the relation 1.10 is satisfied. Simply
said, the pulse g(t) is Nyquist if any two differently time-shifted pulses are
orthogonal. ∫ ∞

−∞
g(t − nTs)g∗(t − mTs) = 0, ∀n ̸= m (1.10)

An example of one such modulation pulse satisfying the said condition
is a Root Raised Cosine Pulse defined in 1.11. The pulse is plotted in the
time-domain in figure 1.3.

gRRC(t) =


1

√
Ts

(
1−16α2 t2

T 2
s

) ( sin
(

(1−α) πt
Ts

)
πt
Ts

+ 4α
(

(1+α) πt
Ts

)
π

)
1√
Ts

(
1 − α + 4α

π

)
for t = 0

α
π

√
2Ts

(
(π − 2) cos

(
π

4α

)
+ (π + 2) sin

(
π

4α

))
for t = ± Ts

4α

(1.11)
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1. Introduction .....................................
RRC pulse is also scaled to have unit energy 1.12. This scaling helps in

computation where we do not have to re-scale the results.∫ ∞

−∞
|gRRC(t)|2dt = 1 (1.12)

Figure 1.3: RRC pulse in time domain

1.3.3 PSK modulation

So far, we have talked about a general modulation. Now a very commonly
used linear modulation will be mentioned - a Phase Shift Keying modulation
(PSK for short).

A PSK modulation maps the data symbols into constellation points located on
a unit circle in a complex plane. For general Mq-PSK (Mq ∈ N) modulation,
we can define the channel symbols in constellation space as 1.13.

qi ∈ {e
j 2πi

Mq }Mq−1
i=0 (1.13)

The most commonly used PSK modulations are BPSK and QPSK. The
channel symbols of these two modulations are in figure 1.4 together with the
binary data symbols that are mapped onto the respective channel symbols.

10

0001

11 10

BPSK QPSK

Figure 1.4: PSK modulations
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................................1.4. Communication channel

1.4 Communication channel

By channel, we describe any form of change and attenuation to the useful signal
s(t) between the source and its destination. We can completely characterize
the channel input-output relation by an equation and channel parameters
that can be random or deterministic 1.5.

The source for this section is [5, presentation 08].

channel parameters

s(t) x(t)

channel

Figure 1.5: Channel model

Next, a widespread composite channel model called Linear Time-Invariant
channel with complex AWGN will be introduced. AWGN stands for "Additive
White Gaussian Noise". The noise has the following properties:.White means its spectrum in the frequency domain is a constant. As a

result, the noise affects all frequencies indiscriminately..Gaussian means the noise has a Gaussian probability distribution func-
tion (PDF). If the noise is complex, we say that the real and imaginary
noise values are independent and identically distributed (IID).

The input-output relation of this channel model can be described as shown
in equation 1.14. The s(t) is the modulated useful signal, and x(t) is the
noisy signal the channel has returned. The φ represents the phase shift, and
the τ is the time delay. Lastly, the w(t) represents the complex AWGN in
the time domain. The scheme is plotted in figure 1.6.

x(t) = ejφs(t − τ) + w(t) (1.14)

× ×
τ

e
jϕ w(t)

s(t) x(t)

Figure 1.6: LTI AWGN channel
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1. Introduction .....................................
1.5 Demodulation

In previous sections, I have described the digital modulation used for transmit-
ting digital information through a communication channel and the properties
of one such channel. This chapter will describe the characteristics and meth-
ods of designing an optimal receiver for the corrupted signal. Here we will
purely focus on receiving a signal that has been corrupted with AWGN.

The source for this section is [1, p. 160 - 179]

1.5.1 MAP and ML receiver

Let us have a received signal x in vector space representation that has passed
through an AWGN channel with additive Gaussian noise w. Next let us
have a function of a receiver g(x): RN → m ∈ Am. This function takes
the received signal vector and transforms it into a sent message m from an
alphabet Am. Now let us assume that the receiver decided that message m̂
has been transmitted based on a result from the function g(·). The probability
that this is the correct decision is the probability of m̂ being sent. By writing
this in an equation, we get 1.15.

P (correct decision|x) = P (m̂ sent|x) (1.15)

In order to get a non-conditional probability we use the probability of x
being received p(x). For the overall probability of receiver making the correct
decision we get 1.16.

P (correct decision) =
∫

P (correct decision|x)p(x)dx

=
∫

P (m̂ sent|x)p(x)dx
(1.16)

Our goal is to maximize the probability of a correct decision. The maxi-
mization is achieved by maximizing the conditional probability function in
the integral above because PDF p(x) is a positive function. With that we get
relation 1.17 for the estimated message m̂.

m̂ = arg max
m∈Am

P (m|x) (1.17)

Transmitting message m ∈ Am is equivalent to transmitting a continuous-
time signal sm. With that we can rewrite the previous equation as 1.18.

m̂ = arg max
m∈Am

P (sm|x) (1.18)

The decision rule given by finding the maximum probability is known as
maximum a posterior rule (or MAP rule for short).

Using Bayes theorem we can write the equation 1.18 as 1.19

8



.................................... 1.5. Demodulation

m̂ = arg max
m∈Am

P (m)p(x|sm)
p(x) = arg max

m∈Am

P (m)p(x|sm) (1.19)

We can ignore the probability p(x) as it has no effect on maximizing the
function. To find the maximum, we need to know the prior probability of
sent messages P (m). Assuming this probability is equiprobable, we get an
even simpler equation 1.20

m̂ = arg max
m∈Am

p(x|sm) (1.20)

The function p(x|sm) is known as the likelihood of message m and the
receiver is called the maximum-likelihood receiver (or ML receiver for short).

1.5.2 Decision regions

In the previous section, a particular function of received signal g(x) that
transforms the received signal into a space of messages has been introduced.
In this section, this function is described more in-depth, and a typical example
is provided.

Assume received signal x ∈ RN and the function g(·) returns the message
that has been the most likely sent m̂ = g(x). We can imagine the output
space (constellation space for example) being divided into certain regions
Di, i ∈ {1, 2, ..., M} as shown in 1.7. Each message sent m ∈ {1, 2, ..., M} has
its own decision region in output space and if the received signal represented
in that output space happens to fall into that specific region, the probability
of receiving message mi will be bigger that probabilities of receiving any other
message mi′ , i′ ̸= i. Mathematically we can describe the regions as 1.21.

Di = {x ∈ RN : P (mi|x) > P (mi′ |x), ∀i′ ∈ {1, 2, ..., M} ∩ i ̸= i′} (1.21)

D1
D2

D3 D4

Figure 1.7: Decision regions
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1. Introduction .....................................
1.5.3 Minimum distance detector

In the last part, we have defined decision regions based on a probability. That
definition gives us a basic idea though it is very vague. In this part, I will go
more in-depth and give an equivalent division between each decision region
based on a received signal in an AWGN channel with power spectral density
N0
2 . The PDF of AWGN w ∈ CN is defined as 1.22.

pw(w) =
( 1√

πN0

)N

e
− ∥w∥2

N0 =
( 1√

πN0

)N

e
−
∑N

i=1 |wi|2

N0 (1.22)

The MAP detector for the AWGN channel is described in following equa-
tions 1.23.

m̂ = arg max
m∈Am

P (m)p(x|sm)

= arg max
m∈Am

P (m)pw(x − sm)

(1)= arg max
m∈Am

P (m)e− ∥x−sm∥2
N0

(2)= arg max
m∈Am

ln P (m) − ∥ x − sm ∥2

N0
(3)= arg max

m∈Am

− ∥ x − sm ∥2

(4)= arg min
m∈Am

∥ x − sm ∥

(1.23)

I have used following steps in simplifying the expression for MAP detector:..1. Removing the constant
(

1√
πN0

)N
because it does not depend on message

m..2. Applying ln function on the argument. The logarithm is an increasing
function, so it does not change the function’s maximum...3. Equiprobable distribution of messages P (m) is assumed..4. The minus changes finding the maximum into finding the minimum of
a positive function, and the square also does not affect the peak of the
function

We can see that finding the message with the biggest probability of being
sent is equivalent to finding the closest channel symbol representing sent
message to our received signal in the constellation space.

10



.................................... 1.5. Demodulation

Finding the closest channel symbol has a very straightforward geometric
interpretation, as we can see in the figure 1.8. For BPSK modulation, the
constellation points are {±1}, so the two decision regions are divided by an
imaginary axis. For the QPSK modulation, the regions are divided by both
real and imaginary axis.

BPSK QPSK

Figure 1.8: Decision regions of PSK modulations

We can also rewrite the equation defining decision regions 1.21 into 1.24.
The Di is a decision region for message mi ∈ Am assuming equiprobable
probability P (m) of messages sent.

Di = {x ∈ RN :∥ x − smi ∥<∥ x − sm′
i

∥, ∀i′ ̸= i} (1.24)

1.5.4 Matched filter

After the theoretical background has been established in previous sections,
we can look at the practical implementation of one specific demodulator.

The demodulator that will be used throughout this work is called matched
filter. This filter’s impulse response matches the used modulation pulse - an
RRC pulse g(t) in our case. If we put the received noisy signal x(t) as an
input of the filter, we can get the constellation space representation x of the
received signal by sampling the filter output at specific times. The specific
times will be integers of the symbol period Ts [5, presentation 09].

The implementation scheme is shown below in figure 1.9.

x(t)

matched filter sampling

〈·, g(t)〉

nTs

xn

Figure 1.9: Implementation of the matched filter
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1. Introduction .....................................
1.6 Decoding

The decoder is a part of a communication scheme that transforms the data
from the demodulator in the form of constellation space points into an
estimation of sent data. The decoding is no easy task because the ideal
decoder would need to compare the received data to all the possible data
combinations the source might have sent. Then, based on its own metric ρ,
the decoder would pick the sequence that fits the most.

This is impossible to compute with longer data sequences as the number of
computation steps increases exponentially with the data length. A solution
to this problem is called the Viterbi algorithm, a sub-optimal algorithm
for finding the best approximation where the number of computation steps
increases linearly with increasing length of message.

The source for this section is [5, presentation 09].

1.6.1 Viterbi algorithm

This algorithm solves the previously mentioned problem by assuming that
the "best" way to get from source to destination is equivalent to picking the
best way from i-th state to (i + 1)-th state in each step. By "best" way, we
mean the way that maximizes the likelihood function in that step or, in other
words, minimizes the decoding metric ρ.

ρmin(A, B) = min
σ:σ0=A,σN =B

ρ(σ) = min
σ:σ0=A,σN =B

∑
n

∆ρn(σn, σn+1) (1.25)

This algorithm is illustrated in figure 1.10 and in equation 1.26 shows the
following example: We are looking for the optimal path from A to B, and we
have computed the smallest metrics to get to the points one step from the
destination B, points C and D. The least value of overall metric to get to B
will be chosen as a minimum of metric needed to get to C with added metric
to get from C to B or equivalently with D. Whichever one of these paths will
have smaller overall metric is chosen as the ideal path.

ρmin(A, B) = min (ρmin(A, C) + ∆ρ(C, B), ρmin(A, D) + ∆ρ(D, B))
(1.26)

...A C

D

i-th step1st step (i+ 1)-th step

∆ρ(C,B)

∆ρ(D,B) B

ρmin(A,C)

ρmin(A,C)

Figure 1.10: Example of Viterbi algorithm
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.................................. 1.7. Estimation theory

1.7 Estimation theory

In the previous sections, the fundamentals of digital communication were
established. Now a basic introduction to estimation and detection theory will
happen.

Estimation theory focuses on estimating the actual value of unknown
parameters θ. The parameters can either be deterministic or random with a
known or an unknown PDF. For the estimation, we will need a mathematical
model of observation, in our case, a conditional PDF.

For example let us assume an AWGN channel with variance σ2, BPSK
modulation and the unknown parameter θ is the transmitted binary data.
The observation model p(x|θ) is in equation 1.27 and is plotted in figure 1.11.

p(x|θ = 0) = 1√
2πσ2

exp
[

− 1
2σ2 ∥ x + 1 ∥2

]

p(x|θ = 1) = 1√
2πσ2

exp
[

− 1
2σ2 ∥ x − 1 ∥2

] (1.27)

-4 -3 -2 -1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

theta = 0

theta = 1

Figure 1.11: Different PDFs for different hypohesis

We can see that we get multiple shifted PDFs, each one for a different
value of a parameter. For estimating the value of parameter from the received
observation x we simply choose the parameter with the highest value of PDF
for given value of observation x.
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1. Introduction .....................................
1.7.1 Cramer-Rao Lower Bound

An important performance parameter of an estimator is its variance and how
close it approaches an ideal estimator variance for a given observation model.
The Cramer-Rao Lower Bound (CRLB for short) places a lower bound on
the variance of an unbiased estimator (an estimator that, on average, yields
the true value of the unknown parameter). The CRLB gives us the best
possible variance and is a good comparison for the estimators. If the regularity
condition 1.28 of the observation model is satisfied then the CRLB for that
model is defined as 1.29.

E
[

∂ ln p(x|θ)
∂θ

]
= 0 (1.28)

var
[
θ̂
]

≥
(

−E
[

∂2 ln p(x|θ)
∂θ2

])−1

=
(

E
[(

∂ ln p(x|θ)
∂θ

)2 ])−1

(1.29)

Proof: Let us have an observation model p(x) that satisfies regularity condi-
tion. Meaning the order of the derivation and integration is interchangeable
as shown in 1.30. In the equation, a relation for derivative of a logarithm of
a function was used ∂ ln p(x|θ)

∂θ = 1
p(x|θ)

∂p(x|θ)
∂θ .

∫
∂ ln p(x|θ)

∂θ
p(x|θ)dx =

∫
∂p(x|θ)

∂θ
dx reg.= ∂

∂θ

∫
p(x|θ)dx = 0 (1.30)

The relation for bias b is described in equation 1.31. θ is the true value of
a parameter and θ̂ is its estimate.

b = E
[
θ̂ − θ

]
=
∫

(θ̂ − θ)p(x|θ)dx (1.31)

The derivation of bias b from is shown in 1.32.

∂b

∂θ
= ∂

∂θ

∫
(θ̂ − θ)p(x|θ)dx

=
∫

∂(θ̂ − θ)
∂θ

p(x|θ)dx +
∫

(θ̂ − θ)∂p(x|θ)
∂θ

dx

= −
∫

p(x|θ)dx +
∫

(θ̂ − θ)∂ ln p(x|θ)
∂θ

p(x|θ)dx

(1.32)

If the estimator is unbiased, then the derivative ∂b
∂θ is equal to zero, and

then both integrals are equal to 1 1.33.

1 =
∫

(θ̂ − θ)∂ ln p(x|θ)
∂θ

p(x|θ)dx (1.33)
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.................................. 1.7. Estimation theory

Now using the Cauchy-Schwarz inequality |⟨a, b⟩|2 ≤∥ a ∥2∥ b ∥2 applied
to the integral in 1.33, we get 1.34 which can be rewritten into the CRLB
definition in 1.35.

12 ≤
(∫

(θ̂ − θ)2p(x|θ)dx
)(∫ (

∂ ln p(x|θ)
∂θ

)2
p(x|θ)dx

)

≤ var[θ̂] · E
[(

∂ ln p(x|θ)
∂θ

)2 ] (1.34)

var[θ̂] ≥
(

E
[(

∂ ln p(x|θ)
∂θ

)2 ])−1

(1.35)

I have taken the equations and the proof from the [6, presentation 01].

1.7.2 Maximum-Likelihood Estimator

I will now describe the most used type of estimator based on the maximum
likelihood principle. This estimator finds the value of an unknown parameter
θ as a value that maximizes the likelihood function for one given observation
x over all possible initial parameter values θ̌ as shown in equation 1.36 and
in figure 1.12.

θ̂ = max
θ̌

p(x|θ̌) (1.36)

In general, the ML estimator has the properties of being unbiased. Another
great property of the ML estimator is that for large data records, the distri-
bution function of the estimation approaches the Gaussian curve with a mean
equal to the true value of parameter θ. Its variance is equal to the CRLB
for the given observation model. We say that ML estimator is asymptotically
optimal [3, p. 157].

θ̌i

compute for θ̌i+1

p(x|θ̌i) find maximum

θ̂

Figure 1.12: ML estimator scheme
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1.8 Detection Theory

In the previous chapter, we talked about the theory of estimating parameters.
Now, I will lightly introduce the basics of signal detection theory.

The signal detector has received an observation x and his goal is to find out
whether a useful signal containing information is in that received observation
or not.

The detector will be using hypothesis testing to determine whether a useful
signal is present in the observation. For binary detection, there will be two
types of signals - null or alternative signal 1.37. If the signal detector denies
the alternative hypothesis, it automatically assumes the null signal is present
in the received signal and vice-versa.

s =
{

s(0) = 0, null signal
s(1) ̸= 0, alternative signal

(1.37)

In relation to the null/alternative signals, we can define the following
probabilities:. Detection probability PD = P (1|1) = Pr{s = s(1)|s = s(1)}.Miss probability PM = P (0|1) = Pr{s = s(0)|s = s(1)}. False Alarm probability PF A = P (1|0) = Pr{s = s(1)|s = s(0)}. Null-detection probability P0 = P (0|0) = Pr{s = s(0)|s = s(0)}

1.8.1 Neyman-Pearson Theorem

Neyman-Pearson theorem is a binary hypothesis detector that maximizes
the detection probability PD for a given false alarm probability PF A = α if
the decision is the likelihood ratio test. If the likelihood ratio function Λ(x)
1.39 is bigger than a certain threshold γ related to α in 1.40, the detector
assumes the received signal has a useful signal in it. Otherwise, it assumes a
null signal has been received 1.38.

s =
{

s(0) for Λ(x) ≤ γ

s(1) for Λ(x) > γ
(1.38)

Λ(x) = p(x|s(1))
p(x|s(0))

(1.39)

α =
∫

x:Λ(x)>γ
p(x|s(0))dx (1.40)

Definitions are taken from [4, p. 61 - 65] and [6, presentation 05].
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1.9 Introduction to WPNC

This section will establish the needed fundamentals of Wireless Physical layer
Network Coding.

The WPNC introduces a new idea that could replace the classic point-to-
multipoint communication in the future where the receivers are network-aware.
This receiver knows the network’s structure as a whole and is aware of the
possible signals this receiver may receive. As we will see, it is favorable for
the receiver to receive more non-orthogonal signals at once to increase the
overall throughput of the network.

1.9.1 2-Way Relay Channel

Let us take the following network structure 1.13 as an example. This structure
is called the Two-Way Relay Channel (2WRC) and is the most straightforward
network that can utilize the WPNC. We have two sources, A and B, that
wish to communicate, but their signals can not reach the other source. The
communication is conveyed with the help of the relay node R.

A R B

Figure 1.13: Two-Way Relay Channel topology

In traditional communication using the time division, the communication
would require four time slots to complete. However, using the WPNC, the
communication will require just two time slots 1.14. As we will see, the relay
node will utilize the network coding approach. The node will calculate the
functions of the received data from both sources and transmits the information
containing both the data streams. With the knowledge of the data the sources
transmitted, the sources can decode the information aimed at them.

1.9.2 Hierarchical decode and forward

Now let us focus on the relay node’s strategy when the communication
happens. The strategy is called hierarchical decode and forward (HDF), and
its basics were lightly introduced in the previous section.

The HDF will use the mapping function directly from the overlapped re-
ceived signal from both sources. The mapping function for binary transmitted
data will be a simple exclusive or operation (XOR) [2, p. 20, 21].

After the relay node has mapped the data, the node is ready to transmit the
data back to the sources. The sources with the knowledge of their data can
decode the information from the source by applying another XOR function
to the received data 1.41.

(sA ⊗ sB) ⊗ sB = sA (1.41)
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A → R

R → B

B → R

R → A

time

A
R
B

A → R

B → R
R → A,B

A
R
B

time

Classical communication with time division

WPNC communication

Figure 1.14: Comparison between TDMA and WPNC

1.9.3 H-constellation

As described previously, a mapping function exists at the relay node that
turns the received signal into binary data. The mapping function will be a
simple minimum distance detector as described in 1.5.3. However, the points
that will define the decision region will not be a traditional, already defined
constellation.

Because the received signal consists of multiple separate signals from sources,
the constellation the signals will create will be a combination of multiple
constellations. This constellation will be called the Hierarchical constellation
(H-constellation).

Assume that both the sources used a simple BPSK modulation as defined
in 1.4. In this case, the H-constellation is a combination of two BPSK
constellations as shown in 1.15. We can see that the resulting constellation
consists of three points: one for both sources transmitting 0, one for both
sources transmitting 1, and 2 points representing the situation where the
sources transmitted opposite bits.

10 0 1

1 10 0 1 0 0 1

Figure 1.15: H-constellation for two BPSK modulations
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................................ 1.9. Introduction to WPNC

When we know how the H-constellation will look, we can imagine the
mapping function at the relay node. If the received signal is closer to the
middle where there are the two overlapped constellation points, the node
assumes the sources transmitted the opposite bits, and the result of the
mapping function (a XOR function in our case) is 1. In another case, the
result is 0 as both sources transmitted the same bits.

Relative fading

In reality, we need to consider the effects of the channel, which will also affect
how the H-constellation will look. The exact parameter that will significantly
affect the H-constellation is a phase shift.

We have received two signals, sA, and sB. Each has passed through the
channel, and each useful signal has been affected by a fading hA and hB. The
node has received the signal x combined with both these noisy signals 1.42.

x = hAsA + hBsB = hA(sA + hB

hA
sB) (1.42)

We can negate the effects of the singular fading hA by zero-forcing so this
parameter plays no role in the way the H-constellation will look. What plays
role is the effect of the relative fading h = hB

hA
[2, p. 31, 32]. The relative

fading represents a relative phase shift of one signal compared to the other.
In constellation space the channel symbols will also be relatively shifted.

We can take a look how the H-constellation will look for BPSK modulations
with various values of h in figures 1.16.
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Figure 1.16: H-constellation for BPSK modulation for different values of h
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Chapter 2
WPNC in 2WRC with realistic channel
model

In this chapter, I will talk more in-depth about one particular example where
I will include all the previous theoretical parts implemented for one such
example. This case will later be implemented in Matlab.
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2. WPNC in 2WRC with realistic channel model.......................
2.1 General overview

I will begin by describing the digital communication scheme, including all
the function blocks described more deeply in later sections. Let us begin.

The digital communication will proceed between two communication nodes
A and B in a simple topology Two-Way Relay Channel as shown in 1.13.
Both the sources will transmit coded binary stream information using linear
PSK modulations to the relay channel with the CAZAC sequence as a pilot
to determine random channel parameters in processing at the receiver’s end.
Each node will have its unique CAZAC sequence with its unique prime M, N
parameters. The CAZAC sequence is defined in equation 2.1.

CAZAC(M, N) =
[

exp
(

jπ M

N
i(i + 1)

)]i=N−1

i=0

(2.1)

Both the signals will pass through the LTI AWGN channel with random
nuisance parameters 1.6. The parameters are following:. Random phase shift with uniform PDF φ ∈ U(0, 2π). Random delay equal to multiples of symbol period Ns, τ = n·Ns, n ∈ N. Complex AWGN dependent on chosen SNR

The relay node will then process the information from both sources, knowing
that the signals might not be perfectly synchronized. The imperfection of
the synchronization will take effect on the output signal.

Lastly, the noisy signal from the relay node will be detected at the sources
themselves using the matched filter. With the knowledge of all the CAZAC
pilots in the system and its transmitted data, the data from the other source
will be detected and decoded.

2.2 Coding

The coding of binary data streams dA, dB will be done using convolution
coding with matrix G in equation 2.2. The relation between encoded and
message bits is in equation 2.3.

G =
(

1 1
1 0

)
(2.2)

cn,1 = dn−1 + dn

cn,1 = dn
(2.3)

Lastly the function mod 2 will be used on coded sequence so the output
is a binary sequence. For a message d of length Nd we get coded sequence c
of length 2(Nd − 1).
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+ cn,1

cn,2

dn−1

dn

Figure 2.1: Implemented code

2.3 Signal modulation

All nodes will be using the same linear memory-less modulation that uses
phase-shift keying, namely BPSK or QPSK. The coded data in the form of a
binary stream c will be transformed into channel symbol stream q depending
on the used modulation. Then the channel symbols will be up-sampled with
chosen symbol period.

Lastly, the up-sampled channel symbol stream will pass through a filter with
an impulse response equal to the RRC pulse. The output of the modulator
is the continuous-time signal s(t) that can be detected at the receiver’s end
using matched filter.

data

d

q q ′ s(t)
q(d) upsampling filter

Figure 2.2: Scheme of the data modulation

2.4 Communication channel

Then, the signal passes through the parametric channel where it is affected
by random phase shift with uniform distribution, random time delay equal to
integers of symbol period and complex AWGN related to chosen SNR γ.

The relation for SNR is γ = ϵb
N0

[1, p. 176] where ϵb is signal energy per
bit and N0

2 is a power spectral density of the noise. The relation between N0
and noise variance σw is σw =

√
2N0.

With that the relation between SNR and noise variance is: γ = 2ϵb
σ2

w
. We

will be using SNR in dB. With that the relation is:

γ = 10 log10

(2ϵb

σ2
w

)
→ σ2

w = 10− γ
10 2ϵb = 10− γ

10
2ϵs

log2 Md
(2.4)

The ϵs is symbol energy equal to 1
2 for both BPSK and QPSK modulations,

and Md is the cardinality of the alphabet. The BPSK has cardinality Md = 2
and QPSK has Md = 4. For these modulations, the relation between noise
variance and SNR is shown in equations 2.5.
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2. WPNC in 2WRC with realistic channel model.......................

BPSK : σ2
w = 10− γ

10

QPSK : σ2
w = 1

210− γ
10

(2.5)

2.5 Relay node processing

The relay node receives the overlapped, not synchronized mesh of both signals,
and the node needs to determine whether what it received has anything useful
from either of the sources.

If the relay node determines that it is receiving a signal containing infor-
mation, the node needs to determine the value of channel parameters that
affected the signal. In our case, these parameters are phase shift and delay.
Lastly, with the knowledge of the parameters, the relay node can detect the
received data and forward it to the sources themselves. The general scheme
is shown in figure 2.3.

does the signal
contain information?

wait

no

yes
determine
the parametres

estimate
the data

s(t)

Neymann-Pearson

Figure 2.3: General scheme for relay node processing

2.5.1 Neyman-Pearson Theorem

Using the Neyman-Pearson theorem, the node decides whether we have
received the useful signal or purely noise containing no information. In
the following equations, I will show the threshold value for accepting the
alternative hypothesis for a given false alarm probability α.

Let us have a relation between received signal and sent signal x = s + w
where w is AWGN with variance σ2

w. Let us have null H0 and alternative
hypothesis H1 as shown in equations 2.6.

H0 : y = |⟨0 + w, s⟩|2 = |ξ|2

H1 : y = |⟨s + w, s⟩|2 = |ξ + ϵs|2
(2.6)

The ϵs denotes the energy of signal s. The ξ has zero mean Gaussian PDF
with variance σ2

wϵs as proven in 2.7.

var[ξ] = E[|ξ|2] = E[|⟨w, s⟩|2] = E[
∑

i

∑
j

wis
∗
i w∗

j sj ]

=
∑

i

∑
j

E[wiw
∗
j ]s∗

i sj =
∑

i

σ2
ws∗

i si = σ2
wϵ2

s = σ2
ξ

(2.7)
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.................................2.5. Relay node processing

Now let’s take a look at PDF of the absolute value of cross-energy y. For
simplification substitution y′ = 2y

σ2
ξ

is used. The PDF will be χ2, for null
hypothesis the PDF will be centralized, for alternative hypothesis it will be
decentralized with the center λ = 2ϵ2

s

σ2
ξ

. Both the PDFs in equation 2.8 are
with k = 2 degrees of freedom. The I0(·) represents modified Bessel function.

p(y′|0) = 1
2e− y′

2

p(y′|1) = 1
2e− y′+λ

2 I0(
√

λy′)
(2.8)

The likelihood function defined in 1.39 will be:

Λ = p(y′|1)
p(y′|0) = e− λ

2 I0(
√

y′λ) (2.9)

The signal detector will decide to accept the alternative hypothesis if the
likelihood function Λ is bigger than some arbitrarily chosen value γ 1.40.

e− λ
2 I0(

√
y′λ) > γ ⇒ y′ >

(I−1
0 (exp λ

2 γ))2

λ
= β (2.10)

We can find the value of β depending on chosen α as:

α =
∫ ∞

β
p(y′|0)dy′ = e− −β

2 ⇒ β = 2 ln 1
α

(2.11)

Finally, we can write the condition under which the detector assumes the
useful signal is present in the received signal in 2.12.

2y

σ2
wϵ2

s

> 2 ln 1
α

⇒ y > σ2
wϵ2

s ln 1
α

(2.12)

2.5.2 Estimating the channel parameters

The useful signal received some changes by passing through the communication
channel. In order to find out the information modulated in the signal, we need
to estimate phase shift and delay. For the estimation, we will be using the
known signal pilot in the form of the CAZAC sequence defined in equation
2.1.

We will use the Joint Maximum Likelihood estimator for the estimation.
Firstly the delay will be estimated, and assuming the estimation is correct,
the phase shift can also be estimated. The delay will be estimated using the
Maximum Likelihood principle 1.12 as is shown in 2.13.

τ̂ = arg max
τ̌

|⟨x(t), s(t + τ̌)⟩| (2.13)

The x(t) is the received noisy signal and s(t + τ) is the known signal
CAZAC sequence shifted in the time domain by an integer of symbol period

25



2. WPNC in 2WRC with realistic channel model.......................
τ . We are searching the maximum of the absolute value cross-energy of the
received signal x(t) and the sequence we are searching in that signal.

With the knowledge of time delay, the estimator can estimate the phase shift
the channel has done to the useful signal. We can see that the phase shift
will be an angle of the maximum of the cross-correlation function from the
previous equation. Mathematically the relation is written in 2.14.

φ̂ = ∠⟨x(t), s(t + τ̂)⟩ (2.14)
Where again the x(t) is the received noisy signal and s(t+ τ̂) is time-shifted

known CAZAC sequence modulated onto pulses. The time shift τ̂ is equal to
the estimated time delay the joint estimator gave us in the previous step.

maxτ̌ |〈x(t), s(t+ τ̌)〉| ϕ̂ = � 〈x(t), s(t+ τ̂)〉
channel parameters
estimation

x(t)

delay estimation phase estimation

Figure 2.4: Scheme of Joint ML estimator

Cramer-Rao Lower Bound

In the chapter where the numerical results done using Matlab will be presented,
I will compare the variance of the phase estimator to the Cramer-Rao Lower
Bound for this specific case. Here for simplicity, I will show the computation
of the CRLB for the case where only a single signal is transmitted. For the
case of both signals transmitting, I will refer to the pages in one reference of
this work where the computation is done.

For a single source transmitting the observation model is given by:

p(x|φ) = 1
πN σ2

w

exp − 1
σ2

w

∥ x − ejφs ∥ (2.15)

If we want to compute the CRLB we need to make sure the regularity
condition 1.28 holds true. By writing each components of the inner product
∥ x − ejφs ∥ we get equation 2.16.

∂ ln p(x|φ)
∂φ

= − 1
σ2

w

(
−jejφ⟨s, x⟩ + je−jφ⟨x, s⟩

)
(2.16)

The regularity condition will hold for the phase shift uniformly distributed
between 0 and 2π. We will integrate the complex exponential over its period,
and nothing else depends on the φ, thus resulting in 0 mean value.

We can now compute the CRLB. For that, we will need a second derivative
of the logarithm function.

∂2 ln p(x|φ)
∂φ2 = − 1

σ2
w

(
ejφ⟨s, x⟩ + e−jφ⟨x, s⟩

)
(2.17)
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.................................2.5. Relay node processing

Now all we need is the computation of the average over the φ distribution.
We will use the relation for the observation x = ejφs+w where w is zero-mean
AWGN.

ejφ⟨s, x⟩ + e−jφ⟨x, s⟩ = ejφ(⟨s, s⟩e−jφ + ⟨s, w⟩) + e−jφ(e+jφ⟨s, s⟩ + ⟨s, w⟩)
= 2 ∥ s ∥2 +2Re

[
⟨s, w⟩

]
(2.18)

Using the fact that the AWGN has zero mean we get:

E
[

− 1
σ2

w

(
2 ∥ s ∥2 +2Re

[
⟨s, w⟩

) ]]
= −2 ∥ s ∥2

σ2
w

(2.19)

Thus the lower bound for the variance of the estimator is:

var[φ̌] ≥ σ2
w

2 ∥ s ∥2 (2.20)

The computation of the variance lower bound for case with both signals
transmitting is more complex and is done in [2, p. 210 - 212]. For this case
the observation model is:

p(x|φA, φB) = 1
πN σ2

w

exp − 1
σ2

w

∥ x − ejφAsA − ejφB sB ∥ (2.21)

And the lower bound for the variances will be:

var[φ̌A] ≥ σ2
w

2 ∥ sA ∥2
(
1 − Re

[
ej(φ̌A−φ̌B)η

]2)
var[φ̌B] ≥ σ2

w

2 ∥ sB ∥2
(
1 − Re

[
ej(φ̌A−φ̌B)η

]2)
(2.22)

The η denotes scaled inner product of the two signals.

η = ⟨sA, sB⟩
∥ sA ∥∥ sB ∥

(2.23)

2.5.3 Data detecting

Single signal case

If only a single signal is transmitted, the relay node has a straightforward
goal. All the node needs to do is detect the data from that source and forward
it in a later step. Firstly the node will use zero-forcing of the phase shift on
the received signal, so the effect of the shift is negated. Then using matched
filter and the decision regions in the constellation space, the node can detect
the data.
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Multiple signals case

If multiple sources transmitted, the node estimates all the necessary channel
parameters. After this has been done, the node will use zero-forcing of two
nuisances:..1. The phase shift zero-forcing of the source that had transmitted earlier..2. The CAZAC pilot of the later signal as it is no longer needed after the

estimation of the parameters

After the zero-forcing has happened, we can use matched filter to give us
received constellation points and then use the decision regions to detect the
data. For detecting the non-overlapped data, the decision regions are given
by used modulation (BPSK or QPSK), possibly by relative fading h.

To detect the overlapped data, the received constellation points will be
compared with the H-constellation points generated for specific modulation
and the specific relative fading h.

The figure 2.5 illustrates the scheme of data detection at the relay node
for both cases.

did multiple
sources transmit?

no

yes

phase shift
zero-forcing data detection

zero-forcing

non-overlapped

data detection

overlapped

data detection

data

data

received
signal

phase shift
and CAZAC pilot

matched filter
and decision regions

matched filter and decision regions

Figure 2.5: Scheme of data detection on relay node

2.5.4 Broadcasting the detected data

Single signal case

If the relay node assumed using the Neyman-Pearson theorem that only one
source transmitted data, the node would act as a forwarder of the received
data. To signify that only one signal was transmitted, the forwarded signal’s
pilot signal will be the same as the pilot the transmitting source used. Meaning
if only source A was broadcasting, the forwarded message will start with
the pilot belonging to source A with its characteristic M, N constants in the
CAZAC sequence. After the CAZAC pilot, the binary detected data sequence
modulated onto the RRC pulse follows.
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............................... 2.6. Processing at the sources

Multiple signals case

If both signals have been determined to be present at the relay node, the
broadcasted signal will have to contain additional information along with
the detected data itself. With that, the broadcasted payload will have three
parts...1. Pilot signal in the form of CAZAC sequence belonging to the relay node..2. Header containing information on which source transmitted earlier and

what is the relative delay between the two received signal..3. The xorred detected data itself

The first half of the bits assigned to the header is a stream of either all
0s or all 1s. 1s if A transmitted earlier and 0s if B transmitted earlier. The
second half of the header is a binary number that represents the number of
symbol periods the relative delay ∆τ between two signals amounted. This is
all the additional information the sources need along with the transmitted
data itself.

The first part of the xorred data stream is the relay node’s data from over-
lapped signals. The second half of the xorred data stream is the data that
the node received individually. The node first detected the data, turned it
into a binary stream, and then applied the xor function to these two streams
of the same length. Effectively the data payload the relay node transmits is
xorred detected data where the xor function has been applied to the circularly
shifted data stream from the earlier source and the data stream from the
later source.

The figure 2.6 illustrates the structure of the data payload from the relay
node. Note that the pilots of both signals can overlap in the implementation.
The relay node can process the signals if the relative delay ∆τ is equal to
any integer of symbol period.

After the data payload has been created, the same procedure with modula-
tion and passing through the channel is done.

2.6 Processing at the sources

The end processing is straightforward. The sources receive a signal from the
relay node. If the source assumes the message is aimed at it (in other words,
the received message contains a CAZAC sequence other than the sequence
belonging to that source), the sources will process the received signal. In
this section, I will describe the processing of the signal using hard decision
detection, the decoding of the message will be covered in the following section.
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data

data

pilot

pilot

pilot header

xor function

data

1s or 0s binary ∆τ

which source
transmitted first relative delay

A

B

R

Figure 2.6: Data broadcasted by relay node if multiple sources transmitted

Single signal case

If the signal contains the information only from the other source, the source
does not need to dig out the information from the header. The source will
only need to estimate the channel parameters, zero-force the phase shift, and
using the matched filter the source can detect the data.

Multiple signals case

If the signal is from both sources, or in other words, if the CAZAC pilot
signal belongs to the relay node, the sources, after estimating the channel
parameters, need to detect the data and get all the necessary information
contained in the header.

With the knowledge of the relative delay, which source transmitted earlier
and their transmitted data, the sources can reconstruct the data from another
source. The signal from the xorred data payload has been created with the
sequence of the earlier source being circularly shifted. The circular shift needs
to be taken into account during the processing.

2.7 Decoding

The last part of the communication cycle is decoding the coded received
sequence. Using the matched filter, we have constellation points corresponding
to the signal the relay node has transmitted.
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Figure 2.7: Processing at the sources

2.7.1 Single signal case

If only a single source transmitted, the relay node forwarded the message and
added the appropriate pilot. When the source has received this message and
is the intended destination, the source will apply a Viterbi algorithm with
soft decision metric ρ equal to the absolute distance in constellation space
onto the constellation points the matched filter has given us. The algorithm
returns an estimated data sequence that can be compared with the actual
sequence the other source transmitted.

2.7.2 Multiple signals case

If multiple signals reached the relay node, the sources would need to detect
information from the header using a hard decision metric. After getting the
information regarding the relative delay and which source transmitted earlier,
the sources will apply the inverse XOR function in constellation space and
apply the Viterbi algorithm to the adjusted constellation space points.

Applying inverse XOR function on received signal

After getting the information from the header, the source will apply the
XOR function to the received constellation points. Using decision regions, the
source will assume what the relay node transmitted and then adjusts the point
to correspond with the assumed information the other source transmitted.

Example: Let us assume the received signal was modulated using QPSK
modulation. Suppose the received message from the relay node in one symbol
was 00, and the source transmitted 11 in that corresponding symbol. In that
case, the source will shift the angle of the constellation point of that symbol
by π to apply an inverse XOR function in the constellation space. This phase
shift makes the received constellation points represent the sequence the other
source had transmitted.

The following tables 2.1 and 2.2 show the appropriate phase shifts φ the
sources need to apply to the received points XOR if the source transmitted
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data c in corresponding symbol and the new XOR symbol we get by applying
said phase shift.

XOR\C 0 1

0 0, φ = 0 1, φ = 0
1 1, φ = π 0, φ = π

Table 2.1: XOR function in constellation space for BPSK modulation

XOR\C 00 01 11 10

00 00, φ = 0 01, φ = π
2 11, φ = π 10, φ = −π

2
01 01, φ = 0 00, φ = −π

2 10, φ = π 11, φ = π
2

11 11, φ = 0 10, φ = −π
2 00, φ = π 01, φ = −π

2
10 10, φ = 0 11, φ = −π

2 01, φ = π 00, φ = π
2

Table 2.2: XOR function in constellation space for QPSK modulation

Viterbi algorithm

After applying the inverse XOR function to the constellation points and
potentially inverse circular shift, the sources will apply a Viterbi algorithm to
the constellation points. Using the algorithm, the source estimates the data
sequence the other source had transmitted.
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Chapter 3
Implementation

This chapter will describe the practical implementation of the communication
system I have described in the previous chapter. I will describe the imple-
mentation of each function block in the attached files TWRC_BPSK_coded.m
and TWRC_QPSK_coded.m. Both the Matlab scripts work by themselves and
reader can follow this chapter along with the attached codes.
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3. Implementation....................................
3.1 Sources transmitting

In the first part, I will describe the first part of the communication cycle
where the randomly generated binary data streams Da and Db of length Nd
are encoded, modulated onto the RRC pulse, and then passed through the
parametric communication channel aimed at the relay node.

3.1.1 Encoding

We have random binary data streams Da and Db and the sources add boundary
conditions onto the streams. The conditions are that the first two bits and
the last bit are all zeros. The boundary conditions are for easier decoding
with the Viterbi algorithm.

Then the function code 3.1 gets called to get the binary coded streams Ca
and Cb. The said function simply takes the data stream and using a loop it
multiplies the data by function matrix G and applies mod 2 function.

1 function c = code(d)
2

3 G = [1 1; 1 0];
4 c = zeros(1, 2*length(d) - 2);
5

6 for i=2:length(d)
7

8 c(2*(i-1) - 1) = mod(d(i)*G(1, 1) + d(i-1)*G(1, 2), 2);
9 c(2*(i-1)) = mod(d(i)*G(2, 1) + d(i-1)*G(2, 2), 2);

10

11 end
12 end

Figure 3.1: Implementation of the function code

3.1.2 Modulation

Firstly we will need to create an RRC modulation pulse using a function
generate_RRC_pulse. The function takes all the parameters needed for
defining an RRC pulse and creates the pulse. Then the pulse is scaled, so his
energy is equal to 1.

Secondly, we need to apply the channel function to the coded sequence and
add a pilot signal at the beginning of the sequence. The CAZAC pilot signal is
created using two functions generate_cazac and generate_cazac_cyclic_prefix
where the second function simply creates a cyclic prefix onto already created
sequence.

The channel function is very simple in BPSK modulation, that is Q = 2C -
1, for QPSK modulation the function is bit more complex and is done using
function channel_symbols.
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.............................. 3.2. Processing at the relay node

Lastly the created channel symbol streams Qa and Qb are sent to the function
conv_with_RRC where the symbols get upsampled with Ns − 1 zeros and
then are convoluted with RRC pulse. The results are the continous-time
signals Sa and Sb the sources transmit in ether to the relay node.

3.1.3 Channel model

We have both continuous-time signals, and we apply the effect of the paramet-
ric channel to the said signals. Firstly the script generates a random phase
shift phi with uniform distribution and time delay tau equal to integers of
the symbol period. Then the function channel gets called and applies the
effect of the parameters to the signal.

The function returns phase shifted and noisy signals xA, xB where first
tau samples are pure noise. The complex noise is zero mean with variance
sigma_squared_w equal to the value in equations 2.5 is generated using
Matlab function randn.

3.2 Processing at the relay node

The relay node receives mesh of the signals xA and xB that together form a
signal x that the relay node will work with. In this section, I will describe
the received signal’s processing. The following section will discuss how and
what relay node broadcasts.

3.2.1 Pilot signal detection

Firstly the relay node will estimate which signals it received using the Neyman-
Pearson theorem. I have described how it will look for our case in subsection
2.5.1. The implementation described in that subsection is in function Ney-
man_Pearson 3.2. The function takes the received signal x, CAZAC sequence
parameters M, N, the false alarm probability alpha and SNR.

The function computes the value of threshold β, computes all values of
y, and compares them. If the maximum value of the y is larger than the
threshold, the function returns 1. Otherwise, 0 is returned.

3.2.2 Parameters estimation

If, using the Neyman-Pearson theorem, the relay node assumes it received
a useful signal, the node will try to find out the values of channel param-
eters using the Joint ML estimator as described in subsection 2.5.2. The
implementation of the estimator is in function estimation 3.3.

The function firstly finds the maximum absolute value of the energy between
modulated CAZAC sequence and the noisy signal x. The estimator estimates
the time delay tau as a difference in samples between the peak of energy
between modulated CAZAC and modulated CAZAC with prefix and the peak
of computed energy between modulated CAZAC and noisy signal.
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3. Implementation....................................
1 function value = Neyman_Pearson(x, M, N, alpha, SNR, g, N_s)
2

3 %creating CAZAC pilot to compare x with
4 cazac = generate_cazac(M, N);
5 s_cazac = conv_with_RRC(cazac, g, N_s);
6

7 %threshold computation
8 sigma_squared_w = 10^(-SNR/10);
9 epsilon_s = max(abs(conv(s_cazac, conj(s_cazac))));

10 beta = sigma_squared_w*epsilon_s*log(1/alpha);
11

12 y = abs(conv(x, conj(s_cazac)));
13

14 if(max(y(:)) > beta) value = 1;
15 else value = 0;
16 end
17 end

Figure 3.2: Implementation of the function Neyman_Pearson

After the estimator gave us time delay estimation, the estimator gives us
an angle estimation phi as an angle of the cross-energy in estimated tau.

The function returns a 2 × 1 array, where the first value is the estimated
delay and the second is the phase.

3.2.3 Case for single source transmitting

If only one signal is transmitted, the relay will first use zero-forcing to remove
the phase shift. The received signal is simply multiplied with the inverse
estimated phase shift x = exp(-1i*phi)*x. After the zero-forcing of the
phase shift the function estimate_data_at_sources is called with the inputs
of noisy signal x, delay, parameters of the data payload: length of CAZAC
N, header_length (is zero for single-source case) and length of message Nd.
Lastly the function needs RRC pulse g and samples per period N_s to use in
matched filter.

The function uses matched filter and takes its samples in multiples of the
symbol period. Then based on decision regions, the function assigns a binary
value to each constellation point. In BPSK modulation, the only decision
criterion is the real part of the constellation point. In QPSK modulation, an
imaginary part also plays a role.

3.2.4 Case for both signals transmitting

If both signals are assumed to be present, the relay node finds the values
of channel parameters for both signals using the already described function
parameters. With this knowledge, the relay node knows which source trans-
mitted earlier and what is the relative time delay between both sources. Then
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.............................. 3.2. Processing at the relay node

1 function parametres = estimation(x, M, N, g, N_s)
2

3 cazac = generate_cazac(M, N);
4 cazac_prefix = generate_cazac_cyclic_prefix(cazac);
5 s = conv_with_RRC(cazac, g, N_s);
6 s_prefix = conv_with_RRC(cazac_prefix, g, N_s); %the ...

preambule convoluted with RRC
7

8 energy = conv(conj(s), s_prefix);
9 energy_peak = find(energy(:) == max(energy(:)));

10

11 noisy_energy = conv(conj(s), x);
12 noisy_energy_peak = find(noisy_energy(:) == ...

max(noisy_energy(:)));
13

14 tau = N_s*round(abs(noisy_energy_peak - energy_peak)/N_s);
15

16 energy_at_estimated_tau = 0;
17

18 for i=1:length(s_prefix)
19

20 if(i < length(x)-tau+1)
21 energy_at_estimated_tau = energy_at_estimated_tau + ...

x(tau+i).*conj(s_prefix(i));
22 end
23

24 end
25

26 phi = mod(angle(energy_at_estimated_tau), 2*pi);
27

28 parameters = [tau, phi];
29 end

Figure 3.3: Implementation of the function parameters

the relay node will apply zero-forcing to the signal.
The first zero-forcing applied is removing the CAZAC pilot signal from the

later source as it is no longer needed and is only a hindrance in data detection.
The function used for the removal is remove_preamble. the function takes
the noisy signal x and all the necessary values for creating the delayed, phase-
shifted CAZAC pilot. The parameters are: time delay tau, phase shift phi,
parameters M, N, modulation pulse g and samples per period N_s. After the
removal, the zero-forcing of the phase shift from the earlier source happens.

After the zero-forcing has been completed, we can now detect the data
similarly as in the case where a single signal was transmitted. However,
in this case, we need additional information regarding the relative delay
and relative fading h. The function that detects the data in this case is
estimate_data_from_both_sources 3.4. Inputs are noisy signals, time delays
from both sources, relative fading, CAZAC, message lengths, and functions
used in the matched filter.
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3. Implementation....................................
Firstly we take the first messages of the non-overlapped data from an earlier

source and, using decision regions, we transform them into binary data. The
same thing is done with the non-overlapped data from the later source, except
in this case, the decision regions are shifted due to the effect of relative fading
h.

The remaining constellation points are compared with the H-constellation
points generated for a given value of h and a detection is made once more.
The function returns a binary stream of detected data.

3.3 Relay node broadcasting

After the data has been estimated using the matched filter, the node will
broadcast the detected data. Depending on if only a single signal was
transmitted or both were, the relay node might edit the detected data that
will be broadcasted.

3.3.1 Case for single source transmitting

If only one source transmitted message, the CAZAC pilot of the transmitting
signal gets added at the start of the detected sequence that turns into channel
symbols and gets modulated the same way we modulated the signals from
each source.

Then the continuous-time signal passes into function channel where ran-
domly generated nuisance parameters get added to the useful signal.

3.3.2 Case for both sources transmitting

In this case, the relay node will have to first apply the xor function on the
detected binary streams from the non-overlapped signal, as shown in figure
2.6.

At the start of the xorred sequence data_relay the CAZAC sequence of
the relay node R gets added along with the header. The first half of the
header with the length of header_length is composed of purely 1s or 0s if
A or B transmitted earlier, respectively. The second half is the estimated
relative delay delta_tau turned into binary array using Matlab function
de2bi.

After this sequence has been completed, all bits excluding the CAZAC
sequence are turned into channel symbols, modulated, and passed through the
channel with functions conv_with_RRC and channel. The continuous-time
signal from the relay node is called xR.

3.4 Processing at the sources

The signal xR passed the communication channel, and now it will be processed
in the sources. Firstly the sources will use the Neyman-Pearson theorem in the
form of an already defined function Neyman_Pearson to detect the CAZAC
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1 function data_estimate = estimate_data_from_both_sources(x, ...
tau_earlier, tau_later, h, g, N, N_s, Nd)

2

3 MF = conv(x, g);
4 data_estimate = zeros(1, Nd + (tau_later-tau_earlier)/N_s);
5

6 %non-overlapped data from the earlier source
7 MF_samples = MF(length(g) + tau_earlier + 2*N*N_s + ...

N_s*(0:(tau_later - tau_earlier)/(N_s)-1));
8 data_estimate(1:length(MF_samples)) = ...

0.5*sign(real(MF_samples(:))) + 0.5;
9

10 %overlapped data (constellation points are 1+h, -1-h, ...
1-h, -1+h)

11 MF_samples = MF(length(g) + tau_earlier + 2*N*N_s + ...
N_s*((tau_later - tau_earlier)/(N_s):Nd - 1));

12

13 for i=1:length(MF_samples) %finding the closest ...
constellation point

14 if(abs(MF_samples(i) - (1-h)) < abs(MF_samples(i) - ...
(1+h)) &&...

15 abs(MF_samples(i) - (1-h)) < ...
abs(MF_samples(i) - (-1-h)) ||...

16 abs(MF_samples(i) - (-1+h)) < ...
abs(MF_samples(i) - (1+h)) &&...

17 abs(MF_samples(i) - (-1+h)) < ...
abs(MF_samples(i) - (-1-h)))

18

19 data_estimate((tau_later-tau_earlier)/N_s + ...
i) = 1;

20 end
21 end
22

23 %non-overlapped data from the later source
24 MF_samples = MF(length(g) + 2*N*N_s + tau_earlier + ...

N_s*(Nd: Nd + (tau_later-tau_earlier)/N_s-1));
25

26 for i=1:length(MF_samples)
27

28 if(abs(MF_samples(i) - h) < abs(MF_samples(i)+h))
29 data_estimate(Nd+i) = 1;
30 end
31 end
32 end

Figure 3.4: Finding closest H-Constellation point in the function esti-
mate_data_from_both_sources for BPSK modulation

pilots. After the signal detection has happened, the channel parameters are
estimated using function estimation. Then two types of data estimating will
happen - a hard decision detection using decision regions in constellation
space and a soft decision decoding using constellation space distance as a
metric.
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3.4.1 Hard decision data detection

In this part, the sources will use decision regions in constellation space. The
sources will act as if the transmitted sequences Ca and Cb were uncoded
messages, so the error of the uncoded communication can be easily computed.

A single signal case

If the sources assumed the relay node acted as a simple forwarder, the sources
would apply zero-forcing of the phase shift estimated in the previous step.
After that the function estimate_data_at_sources gets called. The last input
of the function has the value ’0’. This value is the header’s length, an additional
number of bits the function needs to return. In the single signal case, the
header is not present in the signal, so the value is 0. After the detection the
coded array Ca or Cb is compared with the true transmitted coded sequences
Ca or Cb to give us an error rate of the "uncoded" communication.

Multiple signals case

If multiple signals were transmitted as is signified by the CAZAC pilot
typical for the relay node, the start of the procedure remains the same.
The zero-forcing of the phase shift happens, and the same function esti-
mate_data_at_sources gets called except now the value of the header length
is the defined non-zero value header_length the reader can modify in the
script.

The function returned us an array data_sources of length Nc + header_length
and now the sources will extract the information from the header. After
the sources know which one transmitted first and their relative delay from
the header, the comparison with the true transmitted sequences Ca and Cb
happen. In this case, the circular shift needs to be applied to the transmitted
sequences. The resulting errors of the comparison are called error_A and
error_B and are displayed on the console.

3.4.2 Decoding

The sources will be using the Viterbi algorithm for decoding the acquired
signal with the metric of the algorithm being the distance in the constellation
space. Then the decoded data will be compared with the actual transmitted
data Da and Db to give us an error performance.

Single signal case

If only a single signal was transmitted, the decoding happens purely with
the use of a function Viterbi. This function takes the matched filter outputs
and the length of the message. The output is the decoded message Da_est
or Db_est.

In the function, the forward phase happens in the first for loop where matrix
trellis is filled. The value trellis(i, j) gives us minimal value of metric
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............................... 3.4. Processing at the sources

to get to the i-th state in j-th step. The backward phase happens after the
first loop has ended, where the array states is filled. This array represents
which states the encoder has passed in encoding the initial sequence.

The implementation of the two phases in Viterbi function for BPSK modu-
lation is shown in figure 3.5.

After the function Viterbi has returned the decoded data the error rates
error_A_soft_decision or error_B_soft_decision are computed.

Multiple signals case

The procedure for multiple signals starts with applying the inverse XOR
function to the constellation space points representing the received signal.
The is done using the function xor_signal. The function is a simple for loop
that does the decision-making described in tables 2.1 and 2.2.

After the function returned us constellation space arrays x_xorred_A and
x_xorred_B, we apply circular shift to the points of the signal that has
transmitted earlier. After all this has been done, the rest of the procedure is
the same as with the case for a single signal. The function Viterbi gets called,
and the error rates are computed and displayed.
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3. Implementation....................................

1 for i=2:Nd %forward phase, getting rellis matrix
2

3 %for getting into state 0
4 rho1 = abs(x(2*(i-1) - 1) + 1) + abs(x(2*(i-1)) + 1);
5 rho2 = abs(x(2*(i-1) - 1) - 1) + abs(x(2*(i-1)) + 1);
6

7 trellis(1, i) = min(trellis(1, i-1) + rho1,...
8 trellis(2, i-1) + rho2);
9

10

11 %for getting into state 1
12 rho1 = abs(x(2*(i-1) - 1) - 1) + abs(x(2*(i-1)) - 1);
13 rho2 = abs(x(2*(i-1) - 1) + 1) + abs(x(2*(i-1)) - 1);
14

15 trellis(2, i) = min(trellis(2, i-1) + rho2,...
16 trellis(1, i-1) + rho1);
17

18

19 end

(a) : Forward phase of Viterbi algorithm

1 for i=Nd:-1:2
2

3 if states(i) == 0
4

5 rho1 = abs(trellis(1, i) - trellis(1, i-1) - ...
abs(x(2*(i-1) - 1) + 1) - abs(x(2*(i-1)) + 1));

6 rho2 = abs(trellis(1, i) - trellis(2, i-1) - ...
abs(x(2*(i-1) - 1) - 1) - abs(x(2*(i-1)) + 1));

7

8 if rho1 < rho2
9 states(i-1) = 0;

10 else states(i-1) = 1;
11 end
12

13 else
14

15 rho1 = abs(trellis(2, i) - trellis(2, i-1) - ...
abs(x(2*(i-1) - 1) + 1) - abs(x(2*(i-1)) - 1));

16 rho2 = abs(trellis(2, i) - trellis(1, i-1) - ...
abs(x(2*(i-1) - 1) - 1) - abs(x(2*(i-1)) - 1));

17

18 if rho1 < rho2
19

20 states(i-1) = 1;
21 else states(i-1) = 0;
22 end
23 end
24 end

(b) : Backward phase of Viterbi algorithm

Figure 3.5: Implementation of the function Viterbi for BPSK modulation
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Chapter 4
Simulation and results

This chapter shows the numerical results of simulation done in attached files.
First sections focus on detection and parameter estimation, their accuracy
and how close they approach the theoretical best performance. The later
sections focus on error performance for the case of both sources transmitting.
The error performance is computed as a comparison between transmitted
data from the sources and the estimated data at the sources.

All presented graphs have been plotted in Matlab and the .m files are
included with this document.
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4. Simulation and results.................................
4.1 Signal detection

Firstly I will talk about a rate at which the Neyman-Pearson detector ac-
cept the alternative hypothesis. The detector accepts the hypothesis if
|⟨x, s⟩|2 > σ2

wϵ2
s ln

(
1
α

)
as computed in subsection 2.5.1.

I have generated a CAZAC sequence of length N = 37, and in each step, ran-
dom noise was added to the signal. After that, the function Neyman_Pearson
3.2 was called to either accept or reject the alternative hypothesis with various
values of false alarm probability α. The rate at which the detector accepted
the alternative hypothesis is plotted below in figure 4.1.
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Figure 4.1: Correct detection dependence on SNR and α

As we can see, the detection for each value of α has a certain SNR threshold
where the detection accuracy sharply drops, and beyond that point, the
detection rate is 0%. The smaller the value of α, the smaller the SNR
threshold is. The SNR threshold corresponds with the σ2

w ln
(

1
α

)
≈ 1.

The reader can find this script as Neyman_Pearson.m in attached files.
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............................. 4.2. Channel parameter estimation

4.2 Channel parameter estimation

This section will talk about how the accuracy of the estimation fares to the
theoretical peak and how much accuracy decays with increasing noise. Firstly
I will show the accuracy of the delay estimation and how it can be affected
by a non-orthogonal signal in the form of modulated binary data. Then we
will take a look at how the phase estimators’ variance fares compared to the
Cramer-Rao Lower Bound.

4.2.1 Delay estimation

The first parameter we will look at is the estimation of the random delay equal
to the integers of symbol period Ns. The Jointed ML estimator finds the
peak of cross-energy between the noisy signal that has a modulated CAZAC
sequence in it and the sequence itself as described in 2.13.

For each value of SNR, the estimation has been made 104 times. In figure 4.2
we can see the error rates of delay estimation for 4 different signals. The first
two signals use a shorter CAZAC sequence containing only N = 37 symbols,
and the second two use sequence of length N = 73 (excluding the prefix).

Each CAZAC sequence has been sent as an individual signal, and part of
a payload consisting of the modulated CAZAC itself and BPSK modulated
binary data. The PSK modulation is not orthogonal with CAZAC, so the
data can affect the delay estimation accuracy.
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Figure 4.2: Accuracy of delay estimation using Joint ML estimator
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4. Simulation and results.................................
We can see in that the accuracy of the shorter sequence is worse compared

to the longer one. Also, the shorter sequence shows worse results if the
binary data were also transmitted with it, whereas the longer sequence shows
basically no decline in performance with data added.

The figure has been plotted using script delay_est_ML_detector.m.

4.2.2 Phase estimation

The following parameter we need to estimate is the phase shift equal to the
angle of the correlation function at the estimated delay as shown in 2.14. The
computation is repeated in many steps, and the resulting histogram of the
estimation will be compared with the theoretical best distribution function -
Gaussian curve with the mean equal to the true value of the phase shift and
variance equal to the Cramer-Rao Lower Bound.

If the delay estimation is incorrect by many symbol periods, the phase shift
estimation will be a random number that has no relation to the phase shift.
So, for any computation of the following graphs, a perfect knowledge of the
delay is assumed.

Single pilot case

We will start with the case of a single pilot in the ether that is only affected
by AWGN. A Cramer-Rao Lower Bound gives the theoretical best variance
the estimation can provide. The lower bound computed in 2.5.2 was 2.20.
Using this equation for two values of SNR, we get the following values of
estimation deviation shown in table 4.1.

SNR Standard deviation

20 dB 0.0022π
3 dB 0.0157π

Table 4.1: Relation of the SNR to the standard deviation for single pilot case

We can compare the theoretical deviation with the estimation histogram
in figure 4.3. The histograms match the Gaussian curve fairly accurately,
both with mean and variance. For more computations, the histograms would
approach the curve even more tightly.
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............................. 4.2. Channel parameter estimation

(a) : SNR = 20 dB

(b) : SNR = 3 dB

Figure 4.3: Phase estimation histograms compared with ideal distribution
function for single CAZAC pilot

Multiple pilot case

For multiple overlapping pilots the CRLB gave us 2.22 where η is a scaled
cross energy defined in 2.23. The worst-case for variance can happen if
the true values of φA, φB happen to be the same. For my case, the scaled
cross energy was η = 0.165 and true phase shift values were equal. The
computations were done for case with SNR = 3 dB and SNR = 20 dB. The
table 4.2 shows the standard deviation the CRLB gives us.
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4. Simulation and results.................................
SNR Standard deviation

20 dB 0.0029π
3 dB 0.0204π

Table 4.2: Relation of the SNR to the standard deviation for multiple pilot case

Comparing the standard deviation values to the same values for a single
pilot case shows about a 30% rise in value, thus degrading the estimator.

Another degradation the multiple non-orthogonal pilots cause is the shift
between the true value of phase shift and the average estimated value of the
said parameter. This shift becomes very apparent for the case with small
deviation and thus very steep Gaussian PDF for the case with SNR = 20 dB
in figures 4.4. In the case with SNR = 3 dB in figures 4.5 the shift is less
apparent.

(a) : For source A (b) : For source B

Figure 4.4: Phase estimation histograms for SNR = 20 dB

(a) : For source A (b) : For source B

Figure 4.5: Phase estimation histograms for SNR = 3 dB

The scripts used for plotting histograms are CRLB_single_pilots.m and
CRLB_two_pilots.m.
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.................................. 4.3. Error performance

4.3 Error performance

In this section, I will show the resulting error performance of the communica-
tion topology in relation to the SNR and the angle of the relative fading h.
In the following graphs, a perfect knowledge of the channel parameters was
assumed as the possible imperfection of the estimation can affect the error
performance.

The error bits in all computations are wrongly detected/decoded bits at
the sources in the case of both sources transmitting. The bits could have
been wrongly detected at the relay node or at the sources throughout the
communication cycle. The simulations only compared the messages the
sources truly transmitted and the message the other source detected/decoded.

4.3.1 SNR dependence

We most commonly look at the signal error performance dependence on the
Signal-to-Noise Ratio related to the AWGN noise variance σ2

w. The error
rates have been computed using for loop repeatedly detecting the data, then
storing the error rates, and finally taking the mean error rate. In every step
of the loop, the useful signals have been affected by complex AWGN with
variance computed in equations 2.5.

The two graphs shown in figure 4.6 give us the error rates for both BPSK and
QPSK modulation. We can see that for very low SNRs around -5dB, the error
performance approaches the absolute worst performance threshold - a 50%
error rate. Communication is out of the question, and the detected/decoded
data is essentially randomly generated with no relation to the transmitted
data. We can also notice that the error performance of a coded message is
slightly better than that of an uncoded one.

The graphs have been plotted using scripts SER_SNR_BPSK.m and SER_SNR_QPSK.m.
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4. Simulation and results.................................
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Figure 4.6: Error performance dependence on SNR
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.................................. 4.3. Error performance

4.3.2 Relative fading dependence

As described in 1.9.3, the relative fading h has a significant effect on the
H-constellation of the relay node and thus affects the free distance of the
constellation. The smaller the free distance, the weaker noise needed for the
information to be correctly estimated. This dependence will be shown in the
following graphs for QPSK modulation along with H-constellations for angles
of h close to the "problematic" angles.

As we can see from the figure 4.7, the performance quickly decays for angles
close to {±π

2 }. This decay is especially obvious for very high SNRs. The
reason is the overlapping constellation points in H-Constellation that produce
different XOR products. With free distance approaching zero, even very slight
noise can cause an error in processing.

The H-constellation in figure 4.8b shows this very well. For h approaching
the j the constellation points representing different XOR function outputs will
overlap and with that the relay node cannot distinguish what was transmitted.
The H-constellation for h close to 1 in figure 4.8a shows the opposite. The
constellation points representing same outputs are close to each other.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Angle of relative fading/pi [rad]

65

70

75

80

85

90

95

100

C
o
rr

e
c
tn

e
s
s
/M

a
x
 c

o
rr

e
c
tn

e
s
s
 [
%

]

Error performance for QPSK modulation

SNR = 30 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

Figure 4.7: Error performance dependence on angle of relative fading h for
QPSK modulation

The computation of error performance can be found in script
SER_dependent_on_h_QPSK.m. The Voronoi diagram representing the H-
constellations can be found in Voronoi_QPSK.m.
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Figure 4.8: H-Constellations for certain values of h for QPSK modulation
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4.4 Imperfect symbol period synchronization

The last performance criterion I will describe is the effect of the imperfect
symbol period synchronization. A sample perfect symbol synchronization
was assumed for the past computations and in the main scripts. This section
will show the effects caused if this condition is not satisfied.

The following computations were done with the samples per period Ns = 16,
and the error performance is dependent on SNR and the relative sample shift
of symbols from both sources. Relative fading h was equal to 1.

The results in figure 4.9 show that the performance decays with an increas-
ing relative delay between symbols. The worst case is for the relative delay
to be equal to half of the Ns where the error performance does not improve
with higher SNR. The cause is that some combinations of data transmitting
cause the matched filter output to be very close to the border of the decision
regions.

The computations are done in scripts imperfect_synchronization_BPSK.m
and imperfect_synchronization_QPSK.m.
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Figure 4.9: Effect of the imperfect synchronization on error performance
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Chapter 5
Conclusion

This thesis aimed to get acquainted with the fundamentals of WPNC and
estimation and detection theory and apply them in a simple network topology.

In the first chapter, the reader was introduced to the necessary theoretical
background. The second chapter focused on applying the previous fundamen-
tals in a topology "Two-Way Relay Channel" with BPSK or QPSK modulation.
This chapter provided the analytical expression for the phase and delay estima-
tor that used the known CAZAC sequence as a pilot signal. The third chapter
focused on implementing said network topology in the Matlab program. The
algorithms were described in detail, along with occasional examples of the
code. The last chapter demonstrates the numerical results showing the signal
detector and estimator performance. Next, the overall error performance for
the case of both signals transmitting is shown, for which the perfect channel
parameters knowledge was assumed.

The simulations showed that the ML phase estimator is asymptotically
optimal for large records. The estimation histograms were compared with a
Gaussian curve with a mean equal to the true value of the parameter and
variance equal to the CRLB. The histograms matched the curve, as the theory
says. Next, it was shown how the coding improves the error performance, even
when the used coding is very simple. Also, the simulation showed how the
performance decays when the angle of the relative fading is close to specific
angles. The explanation of these performance drops was given.

My contribution is the Matlab implementation of the Neyman-Pearson
signal detector and ML phase and delay estimator using the known modulated
CAZAC sequence together with convolutional encoder and decoder using the
Viterbi algorithm.

Further work could focus on more complicated channel models or network
topologies with three or more sources. Also, a focus can be on adaptive
detecting on the relay node with QPSK modulation.
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Appendix A
Attached Matlab files

main scripts
TWRC_BPSK_coded.m
TWRC_QPSK_coded.m

scripts for plotting graphs
CRLB_single_pilot.m
CRLB_two_pilot.m
delay_est_ML_detector.m
imperfect_synchronization_BPSK.m
imperfect_synchronization_QPSK.m
Neyman_Pearson.m
SER_h_BPSK.m
SER_h_QPSK.m
SER_SNR_BPSK.m
SER_SNR_QPSK.m
Voronoi_QPSK.m
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