
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Computer Science

Asynchronous communication using WebSockets

Bachelor thesis

Vít Šesták

Supervisors: Ing. Martin Komárek, CTU

Jason Hibbeler, Ph.D., UVM

Study program: Software Engineering and Technology

Prague, 2022

Declaration

“I declare that I have prepared the submitted work independently and that I have

indicated all information sources used in accordance with Methodological Guideline on

ethical principles in the preparation of university theses.”

Prague, May 10, 2022

Acknowledgements

First of all, I would like to thank my family who have supported me all the time, I

appreciate it very much.

I would also like to thank both my supervisors Ing. Martin Komárek from CTU and Jason

Hibbeler, Ph.D. from the University of Vermont for their efforts to help me in writing this

thesis. Special thanks also go to the CodeNOW development team for their assistance.

Abstract

The aim of this thesis is to study the problem of WebSocket communication and

alternative solutions and to use the knowledge gained to improve the performance of the

CodeNOW application (a web-based software platform as a service) in terms of network

communication efficiency. The optimization is achieved by transforming the synchronous

communication, realized by the polling technique between the frontend and backend

components, into asynchronous communication by using the WebSocket protocol. This

thesis deals with the analysis of the problem, the design and implementation of several

solution approaches, and the evaluation of the results obtained. Although the assignment

concerns CodeNOW as the environment for developing and testing the solution, the

principles discussed in this work are applicable to a wide range of web applications.

Keywords

WebSocket, Polling, Server-Sent Events, Web application, Asynchronous

communication, Network efficiency, React

Abstrakt

Cílem této práce je prostudovat problém WebSocket komunikace a alternativních řešení.

Dále využít získané poznatky ke zlepšení výkonu softwarové továrny CodeNOW z hlediska

efektivity síťové komunikace. Optimalizace je dosaženo transformací synchronní

komunikace, realizované technikou pollingu mezi webovým klientem a serverem, na

asynchronní komunikaci pomocí protokolu WebSocket. Tato práce se zabývá analýzou

problému, návrhem a implementací několika přístupů k řešení a vyhodnocením získaných

výsledků. Přestože zadání využívá aplikaci CodeNOW jako prostředí pro vývoj a testování

řešení, principy diskutované v této práci jsou aplikovatelné na širokou škálu webových

aplikací.

Klíčová slova

WebSocket, Polling, Server-Sent Events, Webová aplikace, Asynchronní komunikace,

Efektivita síťového provozu, React

Content

1. Introduction .. 11

1.1 The aim of the work .. 11

1.2 Work methodology .. 12

2 Problem of asynchronous communication ... 13

2.1 WebSocket protocol .. 13

2.1.1 Handshake .. 13

2.1.2 API .. 15

2.1.3 Comparison with HTTP protocol .. 16

2.1.4 Browser support ... 16

2.2 Alternative approaches ... 17

2.2.1 Polling ... 17

2.2.2 Long Polling .. 18

2.2.3 Server-Sent Events ... 19

2.2.3.1 Server-Sent Events vs WebSocket ... 20

3 Analysis and solution design ... 21

3.1 CodeNOW AS – IS communication status ... 21

3.1.1 Influence of the customer type .. 21

3.1.2 CodeNOW deployment .. 22

3.2 CodeNOW TO – BE communication status ... 22

3.3 Architecture ... 22

3.4 Deployment ... 24

4 Proof of Concept ... 27

4.1 Application resource ... 27

4.1.1 Analysis of application properties .. 28

4.1.2 Size ... 28

4.1.3 Network effect on CodeNOW .. 29

4.2 Solution proposal .. 29

4.2.1 Version 1 – HTTP/WebSocket hybrid communication 29

4.2.1.1 Backend .. 30

4.2.1.2 Frontend .. 30

4.2.2 Version 2 – Pure WebSocket communication 31

4.2.2.1 Backend .. 31

4.2.2.2 Frontend ... 32

4.2.3 Possible modification .. 32

5 Implementation .. 33

5.1 Basic functionality for both versions .. 33

5.1.1 Backend ... 33

5.1.2 Frontend .. 34

5.2 Version 1 – HTTP/WebSocket hybrid communication 35

5.2.1 Backend ... 35

5.2.2 Frontend .. 36

5.2.2.1 Optimization ... 36

5.3 Version 2 – Pure WebSocket communication .. 37

5.3.1 Backend ... 37

5.3.2 Frontend .. 38

5.3.2.1 Notes .. 39

6 Achieved objectives .. 41

7 Test ... 43

7.1 Test scenarios ... 43

7.1.1 Current status .. 44

7.1.1.1 Results .. 44

7.1.2 Version 1 .. 45

7.1.2.1 Results .. 45

7.1.3 Version 2 .. 46

7.1.3.1 Results .. 46

7.2 Results Comparison .. 47

8 Conclusion .. 49

8.1 Future steps .. 50

9 Picture list ... 51

10 Bibliography ... 53

1. Introduction

11

1. Introduction

The software factory CodeNOW is a software platform as a service, enabling businesses

to deliver customer value faster. It makes developing cloud-native applications with

microservices-based architectures possible for coders of all skill levels by automating out

operational complexities. [1]

CodeNOW is made up of many components – a frontend1 component and several

backend2 components. As a result of user activity, there are often changes in the state of

the application that have to be reflected in the user interface, as it is necessary to display

current data to connected users. It is therefore desirable for the frontend to work with

the most up-to-date data possible. This has so far been handled using the HTTP polling

technique, which consists of periodically sampling the server state. [2] [3]

As CodeNOW grows in size and is used by more and more users, it is increasingly necessary

to address the efficiency of communication between the individual components of the

application to avoid overloading the server.

The important note is, that although this work uses CodeNOW as an environment for

deploying and testing the solution, principles discussed in this work can be applied to a

wide range of applications, which deal with the problem mentioned above.

This thesis deals with the analysis of the problem, the design and implementation of the

solution, and the evaluation of the observed results.

1.1 The aim of the work

The aim of this work is to improve the performance of the CodeNOW application in terms

of network communication efficiency using asynchronous techniques. [3]

In principle, this problem can be solved in two ways that are not mutually exclusive: by

reducing the volume of data transmitted or by reducing the frequency of data

transmission.

Because of the polling technique, data is transmitted at regular intervals and some data,

typically the part of the data that has not changed between intervals, may be sent

unnecessarily. This offers room for improvement.

The result of this work should therefore be to minimize polling in CodeNOW, i.e., to

minimize periodic sampling of backend state using HTTP requests. [2]

The optimization is achieved by transforming the synchronous communication between

the frontend and backend components into asynchronous communication. [4] For this

purpose, communication over the WebSocket protocol is used. [5]

1 Frontend refers to a program’s or website’s user interface. It is commonly known as a presentation layer.
2 Backend, also referred to as the “server-side”, is the part of a computer application that users do not see.

1. Introduction

12

1.2 Work methodology

As mentioned in the assignment, an iterative approach is used for developing the solution.

This means that every two weeks a part of the solution, either a part of the

implementation, analysis or design, is delivered. [6] Delivered pieces are then discussed

with the supervisor from either CTU or UVM, and with the CodeNOW development team.

Also, during the consultations the next steps are discussed.

This regular communication is necessary for the iterative approach which consists of

planning, analysis, design, implementation, and testing and review activities that are

shown in Fig. 1 below.

Thanks to the possibility of using CodeNOW, the two-week outcomes can be tested

regularly. This includes the build, deployment and test processes. All of that can be done

with ease, because CodeNOW contains pipelines to build feature branches, and offers a

separate deployment environment.

Fig. 1 – Iterative design approach [7]

2. Problem of asynchronous communication

13

2 Problem of asynchronous communication

Asynchronous communication is a method of exchanging messages between two or more

parties in which each party receives and processes messages whenever it is convenient or

possible to do so, rather than doing so immediately upon receipt. [8]

This means that the sender of a message does not always expect an immediate response,

but can do something else and wait to be notified that a response has been received.

There are several ways and techniques which we can use to achieve this behavior, one of

which is the use of the WebSocket protocol that is described in detail in the subchapters

below.

2.1 WebSocket protocol

WebSocket is a computer communication protocol that provides a full-duplex (two-way)

communication channel over a single TCP connection. [9] In particular, the mentioned

feature of two-way communication is crucial for this work, as it is necessary for the server

to be able to send messages without doing so at the client's request, which is the case of

the traditional request-response HTTP communication. [3]

2.1.1 Handshake

To establish a WebSocket connection, it is necessary to perform a handshake, which uses

the HTTP protocol. In order to do that, the client sends an HTTP request to the server. In

this case, the request contains among others two important headers – connection and

upgrade. The connection header is set to upgrade and the upgrade header is set to

websocket. This lets the server know that we want to switch protocols, and what specific

protocol we want to use, in this case the WebSocket protocol. The request object also

defines other parameters in the header, such as Host, which is the domain name3 of the

server, Origin, which is the domain name of the client, or Sec-WebSocket-Key. [Fig. 2] [10]

3 Domain name is the designation of an identifier of a computer or computer network that is connected to the Internet

2. Problem of asynchronous communication

14

Fig. 2 – Request header

If the server is implemented to be able to communicate using the WebSocket protocol, it

sends an HTTP response to the client confirming the upgrade. You can notice that also the

response contains the connection and upgrade headers which confirm that the server is

switching from HTTP protocol to WebSocket protocol. [Fig. 3]

Fig. 3 – Response header

If no error occurs, a single WebSocket connection is established at the beginning of the

communication, which is maintained while messages are sent from the client to the server

2. Problem of asynchronous communication

15

and vice versa. It is worth saying that the WebSocket connection bypasses the CORS4

policy, so any validation, such as checking the client’s address, must be implemented on

the server. [11]

The WebSocket specification defines ws and wss as two new Uniform Resource Identifier

(URI) schemes that are used for unencrypted (ws) or encrypted (wss) connections. [Fig. 4]

It is generally recommended to use solely the wss scheme, specifically the scheme

providing encrypted connections. The unencrypted schema might be used primarily for

local development.

Fig. 4 – Connection mode

2.1.2 API

The WebSocket object provides an API5 for creating and managing a WebSocket

connection to a server.

The constructor contains a mandatory url attribute and an optional protocols attribute

specifying one or more used sub-protocols. By default, the protocols attribute is an empty

field and in many cases does not need to be set any value. [5]

 WebSocket (url, [protocols])

There are two methods available on the object mentioned above:

 close () – to close connection

 send () – to prepare and send data

In addition, the following events are available on the object:

 open – triggered if a WebSocket connection is opened

 message – triggered if any data is received

 close – triggered if the connection is terminated by one of the parties

 error – triggered if the connection is terminated because of an error

4 Cross-Origin Resource Sharing (CORS) is an HTTP-header based mechanism that allows a server to indicate any origins

(domain, scheme, or port) other than its own from which a browser should permit loading resources.
5 Application Programming Interface (API) is a software intermediary that allows two applications to talk to each other.

2. Problem of asynchronous communication

16

2.1.3 Comparison with HTTP protocol

Standard HTTP communication is based on the request-response principle. The

connection exists during this one interaction and terminates when a response is received

from the server.

However, the situation is different for the WebSocket protocol. First, a handshake is

performed using the HTTP protocol. Then, when communication via the WebSocket

protocol is already arranged, the connection lasts until one of the parties terminates it.

Note that in case of WebSocket communication, the server is not bound to any request

from the client and can send several messages in a row to the client. The differences

between the HTTP and WebSocket communication are shown in Fig. 5.

Fig. 5 – Comparison of HTTP and WebSocket communication [12]

2.1.4 Browser support

In order to use a specific functionality in our frontend application, we need to make sure

that it is sufficiently supported in the browsers that we want to target.

The WebSocket protocol is currently supported in most major browsers such as Google

Chrome, Microsoft Edge, Firefox, Safari or Opera, as can be seen in Fig. 6. [13]

2. Problem of asynchronous communication

17

Fig. 6 – WebSocket browser support [13]

2.2 Alternative approaches

Asynchronous behavior can be achieved in a few different ways and there is no optimal

solution for all cases.

This section therefore maps the commonly used alternative technical solutions that are

available today to address the problem of data up-to-dateness and highlights their

advantages and disadvantages.

2.2.1 Polling

The polling technique is a frequently used solution when solving problem of rendering

actual data for many users. It is also an approach currently implemented in the CodeNOW

application. It consists of having the client send a request to the server at periodically

recurring intervals to find out whether any data has changed or not. After receiving a

response from the server, the connection is terminated and a new connection is created

with each request.

It follows from the above description that polling might place a heavy load on network

traffic, especially if a large amount of data is transmitted. This technique might be also

particularly unsuitable for applications where data changes occur less frequently, because

many messages will be sent unnecessarily. [3]

It is worth mentioning that the classic polling is a synchronous technique, because the

server sends a response right after receiving a request from the client.

The advantage of this approach is an easy implementation in comparison to other

techniques.

The principles of the communication are shown in Fig. 7.

2. Problem of asynchronous communication

18

Fig. 7 – Polling communication example

2.2.2 Long Polling

In case of long polling, the server does not have to respond to the client request

immediately if it does not have the required information available. In this case, the server

keeps the connection open until the data is available and then sends a response to the

client.

After receiving a response from the server, the client sends the same request again. As

with polling, a new connection is created for each request-response pair. [14]

Problems may occur if there are many requests that the server must keep. This could

potentially lead to memory and performance issues if the number of clients is high.

Compared to the polling technique discussed above, the long polling technique is

asynchronous, because the server does not respond immediately to the client’s request,

but waits until the data needed is available. However, in terms of central processing unit

(CPU) usage and memory consumption, it achieves worse results than WebSocket

communication. [15]

The principles of the communication are shown in Fig. 8.

2. Problem of asynchronous communication

19

Fig. 8 – Long Polling communication example

2.2.3 Server-Sent Events

Server-Sent Events (SSE) technology allows the client to automatically receive messages

from the server using an HTTP connection. As with the WebSocket protocol, the server is

able to initiate a connection without being requested to do so by the client. The

connection is kept open after it is established. Unlike WebSocket communication, SSE

provides a one-way communication, with messages passing in the direction from server

to client. This feature can be very restrictive for applications which need also the client to

send messages to the server. [16]

However, in terms of performance, the SSE technique achieves similar results as the

WebSocket communication. [15]

In the case that there is no need for messages to be send from the client and we are

satisfied with one-way communication from the server to the client, this technique can

be a very good alternative to the WebSocket communication.

Principles of the SSE communication are shown in Fig. 9.

2. Problem of asynchronous communication

20

Fig. 9 – SSE communication example

2.2.3.1 Server-Sent Events vs WebSocket

The previous chapter concerning the alternative approaches showed that Server-Sent

Events is a very capable competitor of communication using a WebSocket protocol. Both

techniques significantly outperform polling or long-polling techniques. [15]

SSE has the advantage of being easy to implement and it expected to perform very similar

to WebSocket, both in terms of CPU usage and memory consumption. [15]

The disadvantage of SSE is a less variability because it provides one-way communication.

SSE practices one-way communication, and if we decided or were forced to send

messages from the client to the server, we would not be able to do so with SSE.

In the case of SSE, it is important to keep in mind that there are a limited number of six

connections pre browser. [16]

Due to the greater variability provided by full-duplex communication, WebSocket

communication has been chosen for the purposes of this work.

3. Analysis and solution design

21

3 Analysis and solution design

A web application may consist of several components. There is always a frontend

component that contains the user interface, and then there might be one or more

backend components and other services, such as a database. One of these backend

components may act as an API component that receives requests from the client and

sends them to the appropriate backend component. CodeNOW also uses a similar

architecture. An example of a simple web application architecture is shown in the

component diagram in Fig. 10.

Fig. 10 – Web application architecture example

3.1 CodeNOW AS – IS communication status

In the current state, a frontend component performs many queries on various backend

components using HTTP polling. As CodeNOW grows in size and gains more users, polling

starts causing performance issues as there are more and more requests to which the

backend must respond.

3.1.1 Influence of the customer type

CodeNOW is intended to serve many users at once. For this reason, polling may not be

the best solution for communication between the frontend and the backend, as it can

3. Analysis and solution design

22

place a lot of load on backend components that must send responses to these users every

few seconds, in the current CodeNOW implementation it is 15s.

3.1.2 CodeNOW deployment

The CodeNOW application runs in a cloud environment, where it is deployed using

Kubernetes configuration files. [17] With the help of Kubernetes, an open source system

for automating deployment, scaling, and management of containerized applications, it is

possible to run backend components in multiple replicas, so-called pods, on multiple

machines, so-called nodes. The network traffic can be then divided between these nodes

using a load balancer component. However, this brings greater demands on the

purchased computation power and thus makes the operation more expensive overall. In

other words, if the problem can be solved at the code change level, it is definitely a better

and cheaper solution than buying more powerful hardware or more machines to run the

application on.

3.2 CodeNOW TO – BE communication status

The high-level goal is to significantly reduce the frequency of sending queries to the server

and also to reduce the volume of data transferred. The target state to be achieved by this

work should replace periodic HTTP queries and use asynchronous events instead.

An asynchronous approach should streamline communication between the frontend and

backend, improving the responsiveness of the entire application and thus the user

experience.

Although the network situation is not currently critical, it is expected that in near future,

as CodeNOW expands to new countries and gains more users, this problem will appear

soon and it is important to be prepared for it.

3.3 Architecture

In terms of this work, the detailed CodeNOW architecture is abstracted, because it

contains several components that are irrelevant to this work and also I want to point out

that principles discussed in this work apply in general to a wide range of applications.

The frontend component, which is based on ReactJS, a JavaScript library for building user

interfaces, used together with the TypeScript language for greater type security, is an

especially important part of the solution. [18] [19]

The frontend connects to the API component, which is based on the Java Micronaut

framework, which can be described as a modern, open source, JVM-based, full-stack

toolkit. [20] The API component receives client requests, authenticates them using its

security service, and calls the appropriate backend component to execute the request.

3. Analysis and solution design

23

When calling backend components, it can use its client service, since in this case it is the

API component that acts as the client.

In Fig. 11 below, there is just one component representing the backend logic, but it is not

uncommon to have several backend components, each dealing with its own domain.

There might be also a message broker, for example Apache Kafka, that provides

asynchronous messaging between the API component and backend logic component, so

that the API component would use Kafka topics to push and pull messages and to

communicate with the backend logic component instead of calling its REST6 controllers

using HTTP. [21] [22] The backend logic component contains services needed to process

requests.

There is also a database, specifically the widely used open source relational database

PostgreSQL, because most applications, including CodeNOW, need to store some data.

[23]

6 REST (Representational State Transfer) is an architectural style for providing standards between computer systems on

the web.

3. Analysis and solution design

24

Fig. 11 – Simplified CodeNOW architecture

3.4 Deployment

Fig. 12 shows a deployment diagram of the simplified CodeNOW architecture. The whole

application is deployed to a Kubernetes cluster and each component runs in a Docker

container, which can be interpreted as a standalone, executable package of software that

includes everything needed to run an application. [24] These containers run in so-called

pods. Each component in the cluster runs on a separate machine called a node and runs

the Linux operating system. The user device may run any operating system as it only needs

access to a web browser. You can see that WebSocket communication is used between

the frontend running on the user device and API component. Also there might be a

message broker component between the API and Application Server components which

provides asynchronous messaging. Otherwise HTTP(s) communication is used.

3. Analysis and solution design

25

Fig. 12 – Simplified CodeNOW deployment scheme

3. Analysis and solution design

26

4. Proof of Concept

27

4 Proof of Concept

To test whether the proposed solution works correctly and meets the requirements

mentioned in Section 1.1, the problem of polling queries designed to obtain a list of

created applications for a given account in CodeNOW was selected.

After a user performs an action on the application resource, e.g. user creates a new

application, other users should be notified about this fact by a message from the server.

4.1 Application resource

The basic and most important resource in CodeNOW is the application. The size of this

object depends on many factors such as the number of its components, number of

commits, builds, application packages, deployment configurations, deployments and

contributors. There are many other properties such as DORA7 metrics for each application.

Fig. 13 shows what the Application card looks like in CodeNOW.

Fig. 13 – Application card in CodeNOW

7 DORA metrics are used by DevOps teams to measure their performance. The four metrics are deployment frequency,

lead time for changes, time to recovery, and change failure rate.

4. Proof of Concept

28

4.1.1 Analysis of application properties

If a user performs an action, it may or may not change the appearance of the application

card. As shown in Fig. 14, the following application properties are susceptible to user

actions (the numbers in the figure correspond to the ordered list):

1. Application name

2. Number of deployments

3. Latest application package version

4. Number of application components

5. Number of changed lines

6. Number of commits

7. Top contributors

For the purposes of the proof of concept, I will focus on the first four of the seven

properties because they are the most important to the user in terms of working with the

application.

Fig. 14 – Analysis of the application card

4.1.2 Size

Currently, for an average-sized application, the size of the object is approximately 6kB.

This number was determined using the JSON Size Analyzer website, which calculated the

value for a real application object from CodeNOW in JSON8 format. [25]

8 JavaScript Object Notation (JSON) is a popular lightweight data-interchange format.

4. Proof of Concept

29

4.1.3 Network effect on CodeNOW

Let’s consider 10 such applications per CodeNOW account and 25 users working with

them. Given the information in the previous subsections, the size of the object containing

all the applications that the client receives from the server is approximately 60kB (6kB*10

applications). If we take into account the number of users, the server must send 1500kB

(60kB*25 users) so that everybody receives the data.

If the polling approach is implemented, it results in 1500kB of data transmitted every few

seconds depending on the polling interval. I would like to emphasize that this number

varies with the number of applications and the number of users.

Although the application is the biggest resource, there are several other resources in

CodeNOW, such as an application component, a managed component, or a cluster, for

which the same principle applies, but those resources will not be further discussed in this

research.

4.2 Solution proposal

The first step is to establish a WebSocket connection between the frontend and the API

component. This requires implementing such functionality on the server to be able to

communicate via the WebSocket protocol.

I have created two versions of the solution, each has its advantages and disadvantages

and can be suitable for different types of applications.

4.2.1 Version 1 – HTTP/WebSocket hybrid communication

This version represents a kind of hybrid solution between the HTTP and WebSocket

communication. It uses the WebSocket protocol to notify the frontend that the backend

has performed a modifying action on an application resource. The frontend may then

either send the HTTP request to fetch actual data, or ignore the message in case the data

is not needed. Also, whenever a user visits the page, an HTTP GET request is performed

to the server to retrieve the applications.

Fig. 15 shows a sequence diagram showing the behavior of this version when a user visits

the page with applications and when the frontend receives a notification message from

the server.

4. Proof of Concept

30

Fig. 15 – HTTP/WebSocket communication sequence diagram

4.2.1.1 Backend

The following applies to the API component. This component will contain a REST controller

and a @Post endpoint in it. The aim of this endpoint is to receive messages from other

backend components and broadcast9 them to all connected WebSocket clients. In most

cases, the WebSocket connections are maintained internally by the framework you use,

so you do not have to worry about them, i.e. the connections do not need to be manually

stored in the code.

You can now call this endpoint from other backend components in methods that modify

the application object.

4.2.1.2 Frontend

After receiving a message from the server, the frontend knows that changes have been

made to an application object. It has to decide whether this affects the page the user is

currently on. If the user is on a page where applications are displayed, it performs an HTTP

GET request to the API component to get the actual applications. If the action does not

affect the page, it ignores the message.

9 9 Broadcasting refers to transmitting a message that will be received by every connected device on the network.

4. Proof of Concept

31

4.2.2 Version 2 – Pure WebSocket communication

This version minimizes the usage of the HTTP protocol. The key difference is that now the

frontend stores the data needed to render a specific page, in our case the page with

applications.

This requires that the WebSocket message sent by the server contains additional

information about the object on which the action was performed. With that, the HTTP

request does not need to be performed to refresh the data as in previous version. Instead,

the data stored in the frontend are modified according to the content of the received

message.

This approach also means that whenever user re-enters the page, the stored data is used.

Fig. 16 shows a sequence diagram showing the behavior of this version when a user visits

the page with applications and when the frontend receives a notification message from

the server.

Fig. 16 – Pure WebSocket communication sequence diagram

4.2.2.1 Backend

This approach requires that the message contains all the information needed for the

modifying operation in the frontend. In case of application creation or update, the

4. Proof of Concept

32

message must contain the newly created or updated application. In case of deletion, it

should be enough to send an identifier of the deleted application.

As an optimization, in the case of an update action, only changed properties of the

changed object can be transferred to the frontend, so that we reduce the amount of

transmitted data.

4.2.2.2 Frontend

As mentioned above, the idea here is that the frontend stores the data needed to render

a page showing applications. When a user enters the page for the first time, a regular

HTTP GET request is performed to the server because the frontend does not have the data

yet. After receiving the message, the data in the response is stored. Whenever the user

accesses the page again, the stored data is used. In other words, no additional HTTP

request is needed.

4.2.3 Possible modification

An option for the future is to use a component acting as a message broker between the

frontend and the API component. A message broker is a component whose purpose is to

receive, store, and send messages. For example, RabbitMQ or Apache Kafka could play

this role as they meet the above requirements. [26] The backend component on which

the WebSocket server functionality is implemented would not need to internally store all

WebSocket connections, but would only know the network address of the message

broker. The message broker would contain a message queue to which the backend would

send messages as a producer. The frontend would then consume the messages from this

queue as a consumer.

5. Implementation

33

5 Implementation

The solution requires modifications on the client and server side of CodeNOW. Two

versions of the solution were developed according to the proposals described in the

4.2Solution proposal chapter.

This implementation uses ReactJS for the frontend solution part, and Java Micronaut for

the backend solution part.

I would like to point out that although the above frameworks are used for the purposes

of this work, an implementation using other frameworks is possible, but features like

React hooks will need to be replaced with appropriate code.

5.1 Basic functionality for both versions

First, let’s implement the basic functionality that will be used by both implementation

versions.

5.1.1 Backend

In this step, we need to implement a WebSocket server that is able to accept a connection

request from a client and establish a WebSocket connection, the so-called WebSocket

tunnel.

As long as we want the server to just accept the connection request, we do not need to

implement any methods that process received messages or send messages.

Example implementation written in Java Micronaut framework is shown in Fig. 17.

5. Implementation

34

Fig. 17 – WebSocket server example in Java Micronaut

5.1.2 Frontend

In order to communicate using the WebSocket protocol, we need to create a WebSocket

object. This will automatically attempt to open the connection to the server.

The WebSocket constructor accepts one required and one optional parameter as

discussed in the chapter 2.1.2.

After that, we can set event listeners for open and message events. You can see the

example implementation in Fig. 18.

Fig. 18 – WebSocket – Creation and event listeners

We can also use a React hook called useWebSocket. [27] To be able to use this hook, it

needs to be installed using npm, a package manager for the Node JavaScript platform.

5. Implementation

35

[28] We can do so by running the following command in the terminal: npm i react-use-

websocket

The use of the useWebSocket hook may bring a few advantages because it solves several

problems for us, such as automatic reconnecting in case of an error. For this reason, I will

use this hook further.

See the example implementation in Fig. 19.

Fig. 19 – useWebSocket hook

5.2 Version 1 – HTTP/WebSocket hybrid communication

As we have our basic functionality prepared, we can now start implementing the first

solution version.

5.2.1 Backend

In this step, we will add a REST controller with a @Post endpoint, whose intention is to be

called from other places in the backend whenever an application is created, changed or

deleted. After being called, it broadcasts the message over all WebSocket connections

that are held on the WebSocket server. The message may contain the type of the object,

the type of action performed, the object ID, and other properties.

An example implementation is shown in Fig. 20 below. Note that in this example,

messages are sent only to those clients that meet a certain requirement, i.e. we can check

their accountId property present in the client session.

5. Implementation

36

Fig. 20 – Event receiver controller example

5.2.2 Frontend

The frontend should be able to decide whether we want to react on the application

change message or not. To be able to do so, let’s hold resource types, on whose changes

we want to call a refresh callback, inside a useState hook as shown in Fig. 21 below. [29]

If the coming event concerns the resource type that we are currently interested in, the

refresh call is performed.

Fig. 21 – useWebSocket (v1)

This implementation might have a performance drawback if we call this piece of code

from multiple places in our code because multiple WebSocket connections will be

established. This would happen if our web application displayed applications on multiple

pages. In this case, each page would create a WebSocket connection. This problem also

occurs if the user accesses such a page repeatedly. The connection would be re-

established each time user re-enters it.

5.2.2.1 Optimization

In order to establish just one WebSocket connection per user, the React useContext hook

can be used. [29] This hook allows to share one WebSocket connection through the entire

application. Using this design pattern reduces connection overhead because the

handshake is performed only once after the application starts.

5. Implementation

37

The useContext hook will in this case contain an array of resource types on whose events

the connection listens, and also the callbacks for performing refresh calls. We can then

set these variables on the individual pages of the application.

Fig. 22 shows the example implementation.

Fig. 22 – useWebSocket (optimized)

In components that work with resources that are interesting for us from the WebSocket

perspective, we can use this context and set the resource type and refresh callback

variables.

5.3 Version 2 – Pure WebSocket communication

This version uses again the basic functionality implementation described in Section 5.1 as

the starting point.

5.3.1 Backend

The implementation in this version follows the same procedure as in version 1 so we can

reuse the code from the previous version. The only difference is that the event that is sent

from the endpoint to the WebSocket client must contain the entire application object.

Only in case of application deletion, it should be enough to send only the application ID.

5. Implementation

38

5.3.2 Frontend

As described in Section 4.2.2, the idea here is that the frontend should store the data

needed to render a page that contains applications.

To keep things simple, we can create variables that will hold the data. We can define them

using TypeScript as shown in Fig. 23.

Fig. 23 – Frontend data storage example

Now let’s adjust our useWebSocket hook. After receiving a message from the server, the

message should be passed to an event handler function. See Fig. 24.

Fig. 24 – useWebSocket hook (v2)

5. Implementation

39

The event handler will then check the action property which is contained in the received

message and according to its value, it will adjust the data storage variables.

After that, pages that use these data re-render to show actual data.

Fig. 25 shows how the handler can be implemented.

Fig. 25 – event handler example

5.3.2.1 Notes

In components that use WebSocket communication, there is a useEffect React hook that

is called when a user enters the page. [29] If the application data that the page uses is not

initialized in the frontend, then it performs an HTTP GET request to the server and stores

the data, as seen above. If the data has already been initialized, the page reuses it.

An implementation of a component which renders applications and reuses the stored

data is shown Fig. 26 in below.

5. Implementation

40

Fig. 26 – Component rendering applications example

In order to re-render the page automatically after the frontend has received the message,

pages use a useState hook which contains the data needed. If this data changes, the page

re-renders automatically because that is the feature of the useState hook. In order to

change the data in all interested pages, pages subscribe to the event handler. Technically,

this means that event handler stores functions which set the data in the useState hook

for those pages. If the data stored is changed, subscribed components are notified, as

seen in Fig. 25.

6. Achieved objectives

41

6 Achieved objectives

Both versions of the solution were developed as proposed in Section 4.2. Design and

implementation of the solution were made in the iterative way according to the

assignment. First, the proof of concept of the useWebSocket hook was created and it was

verified to be useful for the purpose of this work. After that, the first version of the

solution was designed and in consultation with the CodeNOW development team. After

it was approved, the first version of the solution was successfully implemented and

deployed on CodeNOW. Then, the results of this solution were observed in CodeNOW, as

discussed further in this document. After successfully completing the first version and

measuring the impact on the network efficiency, the second version was designed with

the aim of making the network communication even more efficient. After this version had

been approved, it was again successfully implemented and deployed on CodeNOW. Also

in this case, the results of this solution were observed in CodeNOW and compared to the

results of the first solution afterwards. The result of the comparison is discussed further

in this document in Section 7.

6. Achieved objectives

42

7. Test

43

7 Test

This section presents the results of observations and measurements of each version,

including the original implementation in CodeNOW.

7.1 Test scenarios

The considered situation assumes 25 users and 10 applications in CodeNOW. As

mentioned in the section 4.1.2, I will assume the average application size of 6kB.

According to CodeNOW’s development team, a user spends approximately 10 minutes

(600 seconds for calculations) per working day on the page with applications, visiting the

page 20 times. These figures were determined as medians by six CodeNOW developers

who estimated their time spent on the page and the number of visits, as shown in the

table below. [Fig. 27]

Developer
Time spent on the page with

applications per day [s]
Page visits per day

Developer 1 900 40

Developer 2 600 20 - 25

Developer 3 600 20

Developer 4 600 25

Developer 5 300 10 - 15

Developer 6 600 25

Fig. 27 – Estimates of the CodeNOW development team

Also, the number of application actions, such as creating an application package or

committing, must be taken into account. This number, determined as an average value,

was set to 5 actions per application per day.

Last but not least, not only the actual payload but also the request and response header

should be taken into account. According to Firefox Developer Tools, the size of the request

for applications is about 1.1kB and the size of the response header is about 0.4kB which

makes it approximately 1.5kB together.

Finally, the sizes of the event messages for both versions need to be determined. For

version 1, only the resourceType property with its value can be a payload, and thus the

total message size is approximately 0.5kB. For version 2, the payload is the application

object (6kB), and therefore the total amount of data transferred is approximately

6.5kB.

For the test purposes a few constants need to be introduced:

o Number of users .. 𝑈 = 25

o Visits to the page per user per day ... 𝑉 = 20

o Time spent on the page per user per day 𝑇 = 600 [s]

7. Test

44

o Total size of applications ... 𝑆𝐴 = 6 ∗ 10 = 60 [𝑘𝐵]

o Total size of one request – response pair 𝑆 = 𝑆𝐴 + 1.5 = 61.5 [kB]

o Size of an event message (version 1) 𝑆𝑀1 = 0.5 [kB]

o Size of an event message (version 2) 𝑆𝑀2 = 6.5 [kB]

o Number of application actions per day 𝐴𝐷 = 10 ∗ 5 = 50

o Day (8h) / T ratio ... 𝑅 = (8 ∗ 3600) ÷ 600 = 48

o Number of application actions during T 𝐴𝑇 = 𝐴𝐷 ÷ 𝑅 ≈ 1

In each implementation version, we will monitor two variables:

o Number of performed requests per day.................. R

o Amount of data transferred per day D [kB]

With that defined, let’s take a look at each solution in turn and see how R’s and D’s differ.

7.1.1 Current status

Currently, CodeNOW uses polling to retrieve applications with a 15s interval between

repeated requests. Whenever user enters the page with applications, a new request is

made.

7.1.1.1 Results

We can determine R as the time spent on the page per user divided by the polling interval,

multiplied by the number of users.

Then, D can be determined as the product of R and the size of applications.

Note: We can omit the number of page visits as it would not have a noticeable impact in

this case.

𝑅 = (𝑇 ÷ 15) ∗ 𝑈

𝑅 = (600 ÷ 15) ∗ 25

𝑅 = 1000

(Eq. 1)

𝐷 = 𝑅 ∗ 𝑆

𝐷 = 1000 ∗ 61.5

𝐷 = 61 500 [𝑘𝐵] ≈ 61.5 [𝑀𝐵]

(Eq. 2)

The volume of the data transferred in this implementation is observed to be 61.5MB.

7. Test

45

I would like to point out that the following situation can easily happen. Consider a user

who opens the page with applications, but then leaves for lunch and returns back in an

hour. In this case, we have R equal to 1240, because we need to add the requests

performed during this hour to the current number of requests. Therefore, D is equal to

approximately 76.3MB as shown in the following equations.

𝑅 = 1000 + (3600 ÷ 15)

𝑅 = 1 240

(Eq. 3)

𝐷 = 𝑅 ∗ 𝑆

𝐷 = 1240 ∗ 61.5

𝐷 = 76 260 [𝑘𝐵] ≈ 76.3 [𝑀𝐵]

(Eq. 4)

We can see that in this implementation, the results are very susceptible to similar

scenarios like the one above. This is not the case for version 1 or version 2 since similar

scenarios may change the resulting D only slightly (version 1) or not at all (version 2).

7.1.2 Version 1

This version requests data whenever user enters the page, but also in case the user is on

the page with applications and receives a message concerning a change of an

application.

7.1.2.1 Results

We can determine R as the number of page visits per user multiplied by the number of

users, plus the expected number of requests preformed for all users in response to

messages received while on the application page.

Then, D can be determined as the product of R and the size of applications, plus the

volume of event messages received from the server for all users.

𝑅 = (𝑉 ∗ 𝑈) + (𝐴𝑇 ∗ 𝑈)

𝑅 = (20 ∗ 25) + (1 ∗ 25)

𝑅 = 525

(Eq. 5)

𝐷 = (𝑅 ∗ 𝑆) + (𝐴𝐷 ∗ 𝑈 ∗ 𝑆𝑀1)

𝐷 = (525 ∗ 61.5) + (50 ∗ 25 ∗ 0.5)

7. Test

46

𝐷 = 32 912.5 [𝑘𝐵] ≈ 32.9 [𝑀𝐵]

(Eq. 6)

The volume of the data transferred in this implementation is observed to be 32.9MB.

Let’s assume again the situation described earlier, where one user leaves for lunch for an

hour while staying on the page with applications. Let 𝐴𝐼 be the number of actions

additionally performed in response to server notifications during the hour when the user

left. Then 𝐴𝐼 is calculated as

𝐴𝐼 = 𝐴𝐷 ÷ 8

𝐴𝐼 = 50 ÷ 8

𝐴𝐼 ≈ 6

(Eq. 7)

Then the total amount of data transferred is equal to the previously computed 𝐷 plus the

additionally transferred data.

𝐷𝑡𝑜𝑡𝑎𝑡 = 𝐷 + 6 ∗ 𝑆

𝐷𝑡𝑜𝑡𝑎𝑙 = 32 912.5 + 6 ∗ 61.5

𝐷𝑡𝑜𝑡𝑎𝑙 = 33 281.5 [𝑘𝐵] ≈ 33.3 [𝑀𝐵]

(Eq. 8)

We can see that the difference between the originally assumed scenario and the modified

scenario is approximately 0.4MB which is a much smaller increase compared to the

current implementation of CodeNOW where the increase is 14.8MB.

7.1.3 Version 2

This version requests data only when the user first enters the page. Any time after that,

when the user enters the page, the stored data is used. However, the data received as

event messages from the server must also be taken into account.

7.1.3.1 Results

We can determine R as the number of users.

Then, D can be determined as the product of R and the size of applications plus the size

of event messages received from the server due to an application change. This message

contains the modified application (6kB) and is therefore approximately 6.5kB in size.

𝑅 = 𝑈

7. Test

47

𝑅 = 25

(Eq. 9)

𝐷 = (𝑅 ∗ 𝑆) + (𝐴𝐷 ∗ 𝑈 ∗ 𝑆𝑀2)

𝐷 = (25 ∗ 61.5) + (50 ∗ 25 ∗ 6.5)

𝐷 = 9 662.5 [𝑘𝐵] ≈ 9.7 [𝑀𝐵]

(Eq. 10)

The volume of the data transferred in this implementation is observed to be 9.7MB.

In the case of this version, the previously discussed scenario of one user leaving for lunch

does not change the volume of data transferred because it does not matter whether the

user is on the page with applications or not.

7.2 Results Comparison

As can be seen from the above results, there are significant differences in the resulting

amount of data transferred in each version.

With the specified data, the current version requires approximately 61.5MB of data

transferred, version 1 reduces this figure to approximately 50% with its 32.9MB of data

transferred, and if version 2 is implemented, the amount of data transferred can be

reduced to approximately 9.7MB, which is around 16% of the data required by the current

implementation.

A graphical representation of the differences between the different implementations

under the conditions defined above is given in the following graph. [Fig. 28]

Fig. 28 – Data volume measurement results

61.5

32.9

9.7

0

10

20

30

40

50

60

70

Amount of data transferred [MB]

Current version Version 1 Version 2

7. Test

48

A scenario where one user leaves for an hour for lunch but stays on the page with

applications was also discussed, and network effects were measured. The following graph

shows a comparison of the measured values. [Fig. 29]

Fig. 29 - Data volume measurement results of the modified scenario

76.3

33.3

9.7

0

10

20

30

40

50

60

70

80

90

Amount of data transferred [MB] - modified scenario
(One user leaves for an hour while staying on the application page)

Current version Version 1 Version 2

8. Conclusion

49

8 Conclusion

The motivation for this work was to streamline the performance of the CodeNOW

software factory through asynchronous communication.

Although the assignment concerned CodeNOW as the environment for developing and

testing the solution, replacing synchronous communication with asynchronous

communication is a general problem that is relevant to a wide range of applications, and

therefore the principles discussed in this work apply also to them.

As a part of the problem analysis, the possibility of communication via the WebSocket

protocol was discussed in detail, as well as other alternative approaches such as polling,

long polling, or Server-Sent Events. In the end, the WebSocket communication was chosen

for its greater flexibility and efficiency.

After analyzing the problem, the Proof of Concept solution was developed for specific

areas in the CodeNOW product, concretely for the page which renders the list of

applications. Within this area it was verified that the proposed solution can be

implemented and meets requirements and defined goals.

Two versions of the solution were successfully developed – a hybrid solution that uses

both HTTP and WebSocket protocols (version 1), and a pure WebSocket solution (version

2).

Version 1 uses both HTTP and WebSocket communication using the WebSocket protocol

to notify the frontend that a backend has performed a modification action on an

application resource. The frontend can then either send an HTTP request to retrieve the

actual data, or ignore the message if the data is not needed.

Version 2 minimizes the usage of the HTTP protocol. The key difference is that now the

frontend stores the data needed to render a specific page, in our case the page with

applications.

After deploying each version, observations and measurements were made in order to

determine how data efficient each version was.

In a model situation with the specified data, the current version requires approximately

61.5MB of data transferred. Version 1 reduces this figure to approximately 50% with its

32.9MB of data transferred. If version 2 is implemented, the amount of data transferred

can be reduced to approximately 9.7MB which is about 16% of the data required by the

current implementation. It follows that by far the most effective option is version 2. In

addition, the more time a user spends on the page with applications, the greater the

difference in efficiency between versions.

In addition to the benefits for network traffic, the solution also contributes to an improved

user experience as users are shown up-to-date data. In CodeNOW, the fact that users

don't have to wait for a polling interval to see the actual data is not very important, but

there are applications for which this would be very beneficial.

What was successful was that I managed to meet all the points of the assignment.

8. Conclusion

50

What was not optimal was the difficulty of communication. I spent this semester at the

University of Vermont in the United States under a bilateral agreement with CTU, and

therefore there was a significant time lag. Because of this, it was sometimes not possible

to address current issues with the supervisor and/or the CodeNOW development team in

Prague.

8.1 Future steps

The next step is to consider implementing the new functionality in other parts of

CodeNOW to apply WebSocket communication wherever polling is used and where it

makes sense. This will require modifications on both the client and server side of

CodeNOW.

In addition, the objects transferred between the client and the server in event messages

can be further optimized so that a minimal amount of data travels over the network.

Currently, there is also a discussion about using the React Query library to work with data

on the frontend. [30] This library makes fetching, caching, synchronizing and updating

server state easier and can also work with the WebSocket protocol. If the decision is made

to use this library, it will be necessary to research whether or not the solution proposed

in this thesis needs to be modified.

9. Picture list

51

9 Picture list

FIG. 1 – ITERATIVE DESIGN APPROACH [7] .. 12
FIG. 2 – REQUEST HEADER ... 14
FIG. 3 – RESPONSE HEADER ... 14
FIG. 4 – CONNECTION MODE .. 15
FIG. 5 – COMPARISON OF HTTP AND WEBSOCKET COMMUNICATION [12] 16
FIG. 6 – WEBSOCKET BROWSER SUPPORT [13] ... 17
FIG. 7 – POLLING COMMUNICATION EXAMPLE .. 18
FIG. 8 – LONG POLLING COMMUNICATION EXAMPLE .. 19
FIG. 9 – SSE COMMUNICATION EXAMPLE ... 20
FIG. 10 – WEB APPLICATION ARCHITECTURE EXAMPLE .. 21
FIG. 11 – SIMPLIFIED CODENOW ARCHITECTURE ... 24
FIG. 12 – SIMPLIFIED CODENOW DEPLOYMENT SCHEME ... 25
FIG. 13 – APPLICATION CARD IN CODENOW ... 27
FIG. 14 – ANALYSIS OF THE APPLICATION CARD ... 28
FIG. 15 – HTTP/WEBSOCKET COMMUNICATION SEQUENCE DIAGRAM ... 30
FIG. 16 – PURE WEBSOCKET COMMUNICATION SEQUENCE DIAGRAM.. 31
FIG. 17 – WEBSOCKET SERVER EXAMPLE IN JAVA MICRONAUT ... 34
FIG. 18 – WEBSOCKET – CREATION AND EVENT LISTENERS .. 34
FIG. 19 – USEWEBSOCKET HOOK ... 35
FIG. 20 – EVENT RECEIVER CONTROLLER EXAMPLE .. 36
FIG. 21 – USEWEBSOCKET (V1) .. 36
FIG. 22 – USEWEBSOCKET (OPTIMIZED) .. 37
FIG. 23 – FRONTEND DATA STORAGE EXAMPLE ... 38
FIG. 24 – USEWEBSOCKET HOOK (V2) ... 38
FIG. 25 – EVENT HANDLER EXAMPLE .. 39
FIG. 26 – COMPONENT RENDERING APPLICATIONS EXAMPLE ... 40
FIG. 27 – ESTIMATES OF THE CODENOW DEVELOPMENT TEAM .. 43
FIG. 28 – DATA VOLUME MEASUREMENT RESULTS .. 47
FIG. 29 - DATA VOLUME MEASUREMENT RESULTS OF THE MODIFIED SCENARIO 48

9. Picture list

52

10. Bibliography

53

10 Bibliography

[1] CodeNOW. CodeNOW DevOps Value Stream Delivery Platform [online]. Praha [cit.

2022-03-31]. Dostupné z: https://www.codenow.com/

[2] MOZILLA FOUNDATION. HTTP. In: MDN [online]. 2021 [cit. 2022-03-31]. Dostupné

z: https://developer.mozilla.org/en-US/docs/Web/HTTP

[3] FAANG, Crack. Ajax Polling vs Long-Polling vs WebSockets vs Server-Sent Events.

Medium.com. 2021. Dostupné také z: https://medium.com/geekculture/ajax-

polling-vs-long-polling-vs-websockets-vs-server-sent-events-e0d65033c9ba

[4] Synchronous vs Asynchronous Communication. In: Guru: Organize company

information [online]. Guru Technologies [cit. 2022-03-31]. Dostupné z:

https://www.getguru.com/reference/synchronous-vs-asynchronous-

communication

[5] MOZILLA FOUNDATION. WebSocket. MDN. 2021. Dostupné také z:

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket/WebSocket

[6] What is Iterative Design Approach. In: Wishdesk [online]. [cit. 2022-04-01].

Dostupné z: https://wishdesk.com/blog/what-is-iterative-design-approach

[7] Iterative Design Approach. In: Wishdesk [online]. [cit. 2022-04-01]. Dostupné z:

https://wishdesk.com/blog/what-is-iterative-design-approach

[8] Asynchronous. In: Mozilla Foundation [online]. https://developer.mozilla.org/ [cit.

2022-01-27]. Dostupné z: https://developer.mozilla.org/en-

US/docs/Glossary/Asynchronous

[9] MOZILLA FOUNDATION. TCP. In: MDN [online]. [cit. 2022-03-31]. Dostupné z:

https://developer.mozilla.org/en-US/docs/Glossary/TCP

[10] MOZILLA FOUNDATION. Writing WebSocket Servers. MDN. 2021. Dostupné také z:

https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers

[11] MOZILLA FOUNDATION. Cross-Origin Resource Sharing (CORS). In: MDN [online].

[cit. 2022-03-31]. Dostupné z: https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS

[12] DE TURCKHEIM, GRÉGOIRE a ROWENA JONES. IoT Hub: What Use Case for

WebSockets?. In: Scaleway [online]. [cit. 2022-01-18]. Dostupné z:

https://blog.scaleway.com/iot-hub-what-use-case-for-websockets/

[13] Can I use [online]. [cit. 2022-04-03]. Dostupné z:

https://caniuse.com/?search=websocket

10. Bibliography

54

[14] SINGH, Siddharth. What is HTTP Long Polling ?. Educative.io. Dostupné také z:

https://www.educative.io/edpresso/what-is-http-long-polling

[15] APPELQVIST, Rasmus a Oliver ÖRNMYR. Performance comparison of XHR polling,

Long polling, Server sent events and Websockets. Karlskrona. Bachelor thesis.

Blekinge Institute of Technology.

[16] NWAMBA, Christian. WebSockets vs Server-Sent Events. 2019. Dostupné také z:

https://www.telerik.com/blogs/websockets-vs-server-sent-events

[17] Kubernetes [online]. Production-Grade Container Orchestration [cit. 2022-03-31].

Dostupné z: https://kubernetes.io/

[18] React: A Javascript library for building user interfaces [online]. [cit. 2022-03-31].

Dostupné z: https://reactjs.org/

[19] Typescript: JavaScript With Syntax For Types [online]. [cit. 2022-03-31]. Dostupné

z: https://www.typescriptlang.org

[20] Micronaut: A modern, JVM-based, full-stack framework for building modular, easily

testable microservice for serverless applications [online]. [cit. 2022-04-01].

Dostupné z: https://micronaut.io/

[21] Apache Kafka [online]. [cit. 2022-03-31]. Dostupné z: https://kafka.apache.org

[22] What is REST?. In: Codecademy [online]. [cit. 2022-04-01]. Dostupné z:

https://www.codecademy.com/article/what-is-rest

[23] PostgreSQL: The World's Most Advanced Open Source Relational Database

[online]. [cit. 2022-04-04]. Dostupné z: https://www.postgresql.org

[24] Home - Docker [online]. [cit. 2022-04-01]. Dostupné z: https://www.docker.com/

[25] JSON Size Analyzer. DebugBear [online]. [cit. 2022-04-04]. Dostupné z:

https://www.debugbear.com/json-size-analyzer

[26] RabbitMQ: Messaging that just works [online]. [cit. 2022-03-31]. Dostupné z:

https://www.rabbitmq.com/

[27] Npm [online]. [cit. 2022-04-01]. Dostupné z: https://www.npmjs.com

[28] React-use-websocket. Npm [online]. [cit. 2022-04-01]. Dostupné z:

https://www.npmjs.com/package/react-use-websocket

[29] Introducing Hooks - React. In: React: A JavaScript library for building user

interfaces [online]. [cit. 2022-04-01]. Dostupné z: https://reactjs.org/docs/hooks-

intro.html

[30] React Query: Performant and powerful data synchronization for React [online]. [cit.

2022-04-11]. Dostupné z: https://react-query.tanstack.com/overview

