
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Bachelor’s Thesis

Light-weight Packaging System
for a Linux Distribution

Denis Shcherbakov
Software Engineering and Technology

May 2022
Supervisor: Ing. Pavel Troller, CSc.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483823Osobní číslo:DenisJméno:ShcherbakovPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Odlehčený balíčkovací systém pro Linuxovou distribuci

Název bakalářské práce anglicky:

Light-weight Packaging System for a Linux Distribution

Pokyny pro vypracování:
Navrhněte a naprogramujte nástroj pro instalaci, update a odinstalaci volitelných programových balíčků pro Linuxovou
distribuci. Dodržte následující pokyny:
- Systém si nebude udržovat centralizovanou databázi instalovaných balíčků.
- Balíčky budou vždy instalovány samostatně do adresáře /opt.
- V balíčku budou metadata, popisující důležité informace pro balíčkovací systém (závislosti na jiných balíčcích a jejich
verzích a další dle potřeby).
- Jako vnější formát balíčku bude použit standardní formát komprimovaného taru, obsahující přímo adresáře balíčku +
soubor/adresář s metadaty,
Nástroj vytvořte v jazyce C tak, aby spustitelný program byl pokud možno malý a nezávislý na mnoha méně obvyklých
knihovnách. Cílem je aplikace i na různé embedded platformy.

Seznam doporučené literatury:
[1]: WELSH, M. et al.: Running Linux. O'Reilly Media; Fourth edition (December 15, 2002), ISBN: 0-59600-272-6.
[2]: BRODSKÝ, J. - SKOČOVSKÝ, L.: Operační systém Unix a jazyk C. SNTL - Státní nakladatelství technické literatury
1989, 368 s., ISBN: 80-03-00049-1.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Pavel Troller, CSc. katedra telekomunikační techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 01.03.2022

Platnost zadání bakalářské práce: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Pavel Troller, CSc.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

Chtěl bych poděkovat vedoucímu své
práce Ing. Pavlu Trollerovi, CSc. za
odborné vedení bakalářské práce, za je-
ho cenné rady, podporu a čas, který mi
věnoval, a zkušenosti, které jsem získal
v rámci práce na tomto projektu.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 20. května 2022

. .

v

Abstrakt / Abstract

Tato bakalářská práce si klade za cíl
navrhnout a vyvinout decentralizovanou
aplikaci správce balíčků v jazyce C pro
operační systém Linux. Aplikace umožní
uživatelům provádět všechny potřebné
akce nad balíčky pro desktopové a em-
bedded systémy.

Klíčová slova: decentralizovaný
správce balíčků; Linux; jazyk C.

This bachelor thesis aims to design
and develop a decentralized package
manager application in C language for
the Linux operating system. The appli-
cation will allow users to perform all
the necessary actions on packages for
desktop and embedded systems.

Keywords: decentralized package
manager; Linux; C language.

vi

Contents /

1 Foreword 1

2 Introduction 2
2.1 Basic definitions 2

2.1.1 Package file 2
2.1.2 Dependency 2
2.1.3 Package management 2
2.1.4 Database 3

3 Goals and Structure 4
3.1 Goals 4
3.2 Structure 4

3.2.1 Package Manager 4
3.2.2 Developer Tool 5

4 Analysis 6
4.1 Directories and Files 6
4.2 System Characteristics 6
4.3 Data Structures 6
4.4 Access to a Repository 6
4.5 Implementation-Dependent

Constants 6
4.6 Regular Expression 6

5 Design 7
5.1 Why Are We Using the C

Language? 7
5.2 Working with Directories 7
5.3 System Name Structure 8
5.4 Set Data Type 8
5.5 The libcurl API 9
5.6 implementation-Dependent

Constants 10
5.7 Regular-Expression-

Matching Types 10
5.8 Usage of Configuration Files . . 11
5.9 Easily Removable Packages . . 12

5.10 Parsing Command-Line
Options 12

6 Implementation 13
6.1 Integrated Development

Environment 13
6.2 Package File 13
6.3 Package Manager 14

6.3.1 Initialization 14
6.3.2 CLI Options 15
6.3.3 Install from a Remote

Server 16

6.3.4 Install from a Local
Archive 18

6.3.5 Update 20
6.3.6 Remove 21
6.3.7 Search 21
6.3.8 Status 22

6.4 Developer Tool 23
6.4.1 Initialization 23
6.4.2 CLI Options 23
6.4.3 Create MetaData 23
6.4.4 Create Prepared Package . 24

6.5 Encountered Problems 24
6.5.1 Working with Memory . . . 24
6.5.2 Linking Libraries to

the Project 25
6.5.3 Regular Expression cflags . 25
6.5.4 The Functionality of

Standard Library. 25
7 Testing 26

7.1 The Developer Tool 26
7.2 The Package Manager 26

8 Results 27
8.1 Possibilities of Further De-

velopment 27
9 Conclusion 28

References 29

A User Manual 31

B The Project’s Repositories 33

vii

/ Figures

6.1 Flowchart of the main func-
tion . 14

6.2 Flowchart of the install re-
mote package function 16

6.3 Flowchart of the install local
package function 18

6.4 Flowchart of the update
package function 20

6.5 Flowchart of the remove
package function 21

6.6 Flowchart of the search pack-
age function . 21

6.7 Flowchart of the package sta-
tus function. 22

viii

Chapter 1
Foreword

Before the existence of package management systems, there was a simple method of
installing software on any Unix or Unix-like systems via an archive, commonly known
as the tarball.

The tarball, or formally tar (“Tape ARchive”)[1], is an archive that contains multiple
files and their parameters such as ownership, permissions, and directory organization.

After unpacking the archive and installing it using simple commands via Terminal,
a user could start the application. But there were many difficulties for a user, for
example, such as:

. There was no way to manage software after tarball was installed.. It was difficult for a regular user to determine which version of the software is in-
stalling, as such information was never included in a tarball.. Inability to upgrade the software because files were spread across the system upon
installation.. If the software requires dependencies to be installed, the user must install every
dependency manually.

These factors have led to the emergence of today’s well-known package management
systems or package managers and the creation and design of this project.

1

Chapter 2
Introduction

This work aims to design and develop a decentralized package manager application
in the C language for the Linux operating system. The application will allow users to
perform all the necessary actions on packages for desktop and embedded systems.

Here are described necessary definitions, which will be helpful for the reader to un-
derstand the range of problems that we will have to face in this work and overcome
them in the future.

2.1 Basic definitions
This section explains basic concepts such as package, dependency, local database, and
package management, which are essential for understanding the project’s perspective.

2.1.1 Package file

The package file is an archive file that usually contains all of the program’s necessary
files, metadata, and instructions to implement software functionality.

The metadata consists of a manifest file and directory layouts. Files of a program that
could be found inside the package are stored in either source code or binary executable
files[2].

Usually, a package file is in pre-compiled binary format. Therefore installation will
be quick, and no additional software compiling is required.

2.1.2 Dependency

Dependencies on their own are packages required by the primary package to function
correctly.

Mismanaged dependencies may cause problems significant enough to extend, which
can be lethal to a whole system.[3]

Therefore to resolve emerging issues, package management systems have been devel-
oped.

2.1.3 Package management

Package management is an organized method of automation of processes such as in-
stalling, upgrading, configuring, and removing packages for an operating system con-
sistently[4].

The package manager resolves which dependencies the particular software needs to
be installed on the system to work correctly.

Nowadays, most modern software installed on a Linux or Unix system can be found on
the Internet or in so-called software repositories, which are grouping packages together
and designed to be malware-free.

2

. 2.1 Basic definitions

2.1.4 Database
After installation, the typical package manager stores all metadata of installed software
in a local database. These metadata contain information about package dependencies
and their versions to prevent software mismatches and missing prerequisites.

When a Linux operating system user performs a software upgrade, it needs to run
synchronization with the repository to know what packages have got their newer version.
Then the package manager could install an upgrade.

But in our project, we aim to achieve an approach that will not require the presence of
a local database. Still, a package’s metadata will be stored within its directory, which
means the information will be distributed evenly; in other words - each package has
its small database. And if the metadata is corrupted, a reinstallation process must be
performed for that particular package.

3

Chapter 3
Goals and Structure

This chapter describes the goals we aim to achieve upon project completion and its
basic structure’s precise yet straightforward specifications.

3.1 Goals

Creating a decentralized package manager is the primary goal of the project, which will
be written using C language and has these distinctive features:

. Command-Line Interface (CLI) for installing, updating, and removing (etc.) packages. Absence of a central database, which will prevent unnecessary storage of data about
installed packages and lowering their possibility to be corrupted as the single point
of failure. Custom, compiled packages as tar files, which will contain additional metadata; thus,
it will help maintain installed packages on a system. Using as less 3rd party libraries in the project as possible, hence it will allow us to
get the result reasonably lightweight, and therefore its usage might be practical even
on embedded systems

3.2 Structure

The project contains two independent applications.
First one is the package manager, and second is so called developer tool, both are
described bellow.

3.2.1 Package Manager

This is the primary part of the project, used by regular users of CLI Linux environment,
more concrete - Sinux distribution.

The package manager implements the following basic features:

. install a package. update a package (or update all). remove a package. search for a package in a repository. get the status of an installed package

4

. 3.2 Structure

3.2.2 Developer Tool
So, we have the application for performing maintenance of packages on the system and
a remote server (repository) from which we will download and then install desired pack-
ages. In the first place, how do we create a package compatible with our infrastructure
and keep it up-to-date?

Developers will require a unique tool for this. It will collect all necessary data to
create a metadata file and place it in a tar archive, which might be later uploaded to
the repository by a developer.

5

Chapter 4
Analysis

This chapter describes the needed requirements and principles to fulfill the project
design.

4.1 Directories and Files
Checking the existence of directories and files is essential for project development. Also,
access to a particular directory would require the application to run under the root
privilege.

4.2 System Characteristics
Using universal naming conventions about system and hardware information, such as
the name of an operating system and its architecture, will help us build an application
that will consistently utilize system data.

4.3 Data Structures
The C language is known for its outstanding performance, precise memory usage, easy
Linux integration, and lack of complex data structures. Hence the requirement to
develop a custom data type or use 3rd party solution.

4.4 Access to a Repository
The application has to have the ability to connect to the repository and retrieve needed
data from it, to download and search for packages, whether as a registered or anonymous
account, which will depend on a particular data server.

4.5 Implementation-Dependent Constants
Unified constants for implementation purposes will provide robustness, consistency, and
convenience throughout the whole project.

4.6 Regular Expression
A regular expression (RegEx) is a powerful tool to match the input with a pattern.
Based on that, it could quickly and easily give a result if it was used right.

In this work, we will use RegEx to extract all necessary data from the received output
from the system or get info about packages on the server.

6

Chapter 5
Design

This chapter describes the necessary technologies required to develop and implement
the aforementioned requirements.

5.1 Why Are We Using the C Language?
Embedded systems usually have not got installed such programming languages as
Python, Perl, Rust etc., which use code interpreters to run written applications. More-
over, they generally consume more physical memory, RAM, and processor time to start
a solution.

On the other hand, the C language environment requires the least amount of li-
braries to start an application. It is “natural” for any Unix-like operating system and
is straightforward and easier.

5.2 Working with Directories
A Linux system, just like UNIX, makes no difference between a file and a directory,
since a directory is just a file containing names of other files. Programs, services, texts,
images, and so forth, are all files. Input and output devices, and generally all devices,
are considered to be files, according to the system.[5]

Therefore, a way to distinguish between a regular file and a directory should ex-
ist. Such a solution exists in the form of a “pseudo-standard” library dirent that
contains constructs that facilitate directory traversing and is usually portable between
platforms.[6]

By including the following header file in the project, we will be able to distinct direc-
tories while traversing them to collect important information:

#include ⟨dirent.h⟩

Inside the dirent library exists a valuable structure that will help us determine an
entity type, such as a directory, as mentioned above:

struct dirent
{

...
// DT_DIR - the type of a directory.
unsigned char d_type;
...

};

7

5. Design .

5.3 System Name Structure
The package that the package manager will download from the repository has to be
tested on compatibility with the target system on which it will be installed. To do
that, the application has to know at least two parameters: the kernel’s name and CPU
architecture.

By including the following header file in the project, we will be able to retrieve system-
defined values of the machine’s architecture and the operating system’s name:

#include ⟨sys/utsname.h⟩

The header file declares the utsname structure[7] (basically the uname() functionality),
which includes the following members which are necessary for the project:

// Name of this implementation of the operating system.
char sysname[]
// Name of the hardware type on which the system is running.
char machine[]

5.4 Set Data Type
When the application will search or collect data about packages it would require to
specify uniqueness of their names, that is why set data type will be useful.

Also time complexity of set operations is reasonably fast; as for adding an elements
it is O(1), and for checking existence of an element in a set is O(n) in a worst case.

A simple implementation of a set has been chosen for purposes of this project that
operates only with strings.

To use the library, set.h and set.c files from the GitHub repository1 (under MIT
license2) will be included in the project structure to use the library:

#include "set/set.h"

Initializing a set is required to allocate memory, and after usage, it has to be freed.

static __inline__ int set_init(SimpleSet* set);
int set_destroy(SimpleSet* set);

There are also realizations of some useful functions for the project, such as:

// Add element to set
int set_add(SimpleSet* set, const char* key);

// Remove element from the set
int set_remove(SimpleSet* set, const char* key);

1 Tyler Barrus. A simple set implementation in C https://github.com/barrust/set
2 MIT license https://opensource.org/licenses/MIT

8

https://github.com/barrust/set
https://opensource.org/licenses/MIT

. 5.5 The libcurl API

// Check if key in set
int set_contains(SimpleSet* set, const char* key);

// Return the number of elements in the set
uint64_t set_length(SimpleSet* set);

5.5 The libcurl API

libcurl is a free, thread-safe, feature-rich, fast, thoroughly documented multiprotocol
client-side file transfer library suitable for the project for accessing, retrieving, and
downloading packages from a repository.[8]

After installing curl on the system, the header must be included in the code to use its
functionality:

#include ⟨curl/curl.h⟩

libcurl C API has synchronous and asynchronous interfaces for committing file trans-
fers. For purposes of this work, synchronous version of libcurl interface will be used.

First of all libcurl session must be initialized to get a handle, which further will be
used as input to the numerous interface functions.

// Start a libcurl easy session
CURL *curl_easy_init();

Second, by setting all the options for a handle in the upcoming transfer (most important
among them is the URL itself), some callbacks have to be set as well that will be called
from the library when data is available.

// Set options for a curl easy handle
CURLcode curl_easy_setopt(CURL *handle, CURLoption option, parameter);

Third, after everything is setup, libcurl performs data transfer. It will then do the
entire operation and won’t return until it is done or failed.

// Perform a blocking file transfer
CURLcode curl_easy_perform(CURL *easy_handle);

And last, after needed actions have been performed, we may get information about the
transfer and then cleanup the session’s handle to free initialized memory.

// End a libcurl easy handle
void curl_easy_cleanup(CURL *handle);

9

5. Design .

5.6 implementation-Dependent Constants
Numerical values in code (“Magic Numbers”) can cause complicated problems if and
when it becomes necessary to change a value.

From the point of view of portability, absolute values may cause more subtle prob-
lems. The type of a numeric value is dependent on the system’s implementation.[9]

Therefore, the project will use limits.h header, which defines various symbolic names.
The names represent different limits on resources that the particular system imposes
on applications.[10]

#include ⟨linux/limits.h⟩

These symbolic names used in the project are described below:

// Maximum number of bytes in a filename.
NAME_MAX
// Maximum number of bytes in a pathname.
PATH_MAX
// Maximum length, in bytes, of a utility's input line
_POSIX2_LINE_MAX

5.7 Regular-Expression-Matching Types
This work assumes operations with file names and complex lines of data from which
the application will extract meaningful information about packages, for example, name,
version, dependencies, etc.

Such actions would require writing a few intricate functions to handle similar tasks
or applying a long-known method of processing a text - regular expressions.

In order to use them in the project, the header[11] will be included:

#include ⟨regex.h⟩

The first step of using the regex.h library is to allocate memory for a regular expression
and compile it by following the chosen pattern.

// Compile the regular expression contained in the pattern
int regcomp(regex_t *preg, const char *pattern, int cflags);

The compiled expression must be executed to detect a match and proceed with further
actions over the result.

// Compares the string with the compiled regular expression preg
// Returns 0, if a match was found
int regexec(const regex_t *preg, const char *string,

size_t nmatch, regmatch_t pmatch[], int eflags);

10

. 5.8 Usage of Configuration Files

In the end, allocated memory for the regular expression must be freed to avoid unex-
pected memory leaks.
// Free any memory allocated by regcomp() associated with preg
void regfree(regex_t *preg);

5.8 Usage of Configuration Files
Before the application connects to the repository server, the user must set its address
(if we assume that the server may change it or else), but how?

There is a way of asking it every time the application starts. But a more practical
way would be to use a configuration file that the user could customize.

For purposes of this work, we will be using the libconfig library. A low-footprint
implementation (just 37K for the C library) will be well-suited memory-constrained
embedded systems.[12]

To use the library from C code, the following preprocessor directive in source files will
be included:

#include ⟨libconfig.h⟩

First, initialize the essential config_t structure as an empty configuration.
// Initializing the config_t structure as a new, empty configuration
void config_init (config_t * config)

Second, bind the initialized empty config to a file that contains a structured readable
configuration defined by the documentation so that the read information will be parsed
to the config structure.
// Reading and parsing the file named filename
// into the configuration object config
int config_read_file (config_t * config, const char * filename)

The most valuable functionality for the project is to check the presence of necessary
configurations, such as the URL of a repository and the user’s credentials, by using the
function config_lookup_string.
// Looking up the value of the setting in the configuration config
// specified by the path
int config_lookup_string (const config_t * config, const char * path,

const char ** value)

And finally, as you can already guess, all used memory must be deallocated. Thanks
to the following function:
// Destroying the config
// deallocating all memory associated with the configuration
// but does not attempt to deallocate the config_t structure itself.
void config_destroy (config_t * config)

11

5. Design .

5.9 Easily Removable Packages
The package manager has access only to the /opt64 directory, installing packages there,
and not spreading their files all over the system’s directories like /lib, /bin, /share,
/include, etc. as other database-based package managers do. Therefore we do not
need to be concerned that it would remove data that it should not.

5.10 Parsing Command-Line Options
The project will also use a universal command-line options parser for Unix-like systems.
To be more precise, a GNU extension getopt_long[13]. It allows parsing of more
readable, multicharacter options introduced by two dashes instead of one.

By including the header, it will allow using getopt_long() functionality:[14]

#include ⟨getopt.h⟩

int getopt_long(int argc, char * const *argv, const char *optstring,
const struct option *longopts, int *longindex);

The getopt_long() call requires a string for short options (each option as a single
letter) and an array describing the long options. The last element of the longopts
array has to be filled with zeroes. Each element of the array is a structure:

struct option {
char *name; // The option name
int has_arg; // Expectancy of an argument
int *flag; // Defines what a long option will return.
int val; // Value to return

};

getopt_long() returns the option character when a short option is recognized. For a
long option, the function returns val if flag is NULL and 0 otherwise. If all command-
line options have been parsed, then it returns -1.

12

Chapter 6
Implementation

This chapter describes the tools used to create the project, the application’s architec-
ture, the structure of the package manager and the developer tool (including some parts
of the code), and problems that emerged during the implementation process.

6.1 Integrated Development Environment
The development process can occur on any system; however, it will be more straightfor-
ward if the environment is similar to the target Linux system. Thus, making it easier
development and further testing phase by eliminating excessive cross-compiling of the
application for another system.

This project used the Debian1 distribution of Linux and CLion2, a cross-platform IDE
for C/C++. The IDE uses a CMake build system that uses scripts called CMakeLists to
generate build files for the specified environment.

6.2 Package File
Each package, either already installed or as a prepared archive, has to have a metadata
file that can be found in the following directory:

"/opt64/⟨package_name⟩/sinmeta/data"

It has not such a complicated internal structure, so parsing the file would allow extract-
ing needed data for further manipulations.

// Name of the package
PKG=⟨package_name⟩
// Package's verion, for example: 1.0.0
VER=⟨package_version⟩
// List of dependencies, for example: test2--1.0.3,test1--1.0.0
DEP=⟨dependency_1⟩--⟨dep1_version⟩,⟨dependency_2⟩--⟨dep2_version⟩,...
// Required architecture. x86_64, ARM, etc.
ARC=⟨required_architecture⟩
// Required OS. In our case it has to be Linux
SYS=⟨requred_operating_system⟩
// Flag for updating libraries after installation. Y or N
LIB=⟨flag_for_updating_libraries⟩

1 Debian GNU/Linux https://www.debian.org/
2 CLion https://www.jetbrains.com/clion/

13

https://www.debian.org/
https://www.jetbrains.com/clion/

6. Implementation .

6.3 Package Manager

Figure 6.1. Flowchart of the main function.

6.3.1 Initialization

At the very start of the application, we initialize a configuration file and system infor-
mation and compile a regular expression, which the program will use later.

1. Initialization of the configuration file:

config_t config;
char* configFile = "sinpm.conf";

config_init(&config);

if (config_read_file(&config, configFile) == CONFIG_FALSE) {
printf("%s:%d - %s\n", config_error_file(&config),

config_error_line(&config), config_error_text(&config));
config_destroy(&config);

exit(EXIT_FAILURE);
}

Then the program will check presence of repository address, login, and password.

2. Initialization of the system information and writing it to an auxiliary structure:

struct utsname systemInfo;
...
systemInfo = getSystemInfo();
PackageInfo* packageInfo = malloc(sizeof(PackageInfo));
...
strcpy(packageInfo->architecture, systemInfo.machine);
strcpy(packageInfo->operatingSystem, systemInfo.sysname);

14

. 6.3 Package Manager

3. Compiling a regular expression:

regex_t* regexCompiled;
...
int regexCompile() {

char* regexString =
"^(.*?)--([0-9]+\\.[0-9]+\\.[0-9]+)--(.*?)--(.*)\\.(.*)$";

int comp = regcomp(regexCompiled, regexString, REG_EXTENDED);
if (comp != 0) {

printf("Could not compile regular expression.\n");
regfree(regexCompiled);
return 1;

}
return 0;

}

6.3.2 CLI Options

There are a couple of input command-line options:

. Install from a remote source is downloading a package from a repository server
--install or -i option requires an argument.

. Install from a local source is installing a local archive with suitable requirements
--extract or -e option requires an argument.

. Update specified package, if it exists on the system, or update all packages
--update or -u option. Argument is optional.

. Remove specified package if it exists on the system
--remove or -r option requires an argument.

. Print information about an installed package, if it exists on the system, or all installed
packages, such as name and version

--status or -t option. Argument is optional.

. Search for a package on a repository server
--search or -s option requires an argument.

. Print a short help manual
--help or -h option. Argument is optional.

15

6. Implementation .
6.3.3 Install from a Remote Server

Figure 6.2. Flowchart of the install remote package function.

The initial call of the remote install function from the main.c accepts two arguments:
the PackageInfo auxiliary structure previously filled with system information and the
second is a boolean recursive flag.

The flag defines whether it should or should not ask to update a package, primarily
inside a recursive installation call.

void installRemotePackage(PackageInfo* packageInfo, int isRecursive);

1. Get the last version of the package from a remote repository:

void fillPkgInfoRemoteVersion(PackageInfo* packageInfo);

2. Get version of installed package:

PackageInfo* getInstalledPackageInfo(char* packageName);

16

. 6.3 Package Manager

3. If the local version of the package exists and it is less than the remote version, the
application will remove(6.3.6) the package:

if (localInfo != NULL && isRecursive == 0
&& compareVersions(localInfo->version, packageInfo->version) > 0) {
...
removePackage(packageInfo->packageName);

}

4. Download auxiliary metafile to get complete information about the package:

FtpFile metaFile;
...
metaFile = ftpDownload(packageInfo->packageName,

packageInfo->version, ".meta");

5. Recursively install its dependencies:

if (packageInfo->dependenciesCount > 0) {
for (int i = 0; i ⟨ packageInfo-⟩dependenciesCount; ++i) {

installRemotePackage(&packageInfo->dependencies[i], 1);
}

}

6. And finally, download and extract the package’s archive:

FtpFile tarFile;
...
tarFile = ftpDownload(packageInfo->packageName,

packageInfo->version, ".tar");
extractArchive(tarFile.fullName);

17

6. Implementation .
6.3.4 Install from a Local Archive

Figure 6.3. Flowchart of the install local package function.

The application will start installing a local package after entering an absolute path
of a package archive to the --extract option:

void installLocalPackage(char* absolutePath);

1. In the beginning, we will untar a single metafile from the archive to the
/tmp/sinpmtmp/ directory:

char command[PATH_MAX + 10] = "tar -xvf ";
strcat(command, absolutePath);
strcat(command,

" --one-top-level=/tmp/sinpmtmp
--strip-components=2 --wildcards\"*/sinmeta/data\"");

int code = system(command);
if (code != 0) {

perror("Error extracting metadata!\n");

exit(EXIT_FAILURE);
}

18

. 6.3 Package Manager

2. Then read that file:

FILE* file = fopen("/tmp/sinpmtmp/data", "r");
...
PackageInfo* pkgInfo = malloc(sizeof(PackageInfo));
fillPkgInfoFromFile(file, pkgInfo);

3. Compare OS and architecture:

if (strcmp(systemInfo.sysname, pkgInfo->operatingSystem) != 0) {
...
exit(EXIT_FAILURE);

}
if (strcmp(systemInfo.machine, pkgInfo->architecture) != 0) {

...
exit(EXIT_FAILURE);

}

4a. Then check if the package is already installed, and if not, then extract the archive
and install its dependencies:

PackageInfo* installedPackage =
getInstalledPackageInfo(pkgInfo->packageName);

if (installedPackage == NULL) {
extractArchive(absolutePath);

if (pkgInfo->dependenciesCount != 0) {
for (int i = 0; i ⟨ pkgInfo-⟩dependenciesCount; ++i) {

installRemotePackage(&pkgInfo->dependencies[i], 1);
}

}
...
return;

}

4b. If the package is already installed - remove it before extracting:

removePackage(installedPackage->packageName);

19

6. Implementation .
6.3.5 Update

Figure 6.4. Flowchart of the update package function.

Update all functionality updates every package on the system:

void updatePackage(char* packageName);

1. Get a local version of the installed package:

PackageInfo* localInfo = getInstalledPackageInfo(packageName);
if (localInfo == NULL) {

printf(
"There is no such package [%s] in the system!\n", packageName

);
return;

}

2. Then get a remote version:

char localVersion[NAME_MAX];
strcpy(localVersion, localInfo->version);
fillPkgInfoRemoteVersion(localInfo);

3. And if the remote version is newer than the local, do the installation process men-
tioned above(6.3.3):

if (compareVersions(localVersion, localInfo->version) > 1) {
installRemotePackage(localInfo, 0);

}

20

. 6.3 Package Manager

6.3.6 Remove

Figure 6.5. Flowchart of the remove package function.

To remove a package, the program has to check if it exists on the system

PackageInfo* info = getInstalledPackageInfo(packageName);
if (info == NULL) {

printf(
"Package [%s] has not been installed. Nothing to remove here!\n",
packageName
);
return;

}

Then by opening the corresponding directory, it will remove it by executing the system
command:

"rm -rf /opt64/⟨packageName⟩"

6.3.7 Search

Figure 6.6. Flowchart of the search package function.

Search performs via function call:

void searchPackage(char* packageName);

21

6. Implementation .

1. The process starts by getting a list of packages with the specified name from the
repository server:

StringList* list = ftpGetNames(packageName);
if (list->fileCount == 0) {

...
printf("Package [%s] not found!\n", packageName);
...
return;

}

2. Then it checks the version and compatibility with architecture and OS:

char* version = getMaxVersion(list);
if (version == NULL) {

printf(
"Package [%s] has not got compatible version for your system!\n",
packageName
);
...
return;

}

And then, it prints the information to the console.

6.3.8 Status

Figure 6.7. Flowchart of the package status function.

The status of a package will be printed by calling the function:

void printPackageStatus(char* packageName);

1. It checks the existence of the package:

DIR* directoryStream = opendir(path);
if (directoryStream == NULL) {

printf("PACKAGE: [%s] HAS NOT BEEN INSTALLED!\n", packageName);

return;
}

22

. 6.4 Developer Tool

2. And prints it following the format:

PackageInfo* info = getInstalledPackageInfo(packageName);
int width = 30;
printf("PACKAGE: %-*sVERSION: %s\n", width, packageName, info->version);

6.4 Developer Tool
This section describes the functionality of the developer tool application.

6.4.1 Initialization
At the beginning of the application, we will do the same compilation process of a regular
expression as we did in the package manager’s initialization section(6.3.1)

But here, in the developer tool, we will use a different pattern to catch matches:

char* regexString = "(\\/opt64\\/(.+?)\\/)";

6.4.2 CLI Options
There are a couple of input command-line options:. Create a metadata file for a newly compiled package

--meta or -m option requires an argument.

. Archive a package with a prepared metadata file and create a same-named copy of
the metadata for the repository server.

--tar or -t option requires an argument.

. Print a short help manual
--help or -h option. Argument is optional.

6.4.3 Create MetaData
Creating of a metadata file will start by calling the function:

void createMetaFile(char* packageName);

1. Foremost, we will check the existence of the package’s directory and metadata file.

// path = "/opt64/⟨packageName⟩"
int pkg = checkDirExistence(path);

// path = "/opt64/⟨packageName⟩/meta/data"
metaDataFile = fopen(path, "r");

2. And then collect all key and corresponding values to a string that will be written
into the metadata file:

// Package name
strcat(metaLine, "PKG=");
strcat(metaLine, packageName);
...
fputs(metaLine, metaDataFile);

23

6. Implementation .

After these actions, the metadata file will be placed to the directory:

/opt64/⟨packageName⟩/meta/

6.4.4 Create Prepared Package
Archiving a package with a prepared metadata file and creating a same-named copy of
the metadata will start by calling the function:

void createTarFile(char* packageName);

1. First, we will check the existence of the package’s directory and metadata file exis-
tence and validity and read its data:

// path = "/opt64/⟨packageName⟩"
int pkg = checkDirExistence(path);

// path = "/opt64/⟨packageName⟩/meta/data"
metaDataFile = fopen(path, "r");
int isValid = isMetaFileValid(metaDataFile, pkgInfo);

2. Then copy the metadata file and archive the package, both with the determined
name structure:

/tmp/sinpmtmp/archived/
⟨name⟩--⟨version⟩--⟨architecture⟩--⟨operating_system⟩.meta
⟨name⟩--⟨version⟩--⟨architecture⟩--⟨operating_system⟩.tar

Now, these two files are ready to be uploaded to a repository.

6.5 Encountered Problems
Some of the problems that emerged during the design and development of the project
and their solutions are described in this section.

6.5.1 Working with Memory

. Freeing a memory recursively

One of the auxiliary structures used in the project was:

typedef struct PackageInfo {...} PackageInfo;

Which contains a pointer to an array of similar PackageInfo's:

struct PackageInfo* dependencies;

It was not so evident at first glance how to handle this type of memory deallocat-
ing. Still, after a thorough analysis, the found solution was to use an extra recursive
function in addition to the process of freeing the main structure’s memory.

24

. 6.5 Encountered Problems

. Double memory allocation

While doing the updatePackage() procedure, it was causing a memory leak, but the
free() function was in place, and it was hard to know why leaks were appearing at
all.

It turned out that there were two calls of the malloc() function in a row. To
solve that, a heuristic approach was implemented into the installRemotePackage()
process:

// Prevent malloc'ing memory twice for updatePackage()
if (packageInfo->dependenciesCount == 0

&& strlen(packageInfo->rawDependencies) > 0) {
fillDependenciesAndCount(

packageInfo->rawDependencies, packageInfo
);

}

6.5.2 Linking Libraries to the Project
Some libraries, such as libcurl, could be easily installed and then linked, while others
are not so easily handled, for example, libconfig.

It took some time to research it and finally found a working solution for adding them
to CMakeLists.txt correctly.

6.5.3 Regular Expression cflags
Because the default regular expression type for processing a pattern was the basic regex,
its execution could not find any matches and was very confusing. And the solution to
that was to specify a cflag, more concrete to set it as REG_EXTENDED.

6.5.4 The Functionality of Standard Library.
Both the package manager and the developer tool require a user’s input which may
cause lots of problems on its own.

But the problem emerged in a different domain. The well-known scanf() function
reads user input. Sometimes we want to get a user’s input multiple times. And for
some reason, the function above was rejecting to work correctly by only reading the
first input but ignoring further.

The reason was that when a user enters a string and presses the ENTER button, the
function consumes the string, but the new line character generated by pressing the
ENTER button remains in the buffer. Hense the next call of scanf() never waits for a
user’s input because it consumes a \n character.

A simple solution to that was adding an extra space character before input:

scanf("%c", &answer); ---> scanf(" %c", &answer);
^^^ - here is an additional

space character

25

Chapter 7
Testing

This chapter describes the testing process of the implementation part of the project.

7.1 The Developer Tool
Unfortunately, most packages nowadays have lots of dependencies and dynamically
linked libraries, and because of that, software developers must manually create corre-
sponding metadata files for the very first applications. Hence there was no possibility
of preparing an actual test environment.

However, due to circumstances beyond my control, it resulted in no real opportunities
to test the developer tool, but it also was not the primary goal of this thesis.

7.2 The Package Manager
On the bright side, on the Linux virtual test machine, an FTP server has been installed
and configured to the needs of testing purposes. Also, there have been prepared a lot
of dummy packages with test metafiles (with the structure described above 6.2), but
not with binaries or dynamically linked libraries since we were testing the correctness
and availability of external data.

On the aforementioned FTP server, we have the root directory, which contains di-
rectories with corresponding names of test packages, each of them has at least two
files with the same name but different extensions (*.tar and *.meta) describing its
name, version, operating system, and architecture. So, the directory can have different
versions, OS, and architecture implementations for one application.

With this infrastructure, the package manager has passed tests for the correctness of
searching, downloading, installing, updating, removing, and determining package com-
patibility with the test system, given that an internet connection was stable throughout
the whole test phase.

26

Chapter 8
Results

During the course of this work, many problems have emerged. A significant part of them
was related to the problem of understanding the essential processes of the C language.
Other parts belonged to the field of design and testing, sometimes by trials and errors.

But it allowed me to achieve the primary goal of this thesis and learn many new
skills in low-level programming in C, which I did not know beforehand.

8.1 Possibilities of Further Development
What functionality of the project could be improved in the future:

. While installing the package’s dependencies, we could avoid double-checking already
installed dependencies in a recursive call. It may be accomplished by downloading
metafiles and checking them in advance or adding them in a set structure and checking
it each time.. Add possibility to download package of a different than the last version.. Add authorization for anonymous/registered users to access a repository.. Improve search function by searching not as a complete match of a name, but pro-
viding that a user can write it with a mistake or the package’s name may not be
entirely written.. Add functionality to the developer tool for uploading a prepared package to the
repository.

27

Chapter 9
Conclusion

The main goal of our project was to design and implement an application for the
installation, updating, and removal of packages for a Linux distribution.

Throughout many project development steps, we’ve been analyzing, designing, im-
plementing, and testing.

The result concludes two applications that allow manipulating packages on the sys-
tem, the package manager for their maintenance and the developer tool for their cre-
ation.

By completing the goals of this thesis, we developed the project as a deployable
solution for its further integration into a Linux system without any significant risks.
And there is always exists room for improvement in the project.

28

References

[1] FreeBSD. Freebsd Manual Pages. May 20, 2004.
https://www.freebsd.org/cgi/man.cgi?query=tar&apropos=0&sektion=5&
manpath=FreeBSD+7.0-RELEASE&arch=default&format=html.

[2] archlinux.org. Configuration File. September 4, 2021.
https://archlinux.org/pacman/makepkg.conf.5.html.

[3] wikipedia.org. Dependency hell. March 16, 2022.
https://en.wikipedia.org/wiki/Dependency_hell.

[4] debian.org. What Is A Package Manager? 2016.
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html.

[5] Machtelt Garrels. Introduction to Linux. A Hands on Guide. 2008.
https://tldp.org/LDP/intro-linux/html/sect_03_01.html.

[6] wikibooks.org. C Programming/POSIX Reference/dirent.h. April 16, 2020.
https://en.wikibooks.org/wiki/C_Programming/POSIX_Reference/dirent.
h.

[7] IEEE/The Open Group. sys/utsname.h — system name structure. 2017.
https://man7.org/linux/man-pages/man0/sys_utsname.h.0p.html.

[8] curl.se. libcurl - the multiprotocol file transfer library. April 27, 2022.
https://curl.se/libcurl/.

[9] Mats Henricson, and Erik Nyquist. Programming in C++, Rules and Recommen-
dations. 1992.
https://www.doc.ic.ac.uk/lab/cplus/c++.rules/chap10.html.

[10] IEEE/The Open Group. dirent.h — format of directory entries. 2017.
https://man7.org/linux/man-pages/man0/limits.h.0p.html.

[11] GNU. regex.h - regular-expression-matching types. March 22, 2021.
https://man7.org/linux/man-pages/man3/regcomp.3.html.

[12] Mark A. Lindner. libconfig - A Library For Processing Structured Configuration
Files. June 20, 2021.
https://hyperrealm.github.io/libconfig/libconfig_manual.html.

[13] wikipedia.org. getopt. February 14, 2022.
https://en.wikipedia.org/wiki/Getopt.

[14] GNU. getopt.h — command option parsing. August 27, 2021.
https://www.man7.org/linux/man-pages/man3/getopt.3.html.

29

https://www.freebsd.org/cgi/man.cgi?query=tar&apropos=0&sektion=5&manpath=FreeBSD+7.0-RELEASE&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=tar&apropos=0&sektion=5&manpath=FreeBSD+7.0-RELEASE&arch=default&format=html
https://archlinux.org/pacman/makepkg.conf.5.html
https://en.wikipedia.org/wiki/Dependency_hell
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://tldp.org/LDP/intro-linux/html/sect_03_01.html
https://en.wikibooks.org/wiki/C_Programming/POSIX_Reference/dirent.h
https://en.wikibooks.org/wiki/C_Programming/POSIX_Reference/dirent.h
https://man7.org/linux/man-pages/man0/sys_utsname.h.0p.html
https://curl.se/libcurl/
https://www.doc.ic.ac.uk/lab/cplus/c++.rules/chap10.html
https://man7.org/linux/man-pages/man0/limits.h.0p.html
https://man7.org/linux/man-pages/man3/regcomp.3.html
https://hyperrealm.github.io/libconfig/libconfig_manual.html
https://en.wikipedia.org/wiki/Getopt
https://www.man7.org/linux/man-pages/man3/getopt.3.html

Appendix A
User Manual

The user manual for the package manager:
-u [ARGUMENT], --update [ARGUMENT]

* If [ARGUMENT] provided, then the package with name [ARGUMENT]
is going to be updated, if such package exists on the server

* Updates all packages if no [ARGUMENT] provided
* [ARGUMENT] is a name of a package

-i ARGUMENT, --install ARGUMENT
* If ARGUMENT provided, then the package named ARGUMENT

is going to be installed, if such package exists on the server
* ARGUMENT is required here
* ARGUMENT is a name of a package

-e ARGUMENT, --extract ARGUMENT
* If ARGUMENT provided, then the named archive

is going to be installed, if such package does not exist
in the system or has an older version

* ARGUMENT is required here
* ARGUMENT is a path to a *.tar archive

-r ARGUMENT, --remove ARGUMENT
* If ARGUMENT provided, then the package named ARGUMENT

is going to be removed, if such package exists in the system
* ARGUMENT is required here
* ARGUMENT is a name of a package

-t [ARGUMENT], --status [ARGUMENT]
* If [ARGUMENT] provided, then info about the package

with name [ARGUMENT] is going to be printed out,
if such package exists in the system

* Prints info about all packages if no [ARGUMENT] provided
* [ARGUMENT] is a name of a package

-s ARGUMENT, --search ARGUMENT
* If ARGUMENT provided, then the info of package named ARGUMENT

is going to be fetched from the server,
if such package exists there

* ARGUMENT is required here
* ARGUMENT is a name of a package

31

A User Manual .

The user manual for the developer tool:

-m ARGUMENT, --meta ARGUMENT
* ARGUMENT is a name of a package
* If ARGUMENT provided, then new META file will be created

if such package exists in the system
* ARGUMENT is required here

-t ARGUMENT, --tar ARGUMENT
* ARGUMENT is a name of a package
* If ARGUMENT provided, then TAR and META files will be created

corresponding to architecture and OS of the machine
if such package exists in the system

* ARGUMENT is required here

32

Appendix B
The Project’s Repositories

The following links contain the project repositories on the CTU FEL GitLab:

. The Package Manager
https://gitlab.fel.cvut.cz/shcheden/bac/-/tree/master

. The Developer Tool
https://gitlab.fel.cvut.cz/shcheden/bac-dev/-/tree/master

33

https://gitlab.fel.cvut.cz/shcheden/bac/-/tree/master
https://gitlab.fel.cvut.cz/shcheden/bac-dev/-/tree/master

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Foreword
	Introduction
	Basic definitions
	Package file
	Dependency
	Package management
	Database

	Goals and Structure
	Goals
	Structure
	Package Manager
	Developer Tool

	Analysis
	Directories and Files
	System Characteristics
	Data Structures
	Access to a Repository
	Implementation-Dependent Constants
	Regular Expression

	Design
	Why Are We Using the C Language?
	Working with Directories
	System Name Structure
	Set Data Type
	The libcurl API
	implementation-Dependent Constants
	Regular-Expression-Matching Types
	Usage of Configuration Files
	Easily Removable Packages
	Parsing Command-Line Options

	Implementation
	Integrated Development Environment
	Package File
	Package Manager
	Initialization
	CLI Options
	Install from a Remote Server
	Install from a Local Archive
	Update
	Remove
	Search
	Status

	Developer Tool
	Initialization
	CLI Options
	Create MetaData
	Create Prepared Package

	Encountered Problems
	Working with Memory
	Linking Libraries to the Project
	Regular Expression cflags
	The Functionality of Standard Library.

	Testing
	The Developer Tool
	The Package Manager

	Results
	Possibilities of Further Development

	Conclusion
	References
	User Manual
	The Project's Repositories

