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Introduction

Machine learning and data mining techniques have achieved a great success in many applications,
including pattern recognition, image processing, speech recognition and others. Traditional machine
learning methods perform best under the assumption that training data and test data are from the same
feature space and same distribution. In cases, this assumption is not met, the results are degraded and
most models need to be rebuilt from scratch. In real world, it is sometimes impossible or too expensive
to collect sufficient data or to rebuilt the models [18]. In order to reduce the need of recollecting new
training data it would be useful to transfer knowledge across domains. This is exactly what knowledge
transfer does.

Knowledge transfer is based on using knowledge from previous tasks to improve learning on a new
task. The idea for knowledge transfer between related tasks was inspired by human inborn ability to learn
and to solve completely new tasks using previous experience. For example consider two people one of
whom is a guitar player the other has no experience with musical instruments. Which one is more likely
to learn to play the violin faster? Of course, it is the first one. Thanks to his experience with the guitar
he can transfer his music knowledge onto the new task which is playing the violin [29]. The domains
from which we draw data must be related for transfer learning to be applicable. For example the ability
to drive a car probably will not help when a person starts to learn how to play the violin. Operating a car
and playing music are unrelated tasks therefore knowledge of one will not improve ability to learn the
other.

Information fusion is a technique combining data from multiple sources to improve accuracy of
single source measurements. There are two types of information fusion: centralized [27] and distributed
[7] information fusion. Both fusion methods aim to provide an optimal estimate. Centralized information
fusion uses raw data from all sensors which are sent to the fusion centre to provide global estimate.
Distributed information fusion firstly processes data from each sensor locally to obtain local estimate
and subsequently fuses the local estimates in fusion centre. In the presence of faulty sensors, centralised
fusion has poorer robustness and reliability comparing to distributed fusion [24].

Information fusion has many real-world applications e.g. target tracking, object localization, nav-
igation, sensor networks, image processing, etc. [17]. In real-world application, information fusion
sometimes faces the problems of data sparsity (missing data) in the target domain. There are insufficient
data in the domain of interest but there are enough data in another domain. These data may be from
different feature space and/or follow different distribution. The solution to this problem is to use knowl-
edge transfer which was designed to deal exactly with this difficulty. To transfer knowledge from source
domain to target domain transfer learning-based information fusion is used [30].

Generally, state estimation research concentrates on systems with white Gaussian noise. In linear
system, the most commonly use method is application of Kalman filter. In real-world engineering prac-
tice the noise statistical properties are usually unknown or non-Gaussian. In these cases, Kalman filter is
no longer applicable [11].



In this thesis, the knowledge transfer will be applied on state estimation of linear systems with
bounded noise. This thesis follows up on the author’s Bachelor thesis [16] where state estimation of
constrained linear system was studied. The state estimation on an isolated filter in [16] was based on
fully probabilistic design (FPD). This work looks into state estimation with knowledge transfer. The
whole framework is extended from one filter to two filters where the first filter (target filter) obtains
knowledge from the second filter (source filter). The target optimizes the decision making task based
on the received knowledge by minimizing Kulblack-Leibler divergence. This approach to optimisation
problem is known as fully probabilistic design (FPD).

Aim of the thesis is to analyse and compare three state estimation techniques for linear systems with
bounded noise. The first estimation method is based on knowledge transfer via fully probabilistic design.
The other two are based on centralised and distributed information fusion. Furthermore, the contribution
of knowledge transfer in state estimation in [16] is evaluated. Theoretical analysis as well as experiments
are provided. Experiments are conducted on simulated data as well as on real data.

This thesis is organised as follows. In the first chapter, the preliminary information (notation used,
definitions etc.) for better orientation in the thesis are given. The following chapter is dedicated to
Bayesian knowledge transfer based on fully probabilistic design. Distributed measurement fusion method
is described in the third chapter. In the fourth chapter, centralised measurement fusion method for state
estimation is described. Experiments setups and results of all methods are found in the fifth chapter.
Finally, the results of experiments on simulated and real data are compared and discussed.



Chapter 1

Preliminaries

1.1 Notation

In this paper following notation is used. Capital letters A are appointed to matrices. Vectors and
scalars are in lower case b. A;; is the element of matrix A in the i-th row and j-th column. The symbol
f(- | -) denotes a conditional probability density function (pdf). o« means equality up to a constant factor.
tr(-) is the matrix trace operator. ® symbolizes the Kronecker product. @ stands for Minkowski sum. A
stand for set of @, a € A. V denotes volume. X symbolizes the estimate of vector x. U(-,-) stands for
probability distribution with appropriate parameters. 7 stands for derivative of z. The number of dots
represent to order of the derivative i.e., 7 is the second order derivative of z and 7' is the third order
derivative of z.

1.2 Linear state space model
Consider state space model in following form

x(t) = Ax(t — 1) + Bu(r - 1) + v(2),

(1.1)
y (1) = Cjx(t) + w;(?),

where j = 1,2. t represents the discrete time index, t € T, T = {1,...,7}, 7 is the final time step.
x(t) € Rk stands for the state vector. y(t) € R is the output vector of the j-th sensor also known
as the observation vector. u(f) € R% is the known control input vector. A, B and C j are parameter
matrices of suitable dimensions and C; is the parameter matrix of the measurement equation of the j-th
sensor. v(f) represents state noise and w;(r) output noise of the j-th sensor. v(¢) and w;(¢) are assumed
to be independent identically distributed (i.i.d.) [20], [7]. The first equation in (1.3) is called the state
equation, the second is called the measurement equation.

The following section is dedicated to multiple geometric representation of support of the uniform
distribution.

1.3 Geometric representations of support

The support of a function f(z) is defined as set Z¢{z : f(z) # O}.
The geometric definitions of examples of supports of the uniform distribution which will be used in
further in this thesis are drawn from [12].



A convex polytope is convex set which is formed by finite number of flat hyperplanes.

A zonotope Zy is a special case of convex polytope, where upper and lower bounds are given by vectors
a, b of length k and V is a matrix of size k X [, and rank /,. A zonotope is in following form

Zzy ={z:a<Vz<b} (1.2)
Let zonotope be defined as an intersection of k > [, strips Zs .

A strip Zg is defined as
ZS,- ={z:a; < Vz < b;}, (1.3)

where i = 1,...,/; and a;, b; is the i-th component of vector a, b, respectively.

A parallelotope Zp is a special case of zonotope. Parallelotope is also an intersection of strips (1.3)
where k = [; i.e. a, b are vectors of length /,, V is an nonsingular square matrix of size /,x[,. Parallelotope
can be expressed in numerous forms. The first is identical to (1.2)

Zp={z:a<Vz<b} (1.4)

The second is following
Zp={z: -1, < Wz—-c<1.}, (1.5)

where 1, is unit vector of length /,. W and c are defined as

2Vij b,’ + a;
W, = , - . 1.6
Y bi —da; ¢ b,’ —da; ( )
wherei=1,...,[,.
The next form of a parallelotope is
Zp ={z:z=2z.+T&}, (1.7)
where V¢ s.t. ||€]lc = max;(&;) < 1. This form is called the centroid form.
Let the centroid z. be defined as
ze = Tc, (1.8)
consideringa=c—-1,,b=c+1,and V=W, T = wL,
The volume of a paralletope is computed as follows
L
Vp =| detV | (b; — ay). (1.9)

i=1

An orthotope Z is a specific case of a parallelotope Zp and therefore also a specific case of a zonotope
Zyz in (1.5) where V = I, I denotes an identity matrix. a and b are lower and upper bounds

Zo=1{z:a<z<b} (1.10)

Orthotope can be equivalently expressed in forms (1.5) and (1.7) using V = I.
The volume of an orthotope Z¢ is computed as follows

L
Vo = [®i-an. (111)
i=1
10



An ellipsoid Zg is a set given by the form
Zp={z: - Ez-d) <1}, (1.12)

where E is a positive definite matrix od size I; X I, and d is vector of size /,. Vector d is the centre of the
ellipsoid. Volume of ellipsoid Zg given by E as in (1.12) has following form

Vi = V. (det(E)) "2, (1.13)

where V., is the unity ball in R [26].

1.4 Uniform distribution

In this section, a multidimensional uniform distribution is defined.
U symbolizes uniform probability density function (pdf) of a given variable. To define uniform
distribution and analyse its support characteristic function is introduced.

Characteristic function y(z). Consider set Z = {z : a < Vz < b}, where a, b € R, Visakxn, k>n
matrix of rank n, z € R” and Vz : R” — R¥ is a continuous linear mapping. Let the characteristic function

x(2) on set Z be defined as
1 for z€Z,
X(@) = (1.14)

0 otherwise
Equivalent notation of the characteristic function (1.14) is
x@) =x(@a<Vz<b). (1.15)

The set Z is the support of characteristic function (1.14). It directly depends on the dimension of V.
Let the matrix V be of size k X n, k > n and of rank n.
Let U,(a < Vz < b) be a uniform pdf of a random variable z with parallelotopic support (1.4).

Ula < Vz<b)=Kyla<Vz<b), (1.16)

where K is normalizing constant and y(a < Vz < b) is characteristic function in form (1.15). The volume
V of the set Z is finite. Since V is the volume of set Z, the normalizing constant from (1.16) K = 1z
This implies that set Z is a convex set bounded by a finite number of hyperplanes.

Using following notation the normalising constant can be omitted

U(a < Vz<b)x y(a<Vz<Db).
In this thesis appears following equivalent notation pdf of uniform distribution
U(a < Vz<b)=ULa,b,V).

In case V = I, where [ is the identity matrix, the pdf support is an orthotope (1.10). The notation is
following
U a <z<b)=U(a,b). 1.17)

If the pdf support is an ellipsoid (1.12) then the notation is

Uz~ dDTEGz—d) < 1)« x((z—d)TEz—-d) < 1).
11



1.5 Fully probabilistic design

This section is a brief introduction to fully probabilistic design which will be applied on knowledge
transfer problem in Chapter 2.

Fully probabilistic design (FPD) is an alternative to control design for stochastic systems which is
traditionally based on optimization of the expected value of a suitably chosen loss function. The FPD
approach proposed in [14] leads to simpler equations with lower computational complexity. The control
design is based on minimising Kullback-Leibler distance also known as Kullback-Leibler divergence
(KLD). Consider p and g to be probability densities. The Kullback-Leibler distance (KLD) between p
and ¢ is defined as follows

KLD(p || ) =E, [m(%)], (1.18)

where E, is the expected value with respect to p.

FPD aims to find the unknown distribution F from knowledge constrained distribution set F. The
ideal distribution f; is a zero measure which means that KLD(f; || f;) = 0. Optimal distribution fp in
FPD sense is the F' € F which has the smallest KLD

F
KLD(F || f) = EF [ln(—)], (1.19)
Ji
to the ideal distribution f;. To find fp following minimization task needs to be solved
fo = argmin KLD(F || f7). (1.20)
FeF

The optimal distribution fp is the one with minimal KLD to the ideal distribution f;.

In [15], the FPD is further elaborated and formally justified. Axiomatic mathematical background
for FPD is developed. It shows that FPD is a proper extension of the standard Bayesian decision making.
FPD unifies and simplifies subtasks of decision making under uncertainty.

In [14] and [15], KLD between actual joint pdf and an ideal one is minimised. Although this theoret-
ical approach was primarily developed for control design it found its application in knowledge transfer.
The FPD can be used to find the optimal pdf for knowledge transfer between two filters. The FPD
approach is applied to knowledge transfer in papers [9], [19], [23], [12] .

12



Chapter 2

Fully probabilistic design for knowledge
transfer

In the considered Bayesian set up [22], the system is given by following pdfs

prior pdf:  f(x(1))
observation model:  f(y(¢) | x(¢)) 2.1)
time evolution model:  f(x(t + 1) | x(¢), u(z))

where x(7) is an unobservable /,-dimensional system state, y(#) is a [,-dimensional observable output,
u(?) is a l,~-dimensional known control input and ¢ represents time step, ¢ € T.

It is assumed that system states x; satisfy Markov property and no direct relationship exists between
system inputs and outputs in the observation model in (2.1).

2.1 Bayesian state estimation

Bayesian state estimation or filtering is the evolution of the posterior pdf f(x(¢) | d(t)) where d(t) =
(d(),...,d(t)) is a sequence of observed data records d(¢) = {y(t), u(t)} from starting time ¢ = 1 until
t,t € T i.e., all data (input and output) acquired up until time z. The evolution of f(x(¢) | d(t)) has two
components. It is described by a two-step recursion (time update and data update) which starts from the
prior pdf f(x(1)) and ends by data update at the final time 7.

Data update:
fy® | x0))f(x(1) | d(t-1)) fy@ | x())f(x(@) | d(t-1))
d(t)) = = 2.2
S Tdo) oy F@@ | x(0) f(x(0) | d(t-1))dx(r) fy@®), x(x) | d(t-1)) 22
Time update:
Gz + 1) [d(t) = X()f(x(t + 1) [ u(®), x(0) f(x(2) | d(t)dx(?), (2.3)

where X(¢) is the support of function f(x(¢) | d(t)).

The general description of stochastic system in (2.1) is given a specific form (1.1). The state noise
and output noise v(7) and w;(r) are both assumed to be mutually independent and uniformly distributed
on finite support.

fW(®) = Uy(—v,v),

2.4)
f(w](t)) = UU)_/(_(’U]', w]),
13
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where w; € R" and v € Rl are vectors of positive components and form the support bounds. Symbol I/
represents uniform pdf on an orthotopic support described in (1.17).

Considering the uniform distribution on noises (2.4) the state space model has following pdf form
equivalent to (1.1)

Sx(@) | x(t = 1)) = Uy(Ax(t = 1) + Bu(t — 1) = v,Ax(t — 1) + Bu(t — 1) + v),

(2.5)
Sy | x®) = Uy (Cjx(1) = wj, Cix(1) + w)).

Approximated data update and time update is described for single isolated filter hence the notation
of the measurement equation (1.1) is simplified to y, C and w.

Approximated data update: Data update (2.2) processes the observation model f(y(¢) | x(¢)) (2.1)
together with the pdf f(x(¢) | d(t-1)) resulting from previous time update (2.3) and current observation
y(t). The recursion starts at the time ¢ = 1 with the prior pdf f(x(1)) (2.1) which is uniform on an
orthotopic support i.e.,

J&(1)) = Uncry(x(1), X(1)). (2.6)

The result of the data update according to [22] is a posterior pdf f(x; | d(¢)) with polytopic support.
The newly arisen polytope is a result of an intersection of an orthotope given by the previous time update
f(x(®) | d(t-1)) or in the first time step by prior pdf f(x(1)) and /, strips (1.3) given by the new observation

y(?)
Fx(@) | d(®)) =Hy(m(t) — v < x(t) < m(t) + v) X x(Cx(t) — w < y(t) < Cx(f) + w) =

2.7
=Hy(m() —v < x(t) <m(t) + v) X y(y(t) —w < Cx(¥) < y(t) + w) 2.7)

where H is a normalizing constant and can be omitted using symbol o then

Sx(0) | d@)) ocx(m(r) — v < x(1) < m(t) +v) X x(y(1) — w < Cx(1) < y(1) + w)
() = v 1 m(t) +v (2.8)
d ([y(t) - w] = [C] X0 < y(t) + w )
I symbolizes an identity matrix of size [, X Iy, m(#) and m(t) are obtained as
Ly
my(t) = Z min(Ayx, (r — 1) + Byug(t — 1), Agxi(t — 1) + Byug (1 — 1)),

= (2.9)

Ix
m;(t) = Z max(Ajx, (t — 1) + Biu(t — 1), ApXp(t = 1) + By (2 — 1)),
I=1

where m,(1), m;(1) is the i-th component of the vector m(z), m(z), respectively. x,(t — 1), ux(t — 1) is the
k-th component of the vector x(¢ — 1), u(t — 1), respectively.

As was already mentioned, the resulting pdf f(x(¢) | d(t)) from (2.8) has polytopic support. To keep
the pdf support in intended form i.e. orthotopic the following approximation process introduced in [21]
is used.

As an intermediate step between polytopic and orthotopic form the polytope is circumscribed by a
parallelotope. The algorithm is briefly described in [21] and with detailed theoretical background found
in [28].

A short description is provided. The second row in (2.8) is actually a pdf with orthotopic support
since it corresponds with the second row in (2.5) which is uniform pdf with orthotpic support by defini-
tion. The second term in (2.8) is also an orthotope (explanation will be provided in the following part:
Approximated time update). Therefore their intersection is generally a polytope. Since orthotope is a
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special case of a parallelotope, the support of the pdf on the second row of (2.5) can be considered a
parallelotope.
The orthotope forming the support of the second term in (2.8) can be represented by [, data strips
(1.3) in x(¢) space
Zs; = {x(1) : yi(t) — w; < Cix(1) < yi(1) + wil, (2.10)

where i = 1...[,. y;(t), w; is the i-th component of the vector y(1), w, respectively. C; is the i-th row of
the matrix C.
The parallelotope in the second term of (2.8) can be also represented by I, stripes in x(¢) space

Zs, = {x(1) : m(1) = vi < x;(1) < mi(r) + vil, (2.11)

where i = 1... 1. m2), vi, xi(t), m(?) is the i-th component of the vector m(7), v, x(t), m(), respectively.

The general intersection of an orthotope and parallelotope in (2.8) is a polytope but the approximation
of this intersection, according to [28], is done strip by strip. Firstly, to the paralelotope given by [, strips
in (2.11) is added one of the [, strips from (2.10). The [, + 1 strips are narrowed and/or shifted to remove
redundancies but so that their intersection remains unchanged. Then one of the [, + 1 strips is removed so
that the intersection of the [, strips that remain has the minimal volume. The volume of a parallelotope
is computed in (1.15). The process of adding and removing strips one by one is repeated for all /,. This
way it is ensured that the form remains parallelotopic and therefore the result is support in form of a
parallelotope. The resulting paralelotop is in form

JG(@) [ d(t) = K@y (x™(1) < M0)x(1) < X" (1)), (2.12)

where x*(¢) and x*(¢) are the lower and upper bounds of the parallelotope and M is the nonsingular
identity matrix as defined in (1.4).

The aim is to provide an orthotopic approximation hence another circumscription is necessary. To
obtain the required bounds x(¢) and x(¢) of the orthotope

x(1) < x(t) < x(t) (2.13)

the following computation process from [21] is performed. Firstly, note that the paralletope (x*(¢) <
M(#)x(t) < X*(¢)) given in (2.12) has an equivalent notation {x : =1, < W(t)x(t) — c(t) < 1(;,)} according
to (1.5) where 1, is the unit vector of length /. W(¢) and c(#) are computed according to (1.6) as follows

X0+ x; (1)

o 2My(0
Wij(n) = = HOREHON

[0 - X0

where x}(7), X;(?) is the i-th component of the vector x*(), X*(¢), respectively.

Define T(¢) as T(f) = W(#)~! and the centroid (1.8) x.(¢) as x.(t) = T(¢)c(f). Now, the parallelotope
can be expressed in the centroid form (1.7) x(t) = x.(t) + T()¢ where V¢ s.t. |||l = max;(&) < 1.
The sum of absolute values of the i—th row in matrix 7(¢) gives the i—th coordinate of the vertex most
distant from the center point in i—th direction. The sum represents the half of the width of the orthotope
in i—th direction that contains the parallelotope. To find all coordinates of the orthotope that tightly
circumscribes the parallelotope, absolute values in all rows in 7' () must be summarized

ci(t) = (2.14)

Ly
Qi) = Y ITyj(0). 2.15)
.

J

The resulting Q(¢) is a diagonal matrix, where the diagonal elements are the sum th absolute values of
corresponding rows in the 7'(¢) matrix.
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The orthotope resulting from the previous computation is defined in the centroid form as x(r) =
x.(t) + Q(t)¢é which is equivalent to

1, < 07\ Ox(0) — x.(1) < 1y, (2.16)
The pdf bounds (2.13) are
x(1) = —01;, + x(1),  x(1) = QO + xc (7). (2.17)
The approximated pdf has the form
S0 | (1) = Un(x(2), X(1)). (2.18)

The state point estimate X; is the centre of the orthotope

X(1) + x(1)

x() = >

(2.19)

In the two-dimensional task, the approximation of the support of the pdf during data update demonstrates
the following picture sequence 2.1.

(a) Polytope in (2.8) (b) Parallelotope in (2.12) (c) Orthotope in (2.18)

Figure 2.1: Approximation sequence of the support of pdf after data update for two-dimensional task

Approximated time update: During the time update (2.3) the time evolution model f(x(z+1) | x(¢), u(t))
from (2.1) and the result of previous data update f(x(¢) | d(t)) are processed. The time update exactly
computed in [21]. The resulting pdf has an orthotopic support but is not uniformly distributed. To
keep the pdf in the given class of uniform distribution on an orthotopic support an approximation is in
introduced [21]. The original trapezoidal pdf is approximated by a uniform distribution by minimising
the Kullback-Leibler divergence of two pdfs [21]. The resulting approximation has the form

Lx

falden) ~ | |

i=1

x(m (1) = vi < xi(1) < m(1) + v;)
mi(1) — m(1) + 2v;

) (2.20)

where m,(t), m;(t) computed in (2.9) are the i-th components of vector m(r), m(t) which are of the
same length as the state vector x(¢) i.e., x(¢), m(t), m(t) € R’ The result of the approximation in [21] is
the pdf f(x(¢) | d(t-1)) with a linear piecewise shape

F(x(@) | d(t-1)) = Ux(m(1) — v, m(1) + v). 2.21)
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Ja(xa(t) | da(t-1)) fo(yi(t) | z1(2), f)

Y

ya(t) ¢
knowledge transfer yl( )

source filter target filter

Figure 2.2: Knowledge transfer schema

2.2 Knowledge transfer

If not stated otherwise, this section draws on [23]. Consider two stochastically independent filters, the
source filter and the target filter. Each filter models its local environment. Further, to distinguish between
the two filters, the state and data belonging to the target filter will be labelled xi, d; and the state and
data belonging to the source filter will be labelled x;, d2. To improve the performance of the target filter
{x1, dy}, the probabilistic knowledge about the source filter {x;, d2} environment is transferred into the
target filter. In other words, to the isolated filter from the previous section, a source filter is added with
the aim to improve the state estimation.

Each filter models its local system given by its states x; and x;, outputs and inputs d; and d, respec-
tively. As depicted in the Figure 2.2, the target filter has access to the information about the source filter
environment only in form of the state predictor f> not to the data d; itself. In contrast to the isolated filter
from previous section, where the filter has information regarding only one filter, the target filter in two
sensor-system has information in form of data d; and in form of the state predictor of the source filter f5.
This is the main difference between the isolated filter and the pair-filter system. The knowledge transfer
between the pair of filters is performed via FPD.

To compare isolated filtration and two-filter estimation, recall the isolated filter problem. The to-
tal information about state and output evolution that holds the isolated filter can be expressed as joint
probability distribution function

Jy@), x(0) [ d(t-1)) = f(y(@) | x())f(x(@) | d(t)) (2.22)

the numerator in (2.2).
In the target-source filter task, the knowledge transfer is performed see Figure 2.2. The transferred
information is in form of the state predictor of the source filter f, therefore the joint probability must be
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conditioned by the state predictor of the source filter f, = fo(x2(¢) | d2(t-1)). The target filter joint pdf
after knowledge transfer is in form

Fy1(0), x1(1) | dq(t-1), f2). (2.23)

The use of capital F for probability distribution function should stress the fact that the joint pdf of the
target filter after knowledge transfer is unknown and non-unique. The reason is that the source and target
filter are independent. No model describing their relationship is considered. Then the target pdf F' can
be separated into two factors as in (2.22)

F=Fy(0),x1(1) | di(t-1), f2) = F(y1(2) | x1(0), dy(t-1), 2)F (x1 (1) | dy(t-1), f2), (2.24)

where F' € F and F is a set of all possible pdfs. After separating the target pdf F' into to factors the factors
can be analysed individually.

Firstly, the second function on the right side of (2.24) will be analysed F(x;(¢) | di(t-1), f>). The
pdf includes the knowledge that the target filter has about its state x;(¢) given data d;(t-1) and the state
predictor of the source filter f, after knowledge transfer from source filter. Here, the model with full
acceptance is chosen which means that the target takes the source state predictor as its own state predictor.
Hence the unknown pdf F(x;(¢) | d1(t-1), f>) is equivalent to the state predictor pdf of the source filter

F(x (1) [ da(t-1), f2) = f2(x2(0) | da(t-1)). (2.25)

Assuming the source state x,(¢) and target state x;(f) are equal in distribution, then

F2(2(0) | da(t-1)) = fo(x1 (1) [ da(t-1)). (2.26)

It follows that the second factor in (2.24) is not variational but fixed.

As consequence the only factor from the right side of (2.24) which remains variational and unknown
is F(y1(0) | x1(), d1(t-1), f2). F(y1(t) | x1(¢), dy(t-1), f>) represents the observation model (2.2) which is
conditionally independent of the data sequence d;(t-1). The knowledge transfer does not interfere with
the conditional independence therefore

F(y1(0) | x1(1), dy(t-1), f2) = F(y1(0) | x1(0), f2). (2.27)

Next, let (2.27) and (2.26) be inserted back to (2.24)

F=Fyi(0), x1(t) | di(t-1), f2) = F(y1(0) | x1(2), f2) fo(x1(2) | da(t-1)), (2.28)

where factor f>(x;(¢) | da(t-1)) is fixed and factor F(y;(¢) | x1(?), f>) is variational. F is the set of all
possible models, therefore

F € F = {set of models F(y(?), x1(¢) | d1(t-1), f>)

with F(y1(?), x1(¢) | di(t-1), f>) variational and f>(x1(?) | d2(t-1)) fixed}. (2.29)

Since the set of all admissible pdfs F is defined, it remains to be decided which pdf from F should be
chosen. To find the optimal pdf fo(y(¢) | x1(¢), f>) € F, fully probabilistic design is applied. Before the
FPD approach is used, the ideal pdf needs to be defined. For the ideal the joint pdf of the isolated filter
is chosen (2.22). In the knowledge transfer task, the ideal pdf is the joint pdf of the target filter before
knowledge transfer i.e.

J1=fy (@) | x1(0)f(x1 (@) | dp(t-1)). (2.30)
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The variational pdf which needs to be optimized is in form

F = F (1) | x1(0), f2)2(x1(0) | da(t-1)). (2.31)

To solve the optimization problem, FPD approach is chosen. According to FPD, the optimal pdf f is
the one wich minimizes the Kullback-Leibler distance from F to the ideal pdf f; which is fixed. The
Kullback-Leibler distance (KLD) from F to f; is defined in (1.19). The FPD process of finding the
optimal pdf fp includes the known constrains fp € F (2.29) and the preferences about fp given by the
ideal pdf f; (2.30). fo is the closest probability density to the fixed ideal density f; in the sense of
minimum Kullback-Leibler divergence (KLD) (1.20).

The knowledge f>(x2(¢) | da(t-1)) transferred from the source to the target can have various forms.
Here, it is assumed that f,(x(?) | d2(t-1)) is the state predictor resulting from time update at time 7 — 1
performed simultaneously on the source filter. In contrast to the previous work on the FPD-optimal
knowledge transfer [13], [23] where the transferred knowledge from source to target was the source data
predictor f>(y(#) | d2(t-1)) in [23] choose the authors the source state predictor f>(x> () | d2(t-1)) as the
transferred knowledge. As depicted in the picture 2.2 the optimal pdf after knowledge transfer fp does
not directly include the data from the source filter d,. The state predictor of the source f>(x2(¢) | da(t-1))
includes the source data and the f; includes the state predictor of the source filter f,. Since the FPD-
optimal pdf is now defined, the notation can be simplified so that fo(y1(t) | x1(1), f2) = f(y1(®) | x1(2), f2).

The aim of this these is to address the problem of knowledge transfer between pair of Bayesian filters
under bounded state and observational noise. The following part is concerned with the problem of the
bounded noise.

Knowledge transfer between Bayesian filters with bounded noise

The state estimation on an isolated filter under bounded noise was described in section (2.1). The
noise was assumed to be uniformly distributed with fixed bounds and an orthotopic support. The aim is
to extend the filtration problem to a knowledge transfer pair-filtration with uniformly distributed noise
an orthotopic support.

Even though there is an explicit minimizer which solves (2.30), the goal is to find the optimal solution
of fp for uniformly distributed with bounded support. The support is a function of x; ().

The target’s state predictor before knowledge transfer fj(x;(f) | dj(t-1)) is uniform on bounded
support X (¢). The state predictor of the source filter f>(x,(f) | d2(t-1)) which is to be transferred is also
uniform with bounded support X,(#). Then, the bounded intersection X(¢) is defined as follows

X(1) = X1 (1) N Xa(0). (2.32)

The set X (f) represents the knowledge about state x;(#) before knowledge transfer and the set X, (¢)
represents the knowledge about state x;(#) before knowledge transfer. X(#) resp. X(¢) defines the part
of the state-space in which the state x{(¢) resp. x»>(#) can be found according to information the predictor
has been given. The intersection of X;(#) and X;(¢) is the knowledge transfer. The intersection can have
two results.

Case 1: X(r) # @ then X(z) is the FPD-optimal set for x () after knowledge transfer hence the optimal
solution to minimizing problem (1.20) is

Jiwi1@) | x1(0), f2) = fily1(0) | x1(2) € X(2)). (2.33)

Case 2: X(r) = @ i.e., the intersection of X;(¢) and X;(¢) is the empty set hence the knowledge from
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source filter has no effect on the resulting pdf i.e., the source brings no knowledge to the target. Then

Siy1 @) | x1(0), f2) = fily1 (@) | x1(D). (2.34)

The resulting pdf is independent of f, which means that the resulting pdf is the same as in isolated filter
task. The optimal pdf is fi(y(?) | x((¢) € X (¥)). Proof is found in [23].

The knowledge transfer between two filters with bounded support of their predictors can be extended
to knowledge transfer among » filters where the target is assumed fi. Then for case 1 the result is the
same as in (2.34). In case 2 where the intersection is non empty set, the result is following

Jiyi () [ x1(0), fa, .-, fo) = fily1 () | x1(0) € X(2)), (2.35)

where

n
X(f) = ﬂ Xi(). (2.36)
i=1
For proof see [23].

Now, return to knowledge transfer between two filters. The condition laid down on the state predic-
tor’s support was boundedness, regardless of the support’s shape. Let apply the condition to bounded
orthotopic support.

Assume the state predictors fi(x1(¢t) | dy(t-1)) and fo(x2(¢) | d2(t-1)) to have uniformly bounded
supports with orthotopic shape (1.10). The state predictors are result of previous time update (2.21)
hence the supports are orthotopic. The orthotopic sets are closed under the intersection operator (1.20).
The orthotopic supports of state predictors have the form X;(r) = {x1(r) : x,(1) < x1(9) < x1(9)} and
Xo() = {x2(0) = x,(0) < x2(f) < X2(1)}. The orthotopic sets are closed under the intersection operator
(1.20) (excluding the case X(r) = @). Then the FPD-optimal orthotopic set of x;(¢) after knowledge
transfer is the intersection of X (¢) and X5(7)

X(1) = X1(0) N Xo() = {x1(7) - max(x, (1), X,(1) < x1(1) < min(x; (1), X2(1))}. (2.37)

The orthotopic sets are closed under the intersection operator because the result of every intersection is
either an orthotope or the empty set. The orthotopic set is defined in (1.10). The orthotope is given only
by upper and lower bounds hence the edges of the orthotope are parallel to the axes.

In two-dimensional case the result of the intersection (2.37) has four possible results as depicts the
Figure 2.3. The first Figure 2.3a demonstrates the case when the source support is smaller than the target
support and the bigger orthotope contains the other hence the resulting orthotope X(#) = X;(f) and the
transfer is positive because the resulting support smaller than the targets support. The smaller the support
the more accurate it the resulting estimate. This is called the positive knowledge transfer.

The second Figure 2.3b shows the reverse case when the source support is bigger than the target
support and the bigger orthotope contains the other. The result is then X(f) = X;(¢). In this case the
knowledge transfer took place but the knowledge from the source brought no improvement to the target.

The third Figure 2.3c is similar to the first case. The resulting intersection is smaller then the target
support itself hence the estimate accuracy is improved. This is also positive knowledge transfer.

The last Figure 2.3d shows the case when the intersection between X (¢) and X,(¢) is the empty set.
This case is dealt with in (2.34). If the intersection is the empty set the result is the target support hence
no knowledge transfer takes place and the target filter behaves like an isolated filter.

According to (2.2) the processing of local datum d;(¢) on target after knowledge transfer is in form

f1(xr (@) | dy(t), f2) < fi(y1 () | x1(D), f2)f1(x1(0) | dq(t-1))

(2.38)
o fiy1(®) | x1(0) fi(x1(0) | da(t-1), f2),
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Xy(t) X(t)

Xy(t) = X(8) Xy(t) = X(t)

(a) Positive knowledge transfer (b) Knowledge transfer without correction

X.
Xa(t) X(t) () A i)

(d) Intersection between X (¢) and X, () is the empty set

(c) Positive knowledge transfer ) ;
i.e. no knowledge is transferred (2.34)

Figure 2.3: Intersection of two orthotopes in two-dimensional case.
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where fi(x1(t) | di(t-1), f>) is the target’s state predictor after knowledge transfer. Considering the
constraints given in (2.37)

JiGa (@) [ di(®), f2) o< fi(y1 (@) | x1(0) f1(x1(0) | dy(E-1))x (x1(2) € X(@)). (2.39)

fi(x1(?) | dy(t-1)) is the state predictor of an isolated filter. y(x;(¢) € X(¢)) is the characteristic function
(1.14) on set X(¢) (2.37).

The characteristic function y(x;(#) € X(#)) represents the constraints given be the intersection in
(2.37) in other words the characteristic function y(x1(f) € X(#)) represents the transferred knowledge
from the source filter. After knowledge transfer the follows standard data update (2.2).

The knowledge transfer takes place between time update and data update. For better grasp of the
complex estimation algorithm a brief summary is offered.
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2.3 Algorithmic summary

Algorithm 1 FPD-KT
1: System Initialization:

e set the initial time ¢ = 1 and choose final time 7

e set parameter values A, B, Cy, Cy

e set prior values x, (1), x;(1) for the target filter f(x1(1) | d1(0)) = f(x1(1)) = U(x, (1), x1(1))
e set prior values x,(1), x2(1) for the source filter f(x2(1) | d2(0)) = f(x2(1)) = U(x,(1), x2(1))
e set the noise bounds v, wq, w>

2: Recursion:
Fort—2tor-1

() Knowledge transfer:
Find fi(x(¢) | d1(t-1), f>) according to (2.39) using (2.33) and constraints given in (2.37).

(II) Data update:
Process the local data on both filters. Compute f(x;(¢) | di(t)) and f(x2(¢) | da(t)) according
to (2.8), (2.9). Perform the parallelotpic estimation as described in [28]. Circumscribe the
parallelotope by an orthotope according to (2.14)-(2.17).

(IIT) Time update:
Perform data update on both filters. Compute f(x;(¢) | di(t-1)) and f(x,(¢) | da(t-1)) according
to (2.21) and (2.9).

End
3: Termination: set¢ =1

(I) Knowledge transfer:
Find f(x1(?) | di(t — 1), f>) according to (2.39) using (2.33) and constraints given in (2.37).
(I) Data update:
Process the local data on both filters. Compute f(x1(?) | d1(t)) and f(x2(7) | da(t)) according
to (2.8), (2.9). Perform the parallelotpic estimation as described in [28]. Circumscribe the
parallelotope by an orthotope according to (2.14)-(2.17).




Chapter 3

Distributed information fusion

2y(t)
yl(t) =
(1)
distributed o
sensor 1 . -
fusion
Za(t)
yz(t) fusion center
sensor 2

Figure 3.1: Distributed information fusion schema

Unless explicitly stated differently, the following chapter is based on work [7]. Distributed fusion, in
contrast to knowledge transfer, does not distinguish between source and target filter. The sensors are on
the same level, distinguishable by its uncertainties. The sensor measurements are processed locally and
the result is a partial estimate derived from single sensor. Then, the local estimates are sent to the fusion

24
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center where the partial estimates are weighted according to the sensor information (precision etc.). The
process produces a final state estimate at each time step ¢ which includes information from all original
sensors. See Figure 3.1.

For state estimation consider the state space model in (1.1) where v(f) represents state noise and w ;(f)
output noise of the filter j, j = 1,2. v(r) and w;(¢) are assumed to be of unknown distribution bounded by
ellipsoids

V() = (0@ : o' Q7 u(n) < 1),

3.1)
W) = (i) : wi)" R wi(r) < 1), (

where Q and R; are positive definite known matrices .

The state estimate X is computed for each time step ¢ using modified Kalman filter. Since Kalman
filter was originally designed for systems with normally distributed noise the modification is necessary
for considered system with known bounds but unknown distribution. Let the state estimation given by
information from sensor j be called local state estimation and have form

£j(1) = ARj(1 = 1) + Bu(t — 1) + K;(y(t) — C;A%;(t — 1)), (3.2)

where A and C; are state space model parameter matrices from (1.1), £;(r — 1) is partial state estimate
form previous time step y;(#) is the observation vector of sensor j and K is the Kalman gain matrix for
Sensor j.

Subsequently, let the final estimate X(¢) be given by

2
() = Z Q& (1), (3.3)

J=1

where Q;(7) is the weighting matrix of the j-th sensor. The final estimate £(7) is the result of estimation
fusion of all individual estimates £;() from each sensor as depicted in the Figure 3.1.

The computation of Kalman gain K; and weighting matrix of each sensor is presented in the following
sections.

3.1 Kalman gain

According to [7], the optimal Kalman gain K in (3.2) is the result of following convex optimization
problem

i tr(0; 3.4
191(>0,P?>1g,19j>0,1(_,' r( ]) ( )
subject to
-1 G/A M;
ATGT P; 0]<0
M] 0 6 (3.5)
Pj — ﬁjl <0
ﬁj <1
where G; and M are defined as
Gj =1- KjCj,

3.6
M;=1[G; =Kl G0

The proof is found in [7].
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Note that the Kalman gain matrix in [7] is considered time dependent. In this work, the Kalman gain
does not evolve in time because the minimizing problem in considers only time non-dependent variables.
The matrices A and C; from (1.15) are time independent whereas in paper [7] the matrices A and C; are
considered time dependent.

After solving the above optimization problem, the partial state estimates X;(¢) of each sensor can be
computed according to (3.12)

3.2 Weighting matrices

Since the Kalman gain and the state estimates % ;(¢) of each sensor have been computed, the individual
state estimate £ (#) can be fused in the fusion center. For the individual estimate fusion are used weighting
matrices Q;. The computation of the weighting matrices Q; is based on Mahalanobis distance according
to [8].

Mahalanobis distance (MD) is usually used to identify outliers which occur due to uncertainties.
Here, the MD is penalizing the sensor with higher uncertainty.

First, let define the output prediction y;(7) as

yi(®) = C;x;(0) 3.7)

and the innovation covariance matrix
j=C;PjCl +D; (3.8)

which will be used for Mahalanobis distance (MD) computation.

In [8], the state and information noise in state-space model (1.1) was considered to be normally
distributed with known covariance matrix D;. In this work the noise has known bounds but unknown
distribution therefore the computation formula was modified.

Firstly, the ellipsoid noise bounds must be approximated by an orthotope. The approximation is done
as circumscription of en ellipsoid by an orthotope. The center of the ellipsoid (3.1) is a zero vector. For
simplicity consider the ellipsoud matrix R; diagonal. Then, the orthotope bounds in the i-th direction are
[— /Rj;ii» /R ;i) where Rj; are diagonal elements of R;.

Further, Gaussian approximation where mean an covariance are replaced by the first and second
moment of the original distribution [20]. Then, the innovation covariance matrix is in form

1
;= C;PjCl + 3R (3.9)

where R; is the diagonal matrix form (3.1).

Mahalanobis distance measures the difference between the predicted value and its expected distribu-
tion while taking its variability into account. The predicted value is the output prediction y;(¢) and the
expected value is the output (y;(¢) the variability is expressed as the innovation covariance matrix X.

The Mahalanobis distance is defined as follows

M(y (1) = \/(yj(t) =i O)TZ Ny (1) — v,(0). (3.10)

For computation purposes following approximation of MD from [25] will be used

ly.,' ) A 2
(M] (3.11)

M) = )| =

i=1 Jit
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where [, is the length of output vector y;(r) = (y;.1(9), ...,y Jly, (1)). Zj;;; symbolizes diagonal elements
of covariance matrix X;.

The MD values are not used as weight values directly in order to soften the transitions because of the
fluctuations of individual filters. Following sigmoid function is chosen to compute the weight

1
Y T+ expl=M(y;(0)}

3.12)

The weighting matrices are then in form
Qj(1) = w0, (3.13)

where w;(7) is a scalar computed in (3.12) and I is an identity matrix of size /; X [, and [, is the length of
the state vector x.
Finally, the global estimate %(¢) is computed via (3.3).

3.3 Algorithmic summary

Algorithm 2 DF
1: System Initialization:

e set the initial time ¢ = 1 and choose final time 7

e set parameter values A, B, C1, Cy

e set positive definite matrices Q, R; and R, defining the ellipsoids (3.1)

e set the initial values x1(1) and %,(1)

e perform optimization (3.4) with respect to (3.5) to obtain K;, K> and Py, P;

2: Recursion:
Fort—2tof
Compute local estimates x1(¢) and X,(#) according to (3.2).
Obtain output prediction vy (¢) and y»(¢#) using (3.7).
Find weighting matrices Q;(¢) and €;(¢) via (3.9), (3.11), (3.12) and (3.13)
Weight estimates from both sensors via (3.3) to find global state estimate x(¢).
End
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Centralised information fusion
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Figure 4.1: Centralised information fusion schema

The following chapter is based on [27]. The centralized information fusion is an estimation pro-
cess which puts together low-dimensional vectors of individual measurements to form a single high-
dimensional vector Figure 4.1. This single high-dimensional vector is then processed. The state estima-
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tion is divided into two main steps. The prediction step which can be compared to the data update (2.2)
and the fusion update step which can be compared to the time update (2.3) from Chapter 2.

Consider the state space model in (1.1) where v(?) represents state noise and w () output noise of the
filter j, j = 1,2. v(?) and w;(?) are assumed to be of unknown distribution bounded by ellipsoids (3.1)
where Q and R; are positive definite known matrices.

Let assume that the initial state x(1) lies in ellipsoid

X(1) = {x(1) : (x(1) = 2D P D)D) = £(1) < (1)}, 4.1

where (1) is the center of ellipsoid X(1) and P(1) is positive definite matrix. The variable o(1) is a
positive scalar variable, (1) > 0. O, R; and P(1) are matrices of appropriate dimensions.

As in the two previous case, assume two sensors and two sets of output data y;(¢) and y»(¢) 4.1. The
noise is uniformly distributed on a bounded support. The supports are in shape of an ellipsoids (3.1).
The goal is to find the smallest possible set which contains the unknown state x(¢) V¢ € T.

The ellipsoid containing the state x(¢ — 1) is in form

Xt-D={x(t-1D:(x@t-1)—-2¢-1)Ple-Dxt-1) -2 - 1) <o(t—1)}, 4.2)
Combining equation (1.1), (3.1) and (4.2) results in
x(t) e AXt-1)eV(iE-1), 4.3)

x)efx@-D+ov—-1):x(t—1)e AX(t—-1,v(t—-1)e V(r—-1)}. 4.4

The set (4.4) which results from the Minkowski sum contains the state x(#). The ellipsoid which
contains the state x(¢) must contain the whole set (4.4)

Xlt=Do2{x@-1D+v@-1):x(z-1) e AX(#-1),v(t—1) e V(r - 1)}, 4.5)
The ellipsoid
Xt t=1) = {x(0): (x(t) = (¢ | t = D) Pt |1 = D(x(t) = &t | 1= 1) < o(t | 1 = D)}, (4.6)

is the result of the prediction step.
Since the goal of prediction step is set, the aim of the fusion update step can be stated.
From equations (1.15) and (3.1) can be derived that x() lies in the set

F(r) = {x(2) : (1) = Cix(e)" R (y(t) = Cix(0) < 1, j = 1,2}, 4.7

The fusion update step puts together the information about x(f) from prediction step in form of
ellipsoid X(¢ | t — 1) and the information given by the measurements on both filters in form of set F(z).
The ellipsoid resulting from fusion update state is in form

X 2X(t|t—1)NE@). (4.8)

Prediction step: The recursion starts with prediction step given the information about the state at previ-
ous time step # — 1, x(r — 1) € X(¢# — 1) where X (¢ — 1) is from (4.2) and w(t — 1) € K(¢ — 1) where K(r - 1)
is from (3.1). Following the first equation of the state-space model (1.15)

2t —1) = ARt — 1) + Bu(t — 1)

otlt—1)=o(r- 11) e 4.9)
NRs AT 4 2P
Plle=1= (1 " p(t))AP(t DA -
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then the prediction step ends with ¥ p(¢) € (0, o), x(¥) € X(¢ | t — 1).

The equations in (4.9) emerged from the Lemma 1 in [27]. The Lemma 1 states that two ellipsoids
of the same dimension Zg, = {z: (z— a)TE(z—a;) < 1} and Zg, ={z:(z- a2)T E»(z — ap) < 1} where
z,a1,a; € R" and Eq, E1 € R™", then Vp(¢) € (0, 00),

Zp, =1{z:(z—a3)"Ei(z—a3) < 1} 2 Zg, ® Zg, (4.10)

where
azy=a; +a

1 4.11)
E; = (1 + —)E1 + (1 + p(t))Es.
p(0)

In (4.9) for Zg, is taken X(¢ — 1) (4.2) with center X(# — 1) and ellipsoid matrix P(t — 1), for Zg, is taken
V(- 1) (3.1) with center zero vector and ellipsoid matrix Q, then Zg, corresponds with X(z | £ — 1) (4.6)
with center x(¢ — 1 | ¢) and ellipsoid matrix P(t — 1 | 1).

In contrast to [27], this thesis considers state space model (1.1) with control input vector u(¢) and
input matrix B. The result Bu(t) is a known vector. In order to integrate the input vector to the estimation
algorithm, the center £(# — 1 | x) on an ellipsoid X(¢ |  — 1) (4.6) is calculated according to (4.9). The
center x(t — 1 | #) calculation in (4.9) differs from center calculation in [27]. The center x( — 1 | x) in
(4.9) is shifted by the controlled input Bu(t).

Fusion update step:
&) = 231t = 1) + g()PO)CT R (o)

-1
o(t) = o(tlt = 1) + q(t) — ()@ (q()CPt = DCT +R)) (o) 4.12)
Ploy=pP 't - 1) +qgn)CTR'C
where
u(®) = y(r) - Cire - 1),
y(® = "y,
o) = [, 00", (4.13)
C=I[Cl.q1,
R = diag (a;(OR;"),
and (1) € [0, 1], 23:1 aj(t) = 1,VYq(1) € [0, 00), x(t) € X(t) 2 X(t | t = 1) N F(¢). For proof see [27]. The
state estimate X(¢) is the center of the ellipsoid X(#).
The second equation in (4.13) implies that the dimension of the fused output vector y(¢) results from

the sum of dimension of the two output vectors y;(¢) from sensor 1 and y,(¢) from sensor 2, see Figure
4.1.

4.1 Optimal parameters

In prediction and fusion update step occurred multiple parameters. The goal of the estimation is
to find the smallest possible ellipsoid which contains the state x(#). The smaller the set containing the
state the more accurate is the state estimate. The parameters can be optimized to minimize the bounding
ellipsoid, to secure stable estimation error or can be set to a constant.
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In prediction step Lemma 1 from [27] is applied and the the result is (4.2) which is true ¥V p(¢) € (0, o0).
To avoid complex nonlinear equations, the parameter p(¢) from prediction step is derived as follows

_ _ 1vaTy\2
po(t):((f(ﬂt Dtr(AP(r — 1A )) 4.14)

tr(Q)

where po(?) is the optimal value of p(f). The parameter ¢(¢) from fusion update step is optimized to
ensure stability of the error estimate. The optimal value go(#) of g(¢) is the result of minimizing task

qo(t) = arg min f(g(1)) (4.15)
9120

where f(q(?)) = o (). When ,u(t)TR‘l,u(t) > 1 then for the gp(#) hods true equation
u®T (R + go()CP(t | t = DCTY'RR + go()CP(t | t — DCT) u(r) = 1. (4.16)

For /,l(t)TR_l u(t) < 1, there is no solution for the equation above (4.16). The optimal value of parameter
q(1), qo(1) = 0.
Note that if g(¢) = 0 then in fusion update step (4.12) the equations are
X)) =x(tt-1)
o) =o(t-1) 4.17)
P'o)=P'¢t-1)
This implies that if g(f) = 0, then no fusion update takes place. In the bounding sets sense, if g(¢) = 0,

then X(7) = X(¢ |t - 1).
The parameters «;(¢) are chosen at every time step in order to increase tolerance to faulty outputs

y (0. L
(ool
(1) = (4.18)

2 (Jll)

where ||-|| R; 1S a matrix norm

=

il = (iR (1) (4.19)

and u;(1) = y;(t) — C;x(t|t - 1).
The following section summarizes the state estimation via centralized fusion.
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4.2 Algorithmic summary

Algorithm 3 CF
1: System Initialization:

e set the initial time ¢ = 1 and choose final time 7

e set parameter values A, B, Cy, Cy

e set prior values X(1), P(1) and o(1) for the initial state (4.1)

e set positive definite matrices Q, R; and R; defining the ellipsoids (3.1).

2: Recursion:
Fort«2tof

(I) Prediction:
Compute parameter p(f) according to (4.14). Obtain x(#|t — 1), o(¢|t — 1) and P(¢|t — 1) using
4.9).

(I) Fusion update:

Compute parameters g(t), a(f), a>(f) according to (4.18), (4.16). Fuse data from both sensors
via (4.13). Find x(¢), o(¢) and P(t) using (4.12).

End




Chapter 5

Experiments

In this section, experiment setups are described and experiment results are presented. For experi-
mental comparison of the three methods for information transfer described in previous sections multiple
parameter setting is employed.

Firstly, kinematic model is used. The kinematic model is derived from equations of motion with
constant velocity. The model is more generic than equations of motion since it considers the third order
derivatives of position not zero but zero mean processes [6]. The deterministic kinematic model would
consider the third order derivatives of position z(¢) in generic coordinates to be zero

(1 =0. G.D

The continuous Wiener process acceleration model considers the third order derivatives of position
z(#) in generic coordinates to be white noise v(¢)

72 = v (5.2)
with zero mean
Elv(»)] =0 (5.3)
The acceleration is considered a Wiener process. The state x(¢) from (4.12) is then in form
(1)
x(0) =|z)]. 5.4
0]
The discrete state equation (first equation in (1.1)) of the position-velocity-acceleration model [6] is
1 Ty 0.57 0
x() =10 1 To |x(t—1)+|0|u(—1)+0v(), 5.5
0 0 1 0

where T is the sampling period and input matrix B is considered a zero matrix.
The measurement equations (second equation in (1.1)) depend on the sensor output. If the sensors
measure only position, then the measurements equation are in form

yi)=[1 0 0]x(t) +wj). (5.6)
If the sensors measure position and velocity, then the measurements equation are in form
1 00
yi(t) = [0 | O] x(t) + wj(1). (5.7)

33
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If the sensors measure position, velocity and acceleration, then the measurements equation are in form

1 00
yi®O =10 1 0jx()+w;) =, (5.8)
0 0 1

where j=1,2.
For following experiments consider sensors measuring position and velocity (5.7). The model matri-

ces are
1 Ty 0.57p 0

A=10 1 To |® I, B=|0|{®1, C1=C2=[
0 0 1 0

where Ty is the length of sampling period and T¢p = 0.1. The one dimensional system was extended
into two dimensional system. The extension was achieved by Kronecker product with a two by two
dimensional unit matrix /. The Kronecker product was applied on the state parameter matrix as well
as on the output parameter matrices. The resulting state parameter matrix A is of double size in both
dimensions i.e. A € R The output parameter matrices also double its size in both dimensions
therefore C; and C, € R*¥¢,

The state x(¢) that is to be estimated is a vector of six components

1 00

0 1 0]®12’ 5.9

[ x1(1)]
x(1)
x3(1)
x4(1)
x5(1)
[ X6(1)]

where x(f) and x,(¢) are the position coordinates of the tracking object at time #, x3(¢) and x4(¢) are two
dimensional velocity coordinates at time ¢ and xs5(¢), x¢(f) are acceleration coordinates of the tracked
object at time 7.

For further experiment a linear system of second-order was chosen. The system is commonly used
to describe many dynamic process [10]. In a physical second-order system, energy is stored in two
different elements which exchange the stored energy. In mechanical systems, it is the exchange between
mass and stiffness, in electrical systems, the exchange takes place between capacitors and inductors and
in hydraulic systems the energy exchanges between fluid inertance and capacitance. Following linear
differential equation describes the system

(1) = , (5.10)

arz + a1z + apz = bou (5.11)

The response generated by the system given by (5.11) is either non-oscillatory decaying or continu-
ous oscillatory depending on the parameters ag, @; and a; [10].

Let consider the non-oscillatory version with parameters ap = 1, a; = 2 and a, = 1. After trans-
formation into the state space model and discretization with sampling period Ty = 0.1 the system has
following form

A= 0.8144 -0.0905 B 0.0905
~10.0905 0.9953 |’ ~10.0047
Then, the state x(¢) that is to be estimated is a vector of two components

_|x@®
x(f) = [xz(t)] . (5.13)

},Q:Q:@l] (5.12)
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For performance comparison of the three above mentioned algorithms for state estimation in two-
sensor system the total norm-squared error was used. The total norm-squared error (TNSE) is defined as
follows

I
TNSE; = Z(fc,(t) — xi(0). (5.14)
=1
where x stands for either simulated state values or real state data and X is state estimation.
Let be defined the estimation error e(¢) as

ei(t) = xi(1) — xi(1), (5.15)

Algorithms from Chapters 2, 3 and 4 were implemented in MATLAB to perform all further described
experiments. The MATLAB scripts with implemented algorithms and recorded data are loaded on a CD
which is attached to this thesis.

Further, the algorithms described in Chapters 2, 3 and 4 are referred to as FPD-KT, DF and CF.
The algorithm for state estimation via FPD without knowledge transfer from [16] is the part of FPD-KT
described in Section 2.1 and denoted FPD-IF.

To solve minimizing task (3.4), a MATLAB LMI Toolbox function mincx was used.

The input data u(¢) were randomly generated from Gaussian distribution with zero mean and vari-
ance=1 using build-in MATLAB function randn.

For all following experiments, the parameter g(¢) from (4.12) was set g(t) = 1. The parameters J,
¥, from (3.5) were set ) = ¢, = 0.5. The prior values P(1) and o(1) for the initial state (4.1) were set
to P(1) =Iand o(1) = 1.

The first state estimation algorithm FPD-KT has noise support bounded by orthotopes (1.10) and the
second two consider noise to be bounded by an ellipsoid (1.13). To unify the noise bounds approach for
computation purposes, let assume the orthotopic noise bounds v, w; and w; from (2.4) which form the
orthotopes edges to be also the ellipsoids bounds. All noise bounds v, w; and w, are assumed to be equal
in all directions i.e., all the orothotpe’s edges are of the same length hence the corresponding ellipsoid
are spheres with diameter values equal to noise bounds V2, w% and cu% The ellipsoids are given by the
matrices O, Ry and R, (3.1). The relation between orthotopic and elliptic bounds setting is following

0] =V21,
R =o?1, (5.16)
Ry =wsl,

where [ is an identity matrix. Then, the orthotopes defined by v, w; and w; circumscribe the ellipsoids
given by Q, R| and R;.
In some graphs, a different marker is used to distinguish between two lines that overlap.

5.1 Simulated data

Simulation was implemented in MATLAB. To generate uniform noise a build-in MATLAB function
unifrnd was used. All further presented results for simulated data were averaged over 500 independent
runs.

For all experiments with simulated data following parameter setting was applied. Prior values for
FPD-KT bounds were set to x;(1) = 0.5j; , x,(1) = —0.5j, , x2(1) = 0.05j, and x,(1) = -0.05j, where
Ji, 1s a vector of ones of length /. The initial values for DF and CF were set to X1(1) = %2(1) = x(1) = 0,
where 0;, is a zero vector of length /.
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Isolated filter and knowledge transfer

In order to validate the contribution of knowledge transfer, the state estimation results of an isolated
(single) filter algorithm FPD-IF from [16] and two-sensor algorithm for knowledge transfer FPD-KT
described in Chapter 2 are compared.

-4.45 T T T ; i 2
ol
-45 1
— - — 2r
w FPD-IF | | L
B 1 FPD-IF | -
,10 - 4
47 12
-6 5 4 3 2 1 0 -6 5 4 3 2 1 0
log, 4w, log g4
(a) TNSE (5.14) of the first component of the state (b) TNSE (5.14) of the first component of the state vector
vector (5.10) with w; = 1073 and changing second (5.10) with wy = 1073 and changing first (target) filter
(source) filter precision precision.

Figure 5.1: Comparison of FPD-KT and FPD-IF for v = 1073, 7 = 100 and parameter matrices system
5.9).

Figure 5.1 compares the performance of the state estimation of an isolated filter (FPD-IF) and state
estimation with knowledge transfer between two filters (FPD-KT) using parameter matrices setting (5.9).
Both axes are in logarithmic scale for higher transparency. Note that in Figure 5.1a, the changing pre-
cision of the second filter does not influence the TNSE of the FPD-IF estimate. On the other hand, the
TNSE of the FPD-IF estimate increases with decreasing precision of the second filter.

In Figure 5.1b, the TNSE of the FPD-KT estimate rises until the precision of the first filter reaches the
precision of the source filter. Then, the TNSE keeps almost constant value similar to the TNSE values
of the FPD-KT on the right side of the graph in the Figure 5.1a. The TNSE of the FPD-IF estimates
increases with decreasing target filter precision.

Figure sequence 5.2 depicts the development of simulated states and state estimates for time interval
t € [10,50]. Successively, the values for all state vector components (5.10) are displayed in graphs in
Figure 5.2. The estimates done by FPD-KT and FPD-IF overlap in the Figure 5.2. Both estimates are
simillar to he simulated states in Figures 5.2a-d. In Figures 5.2e-f, the estimates have constant zero value
while the simulation is non-zero.

The estimation via FPD-IF shows slightly higher TNSE values than the FPD-KT estimation in Figure
5.3. For lower uncertainty of the second sensor, the FPD-KT performs better in TNSE-sense (Figure
5.3a). In Figure 5.3b, the difference in TNSE for higher uncertainties is significantly bigger. FPD-
KT shows almost the same TNSE values in both Figures 5.3a and 5.3b. Figure 5.4 compares the state
estimation and state simulation for time interval ¢ € [10, 50] for the two components of the state vector
(5.13). Both estimates and simulation overlap in Figure 5.4a as well as in Figure 5.4b.
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Figure 5.2: State estimates (FPD-KT and FPD-IF) and simulation (sim) with the noise setting w; = wy =
v = 1073 for each component of the state vector (5.10) and parameter matrices system (5.9).
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(a) TNSE (5.14) of the first component of the state
vector (5.13) with w; = 1073 and changing
second (source) filter precision.

(b) TNSE (5.14) of the first component of the state vector
(5.13) with wy = 1073 and changing first (target) filter
precision.

Figure 5.3: Comparison of FPD-KT and FPD-IF for v = 1073, 7 = 100 and parameter matrices system
(5.12).
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Figure 5.4: State estimates (FPD-KT and FPD-IF) and simulation (sim) with the setting w; = w; = v =
1073 for each component of the state vector (5.13) and parameter matrices system (5.12).
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Knowledge transfer and information fusion

Now, the method for state estimation using knowledge transfer FPD-KT is compared to the two
methods using information fusion DF and CF.
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(a) TNSE (5.14) of the first component of the state (b) Absolute value of the mean of the estimation error
vector (5.10). (5.15) of the first component of the state vector (5.10).
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(c) Standard deviation of the estimation error (5.15) of

the first component of the state vector (5.10) (d) Duration of the computation in time [s].

Figure 5.5: Comparison of FPD-KT, DF and CF for w; = v = 107 and 7 = 100 with changing second
(source) filter precision and parameter matrices system (5.9).

The results of state estimation in Figure 5.5 compare the performance three methods for state estima-
tion which combine information from two sensors. w, is the uncertainty of the source filter for FPD-KT
Figure 2.2. For the two information fusion methods DF and CF, w; is the uncertainty of the second
sensor Figure 3.1, Figure 4.1, respectively. Results in Figure 5.5 are based on experiment computed for
parameter matrices system (5.9) and time sequence of length 7 = 100.

All four criteria in Figure 5.5 show almost constant performance of the FPD-KT. CF performs sig-
nificantly better than DF and FPD-KT for lower uncertainties of the second sensor. TNSE, mean and std
of DF is eminently higher than TNSE, mean and std of CF and FPD-KT for higher uncertainties of the
second sensor. See Figures 5.5a, 5.5b and 5.5¢c. Computation time of all methods shows no relation to
the second sensor precision, see Figure 5.5d.

Figure 5.6 demonstrates results of state estimation on parameter matrices system (5.12). Lowest
TNSE and std values are assigned to the FPD-KT method while the performance is almost constant with
changing second (source) filter precision, see Figures 5.6a and 5.6¢. DF also shows constant performance
in TNSE- and std-sense although higher then FPD-KT. Further, CF shows poorer performance for higher
uncertainties of the second sensor. The mean values in Figure 5.6b of all methods are comparable, CF



CHAPTER 5. EXPERIMENTS 40

-3.5 T T T T T -4
—o—FPD-KT
-3.61 DF b
—e—CF _
W 37r 1 By
(2] c
=z ®
= -38r 4 “E’ E
o [
L 39r 8
7 S S {
41 ‘ ‘ ‘ ‘ ‘ 8 ‘ ‘ ‘ ‘ ‘
6 5 -4 -3 2 -1 0 -6 5 -4 -3 -2 -1 0
Iog1ow2 Iogww2
(a) TNSE (5.14) of the first component of the state (b) Absolute value of the mean of the estimation error
vector (5.10). (5.15) of the first component of the state vector (5.10).
2.8
1.3 ;
285+f —e—FPD-KT| \ )
bDF 1.4
s —e—CF
2 29 @ -1.5¢ —e—FPD-KT|
2 © DF
% E 16 —s—CF
o 295 )
L o
2 17f
3 ] ——
q —— —o—A 1.8
3.05 ‘ ‘ ‘ ‘ ‘
- 5 -4 -3 -2 -1 0 1.9 : : : : :
-6 5 -4 -3 -2 -1 0

log, w
10“2
log, o,

(c) Standard deviation of the estimation error (5.15) of

the first component of the state vector (5.10). (d) Duration of the computation in time [s].

Figure 5.6: Comparison of FPD-KT, DF and CF for w; = v = 1073 and 7 = 100 with changing second
(source) filter precision and parameter matrices system (5.12).
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shows the highest fluctuations. FPD-KT has highest computation time demands, DF is slightly less
time-demanding than CF. Time demands of all methods are constant, see 5.6d.
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Figure 5.7: State estimates (FPD-KT, DF and CF) and simulation (sim) with the setting w; = wy = v =
1073 for each component of the state vector (5.10) and parameter matrices system (5.9).

Figures 5.7 are graphical demonstration of simulated states and estimated states values of each com-
ponent of the state vector (5.10) and parameter matrices system (5.9). The estimation of the first four
components of the state vector (5.10) turns out likewise for all methods, see Figures 5.7a-d. The esti-
mation of the two remaining components (Figures 5.7e-f) which stand for acceleration is less successful.
The FPD-KT and DF estimate is a constant zero while CF gives the only non-zero estimate.

The demonstration of simulated states and estimated states values of each component of the state
vector (5.13) and parameter matrices system (5.12) is shown in Figures 5.8. On the given time interval
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Figure 5.8: State estimates (FPD-KT, DF and CF) and simulation (sim) with the setting w; = wy = v =
1073 for each component of the state vector (5.13) with parameter matrices system (5.12).

t € [10, 50], the simulation overlaps with all estimates.
Although all experiments with simulated data were averaged over 500 Monte Carlo runs, there are
still some visible fluctuations, Figures 5.1, 5.3, 5.5 and 5.6.

5.2 Real data

Experiments with real data were performed for parameter system (5.9). To collect real data on
position, speed and location, an app called AndroSensor available on Google Play [4] was used. The app
was chosen because it records all required information and saves records into .csv file. Most apps record
only position and speed hence the acceleration data are missing and also many apps do not save the
data in convenient formate. AndroSensor records data about location, acceleration, speed, orientation,
accuracy, magnetic field, time and others.

In order to collect data from two sensors, AndroSensor was installed to two different smartphones.
Data were recorded on both smartphones simultaneously during one car trip. In the app settings, the
Speed Unit was changed from default kilometres per hour to meters per second and the Accelerometer
coords were set to world coords instead of device coords.

Before the state estimation experiments with real world data could be performed, the raw data from
AndroSensor were preprocessed. The app saves data record into .csv file. The .csv file generated by
the app was unreadable in MATLAB. The data file was first opened in RStudio and then saved as .csv
file. After this modification MATLAB was able to read the file as table. Next, some data needed to be
transformed. The data about location were recorded in spatial coordinate system [1] hence the data were
transformed into Cartesian coordinate system using following transformation

x1(t) =R sin(lat(?)) cos(lon(?)),

. . (5.17)
x2(#) =R sin(lat(?)) sin(lon(?)),

depicted in Figure 5.9. R stands for volumetric mean radius of Earth, according to [2], R = 6,371,000
m, lat(¢) and lon(¢) stand for latitude and longitude at time #, x;(#) and x,(¢) are position coordinates
on the X (horizontal) and Y (vertical) axes at time ¢ i.e., first and second component of the state vector
(5.10).

The volumetric mean radius of Earth R is in the order of millions of meters hence the computed
position data are also in the order of millions of meters. For better comprehensibility of the values, it



CHAPTER 5. EXPERIMENTS

North

latitude

center of the
Earth

longitude

Figure 5.9: Latitude and longitude

43



CHAPTER 5. EXPERIMENTS 44

was decided to move the starting point to zero i.e., x;(1) = x2(1) = 0. Then, x1(¢) and x,(¢), YVt > 1, state
the distance from the point at time ¢ to zero (starting point) in meters.

North
Observation
point
azimuth
West East
Observer
South

Figure 5.10: Azimuth

Speed was recorded by the app only as speed vector. For the estimation task, the speed values in
direction of the X axis and Y axis are needed. To decompose the speed vector into two parts another
information is required. This information is azimuth which is defined as the angle created by the observa-
tion point, the observer and the reference point (North). The azimuth is measured from North clockwise
se Figure 5.10 [5]. In this case, the azimuth is the angle between the speed vector and geographical
North. the decomposition of the speed vector into X axes and Y axes using azimuth is depicted in the
picture 5.11, then the transformation is in form

x3(t) =speed(t) sin(azimuth(?)), (5.18
x4(¢) =speed(?) cos(azimuth(?)), 18)

where speed(f) stands for the recorded speed vector at time ¢, azimuth(¢) stands for azimuth at time ¢,
x3(?) (speed X) and x4(¢) (speed Y) stands for speed in the direction of X and Y axes at time ¢ i.e., third
and fourth component of the state vector (5.10).

All data stating angles (latitude, longitude, azimuth) are recorded in degrees. In order to solve equa-
tions (5.17) and (5.18) in MATLAB, angle records in radians need to be converted into radians. The
conversion from degrees to radians goes as follows

g

= 1 1
@ = Too (5.19)
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Figure 5.11: Azimuth and speed vector

where «, stands for angle in radians and a, for angle in degrees.

Since the real recorded data position-speed-acceleration are now two-dimensional data, for state
estimation the parameter matrices (5.9) was used. The estimated states were be compared to the measured
(real) data.

The estimation was performed according to the algorithmic summaries in Sections 2.3, 3.3 and 4.2
of the three described state estimation methods. For input data y(¢) and y,(¢) were taken the measured
data about position and speed. For noise bounds v, w; and w; were chosen recorded accuracy data.
Accuracy of both sensor was measured during the whole time sequence. For the estimation purposes, for
noise bounds v, w; and w, were taken means of the recorded accuracy data. The matrices Q, Ry and R,
defining the ellipsoids (3.1) were computed according to (5.17).

The recorded accuracies were 3.4 and 9.4 in meters. The sensor with accuracy=3.4 is from now on
called the more accurate sensor. The sensor with accuracy=9.4 is from now on called the less accurate
Sensor.

For all experiments with real data, following initial parameter setting was used. The prior values for
FPD-KT bounds x;(1), x2(1), x,(1) and x,(1) were set to the position, speed and acceleration values at
time 7 = 1 of the chosen target sensor +0.5j, , —0.5j, , respectively. The initial values of DF %;(1), %2(1)
and CF X(1) were set to the position, speed acceleration values at time # = 1 of the chosen target sensor.

The real data (real) are the measured data about position, speed and acceleration by the sensor which
is chosen as the target. Further, there are experiments with the less accurate sensor as target as well as
with the more accurate sensor as target. The estimated data are then compared to the measured data by
the sensor selected as the target.

The chosen length of the time is 2000 time steps.
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Isolated filter and knowledge transfer

Performance of an isolated (single) filter state estimation algorithm FPD-IF from [16] using real data
is compared to the two-sensor algorithm for knowledge transfer FPD-KT described in Chapter 2.

: 50 —
FPD-IF FPD-IF
208 —e—FPD-KT| | 40+ —o—FPDKT 2
—e—real —e—real
40
= .60
x
-80
-100
120 ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

() (b)

M0 15 20 25 30 35 40 45 50 o 15 20

(c) (d)

FPD-IF
—e—FPD-KT 1

7| e ] O.SEKA]\ .]\A/\k]\xh

FPD-IF
1.5 |—e—FPD-KT
—e—real
2 : ‘
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
t t
(e ®

Figure 5.12: State estimates (FPD-KT and FPD-IF) and real data (real) with the more accurate sensor as
target for each component of the state vector (5.10).

On a chosen interval ¢ € [10, 50], the recorded real data and state estimates by FPD-KT and FPD-IF
almost bled together with the exception of acceleration data, Figure 5.12. The acceleration is estimated
as constant by the method with and also without knowledge transfer.



CHAPTER 5. EXPERIMENTS 47

Knowledge transfer and information fusion

State estimation FPD-KT with knowledge transfer was already compared to a single-source filtration
FPD-IF. Further, the knowledge transfer in FPD-KT is compared to the centralised information fusion
(CF) and to the distributed information fusion (DF).
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Figure 5.13: State estimates (FPD-KT, DF and CF) and real data (real) with the more accurate sensor as
target for each component of the state vector (5.10).

Based on Figures 5.13a-d, the FPD-KT and CF show the best performance in estimation of the real
data. The only non-constant acceleration estimates gives the CF method, see Figures 5.13e-f.

Since the distinction between FPD-IF and FPD-KT is hard to compare in Figures 5.12 and 5.13, the
Tables 5.1 and 5.2 are presented. All values in the Tables 5.1 and 5.2 were rounded to two significant
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Table 5.1: TNSE (5.14), mean, median, standard deviation (std) of the state estimation error (5.15) and
computation time for = 2000 with the more accurate sensor as target.

FPD-IF FPD-KT | DF CF
TNSE, 3.8x10° | 4.5x10° 29x107 | 5.3x10°
mean(e; (1)) -5.4x107" | -4.6x107" | 7.0x10! -1.2x10!
median(e; (1)) 0 0 9.3 -1.1x10"
std(e; (1)) 1.3 1.4 9.8x10! 1.1x10!
TNSE, 1.8x10% 1.3x10° 3.8x107 | 1.2x10°
mean(ea (7)) 1.2 4.4 -8.0x10" | 1.5x10!
median(ex(t)) 0 1.8x1071%2 | -1.0x10' | 9.2

std(ex (1)) 2.8 6.9 1.1x10> | 2.0x10?
TNSE; 7.3x107% | 5.7x107%° | 9.2x10° | 3.2x10°
mean(es (1)) 1.2x1071 | 4.0x107 | 1.8x10! | 9.9
median(es(t)) 0 0 2.4x10' 1.0x10!
std(esz (1)) 1.9x1071% | 1.6x107'* | 1.2x10" | 7.9
TNSE4 6.7x1072 | 7.0x1072 | 3.0x10° 1.5x10°
mean(e4(t)) 42x10716 | -1.4x1075 | -6.9 -5.0
median(e4(?)) 0 0 -1.5 -1.9
std(e4 (1)) 1.8x107# | 1.8x107# | 1.0x10' | 7.2
TNSE;s 1.2x10° 1.2x10° 1.2x10° 1.9x10%
mean(es(?)) 29x107! | -2.9x107" | -2.9x107! | 4.4x107!
median(es(t)) 2.9x107!1 | -22.9x107! | -2.9x107! | 4.8x107!
std(es (1)) 73x107" | 7.3x107" | 7.3x107" | 3.1
TNSEg 2.3x10° | 2.3x10° 2.3x10° | 2.1x10°
mean(eg (1)) -5.8x107! | -5.8x107" | -5.7x107! | -5.6x107!
median(eg(t)) -5.6x1071 | -5.6x107" | -5.7x107! | -8.9%107!
std(eg (1)) 9.0x107! | 9.0x107! | 9.0x107! | 3.2
computation time [s] || 1.5 x107> | 2.4 x107> | 8.1 x1072 | 2.4x107!

figures.

Based on TNSE, mean, median and std of the estimation error and computation time, all four methods

are compared, for results see Tables 5.1 and 5.2.

Firstly, the more accurate sensor was selected as target Table 5.1. The estimated states are compared
to the states measured by target in Table 5.1. Note, that FPD-IF and FPD-KT differ only a little. The
other two estimation methods DF and DF show poorer results in all components. The results are the
same for FPD-IF, FPD-KT and DF in the fifth and the sixth component. This is the consequence of the
constant-value estimates for acceleration.

Secondly, the less accurate sensor was chosen as target. The data measured by the less accurate
sensor are considered the real data. The estimates are compared to the real data in Table 5.2. Here, the
results of FPD-IF and FPD-KT differ, especially in the first two components. The result for acceleration
are the same for FPD-IF, FPD-KT and DF because all these methods estimate constant acceleration. The
results for DF and CF show higher estimation error.

Figures 2.2, 2.3, 3.1,4.1, 5.9, 5.10 and 5.11 were plotted in GeoGebra [3]. Figure 2.1 was plotted in
Paint 3D. The remaining figures were plotted in MATLAB.
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Table 5.2: TNSE (5.14), mean, median, standard deviation (std) of the state estimation error (5.15) and
computation time for # = 2000 with the less accurate sensor as target.

FPD-IF FPD-KT | DF CF
TNSE, 4.8x1072" | 2.6x10° 3.0x107 | 6.8x10*
mean(e; (1)) -4.5%x10713 | -32x107! | 7.1x10! | -1.1
median(e; (¢)) 0 0 8.7 1.4x107!
std(e; (1)) 1.4x10712 | 1.1 1.0x10% | 5.7
TNSE, 5.7x1072" | 1.3x10° 42x107 | 3.9x10°
mean(ea (7)) 59%x10713 | 1.2x1072 | -9.0x10% | -6.0
median(e (7)) 0 0 -2.0x10' | -8.7
std(ex (1)) 1.6x10712 | 8.1x107! | 1.1x10*> | 1.3x10!
TNSE; 53x107%* | 4.2x107%* | 9.3x10° | 2.7x107
mean(es(t)) 2.2x1071 | -8.8x10713 | -1.8x10! | -3.0x10"
median(es(t)) 0 0 -2.3x10" | -4.0x10!
std(e3(7)) 5.1x107'% | 45%x107* | 1.2x10" | 2.0x10!
TNSE4 5.0x107%* | 5.2x107%* | 3.0x10° | 8.5x10°
mean(e4(t)) -8.9x10716 | 42x10715 | 7.1 1.2x10!
median(e4(t)) 0 0 1.8 2.4
std(e4(1)) 5.0x107'% | 5.1x107'* | 1.0x10" | 1.7x10!
TNSEj5 3.2x10° 3.2x10° 3.2x10° | 4.6x10*
mean(es(f)) -1.1 -1.1 -1.2 -1.1
median(es (7)) -1.1 -1.1 -1.1 -8.8x107!
std(es (1)) 5.1x107" | 5.1x107" | 5.1x107! | 4.7
TNSEs 7.9x10% 7.9%10? 7.9x10% | 4.7x10%
mean(eg(t)) 29x1071 | -229x107! | -2.9 -1.3
median(eg(?)) 2.8x107" | -2.8x107" | -2.x107" | -14
std(eg(t)) 5.6x107" | 5.6x107" | 5.6x107! | 4.7
computation time [s] || 6.1x107" | 9.4x10~" | 7.9x1072 | 3.0x10!




Chapter 6

Discussion

The FPD-KT, DF and CF estimation performance was examined, using simulated data with uniform
noise and using real data. The collection and processing of real data was described earlier in this work.

The CF method shows the best results for estimating the state vector for parameter matrices setting
(5.9). CF has significantly lower TNSE, mean and std for lower uncertainties of the second sensor
(Figure 5.5). This proves the positive transfer. Also the TNSE and std stop rising when the precision
of the second sensor reaches the precision of the first sensor. After this turning point, TNSE and std do
not rise with rising uncertainty of the second sensor. That proofs the absence of negative transfer. On
the other hand, DF algorithm shows (in Figure 5.5) exactly opposite results. DF prevents the positive
transfer (constant values of TNSE and std for low uncertainties) and allows the negative transfer (rising
TNSE and std for increasing uncertainties).

In simulation experiments, the time expense of all methods is higher for system (5.9) than for (5.12)
(compare Figure 5.5d and 5.6d). In (5.9), the state vector has higher dimension than in (5.12). Hence all
corresponding parameter matrices used during computation are of higher dimension. This all prolongs
the computation time.

Note that all methods except CF estimate the last two components of the state vector (5.10) which
stand for acceleration as constant zero, Figures 5.2 and 5.7. The estimate is not necessarily zero. It
depends on the initial value of acceleration at the begging of estimation sequence at time # = 1. This is
proven in real data experiments where the initial values are non-zero, see Figure 5.12f and 5.13f. Here,
the estimates are constant but non-zero. This proved that FPD-IF, FPD-KT and DF is unable to update
the initial values of acceleration. As already mentioned, the CF estimates the acceleration and updates
the initial acceleration value. The reason is unclear. The main difference between the CF method and
the other methods is, that all the other methods keep the same dimension of states and output during the
whole estimation process. The CF method processes high-dimensional vector composed of all sensor
measurements and then estimates the states. The ability of CF to update acceleration might lie in the
high-dimensional estimation process. This hypothesis could be subject to further analysis.

The system (5.12) was applied to test the estimation methods. Firstly, the system (5.12) has non-zero
input matrix B comparing to (5.9). The results for experiments on system (5.12) show that all methods
work for non-zero inputs. Secondly, the results in Figures 5.4 and 5.8 show that all components of the
state vector (5.13) are estimated correctly. Hence the problem with constant-value estimation is specific
to the system (5.9).

The FPD-KT and FPD-IF are compared to assess the contribution of knowledge transfer to state esti-
mation method from [16]. The contribution of FPD-KT lies in allowing positive transfer and preventing
negative transfer. The difference in TNSE values for FPD-KT is small thus invisible in Figure 5.5. On
the other hand, it is conveniently demonstrated in Figure 5.1. The TNSE of FPD-KT estimates is lower
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for smaller uncertainties of the source but when the target and source precision are equal the TNSE of
FPD-KT stops rising. The TNSE in 5.1a is constant for FPD-IF because the isolated filtration has no
information about the second source since it processes only the target data. Hence the isolated filtration
can not be influenced by the source filter precision.

Figure 5.1b also proves the positive contribution of knowledge transfer in state estimation via FPD.
Firstly, FPD-IF and FPD-KT keep the same performance for lower uncertainties of the first sensor. This
means, that if the target filter has higher precision, the FPD-KT acts like an isolated filter. If the target
filter has lower accuracy, then the TNSE of FPD-KT stops rising thanks to the information from the
source which corrects the target information. The isolated filter TNSE in Figure 5.1b rises constantly
since the only available information is the target information with decreasing accuracy.

The results in Table 5.1 confirm the results displayed in graphs in Figure 5.12. The estimates done by
FPD-IF and FPD-KT are very similar. The result of FPD-IF match the real data even more than the FPD-
KT results, see Figure 5.12b. The results in Table 5.1 indicate that the isolated filter method estimates
better despite of the fact that the simulation results show the opposite. In simulation experiments, there
was the simulated state to compare with the estimates. In real data experiments, there are no objectively
accurate state data available. The only available data are those measured by the sensors which are also
used as inputs.

If the estimated data are compared to the data obtained by the sensor considered as target, then the
FPD-IF performs better, see Tables 5.1 and 5.2. The FPD-IF processed only data from the target and
then compares the estimates to the target data. The FPD-KT process data from both sensors (target and
source) and then compares the estimates to the target data. Hence the FPD-KT estimates differ from the
target data more than the FPD-IF estimates.

The Table 5.2 demonstrates higher discrepancy in the FPD-IF and FPD-KT estimates. The exper-
iment with results in Table 5.2 was conducted choosing the less accurate sensor as target. Here, the
FPD-KT estimates for the first two components of the state vector are very different from the FPD-IF.
The reason is, that FPD-KT as well as the other methods (DF and CF) with two-sensor based estimation
penalize the data obtained from the less accurate sensor. The lesser accurate sensor the more penalized
the received data hence the estimate differs more from data from less accurate sensor. If the estimates
are compared to the data from the less accurate sensor, then they must differ.

Tables 5.1 and 5.2 show that the computation time of FPD-KT is longer than the computation time of
FPD-IF. The core of both algorithms is the same Section 2.1. In FPD-KT, there are two parallel filtrations
and a knowledge transfer step. In FPD-IF, there is only one filtration which is exactly the same as one of
the filtrations in FPD-KT and there is no knowledge transfer step. The FPD-KT extends FPD-IF hence
the FPD-KT method is more time demanding.

Based on real data experiments, it is not possible to decide whether or not the FPD-KT performs
better than FPD-IF. On the other hand, the difference in results between FPD-KT and FPD-IF in Tables
5.1. and 5.2 can be viewed as proof that the knowledge transfer also works on real data.

To compare performances the simulation experiments are more suitable. The real data experiments
could be extended by the use of more sensors with different precision.



Conclusion

In this Master’s Thesis, the state estimation method based on knowledge transfer via fully proba-
bilistic design FPD-KT for linear systems with bounded noise was described and analysed. FPD-KT was
compared to the state estimation without knowledge transfer FPD-IF to asses the benefits of knowledge
transfer from the second sensor.

Further, two methods for state estimation for linear systems with bounded noise which use modi-
fied Kalman filter and fuse information from two sensors to obtain better estimates were described and
analysed. Distributed information fusion performs partial state estimation on both sensors, then the local
estimates are fused in the fusion center. Centralised information fusion fuses raw information from sen-
sors and performs state estimation in the fusion center. Finally, the FPD-KT was compared to DF and
CF

To compare the above mentioned methods, experiments were prepared. Firstly, the experiments were
conducted on simulated data with uniformly distributed noise. Secondly, real data on position, speed and
acceleration were collected, processed and used form experiments.

The contribution of knowledge transfer was confirmed by the conducted experiments. Even though
the results of experiments on real data show better performance of the isolated filter, the simulation
experiments proved that FPD-KT managed to avoid negative transfer. It was discovered, that while
comparing a single source and multiple source estimation method, the simulated data are more suitable
for this purpose than the real data.

Centralised information fusion CF showed better estimation results on simulated data as well as
on real data experiments comparing to other distributed information fusion DF. CF also managed to
give non-zero estimate of the acceleration of the object while the other methods fail to estimate the
acceleration. On the other hand, DF achieved to estimate at the lowest time expense. The FPD-KT
showed the best performance in estimating real data in comparison to the information fusion methods
DF and CF.

Experiments on real data could be extended. The output data would be recorded in the same way
as described in this thesis, by the two independent sensors. The state vector would be recorded by an
independent third sensor. Then, the estimates could be compared to the data from to third sensor thus
avoiding the confusion in estimation performance and receiving more objective results.
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