
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computers

Web application for e-mail management

Valeriia Chekanova

Supervisor: Ing. Jan Zídek
Field of study: Software Engineering and Technology
May 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492197Personal ID number:Chekanova ValeriiaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and TechnologyStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Web application for e-mail management

Bachelor’s thesis title in Czech:

Webová služba na zpracování emailů

Guidelines:
This bachelor thesis aims to create a web service for e-mail management.
Guidelines:
1) Become familiar with e-mail processing (protocols, agents, security side).
2) Analyze the existing method of communication between services.
3) Define the functional, non-functional requirements, and acceptance criteria.
4) Design the scalable application. The application should support user roles distinction, allow e-mail sending, storing in
the database, different e-mail configuration and browsing sent e-mails. Implement a health check module.
5) Implement and deploy the back-end part of the application.
6) Create test scenarios and test the application in the test environment. Cover code with unit tests.

Bibliography / sources:
[1] D. Crocker. Internet Mail Architecture. 2009
[2] Yasushi Saito, et al. Manageability, availability and performance in Porcupine: a highly scalable, cluster-based mail
service. 1999
[3] Nick Christenson, et al. Highly Scalable Electronic Mail Service Using Open Systems. 1997
[4] Bruce Schneier. E-Mail Security: How To Keep Your Electronic Messages Private. 1995
[5] Evgen Verzun. The Art of Email Security: Putting Cybersecurity In Simple Terms. 2020

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Zídek Centrum znalostního managementu

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 12.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Jan Zídek

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to acknowledge my supervi-
sor Ing. Jan Zídek for his patient guid-
ance and valuable advice. Furthermore, I
would like to thank my parents for sup-
porting me throughout the years. Many
thanks also go to Ph.D. Andrey Bon-
darev for his contagious optimism that
has helped me to finish this thesis.

Declaration
I declare that this text presents my own
work, and I have quoted all relevant
sources of information used.

Prague, 19. May 2022

Valeriia Chekanova

v

Abstract
In recent decades, e-mail has become an
indispensable part of our lives. Not only
is it an effortless and powerful method
of communication, but it is also a highly
reliable solution.

The aim of this thesis is to develop an e-
mail application that allows services in the
client’s infrastructure to send messages to
end-users.

The work contains several parts that
describe the development process, which
begins with gaining theoretical knowledge
about e-mail and culminates in applica-
tion deployment. The theoretical part cov-
ers the main principles of e-mail building,
thus providing a foundation for further
analysis. The second part investigates the
AS-IS situation and specifies the TO-BE
state; the determination of these states
plays a fundamental role in defining soft-
ware requirements and acceptance criteria.
The development chapter highlights im-
plemented solutions and is followed by a
part that describes testing and continuous
deployment approaches.

The developed application is created
according to the client’s requisitions and
successfully deployed to the testing envi-
ronment.

Keywords: Java, Spring, Spring Boot,
web application, electronic mail, e-mail,
MongoDB, Docker

Supervisor: Ing. Jan Zídek

Abstrakt
V poslední době se e-mail stal nepostrada-
telnou součástí našeho života. Nejen, že je
to snadný a výkonný způsob komunikace,
ale je to také vysoce spolehlivé řešení.

Cílem práce je vyvinout e-mailovou apli-
kaci, která umožní službám zákazníka po-
sílat zprávy koncovým uživatelům.

Práce obsahuje několik částí, které popi-
sují proces vývoje, který začíná získáním
teoretických znalostí o e-mailu a končí
nasazením aplikace. Teoretická část obsa-
huje principy vytváření e-mailů a posky-
tuje tak základ pro další analýzu. Druhá
část zkoumá situaci AS-IS a specifikuje
stav TO-BE, který hraje zásadní roli při
definování akceptačních kritérií a poža-
davků na aplikaci. Dále následuje kapi-
tola, popisující rysy nabízeného řešení a
postup při jeho implementaci. Závěrečná
kapitola obsahuje informace ohledně tes-
tování aplikace a zajištění kontinuálního
nasazení.

Aplikace je implementována dle poža-
davků zákazníka a úspěšně nasazena do
testovacího prostředí.

Klíčová slova: Java, Spring, Spring
Boot, webová aplikace, elektronická
pošta, e-mail, MongoDB, Docker

Překlad názvu: Webová služba na
zpracování e-mailů

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1

Part I
Theoretical part

2 E-mail message format 5
2.1 Internet Message Format 5

2.1.1 E-mail header 5
2.1.2 E-mail body 6

2.2 Multipurpose Internet Mail
Extensions . 6
2.2.1 Content-Type field 6
2.2.2 Content-Disposition field 7

2.3 E-mail with an attachment 7
3 The Principles of E-mail
Processing 9
3.1 Terminology 9
3.2 E-mail protocol 9

3.2.1 Post Office Protocol 10
3.2.2 Internet Message Access

Protocol . 10
3.2.3 Simple Mail Transfer Protocol 11

3.3 E-mail Agent 11
3.3.1 Message User Agent 11
3.3.2 Message Submission Agent . . 11
3.3.3 Message Transfer Agent 12
3.3.4 Message Delivery Agent 12

3.4 Example of e-mail processing . . . 12
4 E-mail security 15
4.1 Simple Authentication and

Security Layer 15
4.2 Extended Simple Mail Transfer

Protocol . 16
4.3 SMTP authentication methods . 16

4.3.1 IP address restrictions 16
4.3.2 Prior POP authentication . . . 16
4.3.3 Authenticated SMTP 17

4.4 Secure message transmission . . . 17

Part II
Analysis

5 Analysis 21
5.1 The pilot version 21
5.2 Application usage 21
5.3 Application requirements 21

5.3.1 Functional requirements 21
5.3.2 Non-functional requirements . 22

5.4 Acceptance criteria 22
5.5 Existing solutions 23
6 Application design 25
6.1 Architecture 25

6.1.1 Layers . 25
6.1.2 Modules 26

6.2 Choice of technologies 26
6.3 Domain diagram 27
6.4 Data . 28

6.4.1 Database type 29
6.4.2 NoSQL storage type 29
6.4.3 Document-based database . . . 30
6.4.4 Database design 30

Part III
Development

7 Data and service layers 33
7.1 Data layer 33

7.1.1 Identifiers 33
7.1.2 Reference types 34
7.1.3 Validation 35
7.1.4 Repository pattern 35

7.2 Service layer 35
7.2.1 Abstract service 35
7.2.2 E-mail building 37
7.2.3 Entity validation 37

8 REST layer and security 39
8.1 REST layer 39

8.1.1 Data Transfer Object 39
8.1.2 API design 40
8.1.3 Exception handling 40
8.1.4 Swagger 41

8.2 Security . 41
8.2.1 Authentication 41
8.2.2 Authorization 42
8.2.3 Encryption 43

Part IV
Final phases

9 Testing 47
9.1 Test approach 47

9.1.1 Test execution 47
9.1.2 Development and user testing 48
9.1.3 Tools . 48

vii

9.2 Development testing 48
9.2.1 Unit tests 48

9.3 Meeting acceptance criteria 50
9.3.1 Test Scenarios 50
9.3.2 Postman 51

9.4 Conclusion 52
10 Deployment and application
maintenance 53
10.1 Docker . 53

10.1.1 Different environments 53
10.1.2 Logging from Docker

container . 55
10.2 GitLab Continuous Delivery . . . 55
10.3 The health check module 55
11 Conclusion 57
11.1 Results . 57
11.2 Maintenance and future

development 57

Appendices
A Bibliography 61
B List of Abbreviations 65

viii

Figures
3.1 E-mail processing diagram, source:

[21] . 13

6.1 Application layers 26
6.2 Domain diagram 28

9.1 Results of the tests 52

Tables
2.1 Mandatory header fields, source:

[1] . 5
2.2 Optional header fields, source: [1] 6

3.1 Example of MX RR 9

6.1 Application modules 26

9.1 Test scenarios 50

ix

Chapter 1
Introduction

E-mail is a crucial element of social infrastructure, as it provides instant and
effective communication. It is an integral part of daily life, and its use is
not limited to personal areas; e-shops, banks, and other services widely use
e-mails to communicate with their customers.

The application is developed for a specific customer, the Center for Knowl-
edge Management, which in the following chapters is mentioned as CZM.

The chapter provides motivation for communication via e-mail and describes
the current CZM’s strategy of delivering a message to a client. The chapter
ends with a definition of the thesis goals.

1.1 Motivation

Although instant messaging applications are widely used nowadays, e-mail is
still an effective tool that allows fast, convenient and accurate communication.
One of the benefits of electronic mail is platform independence, as the users
do not need to be on the same system to exchange messages. The e-mail
concept also facilitates storage and searching for information that is not
currently in use: things like order details, invoices, and payment confirmation.
Furthermore, electronic mail provides significant flexibility in message format,
as it can support a wide range of media types.

For these reasons, an e-mail application is considered a flexible and scalable
solution for establishing communication between services and end-users.

1.2 Goals

Currently, each service in the customer’s infrastructure communicates with
users in its own way, which leads to broad discrepancies in e-mail formats,
complicated authorization processes, and code duplication. Moreover, this
solution is hardly maintainable.

The thesis aims to develop a web application that simplifies message sending
for the CZM’s services by providing a centralized solution.

1

2

Part I

Theoretical part

3

4

Chapter 2
E-mail message format

The chapter provides an overview of e-mail format standards and message
content. In addition, the reader will gain an understanding of the format of
email with an attachment.

2.1 Internet Message Format

An Internet Message Format (IMF) is a standardized ASCII-based syntax for
messages sent between computer users. The format requires messages to use
only US-ASCII characters divided into lines. An e-mail message contains a
header that is followed by a body. [1]

2.1.1 E-mail header

The e-mail header presents the information required for delivering the e-mail
to the destination. The header consists of fields; each has a name followed by
a colon and a body. The order of the fields is not set accurately, as they can
be rearranged during transportation [1].

Table 2.1 presents the mandatory header fields, while the optional fields
can be found in Table 2.2.

Field name Content
From: An e-mail address and optionally

a name of the sender.
Date: The local time and date when

the e-mail was sent (set up by a
sender’s machine).

Table 2.1: Mandatory header fields, source: [1]

5

2. E-mail message format
Field name Content
To: A recipient’s e-mail address and

optionally the recipient’s name.
Cc: Addresses of additional recipients,

whose names are visible to each
other.

Bcc: Message’s copy recipients, whose
names are invisible to each other.

Subject: A brief overview of the e-mail
topic.

Message-ID: An unique identifier for a particu-
lar version of the particular mes-
sage. The host guarantees the
uniqueness of ID.

MIME-version: A version number that declares
that a message supports MIME
(more information can be found in
Section 2.2).

Table 2.2: Optional header fields, source: [1]

Formerly, there were x-fields, where the ’X’ letter stands for eXperimental
or eXtension. These fields are also called non-standardized and were used for
application-specific purposes. Nowadays, these fields are deprecated as the
distinction between standardized and non-standardized header fields was not
well defined. [1, 2]

2.1.2 E-mail body

The body of a standard text message contains lines of US-ASCII characters.
There are only two restrictions: the number of characters in a line is limited
to 998, and the control characters CR and LF must occur in a sequence.
An e-mail with attachments is affected by more limitations, which will be
discussed in Section 2.2.2. [1]

2.2 Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions (MIME) is an Internet standard
extension of the e-mail’s format that supports characters different from
US-ASCII, multipart message bodies, and non-textual messages. [3]

2.2.1 Content-Type field

The Content-Type field describes the format of the body data. It allows
the receiving Message User Agent (which is described in 3.3.1) to choose an

6

.............................. 2.3. E-mail with an attachment

appropriate mechanism for data processing. The field contains a media type
and a subtype in the following format: ’type:subtype’, where both fields are
mandatory. The top-level media type specifies the general type of data; the
subtype specifies the format, e.g. image:jpeg. [3]

The most common types of top-level media are text, image, audio, video,
and multipart. The multipart subtype can have one of the following values:. The mixed subtype is used with independent body parts that should be

coupled in a specific order. [4]. The digest subtype is used to send collections of messages. [4]. The alternative subtype is used when the system should choose the
most appropriate type based on the local environment and the order of
the body parts matters. [4]. The related subtype is used to indicate that each part of the message
is a component of the aggregation. This subtype is useful for sending a
complete web page with images in a single message. [5]

2.2.2 Content-Disposition field

The MIME part can be displayed inline with the Content-Disposition set to
"inline" value as the following:

Content-Disposition: inline;

The MIME part can be set to display the attachment automatically with:

Content-Disposition: attachment;

Nevertheless, most of the e-mail agents do not follow these instructions
and use internal algorithms to determine the multi-purpose Internet Mail
Extensions parts. [6]

2.3 E-mail with an attachment

An e-mail, which includes an attachment, is made up of multiple parts. A
multi-part e-mail contains one or more different data sets combined in a single
body. The entity’s header must contain a ’multipart’ Content-Type; the body
contains one or more parts separated from each other by an encapsulation
boundary. If there are no headers in the body parts, the blank line will
follow the boundary string. The encapsulation boundary should be explicitly
specified in the content-type field. [4]

An example of a specification of the encapsulation boundary:

Content-type: multipart/mixed; boundary="my boundary"

7

2. E-mail message format
A multipart message can look as follows:

From: Someone <someone@example.com>
Date: Thu, 9 Dec 2021 13:24:57 +0100
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="my boundary"

The mail composers include there
an explanatory note for readers incompatible with MIME.
This text will be ignored.

--my boundary
Content-Type: text/plain

It is the text body.

--my boundary
Content-Type: text/plain;
Content-Disposition: attachment;

filename="example.txt"

It is the message attachment.
--my boundary

8

Chapter 3
The Principles of E-mail Processing

The chapter describes the mechanisms of e-mail processing and contains
DNS-related terms. The reader will become acquainted with e-mail related
protocols and e-mail agents.

3.1 Terminology

A Mail Exchanger Resource Record (MX RR) is a resource DNS record
used for e-mail transfer based on the Simple Mail Transfer Protocol. More
information can be found in 3.2.3. The record contains two fields: [7]. The host name points to an address DNS record.. The priority defines the record that should be used. The preferred

record is the one with the lowest value.

An example of MX RR is presented in Table 3.2:

Domain TTL Class Type Priority Host
example.com 3600 IN MX 5 mail.example.com

Table 3.1: Example of MX RR

A Fully qualified domain name (FQDN) is a domain name that
specifies its exact location in the DNS’s tree hierarchy. It contains all domain
levels, including the top-level and root zones. FQDN can be interpreted
exactly one way. For a device with the hostname ’host’ located in the parent
domain ’parent.com’, the fully qualified domain name is ’host.parent.com’. [8]

A Mailbox is a place for e-mail storage. It is a conceptual entity, which is
defined by an e-mail address in the following format: username@domain. [1]

3.2 E-mail protocol

An e-mail protocol is an established set of rules for e-mail transmission. There
are three main types of e-mail protocols; all of them belong to the application
layer. The message transferring is based on the TCP connection. Therefore,

9

3. The Principles of E-mail Processing
all of these protocols are reliable, which means that the data will be delivered
in the correct order. These e-mail protocols are not secure by default, so the
use of cryptographic protocols is desirable. [9, 10]

3.2.1 Post Office Protocol

The Post Office Protocol (POP3) is the most common version that uses
port 110 for unsecured communication. The POP server is installed on the
recipient’s mail server, while the POP client is installed on the recipient’s
machine. The protocol provides support for the ’offline’ paradigm. Once the
e-mails are received from the mail server on the client’s device, there is no
need for an Internet connection. [11]

The process of client authorization starts after receiving the following
command from the server:

OK POP3 server ready

The client sends a username followed by a password, then the mail server
validates the credentials, and sends an OK message in case of success. When
the connection is established, the client has access to the list of mails located
on the mail server. E-mails are deleted from the server after they have been
retrieved from the server to the client’s machine. Thus, accessing the same
e-mails on another device cannot be achieved without an explicit configuration
of the copying strategy. [12]

3.2.2 Internet Message Access Protocol

Internet Message Access Protocol (IMAP) is an Internet standard protocol
used by e-mail clients to retrieve e-mails from a mail server. Unlike the Post
Office Protocol, IMAP provides full remote access to a mailbox, in addition
to content retrieval. Unsecure communication is configured on port 143. [13]

Features (in comparison to the POP3) [14] :. IMAP enables parallel access to the mailbox for multiple users. It is
achieved by keeping the message on the mail server even when the user
has already downloaded it.. IMAP enables tracking the message’s state by setting flags such as "seen",
"answered", "deleted", and "draft". Flags are stored on the mail server,
so different users accessing the same Mailbox see consistent information.. IMAP client stays connected to the mail server as long as the user
interface is active; POP client connects to the mail server, receives
e-mails, and disconnects.. IMAP enables downloading of only selected MIME parts. Therefore,
the client can download the message text without downloading the
attachment.

10

.................................... 3.3. E-mail Agent

. IMAP enables one to perform server-side searches. Therefore, the client
does not need to download messages from its own Mailbox to find
information.. IMAP enables mailbox manipulations such as creating, renaming, and
deleting on the server.

3.2.3 Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (SMTP) is a text-based internet communication
protocol used to send and receive messages. The protocol provides connection-
oriented communication, which means that the communication session should
be created prior to data transfer. The protocol uses port 25 for unsecured
communication. [15]

In contrast to POP and IMAP, which are designed to receive or ’pull’ e-mail
from the mail service, the Simple Mail Transfer Protocol is mainly used to
send or ’push’ e-mail from one mail server to another. The routing of e-mails
is based on the achievement of the destination server, not the individual user.
Message transmission through SMTP occurs within the session originated by
an SMTP client. The initiating host is either an e-mail client or an SMTP
server (mail relay) that acts as an SMTP client. [15]

Formerly, SMTP servers provided access for a user whose IP address was
in the mail server’s field of knowledge. Today, the vast majority of servers
require authentication with credentials before granting access. Security issues
related to e-mail transmission will be described in section 4.4. [16]

3.3 E-mail Agent

An e-mail agent is part of the e-mail processing infrastructure, which includes
creating the sender, transferring over the network, and viewing by the recipient.
[17]

3.3.1 Message User Agent

A Message User Agent (MUA, email client) is software on the client’s computer
to write, send, and view e-mails. The program transforms the text written by
the sender into the appropriate e-mail message format. Examples of e-mail
clients: Gmail, Thunderbird, Evolution, Spark, etc. [18]

3.3.2 Message Submission Agent

A Message Submission Agent (MSA) is software that accepts messages from
the e-mail client. It either delivers them or acts as an SMTP client to relay
them to a Message Transfer Agent (which is described in 3.3.3). Today, MSA
does the final preparation, including adding header fields such as Date and
Message-ID. The agent validates the address in the ’Sender’ field and checks

11

3. The Principles of E-mail Processing
the message’s format. In case of failure, it immediately enforces the sender
to fix the error. [19]

3.3.3 Message Transfer Agent

A Message Transfer Agent (MTA, SMTP relay, mail server or Mailer) is
software that is responsible for choosing the appropriate route for e-mail
based on the Mail Exchanger records. It can act either as a Boundary MTA
(relays the message to other MTAs) or as a Final MTA (transfers the message
to the MDA). [17]

A mailer at the local domain prepares a query for MX RRs for the destina-
tion domain. The response is a list of MX RRs for the destination domain.
The Mailer removes irrelevant RRs from the list and attempts to deliver the
message to the MX with the lowest preference value. MTA keeps trying until
the MX accepts the message or there are no untested MXs. Examples of
MTA: Postfix, Exim, Sendmail, or qmail. [20]

3.3.4 Message Delivery Agent

A message delivery agent (MDA, local delivery agent) is software that delivers
the message from MTA to the Mailbox. The MDA’s function is to determine
the internal location of the Mailbox for performing the delivery. [20]

3.4 Example of e-mail processing

An example of events occurs when abstract sender Pierre sends a message to
abstract recipient Andre using a mail client: [7, 15]..1. The MUA formats the IMF from Pierre’s message and sends the message

to the local Mail Submission Agent using SMTP...2. The MSA accepts the e-mail submission and checks for errors. The
agent then performs preprocessing and relays the message to the Message
Transfer Agent for further transmission...3. The MTA relays the message to other MTAs. Once the sending sequence
is completed, the message reaches the Message Delivery Agent...4. The MDA stores the received e-mail in Andre’s Mailbox...5. Andre’s MUA receives the e-mail from the Mailbox using the IMAP/POP
protocol.

12

..............................3.4. Example of e-mail processing

The described process is presented in Figure 3.1:

Figure 3.1: E-mail processing diagram, source: [21]

13

14

Chapter 4
E-mail security

The chapter describes the authentication methods that are used prior to
email submission in order to verify a user’s identity. In addition, this part
highlights vulnerabilities of email transmission.

4.1 Simple Authentication and Security Layer

A Simple Authentication and Security Layer (SASL) is a framework that
provides authentication support for the application layer protocols. It presents
an abstraction layer between protocols and authorization mechanisms. This
allows application protocols to use SASL without redesigning the protocol.
Often, application protocols should support TLS for using SASL authorization
services. Usually, only one successful authentication exchange may occur in
a protocol session (unless an explicit definition is included in the protocol’s
technical specifications). After successful authentication exchange completion,
further authentication attempts fail. [22]

SASL provides a wide range of authentication methods. The connection
should be SSL-encrypted for using the PLAIN or LOGIN method. [23]

SASL mechanisms:. PLAIN. The username and password are transmitted as one string
encoded in Base64. [24]. LOGIN. The username and password are encoded in Base64 and trans-
mitted separately. [24]. CRAM-MD5. It is a challenge-response authentication mechanism. The
password is not transferred to the server. Instead, the server provides
the client with a computational task that can only be solved with the
help of a password. The task is different for every login, so spammers
cannot misuse data from previous connection to the server. [25]. XOAUTH2. The solution is based on OAuth signatures. It is widely
used in systems such as Gmail and Outlook.com. [26]

15

4. E-mail security
4.2 Extended Simple Mail Transfer Protocol

An Extended Simple Mail Transfer Protocol (ESMTP) is an extension
of SMTP. It provides support for the new commands: [27]. EHLO initiates ESMTP. It is an alternative to SMTP’s HELO

command.. STARTTLS enables sending multiple commands in a batch without
waiting for a response to each one.[28]. AUTH enables authentication mechanism.. SIZE declares the message size. Thus, the server may indicate to
the client whether it is willing to accept the message.

4.3 SMTP authentication methods

For verifying that the user has a right to send an e-mail, the mailer
must perform an authentication. There are several SMTP authentication
methods, but authenticated SMTP is the most widely used today. [27]

4.3.1 IP address restrictions

Authentication by IP address is the simplest method based on gaining
access to preset IP addresses. They can be easily spoofed unless all
transport paths between the mail client and Message Transfer Agent
are trustworthy. The use of this method is especially problematic for
dynamic IP addresses. [16]

4.3.2 Prior POP authentication

Sometimes this method is called ’POP before SMTP’. To perform this
type of SMTP authentication, a user must connect to the POP3 service
of the same e-mail server and authenticate. Then the client immediately
connects through SMTP to the same server. The SMTP server remembers
the user’s IP address and provides authentication. An advantage of the
method is that POP and SMTP are widely adopted. Therefore, there is
no need to update the client’s software. Implementation is not difficult,
and the method provides great flexibility. [16]

The method problems defined, which are defined in the article [29], can
be found below:. Someone uses IMAP instead of POP.

16

..............................4.4. Secure message transmission

. After disconnection from the Internet or changing IP address by
the ISP, the hacker can allocate the IP address and send e-mail
from the account..More than one client can share the same IP address using NATs
and proxies.. Both the POP3 and the SMTP services should run on the same
system..MSA should communicate with the POP server, making the imple-
mentation more difficult.

However, the solution persists on old servers.

4.3.3 Authenticated SMTP

Authenticated SMTP (SMTP AUTH) is an SMTP service extension that
provides an authentication mechanism. It allows the Message Submis-
sion Agent to validate the authority and determine the identity of the
submitting user and must be supported by the MSA. The implemen-
tation uses the security mechanisms provided by SASL. Instead of the
classical SMTP port 25, the authenticated SMTP uses port 587. ESMTP
authentication adds session orientation to the SMTP. [27]

An example of SASL-based authentication: [30]

250 AUTH LOGIN PLAIN CRAM-MD5 #server responses
#with available types of auth methods
AUTH LOGIN #client chooses the authentication type
334 dXNlcm5hbWU= #server requests a username
dmFjbGF2 #client provides the username
334 cGFzc3dvcmQ= #server request a password
c2VjcmV0 #client provides the password
235 Authentication successful #server validates credentials

4.4 Secure message transmission

Even though user’s credentials can be encrypted using SASL mechanisms or
alternatives, there is still a need to encrypt message transport. In the case
of unsecured message transmission, there is a chance of a man-in-the-middle
attack when the attacker can read and modify the communication. [31, 32]

The concept of using SSL/TLS with e-mail protocols is similar to HTTPS, as
it wraps HTTP inside TLS. This allows the mail client and Mail Submission
Agent to protect message submission, integrity, and privacy. A naming
convention, which adds "S" at the end of the protocol’s name (e.g. SMTPS,
IMAPS), indicates that the protocol is based on TLS encryption. TLS can
be enabled in two different ways: [33]

17

4. E-mail security
. Implicit TLS is negotiated immediately once the connection has been

started on a separate port. This method is used more widely for IMAP
and POP. IMAP port for implicit TLS is 993, the POP port is 995, and
the SMTP port is 465. [34]. Explicit TLS. This method enables TLS by using the STARTTLS com-
mand, which upgrades a plain text connection to the encrypted connec-
tion and does not require the use of a separate port. If the client issues
a STARTTLS command, a TLS handshake upgrades the connection.
Unlike the IMAP and POP3 protocols, explicit TLS is more common for
SMTP. [35]

18

Part II

Analysis

19

20

Chapter 5
Analysis

This chapter describes drawbacks of the pilot application and defines the
requirements and acceptance criteria for the new e-mail service.

5.1 The pilot version

The pilot implementation aimed to provide a centralized solution for e-mail
delivery inside the CZM’s ecosystem. The functionality of that version is
limited to sending an e-mail received in JSON format on the endpoint. The
application contains a REST layer auto-generated by the OpenAPI generator
and the service layer responsible for e-mail processing. Due to the limited
functionality of the pilot version, e-mail building is the only method remaining
in the new application.

5.2 Application usage

In order to deliver a solution that meets its requirements, we need to under-
stand how the application will be used. The CZM’s analytics provided me
with the following details: "Each application inside the ecosystem should be
able to authenticate into the e-mail service and, according to its permission,
send an e-mail in a desirable way." Based on the received information, I
specified the requirements provided in the following section.

5.3 Application requirements

This section contains the functional and non-functional requirements for the
e-mail service.

5.3.1 Functional requirements

FR1. Authentication mechanism.

FR2. Roles distinction: an administrator and a standard user.

FR3. Sending e-mails:

21

5. Analysis
FR3.1. Sending e-mails without a configuration.
FR3.2. Sending e-mails with a specified configuration.

FR4. E-mail storage and browsing.

FR5. E-mail configuration support:

FR5.1. Configuration can be added, removed, and updated in the
system.

FR5.2. Access to a particular configuration can be granted to a user.
FR5.3. A user has his own list of available configurations.

FR6. Support for using different mailers.

FR7. Sending e-mails with attachments.

FR8. User management:

FR8.1. A user can be added or removed from the system.
FR8.2. User’s credentials can be changed.
FR8.3. An administrator can change the user’s role in the system.

5.3.2 Non-functional requirements

NFR1. The application is scalable.

NFR2. The application can be used by several users simultaneously.

NFR3. The application contains sufficient test coverage.

NFR4. The application provides access to the logs received from the test
environment.

NFR5. The application follows Continuous Delivery approach.

NFR6. The application has low latency and response time.

NFR7. The application provides Swagger documentation.

5.4 Acceptance criteria

In order to answer the question "Does the application meet the requirements?"
we need to ensure that the product is suitable for its intended purpose
and follows the contracted obligations. The setting of acceptance criteria
is a widely used practice to evaluate completed work in the final phase of
development. Therefore, the following acceptance criteria were defined:.User:..1. A user who provided valid credentials is authenticated in the system.

22

...................................5.5. Existing solutions..2. An administrator adds and removes the user from the system...3. A non-administrator cannot add and remove user from the system.. E-mail:..1. A user sends an e-mail without specifying configuration...2. A user sends an e-mail using one of their permitted configurations...3. E-mails which were sent by the application can be viewed by the
administrator...4. An e-mail can contain an attachment..Configuration:..1. An administrator can add and remove configuration from the sys-
tem...2. An administrator grants access to the configuration for a user..Mailer:..1. The application supports using different mailers.

5.5 Existing solutions

There are a couple of existing solutions for e-mail sending services, such
as Postmark, Amazon Simple Email Service, or Mailjet. They offer free
plans with limitations (e.g., only the first 6 000 e-mails per month are free).
There is also a limit on storage around 500MB, which is not enough for our
purposes, as e-mails may contain pretty huge attachments. Due to the CTU
information [36], there are around 18 000 students in the university, and
even under the assumption the service does not send e-mails to all students
simultaneously, it can be clearly seen, 6 000 free e-mail is above free limit.
Moreover, the external solutions cannot be modified in case of a need for
additional functionality. To conclude, existing solutions do not satisfy the
customer’s requirements, and there is a need to develop a custom solution.

23

24

Chapter 6
Application design

The application architecture is one of the essential things software engineers
should arrange before starting the development process. It helps facilitate
service maintenance and improves its extensibility. Furthermore, the earlier
the application design is produced, the lower the service development costs.

The chapter provides an overview of the major architectural solutions, used
technologies, and ways of data treatment.

6.1 Architecture

This section covers the main architectural solutions, such as modules and
layers separation.

6.1.1 Layers

The web application can follow a single- or multi-layer architecture. Although
the one-tier approach is easier to implement, it has a significant drawback,
namely the complexity of its maintenance. Therefore, I decided to separate
the layers to facilitate high scalability. Thus, the application has traditional
for a web application layers:

. The REST layer contains controllers that will be exposed to a client.
Requests are not processed here; instead, they are passed over to the
next layer.

. The service layer contains business logic.

. The data layer is responsible for the communication with the database.

Based on modern practice, the underlayer cannot directly access the top
layer. For example, the data layer cannot call the REST layer. Figure 6.1
shows the described architecture:

25

6. Application design

Figure 6.1: Application layers

6.1.2 Modules

Decomposing a monolithic Java application into modules helps to achieve
strong encapsulation and improve scalability. Therefore, I defined the modules
that are presented in Table 6.1:

Module Purpose
App Holding the application configura-

tion (spring, docker, logs)
Data Ensuring storing in a database
Service Building and sending e-mails
Rest Holding REST endpoints defini-

tions

Table 6.1: Application modules

6.2 Choice of technologies

The section contains a comprehensive overview of the development, testing,
and deployment technologies used in the e-mail service. The choice of these
tools is made on the basis of existing standards and preferences in CZM.

26

................................... 6.3. Domain diagram

. Java 11 is an object-oriented, platform-independent language that has
gained a lot of popularity in recent years. [37]. Spring Boot Framework provides great support for data management
and deals with security issues. In addition, Spring simplifies logging and
configuration..GitLab platform tracks code modifications and handles Continuous
Delivery.. Docker Swarm enables container orchestration.. JUnit 5 and Mockito frameworks allow writing automatized tests. More-
over, Postman is used to testing REST API.. SonarQube static code analyzer helps to meet code standards by evaluat-
ing code against the quality rules; moreover, this tool can detect security
vulnerabilities.. Swagger Documentation allows visualization of API’s resources.

6.3 Domain diagram

The following entities were identified based on the functional requirements:.User represents the service that has access to the e-mail application.. E-mail presents the message sent by the application..Configuration contains the details of how e-mail should be processed,
e.g. whether it should be logged, sent by a real mail server, etc..Mailer holds credentials for SMTP authentication..Attachment presents e-mail attachment. It contains an array of bytes
that presents content and the MIME type that allows MUA to process
the file.

27

6. Application design
The domain diagram of the e-mail service is presented in Figure 6.2.

Figure 6.2: Domain diagram

The developed design ensures low coupling and enables one to add new
features without complex design changes.

6.4 Data

The application should enable e-mail storage and use e-mail configurations.
Furthermore, the e-mail service should provide authentication and authoriza-
tion mechanisms, which also require database usage.

28

.. 6.4. Data

Therefore, the pilot version neet to be extended by a data module respon-
sible for database operations and object representation.

6.4.1 Database type

E-mails can have abnormal forms, since they may contain an attachment,
and the receiver field might hold multiple entries. An e-mail can be built
in different ways; moreover, it may present a wide variety of information.
Therefore, the use of a predefined database table structure is not appropriate
for our case, and I decided to use the NoSQL database.

One of the advantages of the NoSQL database is that it does not use
normalization, which speeds up queries, as all required data is stored together.
Moreover, this database concept avoids joins and can be easily scaled hori-
zontally. Another advantage is data distribution, which means that there is
no single control unit. This leads to continuous data availability. [38]

Data duplication is a possible drawback, but due to the expected size of
application usage, this will not impact the service performance. The other
possible disadvantage is the lack of consistency when performing multiple
transactions simultaneously. However, database providers often offer their
own concurrency control mechanisms to ensure consistency. [38]

6.4.2 NoSQL storage type

There are four main types of NoSQL databases:.Key-value. This type is considered the least complex, as it resembles
a relational database with only two columns: an attribute name and a
value. This type of storage is widely used for shopping carts and the
implementation of user preferences. Some other examples include Redis
and Dynamo. [39]. Column-based. Each column is treated separately, whereas single column
values are kept adjoining. The benefit of this data storage is fast reading,
as columns often have the same type, whereas the possible drawback is
complicated writing operations. Therefore, the solution is prevalent on
analytic platforms. Among several examples, the most popular ones are
Cassandra and Google’s Bigtable. [40].Graph-based. The central focus is put on the relationships between
entities. The scheme is presented by connected nodes. Each node
contains a direct link to the adjacent elements, making index lookups
unnecessary. This type of database offers optimization for traversing
connected data. Therefore, its niche includes social networking websites
as well as recommendation engines. Some of the commonly used graph
databases are Neo4j and Nebula Graph. [39]. Document-based. This type of database stores data in JSON, BSON, or
XML documents and supports document nesting and indexing elements.

29

6. Application design
The document-based database reduces the amount of transactions by
providing a more natural way of storing data objects. This approach is
widely used in trading and blogging platforms. [40]

Since the e-mail service tends to work with abnormal data types and
does not need to concentrate on the relations between the entities, I chose
document-based storage as the most appropriate.

6.4.3 Document-based database

There are many document-based databases. The most popular are Google
Cloud Firestore, Amazon DynamoDB, Microsoft Azure Cosmos DB, Couch-
base, and MongoDB. [41] Nevertheless, the Spring framework provides support
only for Couchbase and MongoDB. Compared to Couchbase, ACID transac-
tions in MongoDB can be performed more easily. Although the Couchbase
query language is similar to SQL, MongoDB provides incomparable versatility
in data management. Therefore, MongoDB is a more suitable solution for
the e-mail service.

6.4.4 Database design

Even though MongoDB encourages the preference of embedded documents
over references, this approach is used primarily with aggregation relations and
is not always the most appropriate. Based on the analysis, I chose the following
strategy: all relations between entities will be held using references. The
exception is the relation E-mail - Attachment, where we can save Attachment
as an embedded document within an E-mail.

30

Part III

Development

31

32

Chapter 7
Data and service layers

Building data layer is one of the milestones in application development,
although this implementation does not produce immediate visible results.
The service tier contains business logic that defines the application behavior;
moreover, it plays a crucial role in enabling requests received on the REST
tier to perform actions in the data layer.

This chapter provides the reader with the central concerns regarding data
storage and implementation of business logic in the service layer.

7.1 Data layer

One of the main purposes of the data layer is to ensure communication with
the database. This section clarifies the choice of approaches taken in data
management. The information includes details of the validation of entities
and holding relations in a database.

7.1.1 Identifiers

MongoDB enables the storage of IDs in two different ways. The first one is
Mongo’s BSON implementation, ObjectId. Another option of keeping ID is
the use of a plain Java String.

For our purposes, I consider using the built-in ObjectId to be a better
option, as it only takes 12 bytes while the hex represents requires 24 bytes. In
addition, this Mongo solution provides a powerful indexing mechanism that
speeds up inserts, as only the latest index part is loaded to ensure uniqueness.
Moreover, ObjectId contains a timestamp, which is convenient for accessing
the date of sent e-mails. [42]

As stated in the documentation, MongoDB will automatically create an
ID of ObjectId type if a developer does not specify it. [42] Nevertheless, I
explicitly declared ID to avoid ambiguities. To avoid adding an ID attribute
to each entity, which causes code duplication, I created an abstract class
containing the ID attribute, so that the successors of this class do not need
to declare an identifier once more.

33

7. Data and service layers
The code of AbstractEntity is presented below:

@Getter
@Setter
@AllArgsConstructor
@NoArgsConstructor
@SuperBuilder
public abstract class AbstractEntity {

@Builder.Default @Id private ObjectId id = new ObjectId();
}

7.1.2 Reference types

Mongo provides two reference mechanisms:.Manual references require keeping the object’s _id in another doc-
ument as a reference. Relevant data can be fetched by running an
additional query. [43].DBRefs in addition to the ID, keep the collection name, and, optionally,
the database name. Moreover, Spring Data provides great support for
this reference type by the annotation @DBRef. Thus, it eliminates the
need to run queries manually, which makes the usage of a simple getter
method sufficient. [44]

Furthermore, Spring offers one extra method for referencing, which works
slightly differently, even though it resembles DBRefs:. @DocumentReference. The main concept is the same as in @DBRef. The

difference is that anything can be used as a reference, from a single value
to an entire document. [44] Nevertheless, this feature was only introduced
on Spring Data MongoDB 3.3.0, while CZM uses the older version of
the library. Therefore, to avoid modifications to other applications,
@DocumentReference is not an appropriate solution.

In conclusion, @DBRef is considered the most effective solution, as it provides
great flexibility and does not require a change in the CZM infrastructure.
Therefore, the one-to-many relation is declared as follows:
...
public class User extends AbstractEntity {

...
@DBRef private List<Mail> sentEmails;

}
The sender name in the Mail entity is a natural ID, as it is unique. Therefore,

the field sender in Mail provides a back reference to the User entity.
The drawback of referencing in MongoDB is the lack of cascading mecha-

nisms, which causes in requirement to handle parent-child relations manually:
List<Mail> mails = user.getSentEmails();
mails.add(mail);
user.setSentEmails(mails);

34

..................................... 7.2. Service layer

7.1.3 Validation

MongoDB indices can be used to ensure the uniqueness of fields at the
data layer. This feature is also present in the Spring Data Library via the
annotation @Indexed (unique = true). In addition, it supports imposing
uniqueness on field combinations. This functionality is used to avoid duplicates
of the mailers in the following way:

@CompoundIndex(
name = "mailer_idx",
def = "{'host' : 1, 'port' : 1, 'username' : 1, 'password' : 1}",
unique = true)

public class MailServer extends AbstractEntity {...}

Moreover, to ensure field validation on the database side, I used the
@NotBlank annotation from javax.validation.constraints.

7.1.4 Repository pattern

Repository pattern has gained popularity in recent years due to its advantages
in ensuring loose coupling and enabling dependency injection. The mentioned
features improve application testability, which is beneficial due to CZM’s
requirement on test coverage. Moreover, this pattern restricts direct access
to the data layer from the controller, therefore providing the abstraction
between the REST layer and the database context. [45]

Spring Boot contains a Data project, which provides implementation of
the Repository pattern out of the box. Moreover, there is a predefined set of
keywords for the method name, which are automatically processed by Spring,
and the @Query annotation that allows one to write natural Mongo queries:

public interface MailRepository extends MongoRepository<Mail, Long> {
@Query("{ 'sender' : ?0}")
List<Mail> findUsername(String sender);

}

7.2 Service layer

This section contains a comprehensive overview of the design approaches
implemented at the service layer. First, I provide the motivation for the
Abstract service and present its implementation, and then, I discuss the
aspects of e-mail building and processing.

7.2.1 Abstract service

Many services have the same implementations of the basic methods, which re-
sults in code duplication. In order to avoid it, I implemented an AbstractService
with create, read, update, delete (or CRUD) operations. Different repositories
(UserRepository, ConfigurationRepository...) are in use, since there are

35

7. Data and service layers
several entities. The use of Java Generics, allowing abstract classes to handle
different object types, facilitates the fulfillment of the requirement. Since all
entities extend the AbstractEntity I declared an upper bound <T extends
AbstractEntity>. In this way, any child of AbstractEntity can be used.
The code of AbstractService can be found below:

public abstract class AbstractService<T extends AbstractEntity> {

private static final Logger log =
LoggerFactory.getLogger(AbstractService.class);

public abstract MongoRepository<T, ObjectId> getRepository();

public void create(T obj) {
getRepository().save(obj);
log.info("{} was added", obj);

}

public Optional<T> findById(ObjectId id) {
return getRepository().findById(id);

}

public void delete(ObjectId id) {
getRepository().deleteById(id);
log.info("Entity with id={} was deleted", id);

}

...
}

To obtain the appropriate repository instance, it is necessary to define a
getter in child classes explicitly:

...
public class ConfigurationService extends AbstractService<Configuration> {

private final ConfigurationRepository repository;
@Override
public MongoRepository<Configuration, ObjectId> getRepository() {

return repository;
}

...
}

To sum up, this approach improves code reusability as we can define the
method once and allow other classes to use it. Furthermore, if there is a
need for a change in the core method, it is sufficient to modify the code once
without affecting successors. Thus, it reduces the risk of programming errors.

36

..................................... 7.2. Service layer

7.2.2 E-mail building. Simple Java Mail library facilitates the creation of e-mails, as it
provides support for attachments and MIME messages. In addition, it is
an RFC-compliant solution. The code that uses Simple Java Mail looks
clean and is easy to understand:

new MailBuilder()
.setFrom(configuration.getEmail())
.addTo(mail.getReceivers())
.setSubject(mail.getSubject())
.addBody(mail.getBody(), configuration.isHtml())
.addAttachment(mail.getAttachments())
.send(mailer, encryptPass(configuration));.Builder and Facade design patterns. The old version of the applica-

tion needed to decide whether the e-mail will be logged or sent according
to the active environment. For this purpose, the pilot version used the
MailBuilderFacade class that implements Builder and Facade design
patterns. The new version of e-mail service moves this functionality
to the Configuration entity. Thus, this pattern is no longer needed.
Nevertheless, there is still a need for the builder pattern that can be
justified by the presence of ample e-mail parameters.

7.2.3 Entity validation

Eliminating the consequences of unexpected user behavior is a crucial part
in ensuring smooth running of the application. Therefore, it is necessary to
implement a data validation mechanism. For example, to avoid attempts
to send the e-mail using the configuration without access to a mailer, the
following actions should be taken:

public void validateConfiguration(Configuration c) {
if (c.isSent() &&
(c.getMailServer() == null || c.getEmail() == null)) {

throw new EntityConfigurationException(
"In order to send an e-mail mail server and

e-mail sender should be specified in the configuration");
}
log.info("configuration was successfully validated");

}

There is further validation of entities on the data side, which was described
in Section 7.1.3.

37

38

Chapter 8
REST layer and security

This chapter describes the way the REST layer is implemented and provides
an overview of applied security mechanisms.

8.1 REST layer

The REST layer is exposed to the client, therefore, it should be handled
especially carefully. The application has to be secured from a malefactor,
and the end-client potentially needs to get a detailed description of thrown
exceptions.

This section covers main concerns regarding the REST layer, such as
processing requests and responses using a Data Transfer Object and handling
exceptions. In addition, an overview of the Swagger specification is provided.

8.1.1 Data Transfer Object

Data Transfer Object, or DTO, is designed to address the problem of excessive
calls between a client and a server by aggregating the data. Moreover, this
approach allows us to have different views by decoupling the model and its
representation. Therefore, a user does not get the complete object; they will
get only the information that they are allowed to see. Also, it is important
to carefully handle client requests, as the application uses a NoSQL database
with no restrictions on database schema. Only harmless fields from the REST
request should reach the service layer. [46]

Although mapping from DTO to plain model and vice versa can be per-
formed manually, I used the ModelMapper library, which automatically
handles this process. The setup is simple and requires only the configured
ModelMapper bean. Then a controller should contain a conversion method.
An example is presented below:

private Mail convertToEntity(MailDto mailDto) {
return mapper.map(mailDto, Mail.class);

}

This pattern is especially beneficial for User representation, which holds
sensitive credentials such as a password that cannot be exposed to the REST

39

8. REST layer and security
layer. In the future, this pattern will find more uses. [46]

8.1.2 API design

The path parameter identifies a specific resource; while some methods addi-
tionally require an ID. Moreover, the method can contain a body in JSON
format. Therefore, the format of endpoints is the following:. /configurations. /users. /configurations/6256b6156eaae53ea65cee6a

Overall, the API uses classical REST API methods such as Post, Get, Put,
and Delete, and path parameters contain entity names in plural form. An
example of a full request can be found below:

POST http://{baseurl}/configurations
Authorization: Basic camunda service
Content-Type: application/json
{

"name": "new-",
"email": "test@email.com",
"isSent": true,
"useHTML": true

}

8.1.3 Exception handling

Spring framework provides some enhancements to Java handling exceptions
methods. These mechanisms can be specified globally at the application level
or locally for each class. To facilitate maintenance, I decided to implement
global exception handling. In this way, there is a main class that is responsible
for exception handling. If there is a need for a change, it suffices to change
the code in one place. Thus, this approach reduces the code boilerplate.

All undefined exceptions are handled by the default method, which returns
custom ErrorResponse:

@Getter
@Setter
public class ErrorResponse {

private final String message;
private Instant timestamp;

public ErrorResponse(String message) {
this.message = message;
this.timestamp = Instant.now();

}
}

40

.......................................8.2. Security

There is a need to specify the exceptions in GlobalExceptionHandler, so
it might look as follows:

@ControllerAdvice
@Slf4j
public class GlobalExceptionHandler extends ResponseEntityExceptionHandler {

...
@ExceptionHandler(NoSuchElementException.class)
public ResponseEntity<ErrorResponse>
handleNoSuchElementFoundException(NoSuchElementException ex) {

log.error("Failed to find the requested element", ex);
return buildErrorResponse(ex, HttpStatus.NOT_FOUND);

}
}

8.1.4 Swagger

The pilot version followed the API-first approach. There was a spec.yaml file
that contained API documentation and instructions to generate controllers.

The drawback of that method was the inconvenience of extracting basic-
auth credentials from the header. It occurred because the controllers were
auto-generated and therefore could not be changed. For that reason, it was
impossible to pass a header from the controller to the service layer. Therefore,
the API-first approach was considered unflexible for our purposes, and it
was superseded by the Build-first one, where the documentation is generated
based on the existing controllers.

The existence of API documentation is granted by the Swagger.v3 an-
notations. Among them in the Rest layer are @Operation, @ApiResponse,
@Schema; on the model layer, the annotation @NotNull was used to provide
a view of the required fields.

The generated documentation provides a great base for application exten-
sion. Swagger output can be used to generate the API client to make the
application available to real services.

8.2 Security

Security is one of the most critical issues that should be addressed in the early
stages of development. This section clarifies the decision about implemented
security mechanisms.

8.2.1 Authentication

Authentication is one of the functional requirements, and Spring framework
has excellent support for it.

The pilot version used Bearer token authentication. A token of each
request was compared with the one defined in application.properties.

41

8. REST layer and security
This solution would not suit the production version, as there is a requirement
to have several users. Moreover, this approach does not provide much security.

The Spring security library contains many authentication methods, start-
ing with LDAP and ending with SSO. For e-mail service purposes, Basic
authentication covers all security requirements and therefore is considered
sufficient.

To ensure that requests are authenticated, I implemented org.spring-
framework.security.core.userdetails.UserDetails; with the BCrypt
hashing mechanism. Then I prepared the following configuration:

...
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

...
private final UserService userDetails;

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth)
throws java.lang.Exception {

auth.userDetailsService(userDetails).passwordEncoder(passwordEncoder());
}

@Override
protected void configure(HttpSecurity http) throws Exception {

http.authorizeRequests()
.anyRequest()
.authenticated()
.and()
.httpBasic()
.authenticationEntryPoint(entryPoint)
.and()
.csrf()
.disable();

}

@Bean
public PasswordEncoder passwordEncoder() {

return new BCryptPasswordEncoder();
}

}

8.2.2 Authorization

According to the defined requirements, the e-mail service should support the
user and administrator roles. The authorization mechanism is implemented

42

.......................................8.2. Security

using a built-in Spring Boot mechanism. This allows limiting access to
methods by using @PreAuthorize("hasAuthority(’ADMIN’)") annotation
on the rest methods. In order to use it, we should ensure that the user’s au-
thorities are retrieved properly. It was achieved by rewriting getAuthorities
as follows:

@RequiredArgsConstructor
public class UserPrincipal implements UserDetails {
...

private final User user;
@Override
public Collection<? extends GrantedAuthority> getAuthorities() {

List<GrantedAuthority> list = new ArrayList<>();
list.add(new SimpleGrantedAuthority(this.user.getRole()));
return list;

}
}

8.2.3 Encryption

One of the functional requirements is sending e-mails using the specified
mail server. To achieve this, the mailer’s connection credential must be
stored in the database. Although keeping passwords as plain text is a widely
used practice, the e-mail service stores passwords encrypted. Encryption is
provided by symmetric AES cipher, more specifically, the ECB/PKCS5Padding
scheme. Although using a stronger scheme, such as CTR or GCM is preferred,
ECB is sufficient for the current stage. The key is saved in the application
properties but will be moved to the external Systems Password Manager in
the future.

43

44

Part IV

Final phases

45

46

Chapter 9
Testing

The purpose of testing is to verify expected behavior, improve code quality,
and ensure that new changes will not break existing functionality. This
chapter discusses the methods used to test the application. Additionally, the
meeting of the defined requirements and acceptance criteria is verified.

9.1 Test approach

This section explains the choice of testing techniques by describing its benefits
and drawbacks.

9.1.1 Test execution

The choice of test execution method depends on several factors, among them,
project requirements and the team’s expertise. The section compares the
manual and automated testing approaches and gives reasons why automated
testing is preferable for our purposes..Manual testing. In this method, software testers execute test cases

and generate test reports without using automated software testing tools.
The greatest benefit of manual testing is its easy realization, as there
is no need to write any code and all actions are performed by a human.
Although this method provides great flexibility, it is a relatively high-cost
approach, as some actions should be repeated several times. Therefore,
the project tested manually is expensive. In conclusion, manual testing
is time-consuming and expensive; moreover, it is not accurate due to
human error at all times..Automated testing. Automated testing is performed by tools and
scripts, so it is significantly faster than a manual approach. In contrast to
the manual approach, this method is counted as reliable, as it eliminates
the risk of human error. Moreover, this type of testing is more efficient,
as it requires less time than the manual one.

Based on the mentioned facts, I decided to cover application with automated
tests as it provides utmost efficiency and great reusability; moreover, it is
cheaper in terms of required human resources.

47

9. Testing
9.1.2 Development and user testing

Testing can be performed during different development phases. The decision
of whether tests are executed by end-users in the final phase of development or
by programmers in the initial stage is based on the aims of testing. The gold
rule of testing is that the earlier it is performed, the cheaper it is. Therefore,
I concentrated my efforts on development tests that can be performed even in
earlier stages of application creation. Although user testing has some benefits,
it is not required for this development phase.

9.1.3 Tools

There are many tools for application testing, the choice is based on the
performance and complexity requirements. The overview of used test types:. Static testing does not involve program execution. These tests can be

performed manually or using special software. A lot of services provide
static code analysis, but since all CZM’s applications use SonarQube,
this solution is used in the e-mail service as well..Unit tests aim to verify behavior of the isolated code pieces. In this way,
the code parts are tested independently and its results are not affected
by each other..API tests intent to validate the execution of REST requests. These tests
can be integrated into the CI/CD pipeline as well, which is especially
useful for ensuring APIs compatibility.

9.2 Development testing

The e-mail service contains several modules, and all should be properly tested.
The choice of test type depends on the module features. For example, business
logic is generally covered by unit tests, whereas the data module is tested
with integration tests.

9.2.1 Unit tests

I implemented unit tests without the use of SpringApplicationContext. It
helps to reduce test execution time since Spring beans are not loaded. Unit
tests cover the following modules:. Service module. These tests generally verify error-free code execution

during communication with the data layer. Due to the objective of
writing independent tests, the repository beans are mocked. The tests
cover successful and failed operations; therefore, there is validation of
throwing checked exceptions.

48

................................. 9.2. Development testing

.REST module. Unit tests for this layer were created using Mock-
HttpServletResponse. An example of the test for the REST layer is
presented below:

@Test
@DisplayName("addConfiguration returns 201 when configuration added")
void addConfigurationReturnsCreatedWhenConfigurationAdded()
throws Exception {
// when
MockHttpServletResponse response =

mvc.perform(
post("/configurations/")

.contentType(MediaType.APPLICATION_JSON)

.content(jsonConf.write(new Configuration()).getJson()))
.andReturn()
.getResponse();

// then
assertThat(response.getStatus()).isEqualTo(HttpStatus.CREATED.value());
}

49

9. Testing
9.3 Meeting acceptance criteria

CZM’s analytics confirmed that the developed application meets the accep-
tance criteria. In addition, I conducted verification using the Postman API
platform.

9.3.1 Test Scenarios

For testing purposes, I prepared the test scenarios that are presented in Table
9.1:

Scenario
ID

Entity Description

1 User Administrator is able to add and re-
move users from the system

2 Configuration Administrator is able to add and re-
move configuration from the system

3 Configuration Administrator is able to grant access
to the configuration for the particular
user

4 Mailer Administrator is able to add and re-
move mailer from the system

5 Mailer Administrator is able to add a mailer
to the configuration

6 E-mail User is able to send an e-mail without
explicit configuration

7 E-mail User is able to send an e-mail with
configuration

8 E-mail User is able to send an e-mail with an
attachment

9 E-mail Administrator is able to view e-mails
sent by the application

10 E-mail User is able to view e-mails that they
sent

Table 9.1: Test scenarios

50

.............................. 9.3. Meeting acceptance criteria

9.3.2 Postman

In order to execute testing in Postman I prepared a collection of requests for
each entity. Then, I wrote scripts using JavaScript for responses validation.
As soon as the collection is run, Postman sends prepared requests and executes
defined scripts. An example of a test that compares the data in the received
response and the expected one is presented below:

pm.test("Returns all mails", function () {
var expectedRes =
[{

"receivers": [
"test@gmail.com"

],
"sender": "czm-hub",
"subject": "important",
"body": "new",
"date": "2022-04-22T17:51:22.000+00:00"

},
{

"receivers": [
"test@gmail.com",
"example@yahoo.com"],

"sender": "czm-camunda",
"subject": "new service",
"body": "We need it tomorrow!",
"date": "2022-05-01T09:12:56.000+00:00"

}]
var jsonData = pm.response.json();
console.log(jsonData);
pm.expect(jsonData).to.deep.equal(expectedRes);

});

Other tests validate the response in the following way:

pm.test("Sends e-mail with conf", function () {
pm.response.to.have.status(200);

});

51

9. Testing
All Postman tests were performed successfully. The results are presented

in Figure 9.1:

Figure 9.1: Results of the tests

9.4 Conclusion

The application was tested using various tools, such as JUnit, SonarQube, and
Postman. In summary, 16 unit tests and 18 Postman tests were performed.
During the testing, no drawbacks in terms of functionality were detected.
Moreover, the application meets the acceptance criteria.

52

Chapter 10
Deployment and application maintenance

Once the application is developed and tested, it is time to prepare for deploy-
ment. This chapter contains details of the final development phases. First,
I describe the deployment process and then provide information about the
implementation of the Health Check module.

10.1 Docker

There are many deployment tools, but since the CZM’s applications are
running in the Docker Swarm, the e-mail application is also deployed there.

Docker is a container solution that enables us to construct isolated and
consistent application environments with speed at scale. This approach is
considered to be more lightweight, as containers do not contain operating
system images. [47]

10.1.1 Different environments

In order to provide support for running different versions of applications
simultaneously, I prepared test and production docker-compose files. These
files not only contain information about infrastructure politics and used
image, but also keep variables, specifying the actual environment. Part of
docker-compose-test.yml is presented below:

version:...
services:

mail_service:
image: ...
deploy:

...
ports:

...
environment:

SPRING_PROFILES_ACTIVE: test
SWARM_ENVIRONMENT: test

secrets:

53

10. Deployment and application maintenance
- mail-service-mongodb-uri-test
- mail-service-db-encrypt-test
...

secrets:
mail-service-mongodb-uri-test:

external: true
mail-service-db-encrypt-test:

external: true
...

Database

In order to establish a connection with the database, it is necessary to specify
some credentials, for example, host, username, etc. Although, for development
purposes, it is sufficient to set them directly to application.properties
on the developer’s machine, it is not an approach for the deployed appli-
cation due to security concerns. Therefore, there is a need to keep these
credentials as Docker secrets in the Docker Swarm. Once the application is
deployed, the secrets should be processed and set to application.properties,
so that Spring can process them and establish a connection to the database.
docker-compose.yml contains the credentials for establishing.

CZM infrastructure contains a general implementation of org.spring-
framework.boot.env.EnvironmentPostProcessor. I extended this abstract
class to make it fill in application.properties with the secrets located in
the docker container. Therefore, docker secrets are processed in the following
way:

@Slf4j
class DockerSecretsProcessor extends AbstractDockerPropertiesLoader {

private static final String DB_URL = "mail-service-mongodb-uri";
private static final String DB_ENCRYPT = "mail-service-db-encrypt";
...

@Override
protected void loadProperties(

ConfigurableEnvironment environment,
SpringApplication application) {
loadTokensAndCredentials(environment);

}

private void loadTokensAndCredentials
(ConfigurableEnvironment env) {

Properties props = new Properties();
props.put("spring.data.mongodb.uri", loadDockerSecret(DB_URL));
props.put("cz.cvut.fel.mail-db-encrypt-secret",
loadDockerSecret(DB_ENCRYPT));

54

..............................10.2. GitLab Continuous Delivery

...
env.getPropertySources().addFirst(

new PropertiesPropertySource("dbProps", props));
}

}

10.1.2 Logging from Docker container

Elasticsearch is set up to collect logs of the email service running in the
docker swarm. These logs must then be handled by Kibana to provide
the programmer with access to their visualization; in order to achieve it,
the log format was specified in logback.xml. Thus, a programmer has a
comprehensive overview of the events that occur inside the container.

10.2 GitLab Continuous Delivery

I set up the GitLab pipeline to ensure continuous delivery. The stages
executed once the new code is pushed to the test or production branches
are presented below:..1. Build. This stage creates the jar of the application...2. SonarQube. This stage executes the code analysis...3. Image. This stage builds an image and pushes it to the GitLab service

registry...4. Deploy. This stage creates and updates a stack from a compose file on
the swarm.

10.3 The health check module

The e-mail service contains several parts, and all of them should run smoothly.
The health check module allows one to verify whether all components of the
application are available and running. Moreover, it allows one to predict
the state of the system in the future by analyzing errors and disk space
consumption. With this information, the development team can take measures,
such as restarting instances or changing space strategy. This allows to
minimize the perils that application will fall in the future.

Usually, the health check module is implemented by sending heartbeats
to the service. Nevertheless, Spring Boot provides an out-of-box tool that is
called Actuator. This solution provides several options; not only it checks
status of the whole application, but also it can verifies connection to the
database, space usage and much more.

55

10. Deployment and application maintenance
The health check module is a widely used practice in CZM, therefore,

I added the actuator to the e-mail service as well. For current purposes,
verification of the application status is sufficient. It can be shown in the
dashboard with all running applications that facilitate maintenance and
reduce the time required to realize that the application is down.

56

Chapter 11
Conclusion

The chapter provides an overview of the thesis results and suggests ideas for
further application enhancement.

11.1 Results

The primary purpose of the thesis was to develop an e-mail service for the
customer. Not only was this goal successfully achieved, but several supporting
tasks such as gaining theoretical knowledge about e-mail processing, per-
forming analysis for a future solution, and designing the application were
also performed. The development cycle also included testing and deployment
phases. To conclude, all developmental milestones were successfully passed
and the application entered the final stage of the development process, the
maintenance phase.

Project goals are considered to be achieved according to their definitions.
Therefore, the work results are counted as successful and satisfactory.

11.2 Maintenance and future development

The e-mail service uses convenient tools to facilitate maintenance, allowing
the development command to take measures immediately if the application is
down.

The developed application follows a modern design, built with modular and
layered architectural patterns. As a result, the e-mail service is reusable and
adaptable, as it can be efficiently modified without decreasing the quality of
the existing product. Moreover, the application is covered with automatized
tests that reduce the risk of destroying core functionality when implementing
new features.

Based on these facts, adding new functionality to the e-mail service will not
cause problems. Possible enhancements include extending the configuration
functionality by adding new parameters, such as permission for attachments
and displayed sender name. Moreover, e-mail templates can be added, so the
user’s input will be formatted in a special way before it is sent.

57

58

Appendices

59

60

Appendix A
Bibliography

1. RESNICK, Pete. Internet Message Format [RFC 5322]. RFC Editor,
2008. Request for Comments, no. 5322. Available from DOI: 10.17487/
RFC5322.

2. SAINT-ANDRE, Peter; CROCKER, Dave; NOTTINGHAM, Mark.
Deprecating the "X-" Prefix and Similar Constructs in Application Pro-
tocols [RFC 6648]. RFC Editor, 2012. Request for Comments, no. 6648.
Available from DOI: 10.17487/RFC6648.

3. FREED, Ned; BORENSTEIN, Dr. Nathaniel S. Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message Bod-
ies [RFC 2045]. RFC Editor, 1996. Request for Comments, no. 2045.
Available from DOI: 10.17487/RFC2045.

4. FREED, Ned; BORENSTEIN, Dr. Nathaniel S. Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types [RFC 2046]. RFC
Editor, 1996. Request for Comments, no. 2046. Available from DOI:
10.17487/RFC2046.

5. LEVINSON, Dr. Ed. The MIME Multipart/Related Content-type [RFC
2387]. RFC Editor, 1998. Request for Comments, no. 2387. Available
from DOI: 10.17487/RFC2387.

6. TROOST, Rens; DORNER, Steve; MOORE, Keith. Communicating
Presentation Information in Internet Messages: The Content-Disposition
Header Field [RFC 2183]. RFC Editor, 1997. Request for Comments,
no. 2183. Available from DOI: 10.17487/RFC2183.

7. Mail routing and the domain system [RFC 974]. RFC Editor, 1986. Re-
quest for Comments, no. 974. Available from DOI: 10.17487/RFC0974.

8. Domain names - implementation and specification [RFC 1035]. RFC
Editor, 1987. Request for Comments, no. 1035. Available from DOI:
10.17487/RFC1035.

9. CHHABRA, Gurpal; PROFESSOR, Chhabra; SINGH, Dilpreet; PRO-
FESSOR, Bajwa. Review of E-mail System, Security Protocols and
Email Forensics. International Journal of Computer Science Commu-
nication Networks. 2015, vol. 5, pp. 201–211.

61

http://dx.doi.org/10.17487/RFC5322
http://dx.doi.org/10.17487/RFC5322
http://dx.doi.org/10.17487/RFC6648
http://dx.doi.org/10.17487/RFC2045
http://dx.doi.org/10.17487/RFC2046
http://dx.doi.org/10.17487/RFC2387
http://dx.doi.org/10.17487/RFC2183
http://dx.doi.org/10.17487/RFC0974
http://dx.doi.org/10.17487/RFC1035

A. Bibliography.....................................
10. BOCHMANN, G.; SUNSHINE, C. Formal Methods in Communication

Protocol Design. IEEE Transactions on Communications. 1980, vol. 28,
no. 4, pp. 624–631. Available from DOI: 10.1109/TCOM.1980.1094685.

11. Message Access Paradigms and Protocols [online]. Washington Edu
[visited on 2021-12-10]. Available from: http://staff.washington.
edu/gray/papers/imap.vs.pop.html.

12. ROSE, Dr. Marshall T.; MYERS, John G. Post Office Protocol - Version
3 [RFC 1939]. RFC Editor, 1996. Request for Comments, no. 1939.
Available from DOI: 10.17487/RFC1939.

13. MELNIKOV, Alexey; LEIBA, Barry. Internet Message Access Protocol
(IMAP) - Version 4rev2 [RFC 9051]. RFC Editor, 2021. Request for
Comments, no. 9051. Available from DOI: 10.17487/RFC9051.

14. DEKENS, Berend. Relations Between In-and Outbound Email Traffic.
2022.

15. KLENSIN, Dr. John C. Simple Mail Transfer Protocol [RFC 5321]. RFC
Editor, 2008. Request for Comments, no. 5321. Available from DOI:
10.17487/RFC5321.

16. GELLENS, Randall; KLENSIN, Dr. John C. Message Submission [RFC
2476]. RFC Editor, 1998. Request for Comments, no. 2476. Available
from DOI: 10.17487/RFC2476.

17. SCHRODER, Carla. Linux Cookbook: Practical Advice for Linux System
Administrators: The Science of Microfabrication. O’Reilly Media, 2004.

18. HUTZLER, Carl; CROCKER, Dave; ALLMAN, Eric P.; RESNICK,
Pete; FINCH, Tony. Email Submission Operations: Access and Ac-
countability Requirements [RFC 5068]. RFC Editor, 2007. Request for
Comments, no. 5068. Available from DOI: 10.17487/RFC5068.

19. KLENSIN, Dr. John C.; GELLENS, Randall. Message Submission for
Mail [RFC 6409]. RFC Editor, 2011. Request for Comments, no. 6409.
Available from DOI: 10.17487/RFC6409.

20. CROCKER, Dave. Internet Mail Architecture [RFC 5598]. RFC Editor,
2009. Request for Comments, no. 5598. Available from DOI: 10.17487/
RFC5598.

21. Email processing [online]. Zeste De Savoir, 2021 [visited on 2021-12-
12]. Available from: https://zestedesavoir.com/media/galleries/
5382/ae0bdae3-d5dd-45f8-afc2-ad74dd6060be.png.

22. MYERS, John G. Simple Authentication and Security Layer (SASL)
[RFC 2222]. RFC Editor, 1997. Request for Comments, no. 2222. Avail-
able from DOI: 10.17487/RFC2222.

23. ZEILENGA, Kurt; MELNIKOV, Alexey. Simple Authentication and
Security Layer (SASL) [RFC 4422]. RFC Editor, 2006. Request for
Comments, no. 4422. Available from DOI: 10.17487/RFC4422.

62

http://dx.doi.org/10.1109/TCOM.1980.1094685
http://staff.washington.edu/gray/papers/imap.vs.pop.html
http://staff.washington.edu/gray/papers/imap.vs.pop.html
http://dx.doi.org/10.17487/RFC1939
http://dx.doi.org/10.17487/RFC9051
http://dx.doi.org/10.17487/RFC5321
http://dx.doi.org/10.17487/RFC2476
http://dx.doi.org/10.17487/RFC5068
http://dx.doi.org/10.17487/RFC6409
http://dx.doi.org/10.17487/RFC5598
http://dx.doi.org/10.17487/RFC5598
https://zestedesavoir.com/media/galleries/5382/ae0bdae3-d5dd-45f8-afc2-ad74dd6060be.png
https://zestedesavoir.com/media/galleries/5382/ae0bdae3-d5dd-45f8-afc2-ad74dd6060be.png
http://dx.doi.org/10.17487/RFC2222
http://dx.doi.org/10.17487/RFC4422

..................................... A. Bibliography

24. ZEILENGA, Kurt. The PLAIN Simple Authentication and Security
Layer (SASL) Mechanism [RFC 4616]. RFC Editor, 2006. Request for
Comments, no. 4616. Available from DOI: 10.17487/RFC4616.

25. CATOE, Randy; KRUMVIEDE, Paul; KLENSIN, Dr. John C. IMAP/POP
AUTHorize Extension for Simple Challenge/Response [RFC 2195]. RFC
Editor, 1997. Request for Comments, no. 2195. Available from DOI:
10.17487/RFC2195.

26. OAuth 2.0 Mechanism [online]. Gmail for developers, 2022 [visited on
2022-04-09]. Available from: https://developers.google.com/gmail/
imap/xoauth2-protocol.

27. SIEMBORSKI, Rob; MELNIKOV, Alexey. SMTP Service Extension for
Authentication [RFC 4954]. RFC Editor, 2007. Request for Comments,
no. 4954. Available from DOI: 10.17487/RFC4954.

28. FREED, Ned. SMTP Service Extension for Command Pipelining [RFC
2920]. RFC Editor, 2000. Request for Comments, no. 2920. Available
from DOI: 10.17487/RFC2920.

29. MASUI, Kenji; TOMOISHI, Masahiko; YONEZAKI, Naoki. Secure
implementation method of POP before SMTP using a relay server
with SSL protocol. Electronics and Communications in Japan Part
Iii-fundamental Electronic Science - ELECTRON COMMUN JPN III.
2004, vol. 87, pp. 27–34. Available from DOI: 10.1002/ecjc.20105.

30. How to Handle SMTP Authentication | Mailtrap Blog [online]. Smtp-
auth, 2019 [visited on 2022-01-14]. Available from: https://mailtrap.
io/blog/smtp-auth/.

31. REUTER, Adrian; BOUDAOUD, Karima; WINCKLER, Marco; AB-
DELMAKSOUD, Ahmed; LEMRAZZEQ, Wadie. Secure Email - A
Usability Study. CoRR. 2021, vol. abs/2110.06019. Available from arXiv:
2110.06019.

32. MOORE, Keith; NEWMAN, Chris. Cleartext Considered Obsolete: Use
of Transport Layer Security (TLS) for Email Submission and Access
[RFC 8314]. RFC Editor, 2018. Request for Comments, no. 8314. Avail-
able from DOI: 10.17487/RFC8314.

33. LAU, Robert. Email Basics. In: 2021, pp. 281–307. ISBN 978-1-4842-
6959-6. Available from DOI: 10.1007/978-1-4842-6960-2_12.

34. PODDEBNIAK, Damian; ISING, Fabian; BÖCK, Hanno; SCHINZEL,
Sebastian. Why TLS is better without STARTTLS: A Security Analysis
of STARTTLS in the Email Context. In: 30th USENIX Security Sympo-
sium (USENIX Security 21). USENIX Association, 2021, pp. 4365–4382.
ISBN 978-1-939133-24-3. Available also from: https://www.usenix.
org/conference/usenixsecurity21/presentation/poddebniak.

35. HOFFMAN, Paul E. SMTP Service Extension for Secure SMTP over
TLS [RFC 2487]. RFC Editor, 1999. Request for Comments, no. 2487.
Available from DOI: 10.17487/RFC2487.

63

http://dx.doi.org/10.17487/RFC4616
http://dx.doi.org/10.17487/RFC2195
https://developers.google.com/gmail/imap/xoauth2-protocol
https://developers.google.com/gmail/imap/xoauth2-protocol
http://dx.doi.org/10.17487/RFC4954
http://dx.doi.org/10.17487/RFC2920
http://dx.doi.org/10.1002/ecjc.20105
https://mailtrap.io/blog/smtp-auth/
https://mailtrap.io/blog/smtp-auth/
https://arxiv.org/abs/2110.06019
http://dx.doi.org/10.17487/RFC8314
http://dx.doi.org/10.1007/978-1-4842-6960-2_12
https://www.usenix.org/conference/usenixsecurity21/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity21/presentation/poddebniak
http://dx.doi.org/10.17487/RFC2487

A. Bibliography.....................................
36. WHY STUDY AT CTU? [online]. CTU [visited on 2022-05-15]. Available

from: https://www.cvut.cz/en/why-study-at-ctu.
37. TIOBE Index [online]. TIOBE Software BV [visited on 2022-05-15].

Available from: https://www.tiobe.com/tiobe-index/.
38. NoSQL vs SQL databases [online]. Mongo db, 2022 [visited on 2022-03-

23]. Available from: https://www.mongodb.com/nosql-explained/
nosql-vs-sql.

39. NAYAK, A.; PORIYA, A.; POOJARY, Dikshay. Article: Type of nosql
databases and its comparison with relational databases. International
Journal of Applied Information Systems. 2013, vol. 5, pp. 16–19.

40. Types of NoSQL Databases [online]. MongoDB [visited on 2022-04-15].
Available from: https://www.mongodb.com/scale/types-of-nosql-
databases.

41. DB-Engines Ranking [online]. Solid IT [visited on 2022-05-15]. Available
from: https://db-engines.com/en/ranking/document+store.

42. ObjectId [online]. MongoDB, 2022 [visited on 2022-04-23]. Available
from: https://www.mongodb.com/docs/manual/reference/method/
ObjectId/#objectid.

43. MongoDB Manual [online]. MongoDB, 2022 [visited on 2022-04-22].
Available from: https://www.mongodb.com/docs/manual/reference/
database-references/.

44. Using Document References [online]. Spring Data MongoDB - Reference
Documentation, 2022 [visited on 2022-04-23]. Available from: https://
docs.spring.io/spring-data/mongodb/docs/current/reference/
html/.

45. UPADHYAY, Nitin. SDMF: Systematic Decision-making Framework for
Evaluation of Software Architecture. Procedia Computer Science. 2016,
vol. 91, pp. 599–608. Available from DOI: 10.1016/j.procs.2016.07.
151.

46. FOWLER, Martin; RICE, David; FOEMMEL, Matthew; HIEATT,
Edward; MEE, Robert; STAFFORD, Randy. Patterns of Enterprise
Application Architecture. Addison-Wesley Professional, 2002.

47. BHARDWAJ, Dr; CHALLA, Rama. Virtualization in Cloud Comput-
ing: Moving from Hypervisor to Containerization—A Survey. Arabian
Journal for Science and Engineering. 2021, vol. 46. Available from DOI:
10.1007/s13369-021-05553-3.

64

https://www.cvut.cz/en/why-study-at-ctu
https://www.tiobe.com/tiobe-index/
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://www.mongodb.com/scale/types-of-nosql-databases
https://www.mongodb.com/scale/types-of-nosql-databases
https://db-engines.com/en/ranking/document+store
https://www.mongodb.com/docs/manual/reference/method/ObjectId/#objectid
https://www.mongodb.com/docs/manual/reference/method/ObjectId/#objectid
https://www.mongodb.com/docs/manual/reference/database-references/
https://www.mongodb.com/docs/manual/reference/database-references/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/
http://dx.doi.org/10.1016/j.procs.2016.07.151
http://dx.doi.org/10.1016/j.procs.2016.07.151
http://dx.doi.org/10.1007/s13369-021-05553-3

Appendix B
List of Abbreviations

Bcc Blind carbon copy

Cc Carbon copy

CRUD Create, Read, Update, Delete

CZM Center for Knowledge Management, the customer who ordered
the application

DTO Data Transfer Object

ESMTP Extended Simple Mail Transfer Protocol

FQDN Fully qualified domain name

Gitlab CD GitLab Continuous Delivery

IMAP Internet Message Access Protocol

IMF Internet Message Format

MDA Message Deliver Agent

MIME Multipurpose Internet Mail Extensions

MSA Message Submission Agent

MTA Message Transfer Agent

MUA Message User Agent

MX RR Mail Exchanger Resource Record

POP Post Office Protocol

SASL Simple Authentication and Security Layer

SMTP Simple Mail Transfer Protocol

SSL Secure Socket Layer

TLS Transport Layer Security

TTL Time to live

65

	Introduction
	Motivation
	Goals

	Theoretical part
	E-mail message format
	Internet Message Format
	E-mail header
	E-mail body

	Multipurpose Internet Mail Extensions
	Content-Type field
	Content-Disposition field

	E-mail with an attachment

	The Principles of E-mail Processing
	Terminology
	E-mail protocol
	Post Office Protocol
	Internet Message Access Protocol
	Simple Mail Transfer Protocol

	E-mail Agent
	Message User Agent
	Message Submission Agent
	Message Transfer Agent
	Message Delivery Agent

	Example of e-mail processing

	E-mail security
	Simple Authentication and Security Layer
	Extended Simple Mail Transfer Protocol
	SMTP authentication methods
	IP address restrictions
	Prior POP authentication
	Authenticated SMTP

	Secure message transmission

	Analysis
	Analysis
	The pilot version
	Application usage
	Application requirements
	Functional requirements
	Non-functional requirements

	Acceptance criteria
	Existing solutions

	Application design
	Architecture
	Layers
	Modules

	Choice of technologies
	Domain diagram
	Data
	Database type
	NoSQL storage type
	Document-based database
	Database design

	Development
	Data and service layers
	Data layer
	Identifiers
	Reference types
	Validation
	Repository pattern

	Service layer
	Abstract service
	E-mail building
	Entity validation

	REST layer and security
	REST layer
	Data Transfer Object
	API design
	Exception handling
	Swagger

	Security
	Authentication
	Authorization
	Encryption

	Final phases
	Testing
	Test approach
	Test execution
	Development and user testing
	Tools

	Development testing
	Unit tests

	Meeting acceptance criteria
	Test Scenarios
	Postman

	Conclusion

	Deployment and application maintenance
	Docker
	Different environments
	Logging from Docker container

	GitLab Continuous Delivery
	The health check module

	Conclusion
	Results
	Maintenance and future development

	Appendices
	Bibliography
	List of Abbreviations

