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Abstract
Since 2006 researches are trying to find
a good model for rain intensity estima-
tion based on commercial microwave links
CMLs signal attenuation data. For a
long time models were using a power-
law based algorithm. Recent development
showed that a recurrent neural network
based model can outperform them. Our
goal is to investigate different, on neu-
ral network based, concept, namely the
convolutional neural network CNN. We
build a wet-dry classification model and
analyzed its performance on real data re-
trieved over 3 years from 28 CMLs located
in Prague. Our analysis shows that it can
reach F1-scores over 0.98 for rain intensi-
ties I, I > 2mm

hr and that it has still room
for improvement for 0mm

hr < I ≤ 2mm
hr .

Our results are also comparable to the re-
cently published CML model by Polz et al.
[16]. In the second part we build a CNN
based rain estimation model and its re-
sults are competitive with the latest state-
of-the-art GRU driven model introduced
by Habi et al. [9]. We present different
variations of our approach and compare
all results. Our research shows that a
CNN based model is another promising
candidate in the search of an all-round,
well performing and CML independent
rain estimating model.

Keywords: CML, CNN, GRU, rain
intensity estimation, rain binary
classification, neural networks
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Na Zderaze 269/4
místnost: G-104b
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Abstrakt
Od roku 2006 se díky rozvoje telekomu-
nikačních sítí snaží výzkumníci nalézt
účinný model pro odhad hustoty deště z
útlumu signálu komerčních mikrovlnných
spojů. Původ této myšlenky se datuje až
do roku 1977. Po dlouhou dobu byly vytvá-
řeny modely založené na mocninné funkci.
Nejnovější výzkum ukázal, že modely zalo-
žené na rekurentní neuronové síti dosahují
lepších výsledků. Naším cílem je prozkou-
mat výkonost modelu založeném na kon-
voluční neuronové síti KNS. Nejprve jsem
postavili model klasifikující data do třídy
prší a neprší a analyzovali jsme jeho přes-
nost na reálných datech z 28 CML nachá-
zejících se v Praze. Naše analýza ukazuje
že F1-skóre dosahuje hodnoty 0.98 pro in-
tenzity deště I, I > 2mm

hr a že má stále
prostor pro zlepšení pro 0mm

hr < I ≤ 2mm
hr .

Dále jsme tento model porovnali s ob-
dobným návrhem prezentovaným Polz et
al. [16] a dosáhli jsme rovnocenných vý-
sledků. Ve druhé části jsme konvoluční
síť upravili tak, aby odhadovala hustotu
deště. Její výsledky jsou srovnatelné s nej-
modernější neuronovou sítí postavené na
architektuře GRU představené Habi et al.
[9]. Představujeme různé varianty modelu
a srovnáváme jejich výsledky. Náš výzkum
ukazuje, že KNS modely jsou dalším slib-
ným kandidátem při hledání výkonného,
na CML nezávislém modelu pro odhad
hustoty srážek.

Klíčová slova: CML, KNS, GRU,
odhad hustoty deště, binární klasifikace
deště, neuronové sítě

Překlad názvu: Stanovení hustoty deště
z data CML spojů

iv



Contents
1 Introduction 3
1.1 Existing methods . . . . . . . . . . . . . . 4
1.2 Data visualisation . . . . . . . . . . . . . 5

1.2.1 General overview . . . . . . . . . . . 6
2 Methods 13
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Commercial microwave links . 13
2.1.2 Rain gauges (RG) . . . . . . . . . . 13
2.1.3 CML attributes . . . . . . . . . . . . 14
2.1.4 Temperature . . . . . . . . . . . . . . 14

2.2 Data preparation . . . . . . . . . . . . . 14
2.2.1 Attenuation . . . . . . . . . . . . . . . 14
2.2.2 Reference . . . . . . . . . . . . . . . . . 16

2.3 Evaluation metrics . . . . . . . . . . . . 16
2.3.1 Classification . . . . . . . . . . . . . . 17
2.3.2 Regression . . . . . . . . . . . . . . . . 17

3 Wet-dry classification 19
3.1 Thresholding classification . . . . . 19

3.1.1 Threshold calculation . . . . . . . 20
3.1.2 Results . . . . . . . . . . . . . . . . . . . 20
3.1.3 Discussion . . . . . . . . . . . . . . . . 20

3.2 Neural network models . . . . . . . . 21
3.3 Shallow neural network

classification model . . . . . . . . . . . . . 22
3.4 CNN Base classification model . 24

3.4.1 Results . . . . . . . . . . . . . . . . . . . 26
3.4.2 Discussion . . . . . . . . . . . . . . . . 29

3.5 BCM further experiments . . . . . . 29
3.5.1 Training details . . . . . . . . . . . . 30
3.5.2 Misclassification visualization 32
3.5.3 Results . . . . . . . . . . . . . . . . . . . 33
3.5.4 Discussion . . . . . . . . . . . . . . . . 34

4 Rain intensity estimation 45
4.1 Architectures . . . . . . . . . . . . . . . . . 45

4.1.1 The Improved regression model 45
4.1.2 Multi-channel input regression

model . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Loss functions . . . . . . . . . . . . . . . . 48
4.3 Results . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Discussion . . . . . . . . . . . . . . . . 50
5 Software solution 55
Bibliography 59

v



Figures
1.1 Cml and rain gauges setup . . . . . . 6
1.2 Heavy rain CML56 and all rain

gauges data . . . . . . . . . . . . . . . . . . . . . 7
1.3 Medium rain CML56 and all rain

gauges data . . . . . . . . . . . . . . . . . . . . . 8
1.4 Mild rain beginning CML56 and

all rain gauges data . . . . . . . . . . . . . . 9
1.5 CML 56 general data overview . . 9
1.6 CML 105 general data overview 10
1.7 CML 412 general data overview 10
1.8 CML 444 general data overview 11

3.1 Thresholding CML 56 F1-scores 21
3.2 Thresholding CML 444 F1-scores 22
3.3 Thresholding CML 547 F1-scores 23
3.4 Conv net classification . . . . . . . . . 24
3.5 Shallow network architecture . . . 24
3.6 Shallow neural network CML 56

ROC . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Shallow neural network CML 444

ROC . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Shallow neural network CML 547

F1 test scores . . . . . . . . . . . . . . . . . . 28
3.9 Shallow nn misclassification for low

rain intensity . . . . . . . . . . . . . . . . . . . 29
3.10 Conv net classification . . . . . . . . 30
3.11 Conv. net initial experiment

training progress CML 56 . . . . . . . . 31
3.12 Conv. net initial experiment

training progress CML 547 . . . . . . . 32
3.13 Conv. net initial experiment

training progress CML 444 . . . . . . . 33
3.14 CML 547 F1-score distribution 34
3.15 CML 56 misclassifications . . . . . 35
3.16 CML 56 misclassifications . . . . . 36
3.17 CML 444 misclassifications . . . . 36
3.18 CML 444 initial conv. net

continuous data . . . . . . . . . . . . . . . . 37
3.19 CML 56 initial conv. net

continuous data . . . . . . . . . . . . . . . . 37
3.20 CML 56 classification training

progress SL = 1day, CD = True . . 38
3.21 CML 56 classification training

progress SL = 1day, CD = False . . 38
3.22 CML 56 ROC with F1-score

evolution worst result . . . . . . . . . . . 39

3.24 CML 56 wrong predictions mild
rain . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.25 CML 56 wrong predictions
medium rain . . . . . . . . . . . . . . . . . . . 40

3.26 CML 444 classification training
progress SL = 1day, CD = True . . 41

3.27 CML 444 classification training
progress SL = 1day, CD = False . . 41

3.28 CML 4 ROC with F1-score
evolution worst result . . . . . . . . . . . 42

3.29 CML 444 ROC with F1-score
evolution best result . . . . . . . . . . . . 42

3.30 CML 444 wrong predictions mild
rain . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.31 CML 444 wrong predictions
medium rain . . . . . . . . . . . . . . . . . . . 43

4.1 Basic regression model
architecture . . . . . . . . . . . . . . . . . . . . 46

4.2 Improved regression model
architecture inspired by VGG-16 . . 47

4.3 Multi-channel input model . . . . . 48
4.4 Multi-channel scaled MSE loss

regression models training progress 50
4.5 Improved regression model using

Huber loss . . . . . . . . . . . . . . . . . . . . . 51
4.6 Improved regression model using

Huber loss . . . . . . . . . . . . . . . . . . . . . 52
4.7 Multi-channel regression model

using scaled MSE loss . . . . . . . . . . . 53
4.8 Multi-channel regression model

using scaled Huber loss . . . . . . . . . . 54

5.1 Data class output format . . . . . . 57

vi



Tables
3.1 CML 56 F1-scores for different

classification experiments . . . . . . . . 25
3.2 F1-score for CML 56 different

models comparison . . . . . . . . . . . . . . 25
3.3 F1-score for CMl 444 different

models comparison . . . . . . . . . . . . . . 26
3.4 F1-score for CML 56 different

models comparison . . . . . . . . . . . . . . 27
3.5 F1-score for CMl 444 different

models comparison . . . . . . . . . . . . . . 28
3.6 CML 444 F1-scores for different

classification experiments . . . . . . . . 32
3.7 Final F1-score for CML 56

different models comparison . . . . . . 34
3.8 Final F1-score for CMl 444

different models comparison . . . . . . 35

4.1 NRMSE regression experiments
comparison . . . . . . . . . . . . . . . . . . . . 49

vii





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

373437Personal ID number:Novota  PetrStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Rain Intensity Estimation from CML Link Data 

Bachelor’s thesis title in Czech:

Stanovení hustoty deště z dat CML spojů 

Guidelines:

Current standard rainfall monitoring networks don’t provide sufficient spatial and temporal resolution or are absent in urban
areas. Commercial microwave links (CML) are ubiquitous all around the world. Since rain increases microwave attenuation,
it should be possible to detect the rain and estimate its presence in order to build accurate real-time heavy rain warning
for urban water management systems. However, the robustness and accuracy of current systems is limited.
Instructions:
1. Get familiar with the available data, curate it and visualize. Prepare also synthetic data for testing.
2. Get familiar with existing methods . Implement baseline subtraction and thresholding and test its performance.
3. Design, implementation and test a shallow neural network on wet-dry classification problem as well as the rain intensity
estimation problem based directly on the measurements as well as on preprocessed features.
4. Design, implement and test a convolutional neural network for the same problems.
5. Design, implement and test a recurrent neural network on for the same problems.
6. Extend the best performing methods to use multiple CMLs and to estimate the rain density at multiple points.The spatial
extension can be designed analytically or learned.

Bibliography / sources:

[1] M. Fencl, P. Valtr, M. Kvičera and V. Bareš, "Quantifying Wet Antenna Attenuation in 38-GHz Commercial Microwave
Links of Cellular Backhaul," in IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 4, pp. 514-518, April 2019, doi:
10.1109/LGRS.2018.2876696.
[2] Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V.: Gauge-adjusted rainfall estimates from commercial microwave
links, Hydrol. Earth Syst. Sci., 21, 617–634, https://doi.org/10.5194/hess-21-617-2017, 2017.
[3] H. V. Habi and H. Messer, "Recurrent Neural Network for Rain Estimation Using Commercial Microwave Links," in
IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp. 3672-3681, May 2021, doi:
10.1109/TGRS.2020.3010305.
[4] Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for
hydrometeorological applications, Atmos. Meas. Tech., 9, 991–999, https://doi.org/10.5194/amt-9-991-2016, 2016.

Name and workplace of bachelor’s thesis supervisor:

prof. Dr. Ing. Jan Kybic    Biomedical imaging algorithms  FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 10.02.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Dr. Ing. Jan Kybic

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



Chapter 1
Introduction

The goal of this work is to investigate different approaches on how to estimate
rain intensity based on commercial microwave links (CML) signal attenuation
(A).

CMLs are point-to-point radio connections widely used as cellular backhaul.
A substantial part of CML networks is operated at frequencies between 20
and 40 GHz where radio wave attenuation caused by raindrops is almost
proportional to rain intensity [15]. These CMLs can, therefore, be used as
unintended rainfall sensors providing path-integrated quantitative precipi-
tation estimates. Moreover, CML data are accessible online in real time
from network operation centers either through network monitoring systems
or specifically designed server-sided applications [5].

The idea of deriving precipitation estimates from microwave signal atten-
uation was originally proposed over 40 years ago [2]. Recently, it grew on
popularity due to an extensive growth of cellular networks [12], [10] which
frequently incorporate CMLs. Currently, there are about four million CMLs
being used worldwide and their number is increasing.

The reason why it is interesting to use CMLs for rain precipitation intensity
estimation is that rainfall data of sufficient quality is lacking for most of the
Earth’s land surface. Moreover, coverage by classical surface precipitation
gauging networks is declining in many regions around the world [11]. Although
global precipitation data can be obtained from satellites or local monitoring
networks, their spatiotemporal resolution is still insufficient for hydrological
modeling of small, mountainous or urban areas [11].

The high requirement for good temporal and spatial resolution of rainfall
data is especially prominent in urban catchments, because they differ from
natural ones in two major aspects. The examined area scale in urban and
natural catchments differs in orders of magnitude and the former is covered
by a high ratio of impermeable surfaces that limit rainfall infiltration and
lead to more surface runoff.

Tipping bucket rain gauges stand for traditional way of retrieving pre-
cipitation measurements in urban areas. However, they often fail to supply
sufficient spacial and temporal resolution, often due to the low rain gauge
counts. In particular, when heavy storm events, crucial for the evaluation of
urban stormwater systems, are considered, the spatial representativeness of
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1. Introduction .....................................
point rainfall observations from rain gauges is limited.

1.1 Existing methods

The beginning of rain intensity estimation from CMLS dates in 2006 when
Messer et al. [12] introduced the use of a single CML as a mean to estimate
rain intensity. Later, Leijnse et al. (2008) [10] used, for the first time, two
CMLs in the Netherlands. Today, researches work with up to 3900 CMLs.

One of the challenges at the beginning was the acquisition of CML data.
In 2012, Chwala et al. [6] first acquired data using loggers at CML towers.
He later introduced a state-of-the-art CML data acquisition for research [5]
and improved herby the data availability for other researches.

The Wet antenna effect (WAA) 2.2.1 was initially estimated as a con-
stant. Later studies showed that its magnitude ranges from 1.5dB - 9dB [14].
Therefore considering is as constant led to significant overestimations of peak
rainfalls [8]. Moreover, the WAA magnitude can either be quantified from
short CMLs, where is dominates the rain induced attenuation, but it can be
also retrieved from long-term statistics of CMLs and rainfall climatological
data [8].

The main methods at the beginning were relying on the power law model
(PL) 1.1, where a and b are the PL coefficients. In 2020 Habi et al. [9]
used a recurrent neural network and showed that this method beats the PL
performance. Its estimation error is lower by up to 50%. The estimation
error is estimated for different rain intensities and it ranges from 1.5Ii

avg for
0mm

hr < I ≤ 1mm
hr down to 0.5Ii

avg for 15mm
hr < I ≤ 25mm

hr . Ii
avg represents the

average rain intensity in the given interval.

Ar(t) = aRb(t)l (1.1)

There has been a lot of work done on this topic and the latest paper showed
that a neural network based model can deliver better performance for rain
rate estimation than previously used models. At the beginning, researches
developed complicated mathematical models and tried to find the correct
formulas describing all attenuation effects. Today, the focus have shifted
towards neural networks. They can take the burden of finding those formulas
off our shoulders. We just feed them with enough data and they figure it out
on their own. But of course, the reality with them is not that simple and
there are many problems to be solved until they work really well. And thus
we would like to expand our understanding of neural network models used
for rain intensity estimation.

We will proceed in two steps. In the first step we will build Wet-dry
classification model. Its goal is to classify given A or a A sequence into Wet
class or Dry class. Wet class means that it is raining and Dry class means
it is not raining. We will compare our results to the results published in
recent paper published by Polz et al. in 2020 which used a convolutional
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.................................. 1.2. Data visualisation

neural network model [16] which is very similar to ours. We will repeat their
experiments with different data set and confirm their results.

In the second step we will expand our models so that they are capable
of rain intensity (I) estimation. We will compare them between each other
and with the state-of-the-art model published by Hai Victor Habi and Hagit
Messer in May 2021 [9]. As model backbone, they have used two gated
recurrent units (GRU). We will use a CNN based architecture. We hope
either to find a new perspective approach that can be further developed or to
exclude it from further research.

1.2 Data visualisation

First of all we want to get an overall picture about the data we will work
withs. The CML and RG spatial setup is depicted in figure 1.1. Red lines
represent CML links and rainy clouds stand for RGs. CML link 56 is yellow.
Let us illustrate how correlation between CML56 and RGs looks like. The
highest correlation is expected with D10. We classify the rain intensity (I) in
four classes. Heavy (H), medium (M) and mild (L)rain and no rain(O) like
this 1.2

I(t) =Davg(t) = D10(t) + D13(t) + D22(t)
3

H =
{

I(t) | I(t) > 40 mm
hour

}
M =

{
I(t) | 10 mm

hour < I(t) < 15 mm
hour

}
L =

{
I(t) | 1 mm

hour < I(t) < 1.2 mm
hour

}
O =

{
I(t) | I(t) < 1 mm

hour

}
(1.2)

Heavy rain situation in figure 1.2 shows that correlation with rain gauge
D10 is very high. At the beginning of the rain the CML56 seems to react
faster than D10. Other rain gauges detect the rain as well, but there is a time
shift with regards to the D10 and their data has different shape. Overall this
data shows, that dry wet classification for heavy rain events should be doable.
But it is a rare situation, there are total of 1 092 179 data points and only 85
can be classified as H according to 1.2

Observation of a medium rain episode figure 1.3 shows that the correlation
between A and RGs is not that high in many situations. D10 starts to measure
rain ca. 20 minutes after the attenuation of CML56 starts to increase. One
explanation is that a rain gauge measures precipitation for one small location.
The CML signal attenuation, on the other hand, is influenced by the state of
weather along a line, which for CML56 is 3.195m long.

Another phenomenon can be seen in figure 1.3 and that is the wet antenna
attenuation (WAA). So when it stops raining, there will be higher attenuation

5



1. Introduction .....................................

Figure 1.1: Cml and rain gauges setup

until the antenna dries out. This process can take different amount of time
as it is influenced by a variety of factors, temperature, humidity, wind, just
to name a few.

The next problem is shown in figure 1.4. Due to the point like nature of
the RGs action radius it is usual for A to increase sooner then RG detects
rain. In this particular case there is a time shift of approx. 20 minutes.

From the data we have just shown can be concluded that the correlation
between A and RGs is positive, but as discussed, it is sometimes higher and
other times lower depending on the rain event nature.

1.2.1 General overview

In the next part we want to get an overall picture of A development for
multiple CMLs. Attenuation data for CML56 in figure 1.5 show a long time
period around June 2014 where the A56

b suddenly increases from 58db to
72db and then decreases very slowly over the period of several months until
it reaches the original value in October 2014. In general, the Ab can change
due to an obstacle placed on its path, that would explain a sudden increase,
but we have no explanation for the a decrease.

CML105 data in figure 1.6 from the same time period show a similar event
where in May 2014 A105

b = 53dB and goes up to A105
b = 56dB. But this could

be explained by a new obstacle being placed on the CML path because A105
b

does not return to its original value as it is the case for CML 56. Other CMLs
like 412 in figure 1.7 don’t show such a behavior.

Another interesting A development happens for CML444 in figure 1.8. The

6



.................................. 1.2. Data visualisation

Figure 1.2: Heavy rain CML56 and all rain gauges data

A444
b makes 20dB up and down jumps. This could still be explainable by

obstacles being placed and removed from the CML path.
The CML 56 behavior, where the attenuation baseline suddenly jumps up

and then slowly decreases is not seen in other data.
We showed that the attenuation data is not alway a steady baseline with

increased A during rain periods. We see that the baseline can change either
gradually or step wise and might or might not come back to its original
value.
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Figure 1.3: Medium rain CML56 and all rain gauges data
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.................................. 1.2. Data visualisation

Figure 1.4: Mild rain beginning CML56 and all rain gauges data

Figure 1.5: CML 56 general data overview
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Figure 1.6: CML 105 general data overview

Figure 1.7: CML 412 general data overview
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.................................. 1.2. Data visualisation

Figure 1.8: CML 444 general data overview
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Chapter 2
Methods

Lorem ipsum

2.1 Data

All data and scripts used in this work are located on Unix computers of the
Department of Cybernetics in the /datagrid/Medical/tel4rain folder.

2.1.1 Commercial microwave links

This work is based on data from 28 CMLs working in full duplex mode. For
each CML link we have a sequence of triplets. There are transmitted signal
power (Ptx), received signal power (Prx) and timestamp (t). The data span
from the end of April 2014 to half of January 2017. There is one csv file for
each CML link in form of a time series with various sampling frequencies
ranging from 0.5s to 15s. The Prx is in dB and it is stored as a decimal
number with one significant digit and quantization of 1/3dB. The Ptx is also
in dB and it is stored as an integer. Its quantization step is 1 dB.

Most of the links have automatic transmit power control (ATPC). This
feature increases Ptx during attenuation events in order to keep Prx constant
(or until max. Ptx is reached). The configuration of ATPC, however, dif-
fers significantly from device to device. Some keep the Ptx constant, some
changes step wise when Prx threshold is reached (thus, sometimes only during
stronger attenuation events), and some keep Ptx constant, i.e. behave as
being without ATPC. As Prx and Ptx quantizations differ (1/3 dB, resp. 1
dB), the specifics of ATPC configuration (Ptx constant vs. Ptx compensating
Prx) affect quantization of obtained signal power data. We will not have to
worry about it, because we will work only with signal attenuation (A) at
time t defined as:

A(t) = Ptx(t) − Prx(t) (2.1)

2.1.2 Rain gauges (RG)

We have three RGs, D10, D13 and D22. They measure rain intensity in

13



2. Methods.......................................
millimeters per hour over an interval of 1 minute. That means their time
resolution is 1 minute. We also know each RG’s position so that it’s relevance
for a given CML can be evaluated.

RG’s have sometimes breakdowns or report non-valid data, therefore such
data must be discarded.

2.1.3 CML attributes

Each CML has multiple attributes. Most useful ones for model training are
CML length (l), frequency (f), polarization (α) and position (p⃗). Because
we aim to create on CML independent model, CML attributes can be used
as model inputs and thus providing information about the particular CML.
The most important attribute is the CML length, because the rain induced
attenuation is proportional to it [4]. Other attributes might have some effects
too and a neural network model could detect them and use them for learning.
But we don’t have enough different attribute combinations so we will only
use the CML lengths.

2.1.4 Temperature

From CHMU Prague we have got temperature measurements (τ ) for Prague -
Prosek. Their time resolution is one minute. We use this data to ensure that
we only estimate liquid precipitation. In order to ensure this, we only use
data for which τ > 5◦. In order to estimate snow or sleet intensities, different
models would have to be build, because they affect A differently. Once a
good liquid precipitation estimating model is known we can, with enough
data, build models for the remaining precipitation types.

2.2 Data preparation

TODO:

2.2.1 Attenuation

CMLs provide data samples with sampling frequency ranging from 0.5s−1 up
to 4min−1. There are time periods where data samples are missing or where
Prx, Ptx reported erroneous values. Therefore, non-valid data are removed
and attenuation is calculated 2.1.

A = Ab + Awa + Ar + ϵ (2.2)

CML Attenuation (A) is composed of four parts 2.2. The Base attenuation
(Ab) represents the signal scattering on air molecules along the CML path. It
is the attenuation that is always there. The wet antenna attenuation (Awa)
[10], [17] is caused by the antenna being covered by water. The next part
is the rain induced attenuation (Ar), which is proportional to l. Lastly, ϵ
stands for unknown attenuation effects.
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................................... 2.2. Data preparation

Attenuation time resolution

The next thing to consider is what attenuation time resolution Ares do we
want to use. Multiple previous works [9], [7] had Ares = 15min. This means
that two data samples are 15 minutes apart. We think that this is not fast
enough. If a heavy rain starts, then we want to be notified as soon as possible.
For this reason we will use Ares = 1min. This results in total of n data
samples whitch define a set N c = {x ∈ N | x ≤ n} for each CML c

The next aspect to choose is how do we aggregate A samples in order to
reach the chosen Ares. In this work, the mean value will be used. In this
recent article [9] the maximum function was used. But this can go wrong if
there is one outlier in the sequence. Therefore we choose the mean.

As result there is a set of points Sc2.3 for each CML that can be used as
input for different models.

Sc = {(t, Ac(t)) | t ∈ N c} (2.3)

Continuous data

CML and RG measurements have sometimes missing data resulting in time
gaps. Sometimes there is non-valid data reported, sometimes there is no data
available for certain time periods, because the measurement device was not
working. For model training, which takes last n samples as input, it makes
sense to only use n time consecutive samples. If a model uses n = 1440, we
should make sure that there is no gap and thus no part of the input data is
too old and not relevant. We considered two ways how to deal with it.

On one hand, we can ignore this problem. Because there is no rain around
97% of time, there is a big chance that such a gap occurs in a no-rain period.
As shown in Data visualisation the Ab does not usually change across several
days. This means that a data gap during a no-rain period will likely not
negatively influence a model’s training.

On the other hand, we can make sure that data is always continuous. For
all Sc we define a maximal time window Wmax and a time gap G. Then we
iterate over all points in Sc and create subsets Sc

i as follows 2.4

(1) j = 0; n = |N c| − 1
(2) Sc

j = Sc

(3) a = Sc
0[0]

(4) while i < |N c|

(5) if ti − ti−1 ≤ Wmax ⇒ Anew = Ai − Ai−1
2

(6) else Sc
j = {ta, ..., ti−1} ∧ Sc

j+1 = {ti, ..., tn}
(7) j + +; a = Sc

j [0]; i + +

(2.4)

In case the gap is mall enough, Ares number of Anew values is created and
the gap is filled with them. We chose Wmax = 3
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2. Methods.......................................
In our experiments we will show model performance for both data prepara-

tion methods.

2.2.2 Reference

The next task is to prepare references for the training. Two references will be
needed. One for classification and second one for regression.

Classification reference

Reference is prepared for classification tasks as follows. From each RG (Dd)
d ∈ {10; 13; 22} there is one classification reference (Cd

ref ) generated where
d denotes the RG number. We define thresholds Tlow = 0.1 and Thigh = 0.5
and time interval i = 15min. Reference is calculated as follows 2.5.

Md(t) = 1
i

∑t
t−i Dd(x)

Cd
ref (t) =


0, if Md(t) < Tlow

1, if Md(t) > Thigh

−1, else

(2.5)

The gap between Tlow and Thigh means that we are not sure whether it
is raining or not and by labeling it with -1 we can exclude it during model
training and evaluation.

Regression reference

Similarly to classification reference, from each RG one regression references
(Rd

ref ) is created. The Rref corresponds to RG measurements as follows2.6

Rd
ref (t) = Dd(t) (2.6)

2.3 Evaluation metrics

We will present results for CMLs 56, 444 and 547. This allows us to compare
all experiments. Experiments with neural network models will take long time
and it would not be time efficient to include all CMLs. For this reason we
chose three CMLs. This allows us to try a lot more experiments, compare
them between each other and when a promising model is found, then we can
use it on more CMLs. CML 56 was chosen, because it is very close (122m) to
the RG D10. It’s length is 3, 196km, CML 444 is near RG D13 (926m) and
it’s length is 0, 854km and CML 547 is far from the nearest RG D10 (1.500m)
with length 1, 086km.

In order to evaluate our models we will use the F1-score for classifica-
tion models and root mean square error (RMSE) and normalized RMSE
(NRMSE) for regression models. The RMSE is chosen, because it is used to
evaluate the GRU network [9] and we want to compare our results with it.
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.................................. 2.3. Evaluation metrics

2.3.1 Classification

F1-score

There are several ways how to evaluate classification model performance. In
our case classes are heavily unbalanced. It is not raining 97.2% of time, so a
model which would always predict "no rain" would have very high accuracy.
That would look great, but it would not be. Therefore, mainly the F1-score
(F1) 2.9 will be used to evaluate all classification models.

In order to compute F1, precision (PPV) and recall (TPR) have to be
calculated. Precision accounts for true positive (TP) and false positive
(FP) predictions. Recall accounts for true positive and false negative (FN)
predictions. By true positives we understand a rain episode correctly classified.
In this way we can get a sense of the model overall performance. If model
predicts no rain everywhere, it will have ca. 97% accuracy but f1 score would
be zero.

PPV = TP

TP + FP
(2.7)

TPR = TP

TP + FN
(2.8)

F1 = 2 ∗ PPV ∗ TPR

PPV + TPR
(2.9)

Matthews correlation coefficient

The second metric we will use for classification model evaluation is the
Matthews correlation coefficient MCC. It is a commonly used metric for
binary classification [3]. It is acknowledging the possibly skewed ratio of
the wet dry periods and it is high only when the classifier performs well on
both of those classes. MCC = 0 represents a random guessing and MCC = 1
represents a perfect classifier. A strong correlation is given at values above
0.25 [1]. This metric was also used by Polz et al. so it will allow for results
comparison.

MCC = TP · TN − FP · FN√
(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

∈ [−1, 1]

(2.10)

2.3.2 Regression

RMSE

We want to compare our model with the recurrent network GRU used in
Habi et al. [9], therefore we will use the same regression evaluation. They
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2. Methods.......................................
were using two metrics. One of them is the Root mean square error (RMSE)
calculated as follows: 2.11

RMSE(x, x̂) =
√

1
N

∑
i

(xi − x̂i)2 (2.11)

where x is the reference vector, x̂ is the estimates vector and N is the
number of samples.

NRMSE

The second metric is the normalised RMSE (NRMSE) defined as: 2.12

NRMSE(x, x̂) = RMSE(x, x̂)
1
N

∑
i xi

(2.12)
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Chapter 3
Wet-dry classification

In this part the goal is to create an accurate wet-dry classification model,
that is a model that predicts whether it is raining at given moment or not.
As learning reference the Cd

ref with time window of 15 minutes is chosen 2.5.
The reason we don’t pick 1 minute time window, which would correspond
to the CML data time resolution, is that we want to compensate for the
time shifts between A and Cref . For scenarios where rain intensity is low
and changing often, using a longer time window can simplify the reference.
Then, it is less influenced by recent fluctuations and reflects an overall trend
better.

3.1 Thresholding classification

Looking at eq: 2.2, in this approach we aim to determine the (Ac
b), c denotes

the CML number, in a one step method [13]. We do it by taking the minimal
value from a set of consecutive samples as the baseline component 3.1.

Ac
b(t) = min

(
Ac(t), Ac(t − 1), ..., Ac(t − NDB

)
(3.1)

where NDB is a hyperparameter that sets the number of consecutive samples
in the set with samplig frequency . NDB = 2 × 64 × 60, that is two days.

Once Ac
b is found, the rest of attenuation consists of Ar and Ac

wet. Because
this first approach is very simple, the Ac

wet is neglected. Another reason why
neglecting WAA might not be a problem is the fact that it affects attenuation
only when it is raining, after it stopped and during the antenna radome
drying out. But the fact that classification reference is based on the maximal
value from last 15 minutes results in rain reference stating that it rains up to
15 minutes after it has stopped raining. It follows that when not determining
rain intensity, where WAA has its effect, but only doing classification should
allow us to neglect it. Therefore Ac

r is calculated as

Ac
r(t) = Ac(t) − Ac

b(t) (3.2)

And classification calculated like this: 3.3
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3. Wet-dry classification .................................

Cc(t) =
{

0, if Ac
r(t) < T c

1, else
(3.3)

where T is the threshold parameter that needs to be found for each CML
and c denotes the CML number. Then finding the threshold is an optimization
problem where such T c is searched that solves eq. 3.4

min(g(Cc(t), Cc
ref (t)))

gc(Cc(t), Cc
ref (t)) =

∑n
t=0 |Cc(t) − Cc

ref (t)|
(3.4)

3.1.1 Threshold calculation

At this point, classification references are prepared and attenuation data have
baseline attenuation subtracted. The data is split into 70% train and 30%
test data. The best possible T c is found in two steps.

In the first step, a coarse search on train data is performed. We create fifty
evenly spaced values between −10 and 10 and each one of them is used as T c

and F1 score is calculated. The one resulting in best F1-score is saved for
the second step

step_size = 20
50 = 0.4 (3.5)

In the second step, a fine search is done. There are one hundred evenly space
values between best_step_one_value−step_size and best_step_one_value+
step_size. Each of them is used as T j and F1-score is calculated. The best
one is saved and it is the best T j found. For the best threshold the F1-score
on test data is calculated and saved.

This is done for all CMLs in combination with all references, C10
ref , C13

ref ,
C22

ref . For each reference the best F1 score is saved and at the end, the
reference with the best F1 score is saved. All this is done in thresholding.py
script. It will be interesting to see, which reference is the best and whether
the best reference for CML 56 the D_10 is.

3.1.2 Results

Figures 3.1, 3.2 and 3.3 show thresholding results. Plots show F1-score for
data where the Rref ≥ MRI. MRI is the Minimal rain intensity. In case
of CML 56 and 547 results show, that the most failed predictions arise for
0mm

hr ≤ Rref ≤ 1mm
hr . Another observation is that for Rref ≥ 2mm

hr there is a
F1-score downwards trend. Results for CML 444 are bad in comparison. For
this particular CML the thresholding did not work at all.

3.1.3 Discussion

It is interesting that results for CML 444 are so bad in comparison with other
two CMLs. The explanation might be what we saw in figure 1.8. There are

20



................................ 3.2. Neural network models

Figure 3.1: Thresholding CML 56 F1-scores

big changes in A444
b . Therefeore our simple Ab estimation method might have

failed in capturing such a wild dynamic.
Because this is our first experiment we don’t have anything to compare it

with. The only conclusion is that CML 444 has a bad result and the other
two have similar results. Also, the thresholding does not work very well for
low precipitation intensities.

3.2 Neural network models

We think that a successful model must include past values in order to predict
current precipitation intensity well. Our inspiration for further experiments
comes from Habi et al. paper [9]. Their network architecture consists of a
Backbone, in the Backbone there are two gated recurrent units (GRU) and
a shallow linear network for CML attribute processing. Those two parts are
concatenated and another shallow linear networks perform classification and
regression 3.4.

They use attenuation sampling frequency of 10 seconds, each sample is the
maximum over 90 consecutive measurements, i.e. 15minutes. Although the
sampling frequency is quite high, we think that taking the maximum from
past 15 minutes is a too large time window. Our sampling frequency is 1
minute but each sample is the average of 3 to 90 consecutive measurements,
depending on CML, taken from last 1 minute.

We want to change the Backbone network. Our idea is to use a 1D
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3. Wet-dry classification .................................

Figure 3.2: Thresholding CML 444 F1-scores

Convolution on n consecutive samples, where optimal n will be determined by
experiments. CNNs have been successful in extracting features from pictures.
In the rain estimation problem we also need to extract features from past
data. In order to find Awa, we need to know, whether it is raining or not and
what the intensity range is. That could be two features. Next one could be
the Ab. Another feature could describe the rain intensity trend. And there
might be a lot of our features that a neural network could extract and we
are not even aware of them. This seems similar to feature extraction from
pictures, therefore, we will test if a CNN can have equal or better performance
for a rain estimation problem then a recurrent network.

We will start with simple networks and gradually build more complex
ones.

3.3 Shallow neural network classification model

In the first experiment we will use a shallow neural network for rain classifi-
cation. We will train one model on single CML.

Network architecture

The network consists of 3 fully connected layers. At time t the input is:
Input = {S, min(S), max(S), mean(S), std(S)} where S = {At, At−1, ..., At−n}
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....................... 3.3. Shallow neural network classification model

Figure 3.3: Thresholding CML 547 F1-scores

and n is the sample length of two days n = 24 × 60 × 2 = 2880. The first
layer outputs n + 4 values, the second one 256 and the last one 2. Between
every layer, there is a LeakyRelu activation function. Network architecture is
depicted in figure 3.5. Cross entropy loss is used as a loss function.

Results

Results show again that predictions for low I are the least accurate. The
F1-score distribution for CML 56 3.2 shows F1-score = 0.62 for I > 0mm

hr .
We observe a F1-score increase for all three CMLs, two of them are tracked
in tables. CMLs 56 and 547 have similar results, therefore we track only
one of them. CML 444 shows worst results so we will track its performance
separately.

Next results we can see are the ROC curves for CML 56 in figure 3.6
and 444 in figure 3.7. We define Classification threshold (Cthres) which is a
measure of certainty δ of the models prediction for rain event must be so that
the model classifies it as rain. If δ > Cthres then the resulting predictions
is rain. We can see that for C56

thres = 0.5 the False positive rate (FPR)
FPR56 = 0.20 and C444

thres = 0.5 for FPR444 = 0.50. Another fact is that for
C444

thres > 0.3 the F1-score goes down.
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3. Wet-dry classification .................................

Figure 3.4: Conv net classification

Figure 3.5: Shallow network architecture

Discussion

Data show that a Shallow neural network has better performance than the
Thresholding method. It shows better performance for all three CMLs for all
Is. It was also able to get reasonable results for CML 444. It suggests that
even a CML with large Ab changes could be usable for model training. It
could even help models to generalize better. The biggest problem so far is the
performance for low I. Next figure 3.9 depicts a misclassified situation where
the rain I is low. All curve offsets are adjusted so that they don’t overlap.
We can see that the prediction corresponds well with the CML attenuation
data but the correlation between them and Cref is not high.

3.4 CNN Base classification model

We build a CNN based classification model called the Base classification model
BCM. The main difference between BCM and the Polz et al. model is the
input sample size. We used one and two days and Polz et al. used 60min to
300min. Another noticeable difference is that we introduced skip-connections
after each convolutional layer. And a small difference is also in the linear
network where we use three fully connected layers instead of two.

CNNs gained popularity around year 2014 due to their good results in image
classification. Today, they are the goto solution for most image processing

24



............................. 3.4. CNN Base classification model

minimal rain intensity [mm/hr]

SL CD Ares 0 2 4 6 8 10 12

1 day False 1 min 0.66 0.97 0.97 0.97 0.97 0.96 0.97
1 day True 1 min 0.65 0.99 0.98 0.98 0.98 0.98 0.97
2 days False 1 min 0.72 0.97 0.97 0.98 0.98 0.98 0.98
2 days True 1 min 0.65 0.99 0.97 0.97 0.97 0.96 0.97
1 day False 2 min 0.68 0.98 0.98 0.98 0.97 0.97 0.96

Table 3.1: CML 56 F1-scores for different classification experiments

CML 56 F1-score for different minimal rain intensities

Model
I[mm

hr ] ≥0 ≥2 ≥4 ≥6 ≥8 ≥10 ≥12

Thresholding 0.43 0.86 0.82 0.83 0.81 0.77 0.75
Shallow nn 0.62 0.95 0.94 0.94 0.94 0.94 0.95

Table 3.2: F1-score for CML 56 different models comparison

problems and show good results for time series as well. The intuition behind
their workings is that they are able to extract meaningful features from data
like horizontal edges, vertical edges and so on, and combine them into more
complex features.

The rain classification problem is in a way similar to this. What we need is
to extract attenuation baseline and WAA values and the information whether
it is currently raining or not. Polz et al. in 2020 used a CNN based model
for wet-dry classification [16]. We will use a slightly modified version, train
it on our dataset and compare results. Our experiments show comparable
results. Moreover, they exhibit a better FPR to FNR ratio.

Architecture

Our model consists of two parts. A CNN and a linear neural network build
from three fully connected layers. The convolutional part extracts features
from past data and fully connected layers perform the wet-dry classification.
The architecture diagram shows how the network looks like figure 3.10.

Convolutional layers

The convolutional part of the network consists of eight 1D convolutions. Each
one uses kernel with size = 5, stride = 1, padding = 2 and bias = True.
There is one input channel, first layer outputs three channels and each other
layer adds three more so that at the end there are twenty four channels. In
between each layer there is LeakyReLU activation function and a 1D batch
normalization.

The next important part of our network is the skip connections. The model
training was difficult without them. When we run the same experiment mul-
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3. Wet-dry classification .................................
CML 444 F1-score for different minimal rain intensities [I]

Model
I[mm

hr ] ≥0 ≥2 ≥4 ≥6 ≥8 ≥10 ≥12

Thresholding 0.01 0.05 0.15 0.26 0.36 0.47 0.56
Shallow nn 0.41 0.72 0.76 0.80 0.82 0.82 0.81

Table 3.3: F1-score for CMl 444 different models comparison

Figure 3.6: Shallow neural network CML 56 ROC

tiple times, i.e. one CML as input and model training starting from random
weights initialization, it either trained well or not at all. The reason was that
the linear layers did not have any usable information when convolutional
layers were not trained at the beginning. Then we introduced skip layers
and the model started training consistently, i.e. multiple trainings under
equivalent conditions ended up with similar results.

Fully connected layers

There are three fully connected layers with LeakyRely in between of them
and the input and output sizes are the same, only the output layer outputs
two values which enter softmax function. Our experiments showed that there
is a slight benefit in keeping input and output sizes the same compared to
gradually decreasing them.

3.4.1 Results

First of all, we want to prove that the idea of using CNN for the wet-dry
classification can work. We will use the same CMLs as before. CMLs 56, 444
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............................. 3.4. CNN Base classification model

Figure 3.7: Shallow neural network CML 444 ROC

CML 56 F1-score for different minimal rain intensities

Model
I[ mm

hour ] ≥0 ≥2 ≥4 ≥6 ≥8 ≥10 ≥12

Thresholding 0.43 0.86 0.82 0.83 0.81 0.77 0.75
Shallow nn 0.62 0.95 0.94 0.94 0.94 0.94 0.95

Initial conv. nn 0.65 0.99 0.97 0.97 0.97 0.96 0.97

Table 3.4: F1-score for CML 56 different models comparison

and 547. We will use continuous data and classification reference Cref 2.5.
For each CML we will train a new model from beginning and we will use the
same hyperparameters.

Training progress

Let’s take a look at learning progress of CMLs 547 in figures 3.12, 56 3.11 and
444 3.13. We can see that the CML 444 was not able to train well. Learning
curves for other two CMLs look standard. One reason could be that the
model hyperparameters which work for CMLs 56 and 547 don’t work for
CML 444.

F1-score distribution

From the results in tables 3.4, 3.5 we can see that for I above 2 mm
hour the

F1-score is around 0.94 for CML 444 and 0.98 for CML 56, which is better
then previous results. When we include all I, the F1-score drops to around
0.6. The same trend for low I continues.
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3. Wet-dry classification .................................

Figure 3.8: Shallow neural network CML 547 F1 test scores

CML 444 F1-score for different minimal rain intensities [I]

Model
I[ mm

hour ] 0 2 4 6 8 10 12

Thresholding 0.01 0.05 0.15 0.26 0.36 0.47 0.56
Shallow nn 0.41 0.72 0.76 0.80 0.82 0.82 0.81

Initial conv. nn 0.17 0.95 0.94 0.95 0.95 0.94 0.93

Table 3.5: F1-score for CMl 444 different models comparison

Misclassifications

In figure 3.15 we can see that the model disregards small attenuation increase
caused by a 2 mm

hour rain and classifies this data as no rain. The reason for this
is shown on the next figure 3.16. There is also a small attenuation increase,
but this time it is classified as rain, but the reference says no rain even though
we can see that most likely it was raining somewhere on the CML path. So
this error is caused by the reference inaccuracy where the same or very similar
situation is rated sometimes as rain and other times as no rain. It is then
impossible for the network to distinguish between these two cases.

The same situation can be seen for the CML 444 in figure 3.17 as well,
there is an attenuation increase presumably due to rain, but the reference
tells otherwise. I have created multiple graphs depicting misclassification
situations and all agree that most errors happen in situations with mild
rain around 2 mm

hour and they are caused by the reference not being accurate
enough.
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............................... 3.5. BCM further experiments

Figure 3.9: Shallow nn misclassification for low rain intensity

ROC

We can take a look at ROCs. For CML 56 in figure 3.19 we can see a good
model performance for Cthres = 0.18 for which FPR = 0.012. Another
observation is that the model is quite accurate. Even for high Cthres the
maximal FPR = 0.07. The same figure for CML 444 in figure 3.18 shows
that our model has difficulty to reach similar performance for this particular
CML.

3.4.2 Discussion

The CNN shows promising results in wet-dry classification. Its performance
beats all previous models. The main source of error comes from situations
with low rain intensity. We will try different versions of this model and
compare which one works best and whether we can improve predictions for
low I.

3.5 BCM further experiments

In the next part, we will do experiments in which the BCM in figure 3.10
stays the same and we will vary input data. In following paragraphs we will
describe all other classification experiments.

We summarize results for CML 56 3.1 and 444 3.1 in two tables. In our
experiments we will vary the input data sequence length (SL) measured in
days, continuous data flag (CD) and Ares
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Figure 3.10: Conv net classification

3.5.1 Training details

CML 56

Now, we will take a closer look at training results for CML 56. The best
result is reached with SL = 1day, CD = True and Ares = 1min We can see
in the table 3.1 that the results are quite even. Training progress figure 3.20
shows a standard evolution. The network has trained for 100 epochs and we
observe that if the training had continued longer a slightly better performance
might have been reached. Based on this we conclude that training parameters
were chosen well. Hyperparameters are learning rate: lr = 3 · 10−8, batch
size: b = 200 and Cross entropy weights: (w0, w1) = (0.1, 0.9). The weight
w0 scales the loss for Cref = 0, i.e. no rain and w1 scales the loss for rain
events.

We can say that the worst performance is for SL = 1day, CD = False and
Ares = 1min, because it does not reach best result in any category. Its training
progress in figure 3.21 shows that the validation loss does not evolve smoothly.
Hyperparameters stayed the same as before. The worst performance of the
F1-score mirrors the worst training progress of the validation loss.

When we take a look at the ROC curve with F1-score evolution based
on Cthres for the worst result in figure 3.22 we can see that we could get
a better F1-score by setting Cthres = 0.3. In comparison with the same
figure for the best result 3.23a we get more FPs as the Cthres increases. For
Cthres = 0.7, FPRbest = 0.062 and FPRworst = 0.090. Another difference

30



............................... 3.5. BCM further experiments

Figure 3.11: Conv. net initial experiment training progress CML 56

between results is that F1-score is increasing in figure 3.23a but after initial
rise it is decreasing in figure 3.22.

CML 444

CML 444 results 3.6 are overall worst across all I ranges. For I ≥ 0mm
hr is the

F1-score 0.3 points lower then in case of CML 56. The best result is reached
with parameters SL = 1day, CD = True and Ares = 1min. Those are the
same parameters as for CML 56. The worst result was achieved with same
parameters as for CML 56, SL = 1day, CD = False and Ares = 1min

When we compare training progress plots we can see that the one belonging
to the best result, figure 3.26, looks like the one from our initial classification
experiment, figure 3.13. The validation loss decreases for 40 epochs and then
starts increasing. Interestingly, the second training progress depicted in figure
3.27 of the worst result looks like what we would expect.

We can say that the worst performance is for SL = 1day, CD = False
and Ares = 1min, because it does not reach a best result in any category.
Its training progress in figure 3.21 shows that the validation loss does not
evolve smoothly. Hyperparameters stayed the same as before. The worst
performance of the F1-score mirrors in the worst training progress of the
validation loss.

Next, we take a look at the ROC curve with F1-score evolution in figures
3.28, 3.29. They show that for CML 444 there is a much higher FPR. For
FPR444 = 0.5 and FPR56 = 0.05forCthres = 0.5. Predictions with high
certainty produce a lot of FPs.
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Figure 3.12: Conv. net initial experiment training progress CML 547

minimal rain intensity [mm/hr]

SL CD Ares 0 2 4 6 8 10 12

1 day False 1 0.31 0.80 0.81 0.80 0.78 0.75 0.72
1 day True 1 0.21 0.96 0.96 0.97 0.96 0.95 0.95
2 days False 1 0.54 0.94 0.94 0.95 0.95 0.95 0.95
2 days True 1 0.17 0.95 0.94 0.95 0.95 0.94 0.93
1 day False 2 0.42 0.93 0.94 0.95 0.95 0.94 0.95

Table 3.6: CML 444 F1-scores for different classification experiments

3.5.2 Misclassification visualization

CML 56

Next interesting aspect to demonstrate is where predictions are wrong. We
have plotted predictions, reference, RGs average and A for misclassified
samples. Figure 3.24 depicts FP and FN predictions for low I. We can see
that it portraits a situation, where on 9. June at 00:15 o’clock and at 01:45
o’clock the same A = Ab + 1.7dB results in different Cref .

Next figure 3.25 shows misclassification for high RG average. We observe a
medium rain which is mostly not detected by the CML 56, it’s attenuation
raises insignificantly for the most part.

CML 444

When we depict wrongly classified situations we can observe how the model
uncertainty manifest itself. Following figure 3.30 presents situation from 17.
September around 18:30 o’clock. There are rapidly changing predictions after
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Figure 3.13: Conv. net initial experiment training progress CML 444

a medium rain has stopped. This is interesting, because A = Ab from before
the rain.

Second wrongly classified situation is analogues to those we have seen before.
There is a 2mm

hr to 4mm
hr rain which changes A444 insignificantly. Consequently

the model predicts no-rain.
Another figure 3.31 shows a very difficult to evaluate situation. There is an

approximately half hour long mild to medium rain which does not reflect in
the A444. This event i part of a 6 hour time window in which A444 is volatile.
As result, predictions oscillate between rain and no-rain as the model is not
sure what to predict.

3.5.3 Results

We present the final wet-dry classification results for CML 56 3.7 and CML
444 3.8.

Experiments show that SL = 1day is better then SL = 2days and data
for which time continuity is ensured work better then without it. Lastly,
Ares = 2 makes results worst.

Lastly, we want to compare our best performing model and compare it
with the Polz et al. version. We can compare two metrics. The ROC and
MCC. The ROC in figure 3.23a shows TPR = 0.92 and FPR = 0.045 for
Cthres = 0.5. The Polz et al. version achieved TPR = 0.78 and FPR = 0.045.
Our version performed slightly better in terms of TPR/FPR ration

The MCC metric for our best performing classification model trained on
CML 56 compared to the Polz et al. version is shown in figure ??. We can
see that our results are very close to each other. The best MCC score for all
rain intensities achieved by Polz et al. was 0.69. Our experiments confirm
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Figure 3.14: CML 547 F1-score distribution

CML 56 F1-score for different minimal rain intensities

Model
I[mm

hr ] 0 2 4 6 8 10 12

Thresholding 0.43 0.86 0.82 0.83 0.81 0.77 0.75
Shallow nn 0.62 0.95 0.94 0.94 0.94 0.94 0.95
BCM initial 0.65 0.99 0.97 0.97 0.97 0.96 0.97
BCM best 0.65 0.99 0.98 0.98 0.98 0.98 0.97

Table 3.7: Final F1-score for CML 56 different models comparison

this performance. Or best model was able to reach MCC = 0.71 and it gets
above 0.8 for higher rain intensities.

3.5.4 Discussion

Wet-dry classification results show that it can be done by a CNN well. The
only problem arises for low I. Misclassification visualizations have shown that
it is not a problem of the network but rather a question how to define the
problem better. It is problematic to train a model on a single CML with
reference that does not match reality for some data. Moreover, the reference
is inconsistently wrong, that means that two identical situations are evaluated
differently. One possible solution might be to train a model on multiple CMLs
and generalize the reference for some area. This approach will be used in one
of our regression models.

Next observation is that one method has significantly different results for
different CMLs. Model trained on CML 56 performed much better than the
same model trained on CML 444. It is not surprising, because earlier figures
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Figure 3.15: CML 56 misclassifications

CML 444 F1-score for different minimal rain intensities [I]

Model
I[mm

hr ] 0 2 4 6 8 10 12

Thresholding 0.01 0.05 0.15 0.26 0.36 0.47 0.56
Shallow nn 0.41 0.72 0.76 0.80 0.82 0.82 0.81
BCM initial 0.17 0.95 0.94 0.95 0.95 0.94 0.93
BCM best 0.21 0.96 0.96 0.97 0.96 0.95 0.95

Table 3.8: Final F1-score for CMl 444 different models comparison

1.8 and 1.6 showed how different in terms of Ab behavior different CMLs are.
Another fact we learned is that the Shallow neural network model performed

quite well. It showed a good ability to generalize. It had the highest F1-score
F 444

1 = 0.41 for I > 0mm
hr and showed competitive results for CML 56 as well.

The convolutional model displayed inability to generalize well for CML 444
in comparison. It was able to overfit on the training data but its performance
did not carry over to validation data.

Lastly we compared our model performance to the Polz et al. version and
we were able to achieve comparable results. The Polz version trained the
model on 800 CMLs located in Germany and they had five months worth
of data for each CML. Their model did not utilize any CML attributes to
account for different CML lengths. We trained our model on one CML with
data gathered during three years. Even though our approaches differ in
multiple parameters our results are very simmilar.
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Figure 3.16: CML 56 misclassifications

Figure 3.17: CML 444 misclassifications
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Figure 3.18: CML 444 initial conv. net continuous data

Figure 3.19: CML 56 initial conv. net continuous data
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Figure 3.20: CML 56 classification training progress SL = 1day, CD = True

Figure 3.21: CML 56 classification training progress SL = 1day, CD = False
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Figure 3.22: CML 56 ROC with F1-score evolution worst result

(a) : CML 56 ROC with F1-score evolution best result

(b) : Polz et al. ROC for training (left) and validation (right) data
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Figure 3.24: CML 56 wrong predictions mild rain

Figure 3.25: CML 56 wrong predictions medium rain
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Figure 3.26: CML 444 classification training progress SL = 1day, CD = True

Figure 3.27: CML 444 classification training progress SL = 1day, CD = False
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Figure 3.28: CML 4 ROC with F1-score evolution worst result

Figure 3.29: CML 444 ROC with F1-score evolution best result
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Figure 3.30: CML 444 wrong predictions mild rain

Figure 3.31: CML 444 wrong predictions medium rain
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(a) : CML 56 MCC for different rain intensities ranges

(b) : Polz et al. [16] MCC results
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Chapter 4
Rain intensity estimation

The next task is to develop a model that predicts I. As reference the Rd
ref 2.6

is used. Because the convolutional model worked well on wet-dry classification
task, we will adapt it for rain estimation

The estimation of rain intensity using CMLs is an opportunistic method
for precipitaion monitoring.

4.1 Architectures

At first, we used the same convolutional network with 24 output layers as
before 4.1. We call it the Basic regression model. We trained it on
attenuation data from single CML, then on multiple CMLs. Results were
really bad 4.1 so we decided to add more channels to the convolutional layer.
Our inspiration was the VGG-16 architecture. This improved version is called
the Improved regression model (IRM) and its architecture diagram is
shown here 4.2.

The last model we created is the Multi-channel input regression model
(MCIRM) 4.3. We thought that if one Rref gives inaccurate reference for
one CML then we can create an input x with multiple channels and each
channel will contain different attenuation data for the same time instance t.
The newly designed input looks like this 4.4.

4.1.1 The Improved regression model

The IRM uses 1440 samples on input. They are normalized by a 1D batch
normalization. After that there are eight convolutional layers each constitutes
of a 1D convolution followed by a 1D batch normalization, leaky ReLU
activation function and a max pooling layer which decreases the number of
samples in each channel by half. All convolution outputs go into a shallow
linear network made of three fully connected layers with a leaky ReLU in
between. This network outputs one value which represents the rain intensity
in mm

hr .
The 1D convolution has kernel_size = 5 stride = 1 padding = 2 bias =

False. We use the leaky ReLU activation function to prevent vanishing
gradient problem. Another important part, again, are the skip-connections.

45



4. Rain intensity estimation................................

Figure 4.1: Basic regression model architecture

Output of the convolutions has 512 channels, each containing five values,
and seven skip-connection outputs. Every skip-connections contains ten
values in to the 1D convolution layer corresponding number of channels. This
should ensure that the next part, the shallow linear layer, receives relevant
features from the training beginning. The output is fed in a shallow linear
network consisting of three fully connected layers and a LeakyReLu activation
function between them. We also placed a ReLU function after the output
layer to make sure that the output is never negative as it has no physical
interpretation.

Intended downside of the model is that it must be trained and works only
with one CML. There is no information about CML attributes going into
the model and thus it cannot generalize to unseen CMLs. This restriction
means that the training data size is also limited to the data size of one CML
which is around 750 million samples. We build this model to prove that
such architecture can show promising results and once we found that it has,
we upgraded this architecture into the Multi-channel input regression model.
Complete results overview is located in the section Results.

4.1.2 Multi-channel input regression model

Once the IRM showed good results, its error was lower then GRU for all
intensities other then 1mm

hr < I ≤ 5mm
hr , we extended the IRM so that it can

work with multiple CMLs. Our goal is to find one on CML independent
model.

The MCIRM architecture differs from IRM in three aspects. The IRM
input consists of 1444 samples from one CML. In case of MCIRM the input
consists of n channels. In each channel there are 1444 samples from a different
CML. For a rain estimation for time t we have n channels CH containing
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Figure 4.2: Improved regression model architecture inspired by VGG-16

data like this 4.1

CHn(t) = {An(t), An(t − 1)..., An(t − 1439)} (4.1)

In this way the model can work with attenuation data from multiple CMLs
from the same time interval. This gives the model a broader information
about the weather situation in an area. Moreover, the shallow linear layer in
the IRM can now learn the importance of each CML feature. For example
if there is a CML with a short length, then the Ar consists mostly of Awaa

and the model could use it to estimate Awaa for all CMLs. In other words,
the shallow linear network located at the end of the IRM has more diverse
information to work with and can learn to combine different CML features.

The second difference is that the IRM part of the model outputs not one
but n values ytmp = (y1, y2, ..., yn). Each value is thought of as Ac

r. The job
of the adjusted IRM model now is to estimate the rain induced attenuation
for each CML. This output is then processed by a newly developed division
layer.

The division layer’s job is to calculate rain intensities for each RG. 4.3. We
know that Ar = l · I · c, where c is independent constant. So we ask the model
to find Ar and then the division layer calculates I as follows 4.2. The model
weights correspond to s

c where s is a scaling factor which determines the CML
relevance for a given RG. So if the network figures out that a particular CML
has poor correlation with a RG, it can scale its importance down.

I = Ar

lc

wij = 1
c

sij

(4.2)
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Figure 4.3: Multi-channel input model

yrainestimate = yIRM_out


w11

lCML1
w12

lCML1
w13

lCML1
w21

lCML2
w22

lCML2
w23

lCML2...
...

wn1
lCMLn

wn2
lCMLn

wn3
lCMLn

 +


b1
b2
...

bn

 (4.3)

The division layer has three outputs, one for each RG. We experimented
with three and nine CML inputs and we chose them in such a way that there
is one and three CMLs near each RG. Also, we wanted CMLs with different
lengths, therfore the shortest CML has l333 = 186m and the longest CML has
l62 = 5.795m. For the purpose of model performance evaluation we calculated
for each time instance the average of Rref and the MCIRM output average
and computed same metrics as for all other models.

x(t) =


ACML1(t)
ACML2(t)

...
ACMLn(t)

 (4.4)

4.2 Loss functions

Another important aspect of a model is its loss function. We have two goals
in mind. For one, whether a models prediction error is 2 mm

hr for Rref = 1mm
hr

or Rref = 40mm
hr , is a big difference. In the former case it is a huge error,

but in the latter it is a very accurate prediction. Therefore the first loss we
use is the Huber loss 4.6 with δ = 1. As result, all rain estimate errors for
Rref ≤ 1mm

hr are squared and every other estimate errors are linear.
Another attribute of our data set is the data imbalance. In order to make

the model focus more on rain events rather then on dry ones we adopted
the scaled MSE loss, [9] 4.5 with δs = 0.95 and δr = 5. This loss ensures
that a prediction for larger Rref > 0 is more important then for Rref = 0.
Experiments showed that the scaled MSE loss works better with MCIRM
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Network attributes Rain intensity range [mm/hr]

Architecture Loss func. CD #CMLs 0 < yr ≤ 1 1 < yr ≤ 5 5 < yr ≤ 15 15 < yr ≤ 25 25 < yr ≤ 35 35 < yr ≤ 100
TSN [9] scaled MSE True 40 1.6 0.65 0.55 0.52 0.80 0.60
Basic scaled MSE True 1 10.13 1.06 1.06 1.01 1.01 1.07

Improved scaled MSE True 1 2.45 1.37 0.69 0.34 0.41 0.5
Improved Huber True 1 0.99 0.72 0.53 0.49 0.49 0.6

Multi- channel Huber False 3 0.95 0.84 0.68 0.75 0.75 0.85
Multi- channel scaled MSE False 3 0.98 0.91 0.65 0.58 0.47 0.51
Multi- channel scaled MSE False 9 1.31 0.98 0.57 0.63 0.58 0.70

Table 4.1: NRMSE regression experiments comparison

and in case of the IRM the Huber loss performed better for Rref ≤ 15mm
hr

and the scaled MSE for Rref > 15mm
hr .

JMSE(x, y) =
n∑

i=0
(xi − yi)2

RDF (yr
n,i) = 1 − γsexp(−γr · yr

n,i)
Jreg(yr

n,i, ˆyr
n,i) = RDF (xr

n,i, γs, γr) · JMSE(yr
n,i, ˆyr

n,i)

(4.5)

where RDF is the scaling factor of the estimation loss and γs ∈ [0, 1] and
γr > 0 are hyperparameters.

Lδ(y, ŷ) =
{1

2(y − ŷ)2 for |y − ŷ| ≤ δ,

δ(|y − ŷ| − 1
2δ) otherwise.

(4.6)

4.3 Results

All regression models were trained on 250+ epochs with lr = 3 · 10−8. The lr
was never changed during the training. Validation loss stopped decreasing
around epoch 200 for all models. One example of training progress of the
Multi-channel scaled MSE model is shown here in figure 4.4

All interesting experiments results are shown in 4.1. In the first line there
is the TSN model [9] which is our benchmark. The main differences between
our models and TSN model are that we only used 1, 3 and 9 CMLs for input,
TSN used 40 CMLs and that TSN uses multiple CML attributes as model
input whereas we only use the CML lengths in the division layer.

We can see that our experiments match the TSN results. Our best model
using single CML is the Improved model with Huber loss function and
continuous data. It shows better performance then TSN for all I ranges other
then 1 < I ≤ 5. We observe that the Huber loss compared to the scaled MSE
loss shifted model training focus from high I to lower I, but managed to have
competitive performance for higher I as well. We can look at its results from
a perspective of a box plot in figure 4.5. It shows that the mean RMSE lies
above median and for I ≤ 5 it is located above the 75% threshold.

Interesting observation is that the more CMLs we included into training,
the worst the results. The reason why this is the case for our Multi-channel
model might be that the data size got reduced by approx. 25%, because for
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4. Rain intensity estimation................................

Figure 4.4: Multi-channel scaled MSE loss regression models training progress

the input we needed valid data from multiple CMLs from the same time. The
average training data size for one CML is 750 000 samples, the Multi-channel
input had only 568 000 samples.

For comparison, we provide the same plot for the Improved model with
scaled MSE loss figure 4.6. We can see that their performance is quite similar
and one could tweek the scaled MSE and Huber loss hyperparameters to shift
models training focus on different I segments.

The Multi-channel models performed both well but based on their box
plots the one with scaled MSE loss in figure 4.7 did better then the second
one in figure 4.8.

4.3.1 Discussion

We have shown that a convolutional layer based model is capable of Wet-dry
classification and Rain intensity estimation. Our Regression models were able
to reach similar results to the TSN model. The key difference between our
models and TSN being that we did not use as many CMLs.

Advantage of our approach are that the convolutional network does not
use many parameters and is relatively easy to train, at leased compared to
regression models.

Figures depicting misclassifications and data exploration showed that mov-
ing forward we should think more about the problem definition with respect
to references we have. As it is right now, we don’t have accurate references
and as capable as neural networks can be, they cannot deal with it well. Their
correlation is not good enough. This results in contradictory reference with
respect to the attenuation, thus hindering the model training. Therefore we
should find a better problem definition.

My proposal in moving forward is to prepare a dedicated experiment
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Figure 4.5: Improved regression model using Huber loss

where RGs are be placed directly underneath CML paths. Then, with
accurate reference data, it should be much easier to train a general rain
estimating model. Once the model would be trained, its performance could
be validated on so many already existing CML signal datasets. Finding good
rain estimation model is valuable so it would be worth the money investment.
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Figure 4.6: Improved regression model using Huber loss
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Figure 4.7: Multi-channel regression model using scaled MSE loss
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Figure 4.8: Multi-channel regression model using scaled Huber loss
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Chapter 5
Software solution

We have developed a software solution for data preparation, model training
and results visualization. It is located on /datagrid (must be specified). It
was created with the idea in mind that it should be useful by the future
researchers, who will wish to continue on the rain estimation from CML
attenuation topic. There are 3 standalone scripts for data pre-processing,
one module for model training and one for automatic result visualization and
evaluation.

Attenuation calculation

The scripts name, which prepares the attenuation data, is 01_attenua-
tion_calculation.py. In order to make it work, valid paths must be filled in
in the main() function. The folder_containing_cml_data variable points to
the CML data parent directory, path_to_save_data variable points to the
folder where results will be stored and path_to_temperature variable points
to temperature_Prosek.csv file in which temperatures are stored.

There is a parameter sample_freq = 1, which is set to 1 minute. It defines
the output data time resolution. We used 1 minute but other time resolutions
can be easily generated and experimented with.

If you wish to prepare your data in a different way, you can do it. It will be
perfectly usable with the rest of the program as we will describe later in this
section. There is no unified output data format for this step. The unification
process takes place in the model training module.

The output of this script is conforms to 2.4 and additionally any Sc
j | |Sc

j | <
240 is discarded. It is generated into the folder defined by path_to_save_data
variable and consists of one folder for each CML. In each folder there are
multiple .pkl files. Each file contains continuous data. There are 100 gaps on
average, therefore around 100 files are generated for each CML. This ensures
that data is continuous but it’s average cost is the loss of 100 ∗ n data where
n is the sequence length needed for a model input.

CML attributes preparation

The script 02_static_data_preparation.py uses cml_metadata.csv file and
creates a file containing CML attributes. In order to make it works, the
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5. Software solution ...................................
cml_metadata.csv path has to be specified in the main() function of the
script.

Each line of the resulting file contains attributes of one CML, name of the
closest RG and is indexed by the CML name.

Reference preparation

The last script is called 03_reference_preparation.py. It requires path to
the rain_gauges.csv file and calculates classification and regression references
from each RG. There are four parameters to be set.

The resample_time parameter determines the time resolution the Cref and
Rref . We set this parameter to 1 minute.

The time_res parameter ties to Cref . It determines the time window i.
The high_thres and low_thres parameters are used for Cref and they

correspond the Thigh and Tlow values from 2.5
The script allows us to calculate references with different time resolutions

and classification thresholds. The output of this script is a table saved as .pkl
which contains all Rd

ref and Cd
ref references and it is indexed by t.

Model training

Another part of the software solution is the model training package. It
allows us to freely combine different training methods with different CML
and reference data. Users can define custom models and data preparation
techniques and run model training with them.

Training class. Model training is performed by the Training class. To
initialize it we need to provide a function that returns a model object, data
class that inherits the DataBase class from the data_interface script, batch
size and number of training epochs. After the Training class object has
been created, there are two methods which run the training.

The first one is run_one_cml_at_time_training() and it trains a
separate model for each CML defined in cmls variable. The second one is
run_all_cmls_at_once_training() and it trains one model on all CMLs
listed in the cmls variable.

During training, the train and validation losses for each epoch are stored
and the validation score is tracked and the best one is saved. Each time
new best validation score is reached, test data are fed into the model and
resulting predictions with references are stored for result visualization and
model performance evaluation purposes. Once the training is over, all scripts
used for the training are automatically saved for future reference.

Paths to data. The data_paths.py script defines all paths that are used in
all other scripts for model training. One part consists of paths to the source
data, the other part defines where training results will be stored. For the
training results destination, one must define the DATA_EXPORT_ROOT
path which must exists, i.e. it will not be created if it does not exists and

56



................................... 5. Software solution

Figure 5.1: Data class output format

there will be error at the end of training. All other variables should have self
explanatory names, so every users must adapt them accordingly.

Data. In order to use data we have with the Training class we must
create a class that inherits from the DataBase class in the data_interface.py
script. In this way we can create any data we want and then use this interface
to make the data usable by the Training objects. The DataBase interface
loads CML attribute data and matches CMLs with their respected references.
Then, it defines four abstract methods that must be implemented by every
new data class. The methods are:. get_training_data(). get_validation_data(). get_validation_data(). get_cml_attributes()

Their unified output type is important. The output must be a list containing
lists of Pandas Dataframes as shown in 5.1.

If we use continuous data, then each list in the list of lists contains multiple
Dataframes each containing continuous data. If we use non-continuous data,
then each list in the list of lists contains single Dataframe.

We have two data classes already implemented. The continuous_data.py,
which operates on continuous data and all_in_one_dataframe_data.py which
operates on the non-continuous data. If anyone wants to prepare data in any
other way, just create a new class, inherit from DataBase and use it with the
Training class.

The all_in_one_dataframe_data.py uses input data defined in data_paths.py
under the ALL_DATA variable. The data is in form of a single Pandas
Dataframe saved as a .csv file. The DataFrame is saved as a Timeseries with
columns corresponding to CML names.

The continuous_data.py input data is defined under the DYNAMIC_DATA_FOLDER
variable. The path determines a folder consisting of multiple folders, one
folder for each CML named after its name. Inside every CML folder, there
are multiple Dataframes stored as a Timeseries in .csv file.
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5. Software solution ...................................
Models. Similar to the data interface there is a Model interface in the
model_interface.py script. Each model inherits from it and then it is usable
by the Training class. The Model interface inherits the Pytorch nn.Module
and add a couple abstract methods. They are:. get_model_type(). create_data_loader(). compute_loss(). get_reference(). get_data_from_batch()

All above methods are documented in the code. The idea is to achieve low
coupling between the Train class and a model. Therefore everything model
related is handled by the model itself.

Results evaluation and visualization

The last module we created is build for models results performance visualiza-
tion. It is called the result_analyzer. The Training class saves information
about the model type we trained. It is either a classification or regression
model. This information is saved in END.txt file when training is finished.
This information is used by the result analyzer to know, which metrics to
compute and what graphs to create. All results visualizations presented by
us were generated by this module.
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