
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Digital shopping cart platform with facial
recognition

Xuan Anh Nguyen

Supervisor: Ing. Jan Hauser
Field of study: Software Engineering and Technology
May 2022

ii

iv

Acknowledgements
I want to thank my thesis advisor Ing. Jan
Hauser, for his support, advice and time
despite his work schedule. Additionally, I
want to also thank Ing. Martin Ledvnika
for his feedback in the previous semester.
Lastly, I want to thank my coworkers and
Applifting for their help and its great cul-
ture. Special mention to my family and
friends for their continuous endurance and
encouragement.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 20, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 20. května 2022

v

Abstract
The aim of this thesis is to create a solu-
tion to Applifting’s food and drink pur-
chase process by developing a hybrid mo-
bile application. A hybrid application
allows developers to build software sup-
porting Android and IOS platforms with a
single codebase. This application enables
users to authenticate with their faces and
purchase products with barcodes. The
target users are employees of Applifting
company, but it can also be used in other
mid to large-sized companies that offer
products to their employees.

At the beginning of this work, we anal-
yse requirements and technologies used
to improve the shopping process. After
the analysis, we describe the design and
implementation of the application. The
end result is evaluated by user testing ses-
sions and conducting user surveys on ten
people. The result showed the employees’
satisfaction with the effortless solution,
and their willingness to use the product.

Keywords: shopping cart system, face
recognition, barcode scanning, hybrid
mobile application, React Native

Supervisor: Ing. Jan Hauser

Abstrakt
Práce se zabývá vytvářením hybridní mo-
bilní aplikace, která řeší problém nákupu
nápojů a jídla firmy Applifting. Hybridní
aplikace umožňuje vývojářům vytvářet
software podporující Android a IOS plat-
formy z jedíného zdrojového kódu. Účelem
aplikace je poskytnout uživateli přihlásit
se pomocí obličeje a skenování produktů
pomocí čárového kódu. Cílovou skupinou
jsou zaměstnanci firmy Applifting, ale ře-
šení je také možné uplatnit ve středně vel-
kých až velkých firem, kteří nabízí svým
pracovníkům prodej produktů.

Úvodem práce jsou analyzovány poža-
davky a technologie potřebné k vylepšení
nákupního procesu. Po té popisujeme ná-
vrh, implementaci a testování aplikace.
Zhodnocení úspěchu je získáno pomocí
uživatelských testů a dotazníků na vzorku
deseti lidí. Výsledek práce ukázal zájem o
budoucí použití a spokojenost s rychlejším
řešení.

Klíčová slova: systém nákupního
košíku, rozpoznávání obličeje, skenování
čárových kódů, hybridní mobilní aplikace,
React Native

Překlad názvu: Digitální nákupní košík
s rozpoznáváním obličeje

vi

Contents
1 Introduction 1

2 Analysis 3

2.1 Requirements 3

2.1.1 Functional requirements 3

2.1.2 Non-functional requirements . . 4

2.2 Use cases . 4

2.3 Mobile applications 4

2.3.1 Native mobile development . . . 5

2.3.2 Native mobile development
drawbacks . 5

2.3.3 Hybrid mobile development . . 6

2.3.4 Hybrid mobile development
drawbacks . 8

2.3.5 Our choice 8

2.4 Usage of device camera in face
authentication 10

2.5 Face authentication 10

2.5.1 Introduction to face
authentication 10

2.5.2 Solutions to face
authentication 11

2.5.3 Our choice 11

2.6 Barcode scanning 12

3 Design 13

3.1 Selected technologies 13

Flask . 13

Tensorflow . 13

CV2 . 13

Pickle . 14

Expo Camera 14

Nginx . 14

Gunicorn . 14

3.2 Architecture 14

3.2.1 3-Tier architecture 15

3.2.2 Application server 15

3.2.3 Mobile application 16

3.2.4 Database 18

3.3 Data model 18

3.4 Deployment diagram 19

3.5 User interface 19

3.5.1 Navigation 19

3.5.2 High-fidelity prototype 19

4 Implementation 23

4.1 Face authentication 23

4.1.1 Image processing 23

4.1.2 Face verification 24

4.2 Deployment 25

4.2.1 Digital Ocean 25

4.2.2 Flask in production mode . . . 25

4.2.3 Deployment summary 26

5 Evaluation 27

5.1 User testing 27

5.1.1 Chosen user testing method . 28

5.1.2 Results 28

5.2 User surveys 28

5.3 Results . 31

vii

6 Conclusion 33

Bibliography 35

A Development guide 39

A.1 Frontend . 39

A.1.1 Requirements 39

A.1.2 Changing backend host 39

A.1.3 Usage . 39

A.2 Backend . 40

A.2.1 Requirements 40

A.2.2 Usage . 40

B Screenshots from production
application 41

viii

Figures
2.1 Visualisation of most popular

hybrid applications solutions [12] . . 7

2.2 iPhone 6 results on a ListView test
comparing a Native, React Native
and Flutter app [18] 9

2.3 A face authentication pipeline [24] 11

3.1 Sequence diagram of product list
display . 16

3.2 Process diagram of face
authentication on the client before an
image is sent to the server 17

3.3 UML diagram of the application
data model . 18

3.4 Deployment diagram 19

3.5 Screen for authethication 20

3.6 Screen for user registration 21

3.7 Screen for product purchase 21

4.1 Test result of comparing the
distance between two sample faces 25

5.1 Registration usability evaluation 29

5.2 Purchase usability evaluation . . . 29

5.3 Overall usability evaluation 29

5.4 Future usage evaluation 30

5.5 Replacement of competitor
evaluation . 30

B.1 Home screen 42

B.2 Walkthrough screen 43

B.3 Face enrollment screen 44

B.4 Login screen 45

B.5 Scan product barcode screen . . . 46

B.6 Product search screen 47

ix

Tables

x

Chapter 1

Introduction

Every aspect of our lives is getting more digitised. In the past, we used simple
tools such as paper and pen to record information, and as the years passed,
we replaced those with digital versions that can accomplish more. The same
is true for the company Applifting, which started by using paper and pen to
record the purchases of foods and drinks for its employees.

As the company grew, so did the need to improve the tools to manage the
inventory better. The first solution was a shopping cart system embedded
in the company’s internal web application, followed by an Android [1] and
later IOS application. Nevertheless, issues occurred when the company
found a significant discrepancy between the available products and registered
purchases during the monthly inventory check. Another problem happened
after the release of the Android application when several employees who
owned IOS devices couldn’t use the app and had to wait for the release of
the IOS version. Later, there were inconsistencies in features offered by the
app on the two operating systems, where one platform was ahead with some
parts over the other.

This thesis aims to implement a digital shopping cart for mid to large-sized
companies like Applifting that offer food and drinks to their employees. The
finished product is a mobile application installed on a device located near
the food and drinks bar. Any employee can access the device to open the
application where they either register a new account or log in to an existing
one to purchase a product. During the registration process, it’s necessary
to connect the user’s identity from the company’s internal system to our
application. After the authentication, the employee takes out their desired
product and scans the barcode from the device’s camera, adding it to the
cart. Later the worker completes their purchase in the checkout, while the
pending transactions get registered for later payment.

This thesis starts by analysing the existing technologies and alternatives
for application development and facial recognition, where we look at their
advantages and disadvantages. Next, we design the architecture of the

1

1. Introduction
whole application, from mockup prototype to visualisation of the design of
mobile app, the frontend, to the backend, which will serve as a microservice
communicating with the company’s internal systems and distribution solution.
Following the design, the next section is the implementation focusing on
efficiently solving specific problems or discussing possible inefficiencies. Lastly,
we evaluate the solution through user surveys and user testing.

2

Chapter 2

Analysis

In the introduction chapter, we described the background of the solution and
mentioned the necessary features that the application should have. As a next
step, this chapter specifies the requirements in more detail. It then analyzes
the technologies used in the implementation, looking at existing solutions
and their tradeoffs.

2.1 Requirements

The requirements were based on the company’s previous solutions and our
suggested improvements. Those will be later used when evaluating if it
satisfies our initial goals.

2.1.1 Functional requirements

In software development, functional requirements define specific actions that
a user can accomplish [2]...1. Face authentication

The system allows the user to login with their face...2. Connect identity to account
The system allows the user to connect their identity from the company’s
internal system with their account...3. Barcode scanning
The system allows the user to find a product by scanning its barcode...4. Product search
The system allows the user to search for a product.

3

2. Analysis ...5. Shopping cart
The system allows the user to add and modify products in their cart...6. Register purchase
The system allows the user to purchase products in the cart into the
company’s internal system.

2.1.2 Non-functional requirements

Non-functional requirements, on the other hand, define the behaviour of the
system [3]...7. Multiplatform support

Works on Android and IOS...8. Simpler development
It does not take too much resource to develop...9. Usability
It’s simple to use and understand.

2.2 Use cases

From the user’s perspective, a use case it’s a list of activities that end to a
particular goal, heavily reliant on functional requirements but more in detail...1. Registering the user face

The user binds their face with the company’s internal account, registering
their face and profile picture to the system, resulting in account creation...2. Shopping products
The user scans a product or searches it from the list of products and
adds it to the cart. He can then modify the cart quantity, which he
checks at the checkout screen at the end of the shopping flow.

2.3 Mobile applications

Mobile app development is a process of developing software applications
for smartphones (mobile or tablet) [4], smartwatches, and even cars. The
majority of the market is divided into two platforms, IOS and Android [5].

4

.................................. 2.3. Mobile applications

Historically development for each platform was enabled by their dedicated
native language. To create a successful application, you need to have enough
capable developers to support both platforms. But with the rise of demand
for a cheaper alternative came hybrid apps, which solved this issue. This
section analyzes and compares different approaches to mobile development.

2.3.1 Native mobile development

Native applications are written in the native language used for the device
platform. For developers, on the Android platform, it is Kotlin and Java [6],
while on the IOS platform, it is Swift and Objective-C [7]. Apps are primarily
developed using a dedicated SDK (software development kit) provided by
specific tools. They are released on app stores such as Google Play or App
Store. Those stores serve as a distribution channel for users to allow them to
install the apps.

Generally, the main advantage of developing native applications are:

. Faster and efficient utilization of performance since it has the best
integration with the OS hardware.. Usage of newest features, that the OS newly introduced.. Ease of development, because the platform provides specific components.. Consistent UI that matches with the user experience on the platform.

2.3.2 Native mobile development drawbacks

While native mobile applications give you the best solution that can fully
maximise all OS features, it requires more development resources because of
platform customisation. Further disadvantages include:

.Multiple codebases.. Time-consuming and costly to develop, especially for smaller businesses
at the beginning..Managing the consistency between the feature set.. The necessity of owning a device that has Xcode for IOS development.

5

2. Analysis
2.3.3 Hybrid mobile development

Hybrid applications combine the approaches of native and web technologies.
Like native applications, they can utilize some of the OS features, being
distributed through an app store and still function offline without access to
the internet. But the most significant difference is that they offer a common
programming language and development environment with the “write once
run anywhere” concept in mind [8], similarly to the web applications. In
the following sections, we will explore existing hybrid mobile development
frameworks.

Ionic

Ionic is an open-source framework targeted for building hybrid mobile appli-
cations with Cordova. It was created with belief that HTML5 would become
the new standard of native applications in the future, just as it is now on the
desktop [9].

At its core, it’s just a web page running in a native app shell like iOS’s
UIWebView or Android’s WebView, which Cordova wraps. Cordova enables
the application to use numerous mobile device services like permissions or
hardware capabilities via the Cordova Javascript API [10]. For this reason,
web developers shouldn’t have much trouble building Ionic apps with the
knowledge of CSS, HTML and Javascript.

React Native

React Native is an open-source framework created by Meta that lets developers
build mobile applications using ReactJS, a well-known Javascript framework
in the web ecosystem [11]. Additionally, it has been one of the most popular
cross-platform solutions with a mature library ecosystem for the past years
(viz. Figure 2.1).

Looking at how React Native works internally, it sends asynchronous
messages to the native widgets APIs [13] in order to render the appropriate
user interface from the React component.

In an example (Listing 2.1), while using a React Native app, two threads
are communicating through a bridge with each other under the hood. The
main thread represents the native side that handles displaying elements and
user interactions. The second one runs on the Javascript VM used to manage
the business logic and declare the user interface [14].

6

.................................. 2.3. Mobile applications

Figure 2.1: Visualisation of most popular hybrid applications solutions [12]

import React from ’react’;
import { View, Text } from ’react-native’;

export const Home: React.FC = () => (
<View style={{

flex: 1,
justifyContent: ’center’,
alignItems: ’center’

}}>
<Text>Example text</Text>

</View>
);
}

Listing 2.1: Code example showing a text on a screen

We defined a Text user interface inside our code example using the Text
React component. The Javascript codebase relays a serialized message through
the bridge to the native thread instructions on what view and text to load.
Similar logic applies if a user is interacting with a button, the native thread
registers an event which is again serialized and sent to the Javascript thread
so it can respond with an appropriate message.

Flutter

Flutter is an open-source project created by Google [15]. It consists of the
Flutter framework, a UI library containing various reusable UI elements, and

7

2. Analysis
the Flutter SDK, a set of tools to develop an application and compile code
into the native code of IOS or Android.

Unlike other frameworks, there isn’t any bridge to convert components
into their corresponding native version or a need to render the UI on a
Webview. Instead, Flutter is responsible for drawing pixels directly on the
screen, making UI updates faster than Flutter’s alternatives.

Flutter works similarly to a game engine. At a high level, a Flutter
application is composed of widgets (a part of the user interface) that are
rendered onto a Skia canvas, a graphic engine written in C++ that sends
commands to the CPU and GPU [16]. The platform then takes the modified
canvas and shows it to the user while sending events back [17].

2.3.4 Hybrid mobile development drawbacks

While there are many solutions on how one should implement a cross-platform
application, each of the previously mentioned ones has its advantages and
disadvantages. Nevertheless, all of them share some same pitfalls.

Here are some potential problems occurring in hybrid applications:

. New OS APIs are not available until maintainers of the frameworks
support it.. Possible problems with particular Native functionalities like Payment
and FaceID.. Battery usage is not optimized.. Sometimes heavily relies on the ecosystem for needed features that are
usually already available in the native development.

2.3.5 Our choice

After understanding the core concepts of each solution for hybrid applications,
we are going to pick the best one based on certain criteria:

. Performance. Because our application does not have heavy animation require-
ments, a simple list view benchmark will be appropriate. Figure 2.2
contains the test results for the performance of scrolling inside a
listview on iPhone 6. All solutions show the same FPS, but a clear
difference can be seen in React Native, where the percentage of CPU
operations is higher, resulting in a bigger memory consumption [18].

8

.................................. 2.3. Mobile applications

Figure 2.2: iPhone 6 results on a ListView test comparing a Native, React
Native and Flutter app [18]

. Testing experience.When releasing an application outside the development environment,
one would need to publish it on an app store, which requires a
lengthy acceptance procedure from the provider. But for testing
purposes, exporting a codebase in a fast and simple manner is
crucial during the iterative development. That’s why testing tools
are used.. In the native application ecosystem, developers use TestFlight for
IOS and Google Play Testing for Android. For Hybrid applications,
there is only the Expo library on React Native [19]. It offers an
app that can pull the newest codebase without a need to plug the
device into the computer, and you can share a QR code with the
users so they can install and test the app without any complicated
setup.. Development adaptation. Except for Flutter, only React Native and Ionic can be written
in a language well-known to web developers, which makes hiring
developers that can work with this easier.

Reflecting on those points, I choose React Native as a solution for hybrid
application development, even though Flutter has a better performance score.

9

2. Analysis
2.4 Usage of device camera in face authentication

Nowadays, mobile devices offer their user face authentication to access the
device. This phenomenon is most noticeable for iPhone users with the intro-
duction of FaceID. To implement this functionality, two different approaches
could be used:..1. Normal camera

With the recent improvements in face detection technology, applying
machine learning algorithms to images is one of the simplest way to solve
this problem. But this comes with a limitation by relying on the device’s
camera quality. In addition, the light source of the surroundings can
influence its results...2. Depth camera
A particular type of camera which can extract 3D information from the
image by projecting infrared light. An example of this is the TrueDepth
camera used in FaceID on iPhone devices [20]. This gives more detailed
information about the face, inputted into a machine-learning algorithm
to verify the user. The benefit of this approach is that it’s less susceptible
to light and image noise.

For our application, we considered using the normal device camera to
support both Android and IOS devices.

2.5 Face authentication

Authentication is a process of confirming if a user is who they claim to be
[21]. It’s a crucial entry point before the user can interact with any service.
The most common type we use is email and password-based authentication,
but it’s becoming more frequent to have biometric authentication above it.
Part of the reason is that they are more convenient and secure [22]. Instead
of remembering the password, it relies on the user’s biometric information
such as face or fingerprint.

2.5.1 Introduction to face authentication

This section describes how a face authentication system can work and be
implemented. We have an application with a video stream that authenticates
a registered user after showing their face on the camera. Firstly, the camera
takes an image shot and sends it to the system to evaluate it. Then it applies

10

..................................2.5. Face authentication

Figure 2.3: A face authentication pipeline [24]

face detection, a process where the face position is detected to improve the
accuracy in the extraction part. This can be implemented with various pattern
recognition algorithms [23]. The resulting cropped face image is attributed to
another process called face recognition, where we extract critical features of
the face. Those key features define the uniqueness of each person, which can
be in the format of an N-dimensional vector. The last step determines who
the person is from the face embedding by comparing it with stored faces, and
returning their identification if found. An illustration of the whole process is
shown in Figure 2.3 .

2.5.2 Solutions to face authentication

Commercial

.Microsoft Azure [26].. AWS recognition [27]..Kairos [28].

Open-source

.Google FaceNet [25].. Insight Face [29].. DeepFace [30].

2.5.3 Our choice

After consideration, we dismissed the option of commercial solutions. Even
though they offer great scalability and data protection, the cost per usage
didn’t look acceptable to us. The open-source options have excellent accu-
racy on the LFW dataset, a face recognition benchmark tested on live face

11

2. Analysis
images. Moreover, it has REST API support. In the end, we decided to use
Google FaceNet, a machine learning model, because of its accuracy score and
popularity in the ecosystem.

2.6 Barcode scanning

Barcode scanning is a simple problem. Since it’s an old technology used in
the past in the retail industry, many devices exist that can fastly and reliably
scan products. Those principles are used in software libraries for mobile
applications.

The implementation of barcode scanning works by applying digital im-
age processing techniques to the image. This involves some noise filtering,
sharpening and contrast-enhancing. Finally, the data is extracted and then
evaluated [31].

As a solution, we chose to use the Expo barcode scanner [49], which is part
of the Expo Camera library.

12

Chapter 3

Design

The following chapter describes the implementation design. From the used
technology, the architecture, which gives us an overview of how each part will
look like, communicate and work together, to the user interface prototype.

3.1 Selected technologies

Several factors need to be considered while choosing a technology for the
implementation. In this section, we describe a summary and reasons on which
and how the technologies were chosen.

Flask

Flask is a lightweight web framework written in Python [32]. Compared to
Django, another popular Python framework, it requires less knowledge and
effort to use. Because of our requirement to implement facial recognition, it’s
common to have server technology that can utilize Python libraries.

Tensorflow

One of the most popular libraries used in machine learning projects, Tensorflow
offers comprehensive and flexible tools for working with machine learning
models [33]. In our case, it simplifies the development with the Google
FaceNet model.

13

3. Design..
CV2

Also known as OpenCV, it is an open-source computer vision library. OpenCV
was built to provide a common infrastructure for computer vision applications
[34]. The library is very helpful for image processing while being very efficient.
Some of the most notable usages of the library’s algorithms are tracking
moving objects, recognising faces and extracting 3D models from video.

Pickle

It is an object serialisation library accessed from the Python library. The
model works by converting a Python object into a byte stream stored in a
Pickle file [35]. In the implementation chapter, we will describe how we use
this file format to save face embeddings.

Expo Camera

Part of the Expo ecosystem, Expo Camera provides a React component
that renders a preview for the device’s front or back camera. Moreover, the
component can also detect faces and barcodes appearing in the preview [36].
The implementation of face detection is based on the Firebase ML kit.

Nginx

It is a web server that allows the user to serve static content and manage
request proxying. With Nginx, you can configure and manage SSL certificates.
This is very useful in securing the communication between the client and
server through HTTPS [37].

Gunicorn

Gunicorn is a WSGI server that can run any web application. WSGI is a proto-
col to standardise communication between a web server and a web application
[38]. For this reason, we will need Gunicorn to bridge the communication
between Nginx and Flask server.

3.2 Architecture

The project gains better modality and efficiency in achieving its outcome with
good architecture planning. We will better understand it by breaking it into

14

..................................... 3.2. Architecture

smaller parts and defining how they are structured together. The following
section describes the system components and used architecture patterns.

3.2.1 3-Tier architecture

A three-tier architecture is a client-server architecture in which the functional
process logic, data and user interface are developed as independent compo-
nents. These well-defined boundaries give developers more flexibility and
freedom in application design. As a result, long-term software maintenance
improves [39].

The architecture consists of these parts:

3.2.2 Application server

The application server is implemented with the Flask framework written
in Python language. The purpose of an application server is to process
incoming HTTP requests from the client. Moreover, it has no ORM or auth
guards, only a representation of a DB layer and some business services. In the
following section, we introduce the company’s internal system and describe
available services.

Applifting internal system

It is an external system with a product and purchase API with a REST
interface. Accessing its resources requires an authorization token passed in
the header of each request. Only the employee of Applifting can retrieve such
a token by requesting it on the company’s internal website. We will use this
behaviour during the user registration process on our mobile application. We
will ask users to read the authorization token from the website and pass it to
your system, where it’s saved together with the face feature in our database
as a key-value object with the token being the key.

Product service

The job of this service is to access products and modify purchase data.
Because of the company’s internal system conditions, an authorization token
will be required. The user can acquire this token after the registration and
login. The server retrieves the token from its database service. It sends it
to the client, where he stores it internally until the shopping is completed.
For example, when the mobile application needs to display some product
information, an HTTP request is sent with the stored token in the header,

15

3. Design..

Figure 3.1: Sequence diagram of product list display

which is set again in another HTTP request to the company’s internal service.
An example of retrieving products and displaying them to the client is shown
in Figure 3.1 .

Face recognition service

Its responsibility is to execute facial recognition during authentication with
the help of the Google FaceNet model. The model is preloaded and accessed
as a singleton during the server initialisation.

3.2.3 Mobile application

The client-side of the system is a React Native mobile application written in
Javascript. The user interacts with the mobile application that communicates
with the application server to retrieve and process information. The following
text clarifies the React architecture and the face recognition process.

React Native architecture

Typically some native applications use an MVC pattern to organise their
codebase and functionality, but with React Native, it’s different. Because it’s
part of the React JS library, its structuring is also similar, mainly component-
based. The data model, business logic, and interface can be found together
in components but with a difference in the division. React components were
meant to be reusable, so it’s usually organised by functionality.

16

..................................... 3.2. Architecture

Figure 3.2: Process diagram of face authentication on the client before an image
is sent to the server

Face recognition process

Although the face extraction can be done in the backend, sending images
frequently from the camera to the server to evaluate a face isn’t an optimal
solution, so a better approach was considered. Using the face detection API
from the Expo camera library, we can pass this task to the client-side while
sending the best picture to reduce the server work.

There are three mechanisms when the mobile application sends an image
during face authentication (viz Figure 3.2). Firstly, only on face detection
is an image sent to the server. Secondly, the face position is checked if
the location is in the center of the preview, making the sent images more
consistent. Finally, after three unsuccessful trials, the user cannot further
progress in the authentication flow.

17

3. Design..
3.2.4 Database

A database is an organized collection of structured information stored in
a DBMS (database management system) [40]. Databases allow us to re-
trieve or store data consistently and efficiently. The most popular databases
are SQL databases, which are structured into a group called tables, and
NoSQL databases like Redis, and MongoDB, which are optimized for different
problems that SQL primarily does.

Since we are working with machine learning, we needed to consider the
problem of storing face recognition results and the underlying process of
identifying the user. As mentioned in Chapter 2, during the sign-in operation,
the first two face recognition steps are executed, outputting the face features
in the format of an N-dimensional vector. For the third step, there are two
possible ways to implement it, either we store the images of the registered
users and apply face extraction for each person when comparing with the
user trying to login. Or the other approach is to directly store the face
recognition results, which removes the need to reapply the extraction process
per registered user. For this reason, we decided to use a Pickle file as a storage
solution.

3.3 Data model

Our application doesn’t directly hold any data. It instead uses the company’s
internal system to read and modify product and purchase data. Nevertheless,
we can describe a representation of the data model from the product service
and database service. The data model is represented with an UML diagram
in Figure 3.3 .

Figure 3.3: UML diagram of the application data model

18

................................. 3.4. Deployment diagram

3.4 Deployment diagram

A deployment diagram is a UML diagram used to visualize the devices of a
system, the communication protocols between them and the placement of
sub-components inside those devices [41]. This helps you to understand the
physical deployment of the hardware machine.

Figure 3.4 shows a deployment diagram of our digital shopping cart system.
A request is sent to our backend starting from the React Native mobile
application. Behind it, an Nginx service reverse-proxies this request to a
dedicated port via a UNIX socket, separating our application from the world
for security reasons. After catching this request, the Gunicorn service invokes
the correct code of the Flask server, returning a response.

Figure 3.4: Deployment diagram

3.5 User interface

3.5.1 Navigation

The following Picture x describes the navigation between screens in the mobile
application.

3.5.2 High-fidelity prototype

A prototype is a visual representation of our product. There are two types
of prototypes, high-fidelity and low-fidelity. Each one of them differs by the
level of detail, making high-fidelity the most refined and closest to the actual

19

3. Design..
application. This section presents several actions accompanied by high-fidelity
prototype screens and descriptions. A prototype is a visual representation of
our product. There are two types of prototypes, high-fidelity and low-fidelity.
Each one of them differs by the level of detail, making high-fidelity the most
refined and closest to the actual application. This section presents several
actions accompanied by high-fidelity prototype screens and descriptions.

Face authentication

The user looks at the device camera and tries to position his head to the
circle on the screen and center it.

Figure 3.5: Screen for authethication

Registration

The user goes through the registration walkthrough to understand how to
connect his company account to the digital cart shopping system. After
passing the required steps, the system will take a user picture to complete
the registration process.

20

.................................... 3.5. User interface

Figure 3.6: Screen for user registration

Buying products

The user scans the barcode of the desired product. A product preview is
displayed with a quantity counter so the user can adjust the amount. After
navigating to the checkout, the user views a summary of his current purchases
and clicks on the complete purchase button, making this purchase registered.

Figure 3.7: Screen for product purchase

21

22

Chapter 4

Implementation

This chapter details the main obstacles encountered during the implementation
and project deployment process. Especially the problem of how to process an
image and verify a user.

4.1 Face authentication

One of the main functionalities of your application is to enable face authenti-
cation for the users. As mentioned in the Analysis chapter, Google FaceNet
is used in the implementation. There are still two crucial steps needed to
make it fully functional. An image processing before the extraction and face
verification.

4.1.1 Image processing

The Google FaceNet model requires a specific type of image because it was
trained with photos having a square size of 160x160 pixels and pixel values
standardized across all three channels [43].

When we receive an image from the mobile application, we first convert
the color scheme to RGB if it is different.

def read_image(img):
img = cv2.imdecode(numpy.fromstring(img.read(),
numpy.uint8), cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img

}

Listing 4.1: Reading image and setting the RGB color scheme

23

4. Implementation....................................
Next, the converted result gets cropped with MTCNN, a face detection

library, to output an image with only a face.

def crop(img):
try:

det = mtcnn.detect_faces(img)[0]
margin = int(0.1 * img.shape[0])
img = crop_bb(img, det, margin);
return img

except Exception as e:
raise Exception("No face found")

}

Listing 4.2: Cropping the image with the MTCNN library

Finally, the image resizes and applies pixel standardisation, called zero
centring [44]. This technique processes the image so that the mean of the
image lies at zero.

def process_face(img):
img = cv2.resize(img, (160, 160))
img = img.astype(’float32’)
mean, std = img.mean(), img.std();
img = (img - mean) / std
return img

}

Listing 4.3: Image resize and pixel standardisation

4.1.2 Face verification

When the face gets extracted, the result will be used to find the most familiar
face of a registered user that satisfies a requirement. The model was trained
so that the output vectors of similar looks are close to each other and at the
same time, the vector location of different faces is far away [25]. To determine
face similarity, a Euclidean distance function is applied on each face. If the
distance between those two vectors is lower than our specified threshold, it
results in a match.

The specific value for the threshold was chosen by trial and error on a
custom sample (viz Figure 4.1). We tried to compare two persons with similar
features during this test to determine a suitable threshold. The number seven
was chosen, which worked well on future tasks.

24

..................................... 4.2. Deployment

Figure 4.1: Test result of comparing the distance between two sample faces

4.2 Deployment

Deployment is the process of setting the environment in a machine to make
it able to serve its functionality to other devices. This section describes
which cloud providers we used and a summary of steps needed to make the
application functionality for the client.

4.2.1 Digital Ocean

One way to host a server is to use dedicated cloud providers that simplify
scalability and other aspects of machine hosting. Digital Ocean is one of
those, an American company offering cloud tools and platforms to developers
[45]. We used their product, Droplet, a Linux based virtual machine,[46],
because it was simpler to set up than Amazon’s EC2 from our experience.

4.2.2 Flask in production mode

Using the default running script for our Flask application in a local develop-
ment environment is enough, but it’s not recommended to use it in production
mode. The reason is that Flask isn’t designed in a scalable and secure way
without the help of dedicated WSGI servers. For this reason, we use Gunicorn
[42].

25

4. Implementation....................................
4.2.3 Deployment summary

After choosing a cloud platform, the next step was to set up the environment
and services that will host our application:..1. Create a user group that will run our application server, giving it only

access to specific folders like our Pickle file and image folder...2. Configure Nginx and Gunicorn to run our application server...3. Purchased a domain, and configure DNS to make it point to Digital
Ocean...4. Integrate SSL certificate with the Nginx plugin, securing our request
with HTTPS.

26

Chapter 5

Evaluation

Evaluation is an integral part of software development. It aims at finding de-
fects and checking the fulfilment of the requirements. If conducted incorrectly,
users may stop using the application or misinterpret its usage before they can
use the crucial part. There are many ways to do an application evaluation.
Some of those techniques are user testing and surveys. This chapter outlines
the result of our evaluation produced by the employees of Applifting. Our
evaluation goals are to figure out if the requirements were met and find out
potential improvements.

5.1 User testing

User testing is a qualitative evaluation method in which users directly partic-
ipate [47]. A typical way to conduct user testing is to invite users to do some
task on a product while observing and recording their actions and behaviour
in order to identify design flaws.

The implementation of User testing requires specific preparation like defin-
ing the user group, test objectives, the testing medium and selections of tasks.
In our case, the test will be conducted on employees of Applifting regardless
of age or gender. Because a high fidelity prototype cannot fully showcase the
functions of our application, we decided on the implemented application as
a testing medium. Regardless of the tasks and objectives, two tasks were
selected that reflect our thesis goals. The first one is to find out if our facial
recognition is simple and reliable enough. The second one is product purchase
which is the main activity.

27

5. Evaluation
5.1.1 Chosen user testing method

There is a specific method for user testing that is quick and simple, it’s called
the “Quick-and-Dirty usability Test”. It focuses on rapid feedback on design
instead of trying to create a routine and perfect test [48]. Little preparation
is needed. It’s done on anyone available, but ideally on people who represent
our end-users. We choose this framework because it is simple, quick and
efficient when one iterates the design frequently.

5.1.2 Results

Ten participants were given the same tasks and time duration. Most of them
successfully purchased a product without any complications. Some users even
complimented how the solution was faster and simpler than the previous ones.
But there were several issues in the registration part. The following points
were collected:

. Registration walkthrough was not clear enough: The users didn’t know
what to do after they attained the QR code that represents a token
to access resources to the company’s internal system. A rethinking of
content will be considered and tested.. Users didn’t read the walkthrough text: Part of the reason was that the
text size was small and significant sentences weren’t noticeable to the
users. This mistake was the easiest to fix.. Users didn’t notice the face enrollment countdown: After scanning the
QR code, some users changed their focus to the surroundings when the
face enrollment countdown started. We may add some more significant
visual clues or sound to notify the user.

There were some suggestions from the users. The following points sum-
marise some of them:

. Change the swipe component to multiple screens instead.. Indicate steps during the registration walkthrough.. Show a summary of transactions after purchase.

5.2 User surveys

In this quantitative analysis, the survey had two goals in my mind. Firstly,
to measure the application usability (viz Figures 5.1, 5.2, 5.3). Participants

28

..................................... 5.2. User surveys

were asked to answer the questions on a scale from 1 (Very Bad) to 5 (Very
good). The results for this first category were overall positive, but not without
any negative answers. We expected the registration process to be the most
complicated part from the user’s perspective. A further rethinking of the
registration walkthrough will be considered in the future.

Figure 5.1: Registration usability evaluation

Figure 5.2: Purchase usability evaluation

Figure 5.3: Overall usability evaluation

29

5. Evaluation
The second goal was to determine if the user would be willing to use our

solution in the future or potentially replace the current one (viz Figures 5.4,
5.5). The answers were also on a scale from 1 (Never) to 5 (Definitely). Even
though a high number of users were willing to use this application in the
future, a smaller majority wanted to replace the previous solutions with this
one.

Figure 5.4: Future usage evaluation

Figure 5.5: Replacement of competitor evaluation

The survey questions were structured in such a way that participants could
complete them within 5 minutes.

30

....................................... 5.3. Results

5.3 Results

From the questionnaire, we concluded that there was a demand from the
participants to use our solution in the future, even possibly replacing the
current ones. Even with average results in usability, we are pretty confident
that a future improvement on the registration part can change the results to
complete satisfaction.

31

32

Chapter 6

Conclusion

The aim of this project has been to design and implement a technological
solution to the problem of logging and purchasing food and drink items
at Applifting, and it has been successfully accomplished. As demonstrated
throughout this thesis, we followed the steps of software development, namely
analysis, design, implementation and testing. The final product makes use of
facial recognition technology to ease the users’ shopping experience.

The analysis part defined the application’s requirements, from which use
cases were derived. Then different technologies for mobile applications, face
authentication and barcode scanning were analyzed and compared. As for
mobile application development, we choose React Native because of its famil-
iarity to React JS and available testing tool that enables fast iterations for the
developer. An open-source approach was considered for face authentication,
using the Google FaceNet, a machine learning model with a solid score on
the LFW dataset and broad adoption.

In the design and implementation part, we described the chosen archi-
tecture and the functionality of each of the components. This resulted in
the implementation of a React Native mobile application and Flask server
running together with Gunicorn and Nginx. The solution was deployed into
the cloud on Digital Ocean.

From the evaluation part, a user survey was conducted showing the app’s
appeal to the potential users. A high percentage of those surveyed indicated
their willingness to use the app in the future, as it made the purchase experi-
ence much quicker and easier. A potential issue concerned the accessibility of
the app and the user guidelines. However, this can be remedied based on the
feedback received from users.

33

6. Conclusion......................................
Although the design and implementation of this app were trialled at

Applifting, it is believed that it can be refined and adapted to the needs of
other similar organizations. This is since the underlying technology used in
the app is widely available to use and only certain aspects of the app such as
the identity management system would require an update.

34

Bibliography

[1] Applifting s.r.o. (2022). The Fridge. (Version 3.0). [Online]. https://
play.google.com/store/apps/details?id=cz.applifting.fridge
(visited on 16. 5. 2022)

[2] Fulton R, Vandermolen R (2017). Airborne Electronic Hardware Design
Assurance: A Practitioner’s Guide to RTCA/DO-254. CRC Press

[3] Chen, Lianping and Ali Babar, Muhammad and Nuseibeh, Bashar (2013).
Characterizing Architecturally Significant Requirements. IEEE Software -
SOFTWARE

[4] Erfani, Mona and Mesbah, Ali and Kruchten, Philippe (2013). Real
Challenges in Mobile App Development. International Symposium on
Empirical Software Engineering and Measurement

[5] Maradin, Dario and Malnar, Ana and Ðipalo, Ena (2020). The Market
Structure of the Smartphone Operating Systems Industry in the EU.

[6] B. Abazi (2017). Android Development with Java: Step by step guide to
build applications. CreateSpace Independent Publishing Platform

[7] Apple Inc. (2022) Xcode. [Online]. https://developer.apple.com/
documentation/xcode

(visited on 16. 5. 2022)

[8] Enihe, Raphael and Joshua, Jimmy (2020). HYBRID MOBILE AP-
PLICATION DEVELOPMENT: A BETTER ALTERNATIVE TO NA-
TIVE.

[9] IONIC (2022) All About Ionic. [Online]. https://ionicframework.com/
docs/v1/guide/preface.html

(visited on 16. 5. 2022)

35

https://play.google.com/store/apps/details?id=cz.applifting.fridge
https://play.google.com/store/apps/details?id=cz.applifting.fridge
https://developer.apple.com/documentation/xcode
https://developer.apple.com/documentation/xcode
https://ionicframework.com/docs/v1/guide/preface.html
https://ionicframework.com/docs/v1/guide/preface.html

6. Conclusion......................................
[10] Apache (2022) All About Ionic. [Online]. https://cordova.apache.

org/docs/en/latest

(visited on 16. 5. 2022)

[11] Meta Platforms Inc. (2022) React Native. [Online]. https://
reactnative.dev (visited on 16. 5. 2022)

[12] Statistica (2022). Cross-platform mobile frameworks used by
software developers worldwide from 2019 to 2021. [Online].
https://www.statista.com/statistics/869224/worldwide-
software-developer-working-hours

(visited on 16. 5. 2022)

[13] A. Boduch and R. Derks (2020). React and React Native: A complete
hands-on guide to modern web and mobile development with React.js,
3rd Edition. Packt Publishing

[14] Medium, Blagoja Evkoski (2017) React Native: What it is and how
it works. [Online]. https://medium.com/we-talk-it/react-native-
what-it-is-and-how-it-works-e2182d008f5e

(visited on 17. 5. 2022)

[15] Alphabet Inc. (2022) Flutter. [Online]. https://flutter.dev

(visited on 17. 5. 2022)

[16] Adam (2018) How Flutter Works. [Online]. https://buildflutter.
com/how-flutter-works

(visited on 17. 5. 2022)

[17] Alphabet Inc. (2022) Flutter architectural overview. [Online]. https:
//docs.flutter.dev/resources/architectural-overview

(visited on 17. 5. 2022)

[18] Medium, inVerita (2020) Flutter vs React Native vs Native: Deep Per-
formance Comparison. [Online]. https://medium.com/swlh/flutter-
vs-react-native-vs-native-deep-performance-comparison-
990b90c11433

(visited on 17. 5. 2022)

[19] Expo (2022) Expo. [Online]. https://expo.dev (visited on 17. 5. 2022)

[20] Apple Inc. (2022) About Face ID advanced technology. [Online]. https:
//support.apple.com/en-us/HT208108 (visited on 17. 5. 2022)

[21] TechTarget, Mary E. Shacklett (2021) Authentication. [Online]. https://
www.techtarget.com/searchsecurity/definition/authentication
(visited on 17. 5. 2022)

36

https://cordova.apache.org/docs/en/latest
https://cordova.apache.org/docs/en/latest
https://reactnative.dev
https://reactnative.dev
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://flutter.dev
https://buildflutter.com/how-flutter-works
https://buildflutter.com/how-flutter-works
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://medium.com/swlh/flutter-vs-react-native-vs-native-deep-performance-comparison-990b90c11433
https://medium.com/swlh/flutter-vs-react-native-vs-native-deep-performance-comparison-990b90c11433
https://medium.com/swlh/flutter-vs-react-native-vs-native-deep-performance-comparison-990b90c11433
https://expo.dev
https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://www.techtarget.com/searchsecurity/definition/authentication
https://www.techtarget.com/searchsecurity/definition/authentication

...................................... 6. Conclusion

[22] Krishna, Dr and Talukdar, Fazal and Laskar, Rabul (2013). Study on
Biometric Authentication Systems, Challenges and Future Trends: A
Review.

[23] Gürel, Cahit (2011). DEVELOPMENT OF A FACE RECOGNITION
SYSTEM.

[24] Luka Dulčić (2020) Face Recognition with FaceNet and MTCNN.
[Online]. https://arsfutura.com/magazine/face-recognition-
with-facenet-and-mtcnn/

(visited on 17. 5. 2022)

[25] Schroff, Florian and Kalenichenko, Dmitry and Philbin, James(2015).
Facenet: A unified embedding for face recognition and clustering.

[26] Microsoft Corporation (2022) Face API. [Online]. https://azure.
microsoft.com/services/cognitive-services/face

(visited on 18. 5. 2022)

[27] Amazon.com Inc. (2022) Amazon Rekognition. [Online]. https://aws.
amazon.com/rekognition (visited on 18. 5. 2022)

[28] Kairos AR. (2022) Kairos. [Online]. https://www.kairos.com

(visited on 18. 5. 2022)

[29] Jiankang Deng and Jia Guo (2018). insightface. [Online]. https://
insightface.ai (visited on 18. 5. 2022)

[30] Sefik Ilkin Serengil, Github (2019). deepface. [Online]. https://github.
com/serengil/deepface (visited on 18. 5. 2022)

[31] Jeff Brown (2010). ZBar About. [Online]. http://zbar.sourceforge.
net/about.html (visited on 18. 5. 2022)

[32] Unknown author (2021). What is Flask Python. [Online]. https://
pythonbasics.org/what-is-flask-python (visited on 18. 5. 2022)

[33] Google Brain Team (2022). Tensorflow. [Online]. https://www.
tensorflow.org (visited on 18. 5. 2022)

[34] OpenCV team (2022). OpenCV About. [Online]. https://opencv.org/
about (visited on 18. 5. 2022)

[35] Python Software Foundation (2022). pickle — Python object serialization.
[Online]. https://docs.python.org/3/library/pickle.html (visited
on 18. 5. 2022)

[36] Expo (2022). Camera. [Online]. https://docs.expo.dev/versions/
latest/sdk/camera (visited on 18. 5. 2022)

37

https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/
https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/
https://azure.microsoft.com/services/cognitive-services/face
https://azure.microsoft.com/services/cognitive-services/face
https://aws.amazon.com/rekognition
https://aws.amazon.com/rekognition
https://www.kairos.com
https://insightface.ai
https://insightface.ai
https://github.com/serengil/deepface
https://github.com/serengil/deepface
http://zbar.sourceforge.net/about.html
http://zbar.sourceforge.net/about.html
https://pythonbasics.org/what-is-flask-python
https://pythonbasics.org/what-is-flask-python
https://www.tensorflow.org
https://www.tensorflow.org
https://opencv.org/about
https://opencv.org/about
https://docs.python.org/3/library/pickle.html
https://docs.expo.dev/versions/latest/sdk/camera
https://docs.expo.dev/versions/latest/sdk/camera

6. Conclusion......................................
[37] Igor Sysoev (2022). Configuring HTTPS servers. [Online]. http://nginx.

org/en/docs/http/configuring_https_servers.html

(visited on 18. 5. 2022)

[38] apirobot (2021). What is WSGI and Why Do You Need Gunicorn and Ng-
inx in Django. [Online]. https://apirobot.me/posts/what-is-wsgi-
and-why-do-you-need-gunicorn-and-nginx-in-django

(visited on 18. 5. 2022)

[39] SANG-WOO HAN (1997). THREE-TIER ARCHITECTURE FOR SEN-
TINEL APPLICATIONS AND TOOLS: SEPARATING PRESENTA-
TION FROM FUNCTIONALITY.

[40] Oracle Corporation (2022). What Is a Database?. [Online]. https://
www.oracle.com/cz/database/what-is-database

(visited on 18. 5. 2022)

[41] Amanda Athuraliya (2021). The Easy Guide to UML Deployment Dia-
grams. [Online]. https://creately.com/blog/diagrams/deployment-
diagram-tutorial

[42] Pallets (2010). Deploy to Production. [Online]. https://flask.
palletsprojects.com/en/2.1.x/tutorial/deploy

(visited on 18. 5. 2022)

[43] Jason Brownlee (2019). How to Develop a Face Recognition System Using
FaceNet in Keras. [Online]. https://machinelearningmastery.com/
how-to-develop-a-face-recognition-system-using-facenet-in-
keras-and-an-svm-classifier

(visited on 18. 5. 2022)

[44] Giuseppe Bonaccorso (2018). Mastering Machine Learning Algorithms.
Packt Publishing

[45] DigitalOcean LLC. (2022). DigitalOcean. [Online]. https://www.
digitalocean.com

[46] DigitalOcean LLC. (2022). Droplets. [Online]. https://www.
digitalocean.com/products/droplets

[47] Bastien, J. (2009). Usability testing: A review of some methodological
and technical aspects of the method. International journal of medical
informatics

[48] Leah Buley (2013). The User Experience Team of One. Rosenfeld

[49] Expo (2022). Barcode scanner. [Online]. https://docs.expo.dev/
versions/latest/sdk/bar-code-scanner (visited on 18. 5. 2022)

38

http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
https://apirobot.me/posts/what-is-wsgi-and-why-do-you-need-gunicorn-and-nginx-in-django
https://apirobot.me/posts/what-is-wsgi-and-why-do-you-need-gunicorn-and-nginx-in-django
https://www.oracle.com/cz/database/what-is-database
https://www.oracle.com/cz/database/what-is-database
https://creately.com/blog/diagrams/deployment-diagram-tutorial
https://creately.com/blog/diagrams/deployment-diagram-tutorial
https://flask.palletsprojects.com/en/2.1.x/tutorial/deploy
https://flask.palletsprojects.com/en/2.1.x/tutorial/deploy
https://machinelearningmastery.com/how-to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-svm-classifier
https://machinelearningmastery.com/how-to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-svm-classifier
https://machinelearningmastery.com/how-to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-svm-classifier
https://www.digitalocean.com
https://www.digitalocean.com
https://www.digitalocean.com/products/droplets
https://www.digitalocean.com/products/droplets
https://docs.expo.dev/versions/latest/sdk/bar-code-scanner
https://docs.expo.dev/versions/latest/sdk/bar-code-scanner

Appendix A

Development guide

Frontend github repo https://github.com/alexnguyen98/fridge-face-
frontend

Backend github repo https://github.com/alexnguyen98/fridge-face-
backend

A.1 Frontend

A.1.1 Requirements

. Node v15.2.0, < v17.0.1. Yarn/npm. Expo Go app

A.1.2 Changing backend host

In the file fridge-face-frontend/src/constants/index.ts set the con-
stant SERVER_URL to your desired backend host (defaults to https://nguyexu.
tech).

A.1.3 Usage

Install dependencies
yarn install

Running dev mode

39

https://github.com/alexnguyen98/fridge-face-frontend
https://github.com/alexnguyen98/fridge-face-frontend
https://github.com/alexnguyen98/fridge-face-backend
https://github.com/alexnguyen98/fridge-face-backend
https://nguyexu.tech
https://nguyexu.tech

A. Development guide
yarn start
Test the project on a emulator or
by scanning the QR code from the terminal

Releasing on production
expo publish
}

A.2 Backend

A.2.1 Requirements

. Python 3.7.2. pip3

A.2.2 Usage

Activate python venv
python3 -m venv .venv
source .venv/bin/activate

Install dependencies
pip3 install -r requirements.txt

Running dev mode
python3 run.py

Running prod mode
gunicorn run:app -b 0.0.0.0:3000
}

40

Appendix B

Screenshots from production application

The following appendix shows screenshots from the mobile application in pro-
duction. The software was running on a tabled device (iPad 7th generation).

41

B. Screenshots from production application.........................

Figure B.1: Home screen

42

......................... B. Screenshots from production application

Figure B.2: Walkthrough screen

43

B. Screenshots from production application.........................

Figure B.3: Face enrollment screen

44

......................... B. Screenshots from production application

Figure B.4: Login screen

45

B. Screenshots from production application.........................

Figure B.5: Scan product barcode screen

46

......................... B. Screenshots from production application

Figure B.6: Product search screen

47

	Introduction
	Analysis
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Mobile applications
	Native mobile development
	Native mobile development drawbacks
	Hybrid mobile development
	Hybrid mobile development drawbacks
	Our choice

	Usage of device camera in face authentication
	Face authentication
	Introduction to face authentication
	Solutions to face authentication
	Our choice

	Barcode scanning

	Design
	Selected technologies
	Flask
	Tensorflow
	CV2
	Pickle
	Expo Camera
	Nginx
	Gunicorn

	Architecture
	3-Tier architecture
	Application server
	Mobile application
	Database

	Data model
	Deployment diagram
	User interface
	Navigation
	High-fidelity prototype

	Implementation
	Face authentication
	Image processing
	Face verification

	Deployment
	Digital Ocean
	Flask in production mode
	Deployment summary

	Evaluation
	User testing
	Chosen user testing method
	Results

	User surveys
	Results

	Conclusion
	Bibliography
	Development guide
	Frontend
	Requirements
	Changing backend host
	Usage

	Backend
	Requirements
	Usage

	Screenshots from production application

