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Abstrakt: Strunovou efektivni akci a ji prisluejici pohybové rovnice lze pieformulovat pomoci
konexi na Courantové algebroidu. Cilem préce je pro tuto preformulovanou akci vytvorit obdobu
Palatiniho formalismu z obecné teorie relativity. Nejprve jsou detailné zavedeny veskeré kon-
cepty nutné pro pochopeni obecné teorie konexi na Courantovych algebroidech. Je predstaven
konkrétni Courantuv algebroid asociovany se zobecnénou geometrii. Nésledné jsou konexe na
tomto Courantové algebroidu vyuzity pro reformulaci strunové efektivni akce. Na zavér je vybu-
dovan Palatiniho piistup ke Courant-Einstein-Hilbertové akci, zobecnéni strunové efektivni akce
na uroven obecného Courantova algebroidu, jehoz vysledkem jsou pohybové rovnice svazujici
dohromady zobecnénou metriku a konexi na Courantové algebroidu.
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Abstract: A string effective action and the corresponding equations of motion can be reformu-
lated in the language of Courant algebroid connections. The aim of the thesis is to develop an
analogue of the Palatini formalism from general relativity for the reformulated string effective
action. First, the necessary and detailed introduction into the general theory of Courant alge-
broid connections is presented. The Courant algebroid associated with the generalized geometry
is introduced, Courant algebroid connections on it are then used for the string effective action re-
formulation. Finally, the Palatini approach to Courant-Einstein-Hilbert action, a generalization
of the string effective action to the level of general Courant algebroids, is devised. It results into
equations of motion binding together a generalized metric and a Courant algebroid connection.
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Introduction

In 1925, Albert Einstein devised a so called Palatini approach to the Einstein-Hilbert action, the
confusing nomenclature is explained in [1]. It is a variational formulation of the general theory
of relativity that, among other things, justifies the choice of the Levi-Civita affine connection
for a mathematical formulation of the physical theory. Ninety-seven years later, we are standing
in front of somewhat similar problem. Authors in [2] suggested a reformulation of the string
effective action in terms of Courant algebroid connections, they are using Levi-Civita Courant
algebroid connections, however, they lack a robust argument for it. In this thesis, we will build
on their work and aim to invent an analogue of the Palatini approach for the reformulated string
effective action to justify their more or less artificial-looking approach.

Chapter 1 is concerned with the general theory of Courant algebroid connections. We will
start by giving the very definition of a Courant algebroid itself and show some of its basic prop-
erties. Using the inherent structure of Courant algebroids, we will generalize ordinary vector
bundle connections to so called Courant algebroid connections and then we will use them for
the construction of Courant algebroid versions of the torsion and the Riemann tensor. Besides
the Courant algebroid connection, yet another additional structure on Courant algebroids will
be introduced, namely a generalized metric. In the last section of this chapter, we will combine
both of these additional structures into the concept crucial for this thesis, the concept of Levi-
Civita Courant algebroid connections.

Chapter 2 deals with the specific example of a Courant algebroid, namely with the gen-
eralized tangent bundle, which is the Whitney sum of the tangent and the cotangent bundle,
endowed with an appropriate structure. This particular Courant algerboid is closely related to
the mathematical field called generalized geometry. At the level of this special Courant alge-
broid, we will successively and in detail examine all concepts introduced in the previous chapter.

The two chapters containing purely mathematical preliminaries will be followed by two chap-
ters that bring some physics into play. In Chapter 3, we will start by stating the string effective
action in an ordinary form. Then, we will show how it together with the corresponding equa-
tions of motion can be reformulated in terms of Courant algebroid connections on the specific
Courant algebroid from Chapter 2. Chapter 4 will summarize the original Palatini approach to
the Einstein-Hilbert action from the general relativity in an elegant geometrical fashion.

11



The final Chapter 5 is a pinnacle of the whole thesis. We will devise not only the Palatini
approach to the string effective action associated with the Courant algebroid from Chapter 2,
what was the original intention, but we will go even further. In particular, we will invent the
Palatini approach to some kind of generalization of the reformulated string effective action to
the level of a general Courant algebroid.

12



Chapter 1

Courant algebroids

Generalized geometry, the first term contained in the title of this thesis, is a modification of
the standard differential geometry of smooth manifolds. The modification consists of two steps.
Firstly, the tangent bundle is replaced by the Whitney sum of the tangent and the cotangent
bundle, a so called generalized tangent bundle. Secondly, the standard Lie bracket of vector
fields is replaced by the H-twisted Dorfman bracket of generalized tangent bundle sections. The
generalized tangent bundle equipped with the aforementioned bracket is a specific example of a
vector bundle, which admits the structure of Courant algebroid [3, 4, 5]. It is advantageous and
more insightful to introduce general theory of Courant algebroids and then apply its results to
this for us important example. Most of the ideas contained in this chapter have been adopted
from [2, 6].

1.1 Basic concepts

Definition 1.1. Suppose E > M is a vector bundle. A symmetric C°°(M)-bilinear map
h : T(F) x T'(E) - C*®(M) is called a fiber-wise metric on E if and only if the induced
map ¢ — h(v,.) is a C°°(M)-module isomorphism of I'(E) and I'(E*).

Notation 1.2. A fiber-wise metric is apparently an extension of the notion of a (semi-) Riemannian
metric to an arbitrary vector bundle. For this reason, we will adopt the notation commonly used
in (semi-)Riemannian geometry. In particular, the C'°°(M)-module isomorphism 1 — h(1),.)
will be denoted as by, its inverse as fi, and we also define an inverse fiber-wise metric
h=t: T(E*) x T(E*) — C®(M) as

h™ (A, B) := h(tn A, B), (1.1)

for all A, B e I'(E").

Remark 1.3. Consider two vector bundles E ™ M and E' ™ M. Then each C°°(M)-linear map
® :T'(E) — I'(E’) uniquely determines for all p € M an R-linear map @, : E, — E’, such that
the equality

(@(1))(p) = @p(¥(p)) (1.2)

is satisfied for all ¢ € T'(E), for a proof see [7, Proposition 7.25]. Since the set C°°(M) can
be considered as the set of smooth sections of the trivial vector bundle M x R % M, every

fiber-wise metric h induces for all p € M a symmetric R-bilinear form h, : E, x E, — R.
13



14 CHAPTER 1. COURANT ALGEBROIDS

Moreover, h), is non-degenerate, this easily follows from the fact that b, is an isomorphism. One
could be interested if there is some relation between the signatures of h;, in two distinct points.
In fact, an important claim holds; if the base manifold M is connected, the signature of hy, is
constant for all p € M.! Consequently, it is possible to unambiguously define the signature
and the definiteness of an arbitrary fiber-wise metric on each connected component of the base
manifold.

Definition 1.4. Let E ™ M be a vector bundle, p : T'(E) — T'(T'M) a C>(M)-linear map called
the anchor, [.,.]g : T'(E) x I'(E) — I'(E) an R-bilinear map called the Courant bracket and
g a fiber-wise metric on E called the Courant metric. Then the 4-tuple (E = M, p,[., ., 9E)
is called a Courant algebroid if and only if it meets the following requirements:

(I) For all ¥y, 1y € I'(F) and all f € C°°(M) there holds

(U1, fo] e = (p(¥1) b2 + flb1, 2] e (1.3)

(IT) For all ¥, 12, 13 € T'(E) there holds

[V1, W2, ¥s3]ElE = [[Y1, Vo] &, ¥3]E + [, [¥1, V3] ] B (1.4)

(IIT) For all ¢, 12, 13 € T'(E) there holds

p(V1)9E (W2, ¥3) = ge([t1, Yl E, ¥3) + gE (Y2, V1, V3] B). (1.5)
(IV) For all 91, 92 € I'(E) there holds
ge([1, ¥1]E, ) = %P(%)QE(%,%)- (1.6)

Remark 1.5. The structure of a Courant algebroid fits in a more general concept of a Leibniz
algebroid, the 3-tuple (E = M, p,[.,.]r), which satisfies the first two axioms of the definition
above.

The first two characteristic properties of a Courant algebroid are analogous to the properties
possessed by the Lie bracket of vector fields, however, they are not exactly the same. Since we
are not capable of acting on a smooth function by a smooth section of a general vector bundle,
we have to employ the anchor in (1.3). The second property looks very similar to the Jacobi
identity and for the skew-symmetric Courant bracket it is actually equivalent to it. However, in
general the skew-symmetry is not guaranteed, and moreover, it is usually not possessed. The
absence of skew-symmetry leads to another complication, namely that we do not immediately
know what is the behaviour of the Courant bracket with respect to the multiplication by a
smooth function in the first (left) input. As we will show, it is not such a big deal, because the
rule can be determined by using the first and the fourth axiom of a Courant algebroid. The
third axiom relates all three additional structures together within the identity, which reminds us
of the vanishing of the Lie derivative of metric from (semi-)Riemannian geometry. The fourth
requirement allows us to express the symmetric part of the Courant bracket in terms of the
anchor and the Courant metric.

'For a detailed discussion see [8].
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Example 1.6 (Courant algebroids over a point). For the case of 0-dimensional base manifolds,
vector bundles simply become vector spaces, and in particular the tangent bundles over such
manifolds are the trivial ones, so the anchor is necessarily the zero map. Therefore, an arbitrary
Courant algerborid over the point-like manifold can be considered as a vector space g endowed
with an R-bilinear map [.,.Jg : g X g — g and a metric tensor (.,.)q : g X g = R. The first axiom
of a Courant algebroid is redundant, since it reduces to the requirement of R-linearity of [.,.]q
in the second argument, which is already ensured. It follows from the non-degeneracy of (.,.)q
and from the triviality of the anchor that the fourth axiom is equivalent to the fact that [.,.]4 is
skew-symmetric. The second axiom then becomes the Jacobi identity, hence (g, [.,.]q) is a Lie
algebra. The only remaining axiom is the third one, which takes the form

([v1, UQ]EH U3>9 + (v2, [v1, U3]9>9 =0, (1.7)

for all vi, va, vz € g. However, the Lie algebra (g, [.,.]g) equipped with a metric tensor (.,.)q
such that the relation above holds is precisely what is called a quadratic Lie algebra. In order
to summarize it, Courant algebroids over a point are exactly the same thing as quadratic Lie
algebras.

Example 1.7 (Tangent bundle as Courant algebroid). As we have already suggested in of
the paragraph above, the 3-tuple (TM = M, Idr(zar), [-5-]), where M is an arbitrary mani-
fold and [.,.] is the standard Lie bracket of vector fields, forms a Leibniz algebroid. Consider
that we have also a (semi-)Riemannian metric g at our disposal. It is now natural to ask
if the 4-tuple (TM = M, Idr(rar), [ 5], g) satisfies also the third and the fourth Courant al-
gebroid axiom. These can be for this particular case equivalently stated as £xg = 0 and
9(X, X) = const., for all X € T'(T'M), respectively. Apparently, both of them are not generally
true, thus (TM 5 M, Idr(rary, [ 5], 9) does not form a Courant algebroid in general.

Let us now show some basic properties of Courant algebroids.

Proposition 1.8. Let (E 5 M, p,[.,.|g, gr) be a Courant algebroid. Then

p([¥1,92]E) = [p(¥1), p(12)] (1.8)
holds for all ¥y, V9 € T'(E).

Proof. Consider arbitrary sections ¥y, 19, 13 € I'(E) and arbitrary f € C°°(M). Then the
second Courant algebroid axiom (1.4) says:

(1, (Y2, fslele = [[¥1, Yol fUs]e + [V, [V1, fYs]E]E. (1.9)
By using the first axiom (1.3) repeatedly, we obtain:

[V1, [2, f3]ElE
= [Y1, (p(Y2) f)¥3 + flY2, ¥3]E]E
= (p(¥1)p(V2) s + (p(v2) f)ln, ¥sle + (p(¥1) )2, ¥sle + 1, [Wh2, ¥s]ele (1.10)

for the left-hand side of (1.9), and

[[Y1, Yol B, f3]E + [Y2, [V, fYs]ele

p([1, Y2l B) s + fllbr, Yol B, ¥slE + [Y2, (0(¥1) s + flib1, ¥s]elE
P(Wl,%] )3+ fllvn, voles vsle + (p(Y2)p(¥1) vs + (p(1) f)2, ¥s]e

+ (p(V2) F) 1, Y3l e + flb2, (1, ¥s]ElE (1.11)

A,_\
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for the right-hand side. Putting equations (1.10) and (1.11) together and using the axiom (1.4)
results into

(p([¥1, 2] 2) )b = (p(v1) p(v2) f)bs — (p(2) p (Y1) f)os = ([p(41), p(402)] f) s,
& p([1: 2] ) = [p(¥1), p(2)]-

O

Proposition 1.9. Consider a vector bundle E = M equipped with a C°(M)-linear map
p: I'(E) = T(TM), an R-bilinear map [.,.]g : T(E)xT'(E) — I'(E) and a fiber-wise metric gg.
Then the fourth Courant algebroid axiom (1.6) can be equivalently stated as

(Y1, V2] E + [2, V1]E = D gr(11,v2), (1.12)

for all Yn, Yo € T(E), where D : C*°(M) — T'(E) is an R-linear map defined uniquely by the
formula

9e(D f,9) = p()f, (1.13)
for allyp € T(E) and f € C°(M).

Proof. Firstly, assume that (1.6) holds. For arbitrary 1, 13 € I'(E), one easily sees that

(V2)gE (11, 1) 0 9e(D gu(1,11),12). (1.14)

9 (2[1, Y1lE,2) ( 13)

)"
It follows from the fact that gg is a fiber-wise metric that for all ¢ € I'(E) there holds

Choosing 1 = 11 + 19 results in

2[p1 + p2, 1 + Yol = D ge(r + o, Y1 + 12)
= DgE(Q/)lad)l)—l_DgE(d}deJZ)+2D9E(¢17¢2)7 (116)

while on the other hand an R-bilinearity of [.,.]gp implies that

2[1 + Yo, Y1 + o] = 2[Y1, Y1]E + 2[Y2, Y2l + 2([Y1, Y2lE + [¥2, ¥1]E). (1.17)

By combining these two and using (1.15) twice, we obtain exactly (1.12). Conversely, assume
that (1.12) holds then especially for all ¢y € I'(E), we have

[r ) = 5 D (i), (L18)

Acting on the equation above by gg(.,12) € I'(E*) for all ¢ € I'(E) gives

1
9e([Y1, V1B, ¥2) = 59E(DQE(¢1,¢1),¢2)- (1.19)
Finally, using the definition of map D leads precisely to (1.6). O

Let us now recall a notation from the abstract algebra, whose usefulness will be immediately
illustrated in the consecutive proposition.
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Notation 1.10. Suppose A and B are modules over a ring R, and p : A — B is an R-linear map.
We define a map p! : B¥* — A* as

(7 (8))(a) := B(p(a)), (1.20)
for all 5 € B* and a € A. Note that p’ is apparently R-linear.

Proposition 1.11. Suppose (E = M, p,[.,.|g,95) is a Courant algebroid. The R-linear map
D : C®(M) — T'(E) introduced in the previous proposition can be equivalently defined as®

D=tgop’ od. (1.21)

Proof. The proof is just straightforward handling with the particular objects.

D=fgop od & VfeC®M) Df=(tg op’ od)f
& Vfe ™ (M) bp(D f) =p"(df)
& VfeCX(M), Wel(E)  gu(Dfv)=(p"(df))
= df(p(¥))
=p¥)f.

O]

While the axiom (1.3) determines a behaviour of the Courant bracket with respect to the
multiplication by a smooth function in the second (right) argument, the analogous behaviour for
the left input is so far unknown. Equipped with the map D, we are able to express the desired
formula.

Proposition 1.12. Let (E = M, p,[.,.]g,gr) be a Courant algebroid. Then the relation
(b1, ol = flr,vele — (p(¥2) )1 + gu(tb1,¢b2) D f (1.22)
is satisfied for all 11, Yo € T'(E) and f € C®(M).
Proof. Since for all f, g € C°°(M) there holds d(fg) = gd f + fdg, we also have
D(fg)=9gDf+ fDgy. (1.23)

Hence, it follows for all 11, 12 € T'(E) and f € C°°(M) that

D(fgp(¥1,v2)) = ge(1,¥2)D f+ D ge(ti, )
(P2 W1 02) D f o+ [l Yol + [z ], (1.24)

while on the other hand, we have the following:

D(fge(y1,v2)) = Dge(fii,2) = [fib1,v2]e + [Y2, fi]E

(1.12)
(i)[fwl, Vale + (p(¥2) b1 + flW2, ¥1]. (1.25)
Comparing both (1.24) and (1.25) results exactly in the formula to be proven. O
2For the case of Courant metric, notation introduced in 1.2 will be in the whole text simplified as by = bom

and g =g, -
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The last property of Courant algebroids listed in this section describes the composition rules
for the map D and the additional structures of a Courant algebroid; the anchor, the Courant
bracket and the Courant metric.

Proposition 1.13. Let (E 5 M,p,][., ], gg) be a Courant algebroid. The composition rules
poD =0, g5(D £,D1) =0, D=0  (1.26)

are satisfied for all f, h € C>*(M) and i) € T'(E).

Proof. Acting by the anchor on (1.12) and using linearity of p together with (1.8) leads to

[p(11), p(2)] + [p(2), p(1)] = p(D g (1, 2)), (1.27)

for all 91, ¥o € T'(E). Since the Lie bracket of vector fields is skew-symmetric, the left-hand
side vanishes identically. Therefore, for all f € C°°(M) there holds

0= p(Dge(fY1,v2)) = p(D(f9E(¥1,v2)) = ge(¥1,%2)p(D f) + fo(D ge(1,92)).  (1.28)

As we have already proven, the second term on the right-hand side vanishes, thus we get

ge(Y1,92)p(D f) = 0. (1.29)

Since this holds for arbitrary sections 1 and 12 and the fiber-wise metric in non-degenerate,
necessarily p(D f) = 0 for all f € C*°(M), that is po D = 0. The composition rule for the
Courant metric follows directly from the definition of map D, see (1.13), and the equality just
proven. To prove the last formula, we first show that the equation

[Dge(¥1,2),¢]E =0, (1.30)

is valid for all 11, 19, ¥ € T'(E). It can be proven in the following way, consider arbitrary
sections 11, V9, ¥ € I'(E) and act by [.,¥]g on (1.12), it yields

[D ge(1,v2),¥]E = [[Y1,Y2) e, Y]E + [W2, 1], Y]E
(1, [2, Y] ElE — 2, [V1, Y] ElE + [¥2, [V1, ¥]E]E — 1, [V2, ¥]E]E

0. (1.31)

(1.4)

Hence, for all f € C*°(M) there holds
D gr(fi1,2),¥]E =0, (1.32)

while on the other hand, the same expression can be expanded as follows:

[Dge(fir,12),Y]E
= [D(fge(1,v2)),¥|E = [9e(¥1,%2) D f,¥|g + [f D ge(¥1,12),Y]E
= ge(¥1,v2)[D f, %] — (p(¥)9E(¥1,v2)) D f + ge(D f,v) D ge(1,12)

(1.22)

+ fID ge(1,92), ¥]E — (p(¥) f) D ge(¥1,v2) + 9(D ge(¥1,v2),9) D f
= ge(1,v2)[D f,¥]E + fID ge(¥1,%2),Y]E

(1.13)

= ge(v1,v2)[D f,¥E (1.33)

(1.30)

By putting equations (1.32) and (1.33) together and realizing that gp is non-degenerate, we
obtain the desired composition rule. ]
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As for every algebraic structure, it is convenient to have a criterion for saying, that two
Courant algebroids are in principle the same, that is isomorphic. This criterion is formalized by
the following definition.

Definition 1.14. Let (E 5 M,p,[.,.]g,g9r) and (E’ ™ M, o', e, gr) be two Courant
algebroids over the same base manifold and F : T'(E) — I'(E’) be a C°°(M)-linear map. We say
that F is a Courant algebroid morphism if and only if the following requirements are met:

p=poF, Fl1,02]p = [Fibr, Fapalpr, 9e(V1,v2) = gp/ (Fy1, Fipa) (1.34)

for all 11, 19 € I'(E), that is F preserves all Courant algebroid structures. In addition, if F is
bijective, it is called a Courant algebroid isomorphism.

Remark 1.15. It can be easily checked that if F is a Courant algebroid isomorphism, then also
F~!is a Courant algebroid isomorphism.

1.2 Courant algebroid connections

The structure of Courant algebroids allows one to act on smooth functions by a section of a
Courant algebroid, it is naturally provided through the anchor. Consequently, we can introduce
Courant algebroid connections, which are a generalization of affine connections well-known from
the standard differential geometry.

Definition 1.16. Suppose (E = M, p,[.,.]g,gr) is a Courant algebroid. An R-bilinear map
V :T'(E) x I'(E) — I'(E) satistying

(I) Vipha = [V, 12,
(I1) Vo, (f1r2) = (p(1) f)b2 + [V, 2,

(IIT) p(¥1)gE (Y2, v3) = gE(Vg 2, ¥3) + ge (b2, Vi, 13),

for all 11, V9, 13 € I'(E) and f € C*°(M), is called a Courant algebroid connection. In the
formulas above, we denoted the induced endomorphism V(v,.) : I'(E) — I'(E) as Vy, := V(¢ .),
for all ¢» € I'(E), this notation will be used across the whole thesis.

Remark 1.17. Apart from the first two properties, which correspond to a straightforward gener-
alization of affine connections, there is also the third one, an a priori assumption that Courant
algebroid connection is compatible with the Courant metric gg.

It is worthy to ask if there is some Courant algebroid connection on every Courant algebroid.
It can be shown, see [9, Proposition 2.17], that every vector bundle E = M equipped with a
fiber-wise metric gg admits a vector bundle connection compatible with gg, that is a vector
bundle connection V' : T'(T'M) x I'(E) — I'(E) satisfying

Xgp(1,v2) = 9g5(V' x¥1,¢2) + g(¥1, V' x12) (1.35)

for all X € T'(TM) and 1, 12 € T'(E). For a given vector bundle connection V' compati-
ble with g on a Courant algebroid (E = M, p,|[.,.]g,9E), we can define an R-bilinear map
V:T(E)x I'(E) - T'(F) as

Vi 2 = V' )2, (1.36)
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for all 91, 1y € T'(F). It is clear that V meets all the requirements to be a Courant algebroid
connection. Therefore, the existence of a Courant algebroid connection on an arbitrary Courant
algebroid has been just proven.

We have already introduced a Courant algebroid isomorphism in the previous section. It is
convenient to extend this concept even to Courant algebroids equipped with a Courant algebroid
connection.

7.r/

Definition 1.18. Let (E & M,p,[., g, gr) and (E' = M,p,[., g, g5) be two Courant
algebroids equipped with Courant algebroid connections V and V' respectively. Courant alge-
broid isomorphism F : I'(E) — I'(E’) is called a connection preserving Courant algebroid
isomorphism if and only if it relates their Courant algebroid connections as

]:(V’lﬁl,(vbQ) = V,f¢1f¢27 (137)
for all ¢1, ¢2 € F(E)

Remark 1.19. One could be curious if there is some Courant algebroid connection V' on E’ which
would satisfy the relation (1.37). In other words; if we have a Corant algebroid connection V
on FE, does the formula

V{l/),1¢/2 = ./_'.(V}‘flw/lf_lqﬂa), (138)

for all ¥', 9’5, define a Courant algebroid connection on E'? It is pretty straightforward to
check that it is always true.

Definition 1.20. Consider a Courant algebroid (E > M, p, [.,.]r, gr) endowed with a Courant
algebroid connection V. We define covariant divergences divy : I'(E) — C*°(M) and
divy : T'(E*) — C®(M) as®

divy ¥ 1= (Ve , 1), divg A := (V¢, A) (e &H), (1.39)
for all ¥ € I'(E) and all A € T'(E*) respectively, where {gu}gifik(E) is an arbitrary local frame
of E over some U C M, and {é“}f}iﬁkw) is the corresponding dual one.

Notation 1.21. The previous definition is not entirely correct, one should add restriction symbols
in the following way:

(divy )|y = " (Vye, Yly), (dive Ay = (Vye, Alp) (e |y 7). (1.40)

Since there is always a local frame over some neighbourhood of an arbitrary point of the base
manifold, it clearly defines a smooth function on the whole base manifold. Apparently, expres-
sions without restrictions are cleaner and more readable, precisely for this reason, we will quietly
assume that all object are always appropriately restricted and we will thus usually omit all the

restriction symbols in the remaining part of this thesis. Moreover, we will freely and without
Rank(E)
p=1

Remark 1.22. Note that the two types of divergences are related to each other as

any special emphasizing use {£,} as an arbitrary local frame of E over some U C M.

divy ¢ = divy bg v, divy A = divy g A, (1.41)

3 Action of covariant derivative associated with a Courant algebroid connection is extended to a tensor fields
of an arbitrary rank in the exactly same way as it is done in the case of ordinary affine connections.
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for allyp € T'(E) and A € I'(E*). It follows immediately from the fact that Vyobgp =bg oV, for
all ¢ € T'(F), which is an easy consequence of the third axiom of a Courant algebroid connection
and can be proven as

(br Vi, ¥2)(V3) = g (Vi 2, ¥3) = p(¥1)9E (Y2, ¥3) — g (2, Vi, 13)
=p(¥1) b v2)(¥3) — (0B V2) (Vi ¥3) = (Vy,bE 12) (¥3), (1.42)

for all vy, 12, ¥3 € T'(E).

As we will see, there arise a lot of invariants preserving under the Courant algebroid ismor-
phisms. First of them are the just introduced divergences.

Proposition 1.23. Let (E 5 M,p,|.,.]g,98) and (E' LN M, o\ 1., e, g8) be two Courant
algebroids equipped with Courant algebroid connections V and V' respectively. Moreover, assume
that there is a connection preserving Courant algebroid isomorphism F : T'(E) — T'(E') between
them. Then the corresponding covariant divergences are related as

divy = divys oF, divy = divyr o( F 1T, (1.43)

Proof. As F is a C°°(M)-module isomorphism and {§M}Rank(E)

sees that {fﬁu}Rank is a local frame of E’, moreover, {(F~ )Tﬁl‘}Rank is apparently the
corresponding dual one. Therefore, the definition of connection preserving Courant algebroid

is a local frame of E, one easily

isomorphism implies

divy ¢ = (Ve ¥0) = &(F 'V pe, Fip) = (F )T (V' 5, F) = diver Fop,  (1.44)

for all ¢ € T'(E), this proves the first identity. To prove the second one, realize that the Courant
metric is invariant under Courant algebroid isomorphisms, so for all ¢, 1y € T'(E) we can
perform the following:

(e 1) (¥2) = gu(1, ) = g (Fibr, Fipo) = (b Fibr)(Fiba) = (F b Fipr)(¢),  (1.45)
that means by = FLbp F, or equivalently
tp =F ' (FHT. (1.46)
By employing the relation for #5 into (1.41), we obtain
divy A = divy g A = dive F U (FH)TA = dive g (FHTA=dive(FHTA, (1.47)

for all A € I'(E*). O

1.2.1 Torsion

With Courant algebroid connections in our hands, we are able to speak about Courant algebroid
alternative to a torsion tensor. Naively, we would define a torsion operator as an R-bilinear map
To: T'(E) x I'(E) — T'(E) by the following formula:

To(1,2) = V2 — V1 — [1,¢2]E, (1.48)

for all 41, ¥ € T'(E), where (E = M, p,[.,.]r,95) is a Courant algebroid equipped with a
Courant algebroid connection V. One immediately sees that unlike the ordinary torsion operator,



22 CHAPTER 1. COURANT ALGEBROIDS

Tp is not skew-symmetric. It would not be such a problem, however, for all ¢, 19 € T'(E) and
f € C*°(M) there holds

To(feh1,2) = Vg, o — Vi, (fo1) — [fo1, ¥2)e = fTo(¥1,v2) — ge(¥1,v2) D f,  (1.49)

where we have used axioms of a Courant algebroid connection and the relation (1.22). It means
that Ty is not C°°(M)-bilinear, which is already a serious issue, because it does not define a
tensor field on E. Let us try to fix it, consider a new torsion operator T': I'(F) x I'(E) — I'(E)
defined for all 91, 19 € T'(E) as

T (1, 2) = To(Yr1,92) + O (Y1, 2), (1.50)
where © : T'(E) x I'(E) — I'(FE) is an unspecified R-bilinear map satisfying
O (Y1, fb2) = fO(1, ), (1.51)
O(f1,¥2) = fO(1,¥2) + gp(¥1,¢2) D f, (1.52)
O (Y1, 91) = [¥1, 1]k, (1.53)

for all Y1, 19 € T'(E) and f € C°°(M). Such T is apparently C°°(M)-bilinear, and moreover, it
is skew-symmetric thanks to the last equation. Now, the task is to find the most general form

of © such that all three equations above are satisfied. Since bg is an isomorphism, the equation
(1.53) holds if and only if

ge(O(1,¢1),v2) = ge([Y1, V1B, ¥2),

for all 11, Yo € I'(E). Using (1.12), (1.13) and compatibility of V with the gg consecutively, it
can be further rewritten as follows:

95(O1,1). ¥2) = 505(D gr (b1, 1), a) = 3 p(2)g (b1, r) = 95(Vath ). (154)

By choosing ¢ = fg &* for all p € {1,...,Rank(E)}, one finds that equation (1.54) is satisfied
if and only if
O, ¥1) = 9u(Vigenthr, Y1) (1.55)

It follows from the linearity that

O5(1,12) = 5 (O, 2) + O, 1)) = 5 (95(Vip et h2)6y + g (b1, Vg cot62)6y), (156)

for all ¢, 1o € T'(F). Therefore, the equation (1.53) uniquely determines the symmetric part
of the map ©. As the set of all skew-symmetric R-bilinear maps forms a vector space, the
skew-symmetric part can be cast for all 11, ¢o € T'(E) in the form

Oa1,12) == 5 (O(1,) — O, 1))

= %(QE(WE en 1, ¥2)6u — ge (U1, Vg en2)&y) + A1, ¥2), (1.57)

where A : I'(E) x I'(E) — I'(F) is an unspecified skew-symmetric R-bilinear map. One easily
finds that the equations (1.51) and (1.52) are then equivalent to imposing the C'°°(M)-bilinearity
condition on a map A. Therefore, the most general solution of the given set of equations takes
the form

O(Y1,v2) = ge(Vig enth1, ¥2)&, + A1, 12), (1.58)

for all ¥, 19 € T'(F) and for an arbitrary skew-symmetric C° (M )-bilinear map A. In order to
make a Courant algebroid version of a torsion operator as simple as possible, we set A := 0.
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Notation 1.24. In the previous paragraph, we have used the symbols ©g and © 4 for the complete
symmetrization and complete skew-symmetrization of the R-bilinear map © respectively. We
will continue to use the notation in the remaining part of the thesis also for tensor fields of an
arbitrary rank. For example, if we take F' € 7;0(E), k € N, we have

1
FS(wla'-'vrl/}k) :H Z F(wa(l)r"?wa(k))v (159)
€Sk
1
Fa(n, ) =27 3 5800 F(¥o)s - Yathy), (1.60)
oSy,
for all ¥y, ..., ¥ € T'(E). The symbol Si denotes the symmetric group of order k.

Finally, the considerations above lead to the following formal definition of a torsion operator.
The same definition was proposed earlier in [10].

Definition 1.25. Let (E = M, p,[.,.]5,gr) be a Courant algebroid equipped with a Courant
algebroid connection V. The torsion operator T : T'(E) x I'(E) — I'(E) is defined as

T(1h1,v2) := V2 — Vi, 1 — [h1, Y] + g (Vi enthr, 1¥2)E,, (1.61)

for all 91, ¥y € T'(E).

Theorem 1.26 (Torsion tensor). Let (E = M, p,[.,.|g, 9E) be a Courant algebroid equipped with
a Courant algebroid connection V. Then the torsion tensor T : T'(E)xI'(E)xI'(E) — C*(M)
defined through the torsion operator as

T(d}lanvwi’)) = QE(T(¢1a¢2),1/)3)7 (162)
for all 1, 1o, s € T(E), can be expressed as

T(Y1,92,v93) = gu(Vy b2 — Vi, th1 — [¥1,902] B, ¥3) + 9E(Vys11,12). (1.63)

Moreover, it is C°°(M)-linear in all three inputs and it is completely skew-symmetric, in other
words T € Q3(E).

Proof. Firstly, let us prove that formula (1.63) holds. For arbitrary 1, 1, 3 € I'(E) we have

9E(Vigenth1,¥2) 9 (&, ¥3) = 98(Vgpp en it o016, V15 02) 9B €y 1¥3)
=95(Ve, ¥1,¢2)9p(EE E", ¥3)
=95 (Vysth1,¥2). (1.64)
This result together with the definition of the torsion operator and the torsion tensor proves
(1.63). Almost everything else has been already proven in the introductory paragraph to this
subsection. It remains to prove that the torsion tensor is C°°(M)-linear in the third input
and that it is completely skew-symmetric. The former is trivial, let us check the latter. Since

we have already proven the skew-symmetry of the torsion operator, it is sufficient to show the
skew-symmetry in the last two inputs. For arbitrary 11, ¥2 € I'(E) we have

T (Y1, %2, %2) = ge(Vg, o — Vgt — [1,02) B, ¥2) + 9B (Vy,1, ¥2)
=9e(Vy, 2, v2) — ge([¥1, ¥2] B, 2)

= %P(%)QE(%,%) - %P(%)QE(%,%) =0, (1.65)

where the third axiom of a Courant algebroid connection and also the third axiom of a Courant
algebroid itself have been used in the third step. O
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Remark 1.27. Note that the Courant algebroid version of torsion tensor is defined directly in a
fully covariant fashion, unlike an ordinary torsion tensor, which is originally defined as a tensor
of the type (;) Another difference is that an ordinary torsion tensor is skew-symmetric only in
the first two arguments.

1.2.2 Curvature

Besides the torsion tensor, there is also another prominent tensor fully determined by an affine
connection in standard differential geometry, it is the Riemann curvature tensor or just the
Riemann tensor. In this subsection its Courant algebroid equivalent will be established.

Characteristic properties of the ordinary Riemann tensor corresponding to the Levi-Civita
affine connection are its symmetries, which among all other things allow one to define the Ricci
tensor and the Ricci scalar in an unambiguous way. For this reason, we would like to a Courant
algebroid version of the Riemann tensor to also possess these symmetries. Consider a Courant
algebroid (E & M, p,[.,.]r,9E) equipped with a Courant algebroid connection V. As well as
in the case of torsion, it is convenient to introduce the Riemann tensor as a fully covariant
tensor field. Let us start again naively and define the Riemann tensor as an R-multilinear map
Ry:T(E)xT'(E) xI'(E) x I'(F) — C*°(M) in the following way:

Ro(11, 02,93, Y4) = gE (Vs Vb2 — Vi, Vysths — Vi, va1,%2,11), (1.66)
for all ¥, 19, 13, 14 € T'(E). Let us check the C°°(M)-linearity in all four inputs.
(I) In the first input, it is a direct consequence of the fact that gg is C°°(M)-bilinear.

(IT) For all ¥, 12, 13, 14 € I'(E) and for all f € C°°(M) there holds

Ro(v1, fi2,13,14)
=9E(szvw4f¢2 - vaibswa - V[w&m]Ef%? wl)

= FRo(n, v, s, 00) + g5 ((p(s)p(04) £z + (p(0) )Ty + (p(5) ) Vo
— (p(01)p(W) F)b2 — (p(05) )V s — (p() ) Vo2 — (ol 1)) ), 1)

— [Ro(W1, Y, s, 61) + g (([0(3), p(6)] F)ebe — (o[, Yl ) F iz, )
= [Ro(¥1,%2, ¥3,4), (1.67)

where the second axiom of a Courant algebroid connection has been used multiple times
in the second step, and then we have used (1.8) in the last step.

(III) For all ¥, v, 13, 14 € T(E) and for all f € C°°(M) there holds

RO(wla ¢27 f¢37 Q;Z)4)
=98V V2 — Vi, Vg tha = Vipy )02, 91)
= fR0(¢17 1/}27 ¢37 ¢4)
+ gE< — (p(Va) )V ys2 + (p(¥0a) f)Vy3b2 — gE (13, 94) VD fh2, 1/)1>

= fR0(1/11, ¢27 1/}35 1/)4) - gE(¢37 ¢4)9E(VDf¢2a ¢1)’ (168)

where we have used the first and the second axiom of a Courant alegebroid connection
together with (1.22).



1.2.

(IV)

COURANT ALGEBROID CONNECTIONS 25

If we compare the relations (1.3) and (1.22), we see that that the term responsible for
spoiling the C°°(M)-linearity in the third input of Ry is missing in (1.3). Therefore, Ry is
C°°(M)-linear in the fourth input.

We have just shown that Ry is C°°(M)-linear in all inputs except for the third one, therefore
we have to modify it to get an appropriate definition of the Courant algebroid version of the
Riemann tensor. Before we do that, let us first investigate if Ry at least possesses the proper
symmetries.

(A)

The first of them is the skew-symmetry in the last two arguments, it is possessed by the
ordinary Riemann tensor corresponding to an arbitrary affine connection. In the case of
Ry, for all v, 11, ¥o there holds

Ro(¥1,92,%,%) = =95 (Viyy) 02, ¥1), (1.69)

which can be equivalently expressed by using (1.12) as

Ro(Y1,92,7,4) = *%QE(VDgE(@b,@b)%,l/Jl)a (1.70)

hence Ry lacks the skew-symmetry in the last two inputs.

Another one is the skew-symmetry in the first two inputs, which does not hold generally in
the standard differential geometry, but we have to assume an affine connection compatible
with the metric to ensure it. Let us check it for Ry, take arbitrary ¢, 13, ¢4 € T'(E) and
expand Ry(,1,13,14) as follows:

Ro(¢, v, ¥3,94)
= 98(Vis Vi, ) = Vi, Vi) — Vi, 4,59, 9)
=p(V3)95 (Ve ¥, V) — g5(Ve, ¥, Vs tb) — p(a) ge (Vs b, ) + g (Vs b, Vi, ¥)
— p([¥3, Ya] £)gE (Y, ) + 9BV, Vi, ] )
= [p(¥3), p(Va)|gE (2, ¥) — p([¥3, Yal£)gE (Y, ) — p(¥3)gE (P, V1))
+ p(V1)gE (Y, Vs ) + 9 (Y, Vigs g n?)
= = 95(Vys ¥,V ¥) — ge(¥, Vi, Vi, tb) + ge(Vy, ¥, V1)
+ 95V, Vi, Vs th) + g (¥, Vi, ) n )
= — Ro(¥, 1,13, 4), (1.71)
which implies
Ro(v, ¢, ¢3,4) = 0. (1.72)

Therefore, Ry is skew-symmetric in the first two arguments. During the derivation, the
compatibility of V with gr has been used multiple times, and in the fourth step, we have
also used (1.8).

The two already discussed symmetries would already be sufficient for the unambiguous
definition of the Ricci tensor, however, the ordinary Riemann tensor corresponding to the
Levi-Civita affine connection possesses yet another symmetry, which makes the Ricci tensor
symmetric in both of its inputs. It is symmetry with respect to the interchange of the first
pair of inputs for the second pair of them. Since Ro(1), ¥, 11, 12) # Ro(¥1,2,1,1), it is
clear that Ry does not have this symmetry.
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Unlike the torsion tensor, there is not such a straightforward way how to fix the issues of Ry
outlined in the previous paragraph. Therefore we just state the definition of a Courant algebroid
version of the Riemann tensor, and then check if it meets all requirements mentioned above.
The definition we use was proposed in the paper [2, Definition 4.8].

Definition 1.28. Consider a Courant algebroid (E = M, p,|[.,.|g, gr) equipped with a Courant
algebroid connection V. Then the Riemann tensor R : I'(E) xI'(E) xI'(E) xI'(E) — C*°(M)
is an R-multilinear map defined as

R(4p1,¢2,03,14) = %(Ro(¢1,¢27¢3,¢4) + Ro (%4, V3,12, 91)
+ 9(Ve, U, 00)gp(Vag entha, 1) (1.73)

for all 11, 19, V3, ¥4 € T'(E).

Theorem 1.29 (Riemann tensor). Let (E = M, p,|.,.|g, gg) be a Courant algebroid equipped
with a Courant algebroid connection V. Then the Riemann tensor is C°°(M)-linear in all inputs,
that is R € TP(E). Moreover, it possesses the following symmetries:

R(1,¥2,¢3,¢4) = — R(Y1, %2, ¥4, ¥3), (1.74)
R(Y1, ¥2,¢3,¢4) = — R(v2, 91,93, ¢4), (1.75)
R(1, ¥2,¥3,¢4) = R(Y3, ¥4, ¥1,¢2), (1.76)

fOT’ all wb 77b27 7/13; ¢4 € F(E)

Proof. Let us begin with the symmetries. Take arbitrary v, ¢1, 12 € I'(E), for the third term
on the right-hand side of (1.73) we have

9e(Ve, 0, 0)ge(Vig enth2, 1) = - (p(§u)9E (¥, ¥))ge(iE & 18§ )9E(Ve, Y2, 1)
= igE(D gE(wa ¢)7 ﬁE gy)gE(vfqu% wl)

1
= igE(ngE(1/1,1/;)q;Z)27¢l)a (177)

— N =

where we have used the identity #g " = gr(fp &, §r&¥)E,, the definition of map D, and also
the axioms of a Courant algebroid connection are used multiple times. This result together with
the equations (1.70) and (1.72) implies

R(T/J17¢27¢7¢) =0, (178)

hence R is skew-symmetric in the second pair of arguments. One would proceed in the ex-
actly same way to show the skew-symmetry in the first two arguments. Due to the identity
tp &t = gp(tp&*, tg £Y)E,, it is clear that the equality

R(¢17¢2,¢37¢4> = R(¢4>¢37¢27¢1) (179)

holds for all 91, 12, 13, ¥4 € I'(E). This result together with the already proven symmetries
(1.74) and (1.75) gives us the remaining symmetry (1.76). As we have already shown that Ry is
C°° (M )-linear in all inputs except for the third one, it is apparent that R is C°°(M)-linear in the
first and the last argument. Since symmetries (1.74) and (1.75) are possessed by the Riemann
tensor, it is enough for the C°° (M )-linearity also in the second and the third input. O
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Although the definition of the Riemann tensor R may look rather clumsy at first glance, it is
indeed C'*°(M)-linear in all inputs and it also possesses all characteristic symmetries. Another
argument in favour of our choice of the Riemann tensor can be stated, it satisfies the analogue
of the algebraic Bianchi identity.

Proposition 1.30 (Algebraic Bianchi identity). Let (E = M,p,[., .|, 9r) be a Courant alge-
broid equipped with a Courant algebroid connection V. Then the corresponding Riemann tensor
R and the torsion tensor T satisfy the identity

R(th1, 12,3, 4) + cyc(ipa, 3, 94) = %((szT)(%, Ya, 1) + T (b1, T (2, 13), 4)

+ Cyc(¢2,¢37¢4) - (V%T)(T/@ﬂ%ﬂ/%))a (180)
for all Y1, 1o, s, Yy € T(E). In particular, if V is torsion-free, one has

R(1, ¥2,¥3,¢4) + cyc(a, 3, 14) = 0. (1.81)
Proof. The proof is based on long technical calculations, see [2, Theorem 4.13]. O

We hope that aforementioned arguments are enough to convince the reader to accept the
definition of a Courant algebroid equivalent of the ordinary Riemann tensor. Now let us de-
fine the already announced Courant algebroid version of the Ricci tensor and the Ricci scalar
analogously as it is done in (semi-)Riemannian geometry.

Definition 1.31. Suppose (E 5 M,p,[.,.]g,gr) is a Courant algebroid equipped with a
Courant algebroid connection V. By the Ricci tensor Ric € T (E) is understood the contrac-
tion of the Riemann tensor R in the first and the third argument with respect to the Courant
metric gg, that is

Ric(y1,v2) := R(8E &, 1, §us 2), (1.82)

for all 91, 19 € T'(E). The Courant-Ricci scalar Ry € C°°(M) is defined as the contracted
Ricci tensor with respect to the Courant metric gg, that is

Rp =Ric(ip & &) = R(Ep " 10 €", &, &) (1.83)

To finish this section, we examine a behaviour of the torsion and curvature under the con-
nection preserving Courant algebroid isomorphisms.

Proposition 1.32. Let (E = M,p,[., .5, g98) and (E’ LN M, o\ 1., e, g8) be two Courant
algebroids equipped with Courant algebroid connections V and V' respectively. Moreover, assume
that there is a connection preserving Courant algebroid isomorphism F : T'(E) — T'(E") between
them. Then the corresponding torsion and curvature tensors are related as

To = F*To, Ry = F*Ry, Ricy — F* Ricy, Ry =Ry (1.84)
Proof. Using the relations (1.34) and (1.37) yields
Rov (Y1, %2, ¥3,%4) =g (Vs Vo — Vi, Visha — Vi, a2, 91)
= 95 (F(Vs Vs = Vi, Vs = Vigg g ¥2), Fib1 )
— 95 (V' 5 (FVt02) = ¥ py(FVth2) = V' iy ) Fil, Fin)
=g (V/Jwg V' rypuF b = V' 5,V 5y Fha — V17, pa) o F 2, F ¢1>
= Rov/ (Fip1, Fiba, Fps, Fipa), (1.85)
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for all 1, 19, 13, g € T'(E). By using the relation (1.46) and the definition of a connection
preserving Courant algebroid isomorphism, we obtain

9E(Ve, V3, V1) 9 (Vig entha, Y1) = gp/ (F(Ve, ¥3), Foa) g (F (Vg enth2), Fib1)
=98 (V' re, Fbs, Foa) g (V'y, (7-1yrenF 2, Fib1),  (1.86)

for all ¢1, 12, 13, ¥4 € I'(E). Therefore, combining (1.85) and (1.86) implies that the equation

RV(¢1>¢27¢37¢4) = va(f¢17f¢2>fw3afw4) (187)

holds for all ¥y, ¥, 13, 104 € T'(E), which is exactly what is meant by the notation Ry = F*Ry.
Consequently, also the relations for the Ricci tensors and the Courant-Ricci scalars hold. The
proof for the torsion tensors can be carried out in similar way as it has been done for the Riemann
tensors. O

1.3 Generalized metric

In the previous section, Courant algebroid alternatives to well-known notions from the standard
differential geometry have been introduced. In this section, we will deal with a so called general-
ized metric, whose alternative is not commonly used in standard (semi-)Riemannian geometry.
Therefore, it may look rather artificially at first glance, but as we will see later, it is a very
useful concept.

Definition 1.33. Let E 5 M be a vector bundle equipped with a fiber-wise metric gr. By
a generalized metric on E is understood a C°°(M)-module automorphism 7 : I'(E) — T'(E)
such that 72 = Idr(g), and furthermore, the map gp(.,7.) € TY(E) is a positive definite fiber-
wise metric.

Remark 1.34. Since gg(.,7.) is a fiber-wise metric, it is first of all symmetric, hence a generalized
metric is symmetric with respect to gg. The symmetry together with the involutivity of 7 implies
also the orthogonality of a generalized metric with respect to gg.

Let us formulate yet another and in general different definition of the generalized metric.

Definition 1.35. Let E = M be a vector bundle equipped with a fiber-wise metric gz. Then
any maximal positive definite subbundle V; C FE is called a generalized metric on F.

Remark 1.36. By a positive definite subbundle is understood a subbundle V; C FE such that

ng‘V+ <V, is postive definite, for all p € M. As we discussed in the remark 1.3, the signature
P r

of gg, is constant if the base manifold is connected. To avoid an unnecessary discussion, we will
quite often assume that manifolds are connected. The fact that a subbundle is maximal means
that there is not any positive subbundle with a higher rank.

As it is strange to have two different definitions of a generalized metric, let us point out the
following theorem.

Theorem 1.37. Under the assumption of a connected base manifold stated in the remark 1.36,
there is a one-to-one correspondence between both definitions of a generalized metric.

Lemma 1.38. Consider a finite-dimensional real vector space V' and a vector space endomor-
phism A satisfying A?> = 1dy,. Then A is diagonalizable, and moreover, its spectrum is a subset
of the set {—1,1}.
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Proof of the lemma. The second part is trivial, since A% = Idy, A is a two-sided inverse of itself,
hence A is an automorphism. Therefore, A € R solves the Ax = Az for some z € V if and only
if it solves the = A%z, from this it follows that each eigenvalue of A must be either —1 or
1. Apparently, {Idy, A} is a representation of the finite abelian group (Zg,+) on V. It is an
easy consequence of the Schur’s lemma that every finite-dimensional representation of the finite
abelian group consists of diagonalizable operators, hence A is diagonalizable. O

Proof of the theorem. Firstly, let us take an arbitrary generalized metric 7 in the sense of the
definition 1.33. Since 7 : I'(E) — I'(F) is a C°°(M)-module isomorphism, it induces a vector
space isomorphism 7, : E, — Ep, for all p € M, defined as 7pv = (7¢)(p), for all v € E,,
where ¢ € I'(E) is an arbitrary section satisfying 1(p) = v, such a section always exist see [11,
Lemma 10.12]. Let us take an arbitrary point p € M. It is clear from the definition of 7, that
7'5 = Idg,. Then from the previous lemma, it follows that 7, is diagonalizable and its spectrum
is a subset of the {—1, 1}, hence there is a vector space decomposition

E,=Vi,®V_,, (1.88)

where V3. and V_ , denote eigenspaces corresponding to the eigenvalues 1 and —1 respectively.
Since gg(.,7.) is a positive definite fiber-wise metric on £, gg,(.,7p ) is a positive definite form
on E,, hence also ng‘prwp is a positive definite form, because we have Tp]V+p = Idv+p. The

assumption of a connected base manifold ensures that dim(V+p) is the same for all p € M,

hence V4 := |_|pe wm V4, 1s a disjoint union of the vector spaces with a constant dimension. Since

Vi, = Ker(rp, — Idg,) for all p € M, Vi = Ker(r — Idp(g)) and 7 — Idp(g) is apparently a

C*°(M)-module morphism. Therefore, it follows from [11, Theorem 10.34] that V, forms a

subbundle of E. As 7|, = —Idy_ and gg,(.,7p.) is a positive definite form on E,, for all
p

peEM,g EP’V <y s anegative definite form. Hence, there is no non-zero vector in V_,, which
X Vo

could be added to V, , to increase the dimension and at the same time to not spoil the positive

definiteness. Consequently, the subbundle V. constructed in the manner just demonstrated is

clearly maximal. Thus, we have just proven that for each generalized metric in the sense of

the definition 1.33, we are able to unambiguously find a generalized metric in the sense of the

definition 1.35.

Conversely, let us assume that V. is a generalized metric in the sense of the definition 1.35
and denote
i
Vo= || Vi CF, (1.89)
pEM

where Vﬂf is an orthogonal complement to Vi, with respect to gg,, for all p € M. We
would like V_ to form a vector subbundle of E. The idea is to use Local frame criterion for
subbundles, see [11, Lemma 10.32]. It follows from the V; being a subbundle that V. , has the
same dimension, for all p € M, hence also Vﬂi has this property, thus the first assumption

is satisfied. For all p € M there always exists an orthonormal? local frame {SH}Siqk(E) of £

over some neighbourhood U C M of the point p, for a proof see [9, Lemma 2.14]. Hence, there
are indices pq, - - -  Hdim(vy ) € {1,--- ,Rank(F)} such that (£, (p),- - ’glu’dim(V_,'_J—)(p)) forms a
P

asls I0r € . S gF maps to € set oI smooth, ence continuous, runctions on s
basis for the Vi, . As gpl; maps to the set of th, h ti functi U

4With respect to the fiber-wise metric gz.
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(& (q), - 75#(1_ v L)(q)) forms a basis even for the Vﬁ;, for all ¢ € U, thus also the second
1m +p

requirement is met. Consequently, V_ forms a subbundle of E. For all p € M the decomposition
E, = V4, ® V_, induces a vector space isomorphism @, : E, — Vi, @ V_ 1z — v+u
where v € Vi, and u € V_, are uniquely determined by the equality + = v + u. By the
condition @[5 = ®,, C°°(M)-module isomorphism ¢ : I'(E) — I'(E) is defined. Apparently,
Im® =V, & V_ :=|],cp(V4,®V_,), and hence, it follows from the [11, Theorem 10.34] that
Vi, @& V_ C E is a vector subbundle of E. Furthermore, since ® is an isomorphism, there holds

E=V,®V.. (1.90)

Therefore, each section ¢ € T'(E) can be uniquely decomposed as ¢ = 4 + ¢_, where
Yy € I'(V4) and ¢_ € I'(V_). Now, we are able to define an automorphism 7 : I'(E) — I'(E)
as follows:

Ty =T(Yr + ) ==y — 9P, (1.91)
for all ¢ € T'(E). Apparently, the identity 72 = Idr(g) is true. It remains to check if gp(.,7.)
is a positive definite fiber-wise metric. For all p € M and all uw € V_ , u # 0, we claim that

9Ep(u,u) <0. (1.92)

To show that it is true, let us take an arbitrary point p and an arbitrary orthonormal basis for
E,, whose existence is well-known, see for example [12, Proposition 2.63]. The maximality of V
together with the connected manifold assumption implies that those basis vectors, whose norm
squared is equal to —1, form a basis for the V_ , hence (1.92) holds. Finally, for all ¢ € I'(E)
there holds

g, 7)) = gp(Y4 + Y-, T(1 +¥-)) = gp(V4, V) — gE(Y-,¥-), (1.93)

where we used that V_, = Vﬂf for all p € M and also the definition of the map 7. Since (1.92)
holds and V. is a positive definite subbundle, (1.93) implies that gg(.,7.) is positive definite
fiber-wise metric. O

Remark 1.39. The generalized metric is apparently a non-trivial concept if and only if the fiber-
wise metric is indefinite. For a positive- or a negative-definite one, the generalized metric is
determined uniquely as Vi = E or Vi = 0 respectively. In the indefinite case, a generalized
metric always exists, however, there are infinitely many of them. Indeed, observe that the fiber
decomposition Ly, = Vi, & V+]f is clearly not unique in any point p € M. Notice that the choice
of the generalized metric induces a unique vector bundle decomposition £ = V. @ V_, where &
is the Whitney sum and V_ is characterized by the condition

ge(+,v-) =0, (1.94)
for all o, € I'(V4) and ¢p_ € I'(V_).

One feels there is still something missing, it is some motivation for the name of the notion
generalized metric. This missing piece is given by the following and already the third definition
of a generalized metric.

Definition 1.40. Let E = M be a vector bundle equipped with a fiber-wise metric g5. We
say that a positive definite fiber-wise metric G is a generalized metric on F if and only if for
all ¥1, 1o € T'(F) there holds

95 (b ¥1,ba 2) = gp(v1, ¥2). (1.95)
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Probably, it is not a big surprise that the following theorem is true.

Theorem 1.41. Assuming a connected base manifold, all three definitions of generalized metric
are mutually equivalent in the same sense as in the theorem 1.37.

Proof. As we have already proven the equivalence between the definitions 1.33 and 1.35, it
remains to prove that there is an equivalence between the definitions 1.40 and 1.33. Let us have
a generalized metric 7 in the sense of the definition 1.33 and impose

G(¥1,v2) = gu(¥1, Ti2), (1.96)

for all 91, 99 € T'(E). As G is a positive definite fiber-wise metric directly by the definition of
T, it remains to prove that the relation (1.95) holds. For all 41, 15 € T'(E), we obtain

(ba 1) (Y2) = G(W2, 1) = gr (e, T1) = (bE TY1)(¥2), (1.97)

hence b = bg 7, and therefore

95 (ba¥1,bge) = 95" Op TY1,bE Tbe) = gu(T¥1, T¥2) = g (1, 12), (1.98)

for all 11, 19 € T'(E). In the last step, the orthogonality of 7 is used. Conversely, assume that
G is a positive definite fiber-wise metric satisfying the relation (1.95) and impose 7 := §g b .
For all v, 19 € T'(E) there holds

9E (1, T¢2) = g (Y1, BB b ¥2) = (ba b2) (Y1) = G(31,2). (1.99)

Therefore, it remains to show that 72 = ldp(g). As 2 =HpbaiEpba, it is sufficient to show that
bg e be =bg. For an arbitrary ¢; and ¢y € I'(E), one obtains

(b 1) (V2) =gr (W1, ¥2) = g5 (0a ¥1,bG ¥2) = gr(tEbe Y1, {Eba ¥a)
= (bg ¥2)(fE b Y1) = G(Y2, iEba 1) = (ba e ba 1) (¥2), (1.100)

so indeed bgfpbg = bg, and hence 72 = Idp(g). The fact that 7 is an automorphism follows
from 72 = Idp(g), because it apparently implies that 7 has a two-sided inverse. O

Notation 1.42. Since all three definitions are equivalent, the name generalized metric will be
used interchangeably for all three kinds of objects without any hesitation.

Remark 1.43. As we have already mentioned, by choosing a generalized metric one induces a
vector bundle decomposition F = V, @ V_, consequently one can visualise each tensor field
A € TQ(E) as a 2x2 matrix in the following way:

A — [ Alrexreny Alrepxeen) (1.101)
Irovoyxrvyy Alreoyxres)

Especially, one can easily realize that g and G can be represented as

+ +
_ (9% 0) G:(gE O) 1.102
w=(% 2). v ). (1.102)

+
where g5 1= gE’P(Vi)xF(Vj:)'
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It was already aforementioned that if fiber-wise metric is indefinite, generalized metric is not
given uniquely. The following proposition shows the way how another generalized metrics can
be generated out of one specified.

Proposition 1.44. Let E 5 M be a vector bundle equipped with a fiber-wise metric gg and let
G be a generalized metric on E. Then each C*°(M)-module automorphism P : T'(E) — I'(E),
which is orthogonal with respect to gg, defines a new generalized metric Gp as

Gp(Y1,42) := G(Pir, Pyo), (1.103)

for all 1, 1Yo € T(E). Moreover, if Vo and T corresponds to G, then Vip := P~ Vi and
7p := P77 P corresponds to Gp.

Proof. Take an arbitrary orthogonal automorphism P, for all ¢4, ¥o € I'(E) there holds

(bap U1)a = Gp(¥1,12) = G(Pyr, Pio) = (bg Pyn)(Pi2) = (P1bg P )is, (1.104)

hence bg, = PThg P. Since bg, is a composition of isomorphisms, it is also an isomorphism.
Apparently, Gp is C°°(M)-bilinear and symmetric, thus it is a fiber-wise metric. It remains to
check if it possesses the property (1.95), or equivalently® if b, rbs, = bg holds. Using the
relations Ptz PT = g and PTby P = b, which can be easily derived from the orthogonality
of the automorphism P, yields

G iEPG, = prG Ptg PTpr = PTbG fpba P = PTbEP =bg. (1.105)

Let us move to the second part. For a given Gp, the corresponding 7p is determined as
7p = tgbg, . In the former part of the proof, we have discovered the equality bg, = PTbhg P.
By putting these things together with the relation Ptr PT = #5, which comes from the orthog-
onality of P, we obtain

p =fpbg, = P e (PT)'PThg P = P '4gbg P = P'7P. (1.106)

It remains to check the transformation relations for V1. As we have already proven the relation
for 7p and we know how V4 and 7 are related from the proof of the theorem 1.37, we can write

Vip = Ker(rp Fldpp)) = {¢ € I(E) | P~'7Py F ¢ = 0}
={Y €T(B) | P~/ (rPy F Py) = 0} = {¢ € I(E) | (7 F Idr(g)) Py = 0}
=P~ Ker(r FIdpg)) = P~ 'Va, (1.107)

where we have used the fact that P is an automorphism in the fourth step. O

As the reader has probably noticed, we have been not working in the framework of Courant
algebroids since the beginning of this section. Instead, we were assuming only a vector bundle
equipped with a fiber-wise metric, what is actually a more general set-up. However, it is now
time for a return to the world ruled by Courant algebroids, where, of course, all the previous
results also apply. Similarly to a Courant algebroid connection, a generalized metric is also
an additional structure on Courant algebroids. Therefore, we extend the concept of a Courant
algebroid isomorphism even for it.

®See (1.100).
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71'/

Definition 1.45. Let (E = M, p,[., g, g9g) and (E' 5 M, ¢, [., .]E, g&') be two Courant alge-
broids equipped with generalized metrics G and G’ respectively. A Courant algebroid isomor-
phism F : I'(E) — I'(E’) is called a metric preserving Courant algebroid isomorphism if
and only if it relates their generalized metrics as

G(1,1p2) = G'(Fp1, Fipa), (1.108)

for all 91, ¥y € I'(E).

Remark 1.46. If we modify the proof of proposition 1.44 by replacing P with F~!, we find out
that G'(F.,F.) actually defines a generalized metric on E’, thus the previous definition makes
sense. Furthermore, (1.108) can be equivalently stated as V/y = FVy or 7/ = FrF L

Let us now investigate how Courant algebroid connections and generalized metrics interplay
together. In particular, we will introduce two invariants of connection and metric preserving
Courant algebroid isomorphisms, which will play crucial role in the main part of this thesis.

Definition 1.47. Suppose (E 5 M,p,[.,.]g,g) is a Courant algebroid equipped with a
Courant algebroid connection V and a generalized metric G. The G-Ricci scalar Rg € C*°(M)
is defined as

RG = RlC(ij £V7 gl/) = R(ﬁE f’u7 ﬁG gljv f;u 61/) (1109)

Proposition 1.48. Let (E 5 M,p,|.,.]g,98) and (E' LN M, o\ 1., e, 98) be two Courant
algebroids equipped with Courant algebroid connections V and V'; and generalized metrics G

and G’ respectively. Moreover, assume that there is a connection and metric preserving Courant
algebroid isomorphism F : T'(E) — T'(E') between them. Then

Ra = Rer. (1.110)

Proof. Since F is a connection preserving Courant algebroid isomorphism, F* Ricy: = Ricy,
see proposition 1.32. From the fact that F is even a metric preserving Courant algebroid
isomorphism, it follows that FZbg F = b, or equivalently F~ o (F~1)7T = . Putting these
together yields

Re = Ricy (g €, &,) = Riey (F Mo (FHT¢M,€,) = Riey (e (FH)T¢M, FE,)
=Rg. (1.111)

The last step was already discussed within the proof of proposition 1.23. O

Definition 1.49. Let (E 5 M, p,[., ]g,9r) be a Courant algebroid equipped with a Courant
algebroid connection V and a generalized metric V. We say that V is Ricci compatible with
V, if and only if

RiC|F(V+)><F(V,) =0. (1112)

7.r/

Proposition 1.50. Let (E = M,p,[.,.]g,g8) and (E' = M,p,[., g, g95) be two Courant
algebroids equipped with Courant algebroid connections V and V'; and generalized metrics V.
and V' respectively. Moreover, assume that there is a connection and metric preserving Courant
algebroid isomorphism F : T'(E) — T'(E") between them. Then V is Ricci compatible with V. if
and only if V' is Ricci compatible with V' .
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Proof. Firstly, the fact that F is a connection preserving Courant algebroid isomorphism ensures
that 7* Ricys = Ricy. Hence, for all ¢, € I'(V) and ¢— € I'(V_)

Ricy (¢4, %) = Riey (Fiby, Fip-). (1.113)

Secondly, as F is even a metric preserving Courant algebroid isomorphism, it follows from the
remark 1.46 that generalized metrics are related as V' = FV,, which completes the proof. [J

1.4 Levi-Civita Courant algebroid connections

In (semi-)Riemannian geometry, there is a prominent affine connection called the Levi-Civita
affine connection, which is unambiguously defined by two characteristic properties, the torsion-
freeness and the metric compatibility. For a Courant algebroid equipped with a Courant alge-
broid connection and a generalized metric, it is thus natural to think about a Courant algebroid
alternative to the Levi-Civita affine connection. It is pretty clear how thw torsion-freeness should
be modified. However, as we have stated three formally different definitions of a generalized met-
ric, the metric compatibility can be formulated in various ways.

Proposition 1.51. Let (E = M, p,[.,.|g,gr) be a Courant algebroid equipped with a Courant
algebroid connection V and a generalized metric G. Then the following statements are equivalent:

(1) For all 11, 12, 13 € I'(E) there holds

p(U1)G (2, 93) = G(Vy,12,93) + G (2, Vi, ¥3). (1.114)

(II) For all ¢ € T'(E) there holds
VyoT =170Vy. (1.115)

(III) For all ¢ € T'(E) there holds
Vu(T(V2)) CT(V,). (1.116)

Proof. Let us begin with the implication (I) = (II). Since G and 7 are related by (1.96), (1) is
equivalent to that the equation

p(V1)gE (Y2, T3) = gu(Vy, o, T3) + ge (2, TV, 13), (1.117)

is valid for all 41, 19, 3 € I'(F). If we add and subtract the term gg(1)2, Vi, 793) to the
right-hand side and use the third axiom of a Courant algebroid connection, we obtain

9E (Y2, TV 103 — Vy, T93) = 0, (1.118)

for all 1, 12, 3 € I'(E). Hence and from the fact that by is an isomorphism, the desired
identity follows.

To prove the implication (II) = (III), realize that 1) € T'(V,) if and only if 7¢ = 1. Since
we are assuming that 7 and covariant derivative commutes, it is a trivial observation that the
condition (III) is fulfilled.

It remains to prove that the implication (III) = (I) holds. First of all, we will need to
prove that also V,(I'(V-)) C I'(V_) is true for all ¢ € I'(E). Take an arbitrary ¢ € I'(E) and



1.4. LEVI-CIVITA COURANT ALGEBROID CONNECTIONS 35

Y" € Vy(I'(V2)), hence there is 9" € I'(V_) such that ¢” = Vy¢'. For all ¢4 € T'(V}), the term
ge (" 1) can be expanded as follows:

ge(W" i) = ge(Vyt', ¥y) = p()ge(W',¥4) — ge(¥', Vyipy) = 0, (1.119)

which means that ¢” € T'(V_). With this result in our minds and by using the compatibility of
V with gg, we can proceed for all 11, 19, 13 € I'(E) in the following way:

p(1)G (Y2, ¥3) — G(Vy h2,93) — G (2, Vi, 13)
=p(1)ge(V2, T¥3) — gp(Vy, V2, T3) — gE(2, TV, ¥3)
=p(V1)9E (Y2, V34 — V¥3_) — gp(Vy 2,3y — Y3_) — ge (Y2, TV, (Y34 +1b3_))
=p(V1)9E (Y2, V34) — 9E(Vy V2, ¥31) — gp (2, Vi, s, )
— p(¥1)gE (W2, ¥3_) + ge(Vy 2,93 ) + gr (2, Vi, 3_) = 0, (1.120)

which is exactly the formula to be proven. O

Definition 1.52. Let all assumptions of the previous proposition hold. We say that a Courant
algebroid connection V is compatible with the generalized metric G if and only if one of
the conditions (1.114), (1.115) or (1.116) is satisfied.

Proposition 1.53. Let (E 5 M,p, [.,.]E,9E) be a Courant algebroid. For an arbitrary gener-
alized metric V4, there is a Courant algebroid connection on E compatible with such V.

Proof. Take an arbitrary generalized metric V.. The idea of the proof is not very complicated, we
simply construct a connection satisfying appropriate requirements. We have already discussed,
see the paragraph under the remark 1.17, that on every vector bundle equipped with a fiber-
wise metric, there is a vector bundle connection compatible with the fiber-wise metric. Since

|
(Vi M , gg) can be clearly considered as this kind of vector bundles, we have some vector

bundle connections V* compatible with g§ on V4 at our disposal. Next, impose

V2 := VT oy + V7 pytha_, (1.121)

for all ¢, ¢o € T'(E). We claim that V is a Courant algebroid connection compatible with
Vi. It can be easily checked that V is R-bilinear and that it satisfies the first two axioms of
a Courant algebroid connection. It thus remains to show the compatibility with the Courant
metric gp and the generalized metric V. The latter is trivial, since the condition (1.116) is
apparently satisfied. To prove the former, take arbitrary 7, ¥9, ¢35 € I'(E) and proceed as
follows:

9E (Vg t2,103) + ge(tha, Vi, 103)
=g5(V i ¥2r + V o2, ¥3) + 98(¥2, VT sy + V7 pwn¥s)
=95(VE o215 ¥34) + 95(V e ¥s2) + g5 (2, V) ¥sy)
+95W2_, V™ ) ¥3_)
= P(¢1)9;§(¢2+a ¢3+) + P(d’l)gﬁ(@bL, P3_)
=p(¥1) <9E(¢2+, V3, ) +9r(2_, 3 ) + ge(t2y, Y3 ) + gr(a_, ¢3+))
=p(¥1)ge (2, ¥s3). (1.122)

We have used the mutual orthogonality of T'(V4) and I'(V_) with respect to gg in the second
and fourth step; and the compatibility of V* with gf in the third step. O



36 CHAPTER 1. COURANT ALGEBROIDS

Definition 1.54. Consider a Courant algebroid (E = M, p,[.,.]g, 95) equipped with a Courant
algebroid connection V and a generalized metric G. We say that V is a Levi-Civita Courant
algebroid connection on F with respect to the generalized metric G if and only if it is torsion-
free, that is T = 0, and at the same time it is compatible with G.

One could be curious about the existence of this kind of Courant algebroid connection. The
answer is that Levi-Civita Courant algebroid connection always exists, moreover, we will show
how to construct it out of the given generalized metric compatible Courant algebroid connection,
whose existence is guaranteed by the proposition 1.53.

Theorem 1.55 (Existence of Levi-Civita Courant algebroid connection). Consider a Courant
algebroid (E 5 M, p,[.,.|g, 9E) equipped with a generalized metric G. Then there is a Levi-
Civita Courant algebroid connection on E with respect to G.

Lemma 1.56. Consider a Courant algebroid (E = M,p,[.,.|g,95) and a fized Courant al-
gebroid connection VO on E. Then for every Courant algebroid connection ¥ on E there is
C € QYE) ® Q%(E) such that the relation

Vo2 = Vi, o + 5 C (g1, 2, ) (1.123)
is satisfied, for all 1y, V9 € T'(E).

Proof of the lemma. Assume two arbitrary Courant algebroid connections V and VY and denote
their difference contracted by the Courant metric as C, that is

C (1,12, 03) = gu(Vy, 2 — V5, 2,1)3), (1.124)

for all 11, 19, 3 € T'(E). Apparently, it is C°°(M)-linear in the first and third input. Let
us check the C°°(M)-linearity in the second argument, for arbitrary i1, e, 13 € I'(E) and
f € C°>°(M) there holds
C(u1, Fiba, ) = (Vi (f1h2) — Vg, (), vs)
= gu((p(1) fvoa + [V, 002 — (p(tn) fba — [V, 2, 3)
= f9u(Vy, 2 — Vi, P2, 13)
= fC (1,2, 3). (1.125)

As opposed to a Courant algebroid connection itself, the difference of two Courant algebroid
connections contracted by a fiber-wise metric is C°°(M)-linear in all three inputs, that is
C e 750(E) The first two Courant algebroid connection axioms apparently do not impose
any other constraints on C, however, there is also the third axiom, compatibility with the
Courant metric. It says that for all 11, 12, 13 € I'(E) there holds

0=p(1)gE(¥2,¥3) — ge(Vy, 2, ¥3) — gr (2, Vi, ¥3)
= p(11)gE(V2,13) — ge(Vi, b2, 13) — C (1,12, ¥3) — gr(tha, Vi, tbs) — C (i1, s, 1b2)
= - C(¢17 ¢2,¢3) - C(wlv ¢3,¢2)7 (1126)

hence C is necessarily skew-symmetric in the last two inputs, that is C € Q}(E) ® Q%(E). Since
g is a C°°(M)-module isomorphism, one can write

Vo = Vo, tha + 12 C(¢1, ¢, .), (1.127)
for all ¢y, ¥y € I'(E). O
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Proof of the theorem. As we have already proven, see 1.53, there is a Courant algebroid connec-
tion compatible with the generalized metric G, assume that we have one and denote it as V.
The lemma implies that every other Courant algebroid connection (thus also even a Levi-Civita
one) has to be necessarily of the form (1.123). Let us now investigate, what conditions should
be imposed on C € QY(E) ® Q?(F) to ensure that V is already Levi-Civita.

Firstly, V is compatible with G if and only if

0= p(¥1)G (Y2, 93) — G(Vy, b2, 93) — G(h2, Vi, ¥3)
= p(11)G (Y2, v3) — G(Vy, b2, ¥3) — G(E C(¥1, 12, .), ¥3) — G(tha, VY, 1)3)
— G(Y2, i C(Y1,v3,.))
= —ge(ie C(Y1,12,.), T3) — ge(T¢2,iE C(Y1,13,.))
= — C(¥1,%2, 7¢3) — C(Y1,3, 7¢2), (1.128)

is satisfied for all 11, ¥, 13 € I'(E). During the derivation, we have used compatibility of V°
with G and relation between G and 7 in the third step. We claim that the condition (1.128) is
satisfied if and only if the condition

C’F(E)XF(V+)><F(V_) =0 (1.129)

holds. Assume that (1.128) holds and take arbitrary ¢ € T'(E), ¢+ € I'(V4) and v € T'(V_), it
yields

0= _C(¢7¢+77'1/1—) - C(¢a¢—77’¢+) And C(wvw-‘r?w—) = _C(w7¢+7w—)
A C(Y,hy,9-) =0,

hence Clp(gyxrv,)xrv_) = 0. Conversely, assume that (1.129) is satisfied and take arbitrary
1, P2, 3 € T'(E), the relation between Vi and 7 implies the following:

C(¢17¢27 T¢3) :C(¢17¢2+ + ¢2—7 ¢3+ - w3—) = C(¢17¢2+7"‘/’3+) - C(¢17¢2—ﬂ/’3—)
C(1,24,03,) — Chr, 02,3 ) + C(Y1,¢2,, 103 ) — C(¥1, 92, 3,)
C(1, mib2,b3) = —=C (Y1, ¥3, T2), (1.130)

besides (1.129) we have also used the skew-symmetry of C' in the last two inputs. Therefore, V
is compatible with G if and only if (1.129) is satisfied.

Next, examine the condition for the torsion-freeness of V. Take arbitrary 11, ¥2, ¥3 € T'(E),
then Ty (¢1, 12,13) = 0 if and only if

0=9e(Vy, Y2 — Vg, 1 — [U1, 2] B, ¥3) + 98(Vys Y1, 102)
=Tyo (1,2, 93) + C (11,92, 93) — C (2,91, 93) + C (3,91, 92), (1.131)

or equivalently

C(Y1,2,93) 4 cyc(Pr1, ¥2,¥3) = —Tyo (1, V2, 13). (1.132)

Finally, it remains to find an explicit C' € QY(E)®Q?(E), which satisfies (1.129) and (1.132).
As we have the decomposition £ = V, @& V_ at our disposal, any tensor field of the rank 3 is
fully determined by eight of its restrictions. While the compatibility with the generalized metric
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(1.129) together with the skew-symmetry in the last two inputs say that four of these restrictions
vanish identically, the torsion-freeness (1.132) implies that

C(wlj:a qu:? w3q:) + C(TZJQ:Fv 1/}3:|:7 wl:l:) + C(wfﬂ:p wljy ¢2¢) = —Tgo (wlzl:a 1/}2:|:7 1/}3:|:)7 (1133)
C(14,as,¥34) + C(Whos, Y31, %14) + C(¥ss, Y14, Yor) = —Too (Y14, ox, ¥s31), (1.134)
for all ¥14, ¥y, 3, € T'(Vy). The second and the third term on the left-hand side of the first

equation vanishes identically because of (1.129), hence
Clovyxrva)xrve) = = T90lnvyyxrve)xr(vs) - (1.135)

It follows from the complete skew-symmetry of the torsion tensor that the second equation
(1.134) can be equivalently written as

C(P14,V24,V34) + cyc(ry, P2y, ¥3,)

1
= — g (TVO <w1:|:7 1/}2:|:7 1/}3:|:) + CyC(’l/Jl:b 1/}2:|:7 1/}3:|:))7 (1136)
which can be apparently solved by imposing
1
C|F(V¢)xF(V¢)xF(V¢) = 3 VO|F(Vi)><F(Vi)XF(Vi). (1.137)

Putting (1.129), (1.135) and (1.137) together leads to the following choice for C:

1
- g(TVO(¢1+,¢2+,¢3+) + Tgo (1,2, 3_))

— Tyo (P12 h3_) — Too (1, Yoy, ¥3), (1.138)

for all 11, 1o, 93 € T'(F). The tensor field C defined in this way is apparently C°°(M)-
linear in all three arguments, moreover, it is skew-symmetric in the last two inputs, that is
C € QYE) ® Q%(E). Therefore, an R-bilinear map V : I'(E) x ['(E) — T'(E) defined for all 1,
Yo € I'(E) as

C(Qplv ?/}2> ¢3) =

V2 = Vo, b2 + £ C(1, ¢2,.), (1.139)
where C is given by the (1.138) and VY is an arbitrary Courant algebroid connection compatible
with G, is a Levi-Civita Courant algebroid connection with respect to G. O

Remark 1.57. Note that the equation (1.138) can be even simplified. Since V' is generalized
metric compatible, for all ¢» € T'(F) there holds V%(F(Vi)) C I'(V4), hence

Tgo (14, Yo, ¥a5) = gu(Vy, , Pax — V%QIQZ)& — [h14,YazlE,b35) + QE(V?pg,leiﬂﬁQ:F)
=95(Viy, Yo — 11, Yoz]B, Yag). (1.140)
Therefore, (1.138) can be equivalently expressed as

- é(TVO (V14,2 ,31) + Tgo (1, b 1b3_))

+ 9514, %2 B — Vi, Y2, s_)
+9e([1_ oy ]E — V9, Y2y ,15,). (1.141)

C(Y1,12,13) =

A Levi-Civita Courant algebroid connection constructed out of VO by this particular choice of
C is called the minimal Levi-Civita Courant algebroid connection corresponding to V°.
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Remark 1.58. Thanks to the lemma 1.56, we can easily determine how covariant divergences of
two arbitrary Courant algebroid connections are related, one immediately sees that there holds

divy = divyo —C, (1.142)

where C := C(4g ", &y, .) € QUE).
Once we have solved the question of the Levi-Civita Courant algebroid connection existence,

another question arises. Is it determined uniquely by the generalized metric, as it is in the case
of standard (semi-)Riemannian geometry? The answer is no, except for certain special cases.

Theorem 1.59 (Non-uniqueness of Levi-Civita Courant algebroid connection). Consider a
Courant algebroid (E 5 M, p, [.,.]E,9E) equipped with a generalized metric G and denote the
set of all Levi-Cwita Courant algebroid connections on E as LC(E,G). Then LC(E,G) is an
affine space, whose associated vector space forms a module of sections of a vector bundle of the
rank

1 1
gp(p2 —1)+ §Q(q2 - 1), (1.143)

where (p,q) is the signature of the Courant metric gg.

Proof. The previous theorem says that LC(E,G) # (), so take an arbitrary V° € LC(E,G).
The lemma 1.56 implies that any other Courant algebroid connection V can be written in the
form (1.123) for some C € Q'(F) ® Q?(E). Since we are interested only in Levi-Civita Courant
algebroid connections, there are some additional constraints on C'. The compatibility with
generalized metric G implies

Clrmyxrvy)xrv.) = 0, (1.144)

as we have shown during the proof of theorem 1.55. Since V' is now not only generalized metric
compatible but even Levi-Civita, the torsion-freeness imposes the following condition:

C(P1,92,93) + cye(yr, P2, 3) = 0, (1.145)

for all ¥, 19, 13 € T'(E), see the equation (1.132). The property (1.145) is under the assumption
C € QY E)®Q?(E) equivalent to C4 = 0. Assume that we have a C € Q' (F)® Q%(E) satisfying
both (1.144) and (1.145), then for all ¢y _ € I'(V_) and for all ¢y, 93, € I'(V) there holds

C(¢177¢2+7¢3+) +cyc(¢117,¢)2+,¢3+) = 0’ (1146)

hence it follows from (1.144) that Clpw y.pa,yxr,) = 0. Analogously, one can derive
that Clpy,yxrv_yxr(v_) = 0. Therefore, there are only two non-trivial restrictions of C' and
those are Clpey,)xr(vy)xr(vy)- Each of these restrictions is an element of the C°°(M)-module
O (Ve) ® Q3(V4), and moreover, since their cyclic permutations or equivalently its complete
skew-symmetrizations vanish, we have to exclude all completely skew-symmetric elements, that
is elements of Q3(Vy). Consequently, every C € QY (E) @ Q%(E) satisfying conditions (1.144)
and (1.145) can be considered as an element of the C*°(M)-module

Qi) ® Q2(V+))/Q3(V+) @ Q') ® QQ(V,))/QE(‘L)‘ (1.147)

It is a trivial task to show the converse. Therefore, it has been just proven that if we have some
fixed VO € LC(E,G), every other V € LC(E, G) can be for all 91, 15 € T'(E) expressed as

Vutha = Vi, o+t C(¢1, 42, ), (1.148)
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where C'is an arbitrary element of the C°°(M)-module (1.147), hence LC(E, G) is an affine space.
To complete the proof it remains to compute the rank of the associated module of sections of
the vector bundle. The fact that (p,q) is the signature of gp implies that Rank(V,}) = p and
Rank(V_) = ¢, the rest is just straightforward calculation. O

Remark 1.60. It is now clear that a Levi-Civita Courant algebroid connection is not uniquely
determined by the generalized metric in general, moreover, there are infinitely many of them.
An exception is the case p, ¢ € {0, 1}, in which there is exactly one Levi-Civita Courant algebroid
connection.

Notation 1.61. As a tensor field C € Q'(F) ® Q?(F) defined by the lemma 1.56, will arise a lot
in the remaining part of this thesis, we introduce the following notation:

(I) C € QYE)®Q?(E) denotes a difference between a Levi-Civita Courant algebroid connec-
tion and a Courant algebroid connection compatible with a generalized metric, it means
C possesses the additional properties (1.129) and (1.132). Moreover, C € Q!(E) denotes
the partial trace of C, that is C(¢) := C(8g &*, &, 9) for all ¢ € T'(F).

() K € QYE) ® Q%(E) denotes a difference between two Levi-Civita Courant algebroid
connections, it means K possesses the additional properties (1.129) and (1.145), or equiv-
alently

K=K'+K", (1.149)
where K+ := Klpvyxrva)xrva) € QY(Vy) ® Q2(Va) and K = 0. Analogously,
K € QY(FE) denotes the partial trace® of K.

Remark 1.62. A similar discussion of the concept of Levi-Civita Courant algebroid connections
appeared earlier in [13, 14].

The following series of propositions deals with the transformation rules for the Riemann
tensor and its contractions in terms of C' and K, whose usefulness will be appreciated later.

Proposition 1.63. Let (E 5 M, p, [.,.]E, 9E) be a Courant algebroid equipped with a generalized
metric G and let V° be a Courant algebroid connection compatible with G. If V € LC(E,G) is
related to V° as

Vot = V&% + 185 C(¢Y1,92,.), (1.150)

for all Y1, 19 € T(E), then the corresponding Riemann tensors are related as

Ry (Y1,v2,%3,14) = Ryo (Y1, Y2, ¥3,%4) + %( V04 C) (1,93, 4) — (VO O) (Y2, P53, 4)

+ (V00 O) (%1, 2, 9h1) — (V00 O) (3, 02, 4h1) + C (3, 1 C(ha, 2, ), 9h1)
- C(¢4aﬁE C(¢37¢27') +O(¢2)ﬁE 0(1#1,7!)3,-),1/}4)
— C(1,88 C(¥2,¢3, ) + C(He C(.,¥3,14),¥2,91)

+ C(To(t, Y1), s, 1) + C(To (U, ba), 2, 1)), (1.151)

1

~— —

Y
Y

4

5Note that, since C' and K are skew-symmetric in the last two inputs, there is precisely one (up to an overall
sign) non-trivial partial trace.
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for all 1y, o, 3, Yy € T(E). In particular, if VO is also torsion-free, thus V° € LC(E,G), one
has

1
RV(T/JL ¢27 1/}37 ¢4) = RVO (1/}1> ¢27 ¢3) 1/)4) + 5 ((VO’IZJZK)(d]la ¢37 ¢4) - (vole)(¢27 1/}37 ¢4)

+ (V0 K) (Y, ¥2,01) — (V04 K) (W3, 02,101) + K (13, fip K (4,2, .),11)
— K(Y4, 85 K (3,2, .),¥1) + K(¥2, 8 K (11,3, ), ¥4)

— K (1,85 K (2, 3,),90) + K (5 K (- 3, 00), 42, 1)). (1.152)

Proof. The proof is based on straightforward calculations. O

Right before we state the proposition describing the transformation of the Ricci tensor, we
state a useful lemma. It says that taking the partial trace with respect to a fiber-wise metric
commutes with a tensorial covariant derivative if the fiber-wise metric is compatible with the
respective Courant algebroid connection.

Lemma 1.64. Consider a Courant algebroid (E = M, p,[.,.|g,gE), a fiber-wise metric h on E
and a Courant algebroid connection V on E compatible with h, that is
p(1)h(h2, h3) = h(Vy 2, 93) + h(t2, Vi, ¥3), (1.153)

for all 1, 2, 3 € T(E). Then for an arbitrary A € TRO(E), k > 2, and for all
v, ¥1,..., Y € T(E) there holds

(va)(ﬂh§#7£u7¢laawk) (VTZ)A)(wlaa’(ka)v (1154)
where 121(1/)1; s >¢k) = A(ﬁh 5“7 5/147 wh sy ¢k)
Proof. Taking arbitrary (k + 1)-tuple of sections ¢, 91, ..., ¥ € T'(E), one sees

(VpA) (fr €, &utbr, - k) — (VpA) (41, - .. k)
= — A(Vyln &, 61, - - k) — A(h €, Vlu, 1, - .- U). (1.155)

It follows easily from the compatibility of V with h that the identity
i oVy = Vy ol (1.156)

is satisfied for all ¢ € I'(E). Using this, one can express components of the section Vi, £* for
an arbitrary ¢ € I'(E) with respect to local frame {f}, {“}Rank B) of E as

(On &) (Vyltn €)= h(&w, 8n V&) = (V") (&) = p()d, — £(Vysy)
= — M(Vyé)), (1.157)
hence
Vd,ﬁhfu = —5“(V¢§l,)jjh f”. (1.158)
Employing (1.156) and (1.158) into (1.155) leads to

(Vll)A)(ﬁh é‘#} é.,ua 77/)17 cee 7wk) - (Vzpfi)(%, cee 7wk)
:gu(v’l[)EV)A(ﬁh gu’ {m wlv cee ﬂﬂk) - fV(V¢§u)A(ﬂh é’li’ 51/7 ¢17 cee 7¢k’) =0. (1159)
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Proposition 1.65. Let all assumptions of the proposition 1.63 hold. Then the corresponding
Ricci tensors are related as

Ricy (1, 12) = Ricgo (Y1, 2) + %((Vowlc)(%) + (V0,C) (¥1) + (V0 O) (1,12, 1 €)

+ (V2% C) (Yo, ¥1, 8 &) — C(£.) (C(1, 2, BE E) + C (o, ¥1, EE 1))
- C(¢27 ﬂE C(é.,ua ¢1, ')7 ﬁE é‘l/«) - C(ﬁE 5#7 ﬁE C(qvbla g,ua ')7 ¢2)
+CUeC(.,u,v2),v1,8E8") + C(Tyo (Y1, i "), Eu, ¥2)

+ C(Tgo (&, ¥2), Y1, 8 f“)), (1.160)

for all ¥, 1o € T(E). In particular, if V° is also torsion-free, thus VO € LC(E,G), one has

Ricy (11, %2) = Ricgo (Y1, 92) + %((VOWC)(%) + (V04, K) (1) + (V0 K) (41, 02, 0 €F)

+ (V0% K) (2,91, 85 €") — K(&u) (K (41, 92, 1 €) + K (2,91, 81 €1))
- K(@bg, ﬁE K(§#7 ¢1, ')7 ﬁE fﬂ) - K(ﬁE £M7 ﬁE K(@/Jl, guv ')7 w2)

+K(ﬁEK('ag,uan)awl?ﬁEgu))- (1161)

Proof. The proof is based on the use of the previous lemma and straightforward calculations. [

Notation 1.66. Before we state the transformation rule for the Courant-Ricci scalar, let us
introduce some notation, which will be useful here but not only here. If we have a vector bundle
E 5 M equipped with a fiber-wise metric h, we are able to introduce a C*(M)-bilinear map
(ot TO(E) x T(E) = C(M) as

(F, L= o PO ) L6+ ) (1162

for all F', L € T?(E) and all k € Ny. If we have even a Courant algebroid instead of an ordinary
vector bundle at our disposal, we impose (.,.)q, := (.,.)g, where gg is the Courant metric of
the given Courant algebroid.

Proposition 1.67. Let all assumptions of the proposition 1.63 hold. Then the corresponding
Courant-Ricci scalars are related as

RY =R} +2divyo C — g5 (C,C) — 3(C, To) . (1.163)
In particular, if VY is also torsion-free, thus V° € LC(E,G), one has
RY = RY. + 2divgo K — g3 (K, K). (1.164)
Proof. Tt follows from the lemma 1.64 and the proposition 1.65 that
RE =RE + 5 (47,05 &") — 20(6)C(E &) — 20(60, 8 C6p i €, )t €")
+ CltE O 160 60), tp €% 80 €") — 20(Too(tp €", 80 €), €, 60)
= RY +2diven € — g51(C.C) + 5 (Chp C( 164 6), 8 €", 1 6")

2060, 48 Cl€u 1 €", ), Ep €)= 20(Ton(tp ", 85 €"),60,6) ), (1.165)
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Note that {1 C(&u, 1££",.) = C(u, iE €Y, 1E £7)Ex and expand the first two terms in parentheses
as follows:

C(le C( 75}“ 511)7 ﬁE gl/? ttE gu) - 20(&/7 ﬁE C(£p> ﬁE gl/? ')7 le é'li)
= C(ﬁE 5’{? 5}“ gl/)c(gm ﬁE gya ij f'u) - QC(é,ua ttE gyv ﬁE fH)C(gu, gm ﬁE é’#)
b €7 15 €, 8 €°) (Cl6ns &0, ) — 20 (6 €0

=C(
= C( " 15 € 85.6") (C6n, 6, 60) + Cl6r 60, &) + O, 60, 60))
el
=

€% 80 €8 &) (= Ol €ur ) — Tool€s s &) + Cl€r60,60))
£ €%, 4 € 10 € Tvo(6us 60, 4) = 6(C, Too), (1.166)

where we have used (1.132) in the fourth step. The fifth equality follows from the fact that
C’s in the parentheses are symmetric in y and v, while the C' in front of the parentheses is
skew-symmetric in those indices. Next, realize that Tyo(fg #,8g&Y) = g Tvo(fp ", 80 &Y, .) =
Tvo(fp &, 8 &Y, 8 £7)Ex and proceed for the last term in parentheses in the following way

C(Two(1e " 8 €"), &, &) = Too(tp & 80 8", 15 ") C (& &us &) = 6(C, Tyo)p.  (1.167)

By putting all results together we obtain the first formula to be proven. The second formula
easily comes from the first one by imposing Tyo = 0. 0

Notation 1.68. Consider a Courant algebroid (E = M, p,[.,.]g, 9r) endowed with a generalized
metric Vi C E. For an arbitrary tensor field F € T(E), k € N, we impose

F* = Flpry, ) - (1.168)

Assume that we have also a Courant algebroid connection V on E at our disposal. Then, we
define R-linear maps divg : T(E*) — C®(M) for all A € T(E*) as

divg A = (V2 A)(tr ), (1.169)
where {§;—L}Rank(vi) are arbitrary local frames of V.

a=1

Proposition 1.69. Let all assumptions of the proposition 1.63 hold. Then the corresponding
G-Ricci scalars are related as

RE =RY + 2dive, € — 2divg, C — (g7) 1 (CT,CT) + (gp) ' (C7,C7)

+C(EF, 6, & ) Tooie &M e ¢ i E°) — C&, . & € Too(tp € 4 €0, 85 €1°)
+6(C7, Tgo)y- — 6(C™, T%“O)gg, (1.170)

where {§j}5illlk(v+) U {fg}aRirllk(V*) is an arbitrary local frame of E adapted to the decomposition

E =V, ®V_. In particular, if V" is also torsion-free, thus V° € LC(E,G), one has
RE =RE +2divi, K — 2divg, K — (g75) "L (KT, KF) + (95) 1K™, K7). (1.171)

Lemma 1.70. Consider a vector bundle E = M equipped with a fiber-wise metric gg, a gener-
alized metric V4 on E and an orthonormal local frame {§M}Si?k(E) of E over U C M adapted
to the decomposition E =V, @ V_. Then, &, € Ty(Vy) if and only if g &* € T'y(Vy), for all

pe {1, -+ ,Rank(E)}.
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Proof of the lemma. Take an arbitrary p € {1,--- ,Rank(E)}. It follows from the definition of
Vi that g * € I'y(Vy) if and only if
0=gp(tsé" ¥)=¢"(¥), (1.172)

for all ¥ € Ty (Vy). Any ¢ € Ty(E) can be expressed as ¢ = V¢, where ¢V € C*°(U) for all
v e{l,--- ,Rank(E)}. Therefore, g &H € I'y(Va) if and only if ¢# = 0 for all ¢ € I'yy (V). As
the local frame is adapted to the decomposition E = V, @®V_, it is equivalent to §, € I'y(Vy). O

Proof of the proposition. Starting point is again the lemma 1.64 and the proposition 1.65. Let us
Work (without loss of generality) with a local frame {ﬁu}Rank( ) adapted to the decomposition
= V4 @ V_ and denote the part of the local frame corresponding to the V4 and V_ as

{5;}Ra“k<v+ nd {¢;}725(V2) respectively. One immediately sees that
RE=RE +(V°%,C) (1) + (V'e,0) (& &0 i €") — C(E)C (e €, &, HE €M)
b5 (Ot et e, ) 80 ) — Oltn e i Clta €60, ).6)
+ (8 C( 6 &), b €7 b €) — 20(Tooltp €, 86 €), 60, 6) ). (1.173)

Take the second and the third term of the right-hand side and expand them as follows:

(V6,0 &) + (V.0 e €, & tn E")
= (V0O €7) + (V0 O)ta €7 + (Ve O) e €7, &5 tp 1)
+ (V0 O)a €6 e E")
= (V0O pe™) — (V0 O tp &™) + (Ve O) (s €7, &1 i €7)
~ (Ve O)tp € & taE7")
= div C = divgo € + (Ve O) (e 6", 6 £r €)= (V0 O)(tE € € 8 ")
=2divi, € — 2divg, C, (1.174)
During the procedure, we have used (1.129), (1.116) and the lemmas 1.64, 1.70 in the first and

the third step; and the relation ¢ = 7#g in the second step. Similarly, one can deal with the
fourth term on the right-hand side of (1.173):

C6)C (e & & tp &) =CENCHGE™, & BEET) +C (&) C(Hc €7°.&  Hr &™)
=C(E)CHpE™ & 1p ™) — C(6)CHpE", &  tp ™)
=C(&)C(Ep & &utp€™) — C(&)C(HR " & tr ET)

ZC(SJ)C(ﬁE €)= C(&)C(HEEE™)
=(g5)71(C".CT) = (95)71(C7.CT). (1.175)
By following the approach outlined in the proof of proposition 1.67 and adding some extra tricks

already used within this proof, one obtains the following result for the terms in the parentheses
on the right-hand side of (1.173):

2C(65, 6,60 ) Tyo(Be €M tp 0 4 €7°) — 2C (&, , & €N Too(fp € 4R €0, 4R €7°)

+12(07, Tgo),- — 12(CT, Tdo) o (1.176)

Putting all these together, one obtains the first formula to be proven. The second formula arises
by imposing Tgo = 0. O
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As usual, we conclude this section and also the whole chapter with a proposition about
Courant algebroid ismorphisms.
Proposition 1.71. Let (E > M,p,|.,.]g,98) and (E' Lt M, o\ 1., e, gr) be two Courant
algebroids equipped with Courant algebroid connections V and V'; and generalized metrics G
and G’ respectively. Moreover, assume that there is a connection and metric preserving Courant
algebroid isomorphism F : T'(E) — T'(E’) between them. Then V € LC(E,G) if and only if
V' e LC(E,G).

Proof. Tt follows directly from the proposition 1.32 that V is torsion-free if and only if V' is
torsion-free. Let us investigate the compatibility with the generalized metrics, V is compatible
with G if and only if

Vi, Tha = 7V o, (1.177)

for all ¥, 1y € T'(E). Since F is a C°°(M )-module isomorphism, it is equivalent to the equality
F(Vy,mh2) = F(TVy,1b2), which can be due to the metric preserving property (7' = FrF 1)
and also the connection preserving property equivalently rewritten as

V' pp (T Fipg) = 7'V gy, Fapa. (1.178)

Since F is a C°°(M)-module isomorphism, it means that V' is compatible with G’, which
completes the proof. O
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Chapter 2

Generalized geometry

The previous chapter was concerned with abstract Courant algebroids and its main purpose was
to build a robust mathematical framework, which will be now applied to a particular example
associated with the generalized geometry [15, 16]. As well as the previous chapter, also this one
is based on the publications [2, 6].

2.1 Generalized tangent bundle as Courant algebroid

Example 2.1 (Generalized tangent bundle). For an arbitrary smooth manifold M, we can
consider a so called generalized tangent bundle £ = TM := T M ®T*M, the Whitney sum of
the tangent and the cotangent bundle of M, thus Rank(TM) = 2dim(M). The C*°(M )-module
of its sections T'(E) consists of ordered pairs (X, «), where X is a smooth vector field and
a € QY(M). Tt is not difficult to realize how elements of T'(E*) = Q(E) look like, additivity of
an arbitrary A € I'(E*) yields

A((X, @) = A((X,0) + (0, a)) = A((X, 0)) + A((0, @), (2.1)

for all (X,a) € I'(E), hence E* ~ T*M @ TM. Therefore, any element of I'(E*) can be
considered as an ordered pair (3,Y), where 3 € QY(M) and Y € I'(TM), which acts on an
arbitrary (X, «) € T'(FE) as

(8, Y)((X, @) = B(X) + a(Y). (2.2)

It has been already mentioned that the generalized tangent bundle admits a structure of a
Courant algebroid, let us see how this structure may look like. The anchor and the Courant
metric are implemented in a pretty natural way, the former is simply the projection onto the
first component of an ordered pair, and the latter is defined through imposing that bg is the
canonical isomorphism (X, a) — («, X). Explicitly,

p((X,0)) ==X, (2.3)

gE((Xa Oé), (K B)) : ﬁ(X) + Oé(Y),
for all (X,a), (Y,B8) € I'(E). Note that since fg is the inverse to bg, it is clearly given as
tr : (o, X) — (X,«), so both bp and fg simply swap the components of ordered pairs. It

remains to specify the Courant bracket, an appropriate choice is the H-Dorfman bracket
[, .]H defined for all (X,a), (Y,3) € T(E) as

[(X,0), (Y, 8)]p = ([X,Y], £xB —iy da — H(X,Y,.)), (2:5)
47
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where H is some fixed but arbitrary 3-form on M. One should now check if (E = M, p, [., 12, 9E)
given in this way indeed meets all the requirements to be a Courant algebroid. Firstly, p and
gp are clearly C°°(M)-linear in all their inputs, furthermore gp is symmetric and bp is a
C*(M)-module isomorphism for sure. Since all objects contained in the definition of [.,.]% are
R-linear in all their inputs, also the H-twisted Dorfman bracket is R-bilinear. It remains to
prove that all four Courant algebroid axioms are satisfied. After a rather straightforward but
long procedure, see [9, Example 1.17], one finds out that (E = M, p,|[.,.]¥, gr) defined above

is a Courant algebroid if and only if H € Q3(FE) is closed.

Notation 2.2. The Courant algebroid introduced in the previous example is crucial for this thesis.
We will work solely with it throughout the whole chapter, consequently (E = M, p, [., 12 9E)
will always and without any special emphasizing denote the Courant algebroid described in the
previous example.

Example 2.3 (Local frames of generalized tangent bundle). Consider a Courant algebroid

dim(M) of TM over some U C M and

(E 5 M,p,[.,. ], gr) and an arbitrary local frame {ej}im
dim(M)
j=1

denote {ej};-lfi(M) the corresponding dual one, it is easy to realize that {(e;,0), (0,¢?)}
forms a local frame of TM over U C M. The name local frame of the standard type will
refer to this kind of local frame, which can be apparently constructed over a neighbourhood of
an arbitrary point p € M. Therefore, we can always and without loss of generality choose this
one to work with. Although it is of course possible to determine the signature of the Courant
metric gg introduced in the example 2.1 from any local frame, the easiest way is to do it from
an orthonormal one. Unfortunately, a local frame of the standard type is not orthonormal, since
we have

gE((ej’O)v(ej’O)) =0, gE((ej’O)v(ej’O)) =0, (2.6)
for all j € {1,--- ,dim(M)}. However, if we denote
+.- 1 j -1 j
€; = E(eﬁe ) €; = \ﬁ(ej,—e ), (2.7)

for all j € {1,--- ,dim(M)}, one immediately sees

gp(ef ) = 3@ e + ) =1, guley,ep) = 5(~dley) e =1 (28)

Clearly, {ej, e; ?i:n;(M) is a local frame, since it can be expressed through the corresponding local

frame of the standard type and vice versa, hence the signature of gg is (dim(M ), dim(M)). This
follows from the fact that such orthonormal local frame can be constructed over a neighbourhood
of an arbitrary point of the base manifold.

Notation 2.4. In the same way as in the case of {@L}Eirikw), we will use {e; }?2( as an arbitrary

local frame of T'M without any special emphasizing throughout the whole thesis. Note that we
are distinguishing three types of indices, Greek (u, v, &, - - - ), Latin from the alphabet beginnings
(a, b, ¢, --+) and Latin from the middle of the alphabet (j, k, [, ---). They are associated with
a whole vector bundle, a generalized metric and a tangent bundle respectively.

M)

Remark 2.5. We have just shown that the signature of gg is constant even without the assump-
tion of a connected base manifold. Especially, it means that all three definitions of generalized
metric stated in Section 1.3 are equivalent in the framework of (TM, gg) for an arbitrary base
manifold M.
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Example 2.6 (Map D). In Section 1.1, we introduced a map D : C*°(M) — I'(E) and also we
proved the identity D = g o p! od for it. Let us find out how D exactly looks like in the case
of (B 5 M,p, [.,.J2,gE). For all X € T(TM) and all a, 8 € QY(M), the definition of map
pl QY M) — QYE) implies

(" B)(X, @) = B(p((X, @) = B(X) = (B,0)((X,q)), (2.9)

hence p?' B = (B,0), for all B € Q'(M). Since we have already discussed how #z acts on the
element of Q!(F), see example 2.1, we are able to determine D as

D f=(0,df), (2.10)
for all f e C™(M).

Note that there is not just one Courant algebroid (F 5 M, p, [, ]g ,gE), but there is a whole
class of them parametrized by a closed 3-form H. The following proposition shows that this
parametrization is actually even rougher.

Proposition 2.7. For all B € Q%(M), there is an Courant algebroid isomorphism P between
(ES M,p, ., )8 gr) and (E5 M,p,[., )83T48 gp) defined as

eB(X,a) = (X,a+ B(X,.)), (2.11)
for all (X, ) € T(E).

Proof. First of all, one has to show that e? is a C°°(M)-module automorphism, which is in fact
very simple when you realize that e=? is two-sided inverse of e®. It remains to show that e”
possesses all the properties stated in (1.34). The relation for p is satisfied trivially that leaves
us with two identities to prove. One easily finds that for all (X, «), (Y, ) € I'(E) there holds

gE(eB(X7a)7eB(Y75)) :gE((X7a+B<X7'))7(Y75+B<Yv )))
=B(X) + B(Y,X) +a(Y)+ B(X,Y) = B(X) + oY)
=g9p((X, ), (Y, 5)) (2.12)

To show that relation between the Courant brackets holds, it needs a little bit more care. Let
us take arbitrary (X, «), (Y, 3) € ['(E) and expand the expression [e? (X, a),eB(Y, B)|E145 as
follows:

[P (X,a),eP (Y, 5)) 4B
=[(X,a+ B(X,.),(Y,8+ B(Y, .))]g+dB
= (IX, Y], £x(8+ B(Y, ) =iy d(a+ B(X,.)) - H(X,Y,.) = (A B)(X,Y ))

- ([X, Y], £x8 —iyda— H(X,Y,.) + (£xiy — iy dix — iyix d)B)
= ([X.Y), £xB —iv da — H(X,Y..) + (£xiy —iv £x)B)

=([X,Y], £xB—iyda— H(X,Y,.)+ B([X,Y], ~))

— P[(X, ), (Y. B)]2. (2.13)

The formulas £x = doix +ix od and ixy] = £x oly —iy o £x have been used in the fourth
and the fifth step respectively. ]

Remark 2.8. We have just shown that the set of all Courant algebroids (E = M, p, |., 12 gr)
can be decomposed into disjoint equivalence classes, each class being represented by an element
of the third de Rham cohomology group H3z(M).
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2.2 Generalized metric

In this section, we will investigate the concept of a generalized metric on the generalized tangent
bundle. We start by introducing the crucial property of each generalized metric on TM.

Theorem 2.9. Consider the generalized tangent bundle TM over a smooth manifold M and the
fiber-wise metric gg on TM defined in the example 2.1. Then there is a one-to-one correspon-
dence between generalized metrics on TM and ordered pairs (g, B), where g is a Riemannian
metric on M and B € Q*(M).

Proof. Let us start with a generalized metric V. C TM. Every generalized metric is a positive
definite subbundle and therefore gg (1, 1) # 0, for all ¢ € T'(Vy), ¥ # 0. As for all « € T'(T*M)
there holds

ge((0,a),(0,a)) =0, (2.14)

necessarily (V)N ({0} @ T'(T*M)) = {(0,0)}. This together with the fact that I'(V4) is closed
with respect to C°°(M)-linear combinations implies that I'(V,) is a graph of a C°°(M)-module
morphism ® : T'(W) — ['(T*M), where W C TM is a subbundle. Taking an arbitrary point
p € M we have

ng((’U,O),(U,O)) =0, ng((O,a),(O,a)) =0, (2‘15)

for all v € T, M and all a € T; M, hence
Vi, N (T,M & {0}) = (0,0), VipN ({0} & T;M) = (0,0). (2.16)

It now follows from the fact that Vi, is closed with respect to R-linear combinations that
®, : Wy — Ty M is an vector space monomorphism. As both of the vector spaces are finite-
dimensional ®,, is even an isomorphism, so W), = T,M since dim(7,M) = dim(7,; M), that is
W = TM. In summary, I'(V}) is a graph of a C°°(M)-module isomorphism & : I'(T'M) —
[(T*M). Let us proceed further, one can define F € T,)(M) as

F(X,Y) = (®(X))(Y), (2.17)

for all X, Y € T'(T'M) and denote the symmetric and the skew-symmetric part of F' as g := Fg
and B := F respectively. So, B € Q?(M) has been just discovered, and it therefore remains to
find a Riemannian metric on M. An obvious candidate is g, it is symmetric by the definition, thus
the last missing ingredients are to show that ¢ induces an C'°°(M)-module isomorphism and that
it is positive definite. Take arbitrary 1, ¢o € T'(V,), we have already found out that there are
X,Y € I(TM) such that ¥, = (X, ®(X)) = (X, 9(X,.)+B(X,.)) and 2 = (Y, g(Y,.)+B(Y,.)).
One easily finds

bp (X, 2(X))((Y,2(Y))) =9e((X,9(X,.) + B(X,.)), (Y,9(Y,.) + B(Y,.))) = 29(X,Y)
—2(b, X)(Y), (2.18)

hence by = 2 ¢7 obp o ¢, where ¢ : X — (X, ®(X)). Since ® is a C°°(M)-module isomor-
phism, the map ¢ : I'(T'M) — I'(V}) is one too. So, b, is a composition of C°°(M)-module
isomorphisms, thus it is an isomorphism itself. By choosing Y := X in (2.18), we obtain

9e((X,9(X,.) + B(X,.)), (X, 9(X,.) + B(X,.))) = 29(X, X), (2.19)
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for all X € I'(T'M). As V. is a positive subbundle, for all p € M and all v € T, M, v # 0 there
holds

gp(v,0) = %ng((v’ 9p(v,) + Bp(v,.)), (v, gp(v, ) + By(v,.))) > 0. (2.20)

Conversely, take an arbitrary pair of Riemannian metric and 2-form on M, and denote it as
(g, B). In the correspondence with the previous, we impose

Vi=| |{(w,gp(v,.) + By(v,.)) | v € T,M}. (2.21)
peEM

Apparently, it satisfies Local frame criterion for subbundles, see [11, Lemma 10.32], and con-
sequently it is a subbundle of TM. Clearly the equality (2.19) holds, and since g is positive
definite, V is a positive subbundle. Furthermore, it is easy to see that Rank(V,) = dim(M),
which means due to the signature of ggp that V, is even maximal. In conclusion, Vy is a
generalized metric on TM. O

Remark 2.10. For the exactly same reasons as in the case of V,, also I'(V_) is a graph of a
C°°(M)-module isomorphism, that is

Vo= | | {(v,3p(v,.) + By(v, ) | v € T,M}, (2.22)
peEM

where § € T2(M) is symmetric and B € Q%(M). As 9E|r(v, <y = 0, the equation

0 :gE((ng(Xa ) + B(X7 ')7 (Y7§(Y> ) + B(K )))
=g(Y,X)+ B(Y,X)+g(X,Y)+ B(X,Y) (2.23)

is valid for all X, Y € F(TM ). It can be decomposed into a symmetric and a skew-symmetric
part, they say § = —g and B = B respectively. In conclusion, if V corresponds to (g, B), V_ is
given as

Vo= | | {(,=gp(v,.) + By(v,.)) | v € T,M}. (2.24)
peEM

For the future reference, denote the C'°°(M )-module isomorphisms spanning I'(Vy) as
P, (X):=(X,by X + B(X,.)), P_(X):=(X,-by X + B(X,.)), (2.25)

for all X € I'(T'M).

Notation 2.11. One immediately sees that for a fixed Riemannian metric g there is a distinguished
generalized metric, it is the one corresponding to the choice B = 0. This particular generalized
metric is called a minimal generalized metric on (TM, gg) corresponding to g and is denoted
as V, possibly 79 or GY.

We have just discovered that V. and (g, B) are related through (2.21), let us see how the
other objects representing a generalized metric can be expressed in terms of (g, B).

Notation 2.12. Realize that generalized tangent bundle is defined as the Whitney sum of two
vector bundles. Consequently, we can visualize any tensor field A € T(TM) as a matrix
with respect to this decomposition, analogously as we did it in the remark 1.43 for a vector
bundle decomposition induced by a generalized metric. Moreover, note that every vector space
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endomorphism ® : I'(TM) — I'(TM) can be due to additivity decomposed into four components,
namely for all (X, a) € I'(E) one can write

(X, o) =2((X,0) + (0,a)) = 2(X,0) + (0,)
=mP(X,0) + m®(X,0) + 71 P(0, a) + m2P(0, @), (2.26)
where 71 (= p) and 7o are the projections onto the first and the second component respectively.

Therefore, not only fully covariant tensor fields of the rank two, but also vector space endo-
morphisms can be represented as matrices. The action of such endomorphism can be expressed

" oova = (2800 ) (3): 0

Proposition 2.13. Let all assumptions of the previous theorem hold, and furthermore, let V.
be a generalized metric on TM associated with (g, B), a pair of a Riemannian metric and a
2-form on M. Then the corresponding representations of the generalized metric T and G are
related to (g, B) as’

= < *ﬁgB(*, ) ﬁg ) G: <g+g_1(B(*v ')’B(*v )) g_l(B(*v ')7*))
bg — Bty B(x,.),-) Blgx,.)/)’ 97 (6 B(x,.)) g ’

for all (X,a) € T'(E).

(2.28)

where the symbol x marks the input. Especially, if Vi is a minimal generalized metric corre-
sponding to g, one has

79— (b(: ﬁ()ﬂ) ’ GY = <g 991> ) (2.29)

Lemma 2.14. Let all assumptions of the proposition hold. The projectors wy : T'(TM) — T'(Vy)
can be explicitly expressed as

ma(X,0) = S0 (X £ g0 Ty B(X, ), (2.30)

for all (X,a) € T(TM).
Proof of the lemma. Take an arbitrary (X,a) € I'(TM). Since we have the decomposition
TM = V& V_ and &4 : I'(T'M) — I'(V4) are isomorphisms, there exist X1 € I'(T'M) such
that
(X,a) =@, (X4) + @ (X)

= (X+7 bg X+ + B(X+7 )) + (X—7 _bg X_+ B(X—a )

:(X++X_,|79 <X+—X_)+B(X++X_,.), (231)
hence X4 + X_ = X, and at the same time by (X4 — X_) + B(X1 + X_,.) = a. The latter

condition can be equivalently rewritten under the assumption of the former condition as

Xy —X_ =fa—-1B(X,.),

o FX +2Xy =40 — 8, B(X,)),
1
& X4 :i(Xj:Ijga$ﬁgB(X, )), (2.32)
Apparently, there holds 74 (X, o) = &4 (X4 ), which concludes the proof. O

"Matrices are considered with respect to the decomposition TM = TM & T*M.
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Proof of the proposition. 1t follows from the previous lemma and from the relation between 7
and V4 that

T(X,a)
=7m4(X,a) —71_(X, )
= 52 (X +hga— by B(X, ) ~ 28 (X g0+, B(X,.)
= (X + 50— 8 BX, )by X +a— B(X,) + B(X, )+ Bltya, ) ~ Bt B(X,), )
_ é(X ~fyot 8y B(X, ), by X + o~ B(X,)+ B(X,) - B3, + Blt, B(X,)..))
= (g B(X,.) + g 0,09 X = Bty B(X,.),.) + Bty ), (2.33)

hence

_ —fg B(*,.) i
T (bg — B(tg B(x,.),.) Bl *,.)> : (2.34)

To find a matrix for G, one simply uses the relation G(.,.) = gg(.,7.). Take an arbitrary
(X,a), (Y,B) e T'(TM) and proceed as follows:

G((X,a),(Y,8))
=g9e((X,a),7(Y,5))
= 95((X, @), (~ B(Y,.) +2, 8.5, Y = B(ty B(Y..)..) + B(, 8,.))
=9(X,Y) = B(ty B(Y,.), X) + B(ly 8, X) — a(ty B(Y,.)) + oty 5)
=9(X,Y) - g ' (B(X,.),B(Y,.))+ ¢ "(B(X,.),8) + g ', B(Y,.)) + g ' (a, B), (2.35)

o {(Bls, ), Blx,)) g7 (Blx, ),
g+ g YB(%.),B(x.) g B*,.,*)
G = _ hl . 2.36
( 97 (%, B(x,.)) g~ (2.36)
The matrices for the minimal generalized metric corresponding to g arise by imposing B = 0 in
(2.34) and (2.36). O

Remark 2.15. Consider a Courant algebroid (E = M, p,[.,.]%, gr) equipped with an arbitrary
generalized metric V. associated with (g, B), one easily finds V, = e Vf , that is e” is not
only a Courant algebroid isomorphism but it is even a metric preserving Courant algebroid
isomorphism between (E 7> M, p,[.,.]%, gp) and (E 5 M, p,[.,.|272 gp) equipped with | %4

and V. respectively.

2.3 Levi-Civita Courant algebroid connections

In the previous chapter, we have analyzed the features of generalized metrics on our prominent
Courant algebroid. In this chapter, we will continue with the interpretation of results acquired
on the level of general Courant algebroids, namely we will concern ourselves with Levi-Civita
Courant algebroid connections on (E = M, p, ., JH2. gE). Our first intention will be to describe
the whole set LC(TM, GY) for an arbitrary Riemannian metric g on M.

In Section 1.4, a general procedure for constructing Levi-Civita Courant algebroid connec-
tions was invented. Its input data is some fixed generalized metric compatible Courant algebroid
connection, the following example will provide us one of those.
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Example 2.16 (Natural Courant algebroid connection compatible with a minimal generalized
metric). Consider now the minimal generalized metric G corresponding to a Riemannian metric
g on M and examine properties of the map VY : I'(E) x I'(E) — I'(E) defined as

Vi o
\v& o = X LC ) , (237)
(X’ ) ( 0 VX 9

for all (X,a) € T'(E), the symbol V9 denotes the unique Levi-Civita affine connection on
the Riemannian manifold (M, g). First, let us check whether V¥ is even a Courant algebroid
connection, as it is indicated. For sure it is R-bilinear, because VZ¢9 is R-bilinear, so let us deal
only with the Courant algebroid connection axioms. The validity of the first axiom is pretty
obvious, the second one can be checked as follows:

(VEIUY), VXS0 = (XY + [EOY, (X )6 + FVECaB)
(P(X, ) )Y, B8) + [V o) (Y5 B), (2.38)

Vs o (F(V25))

for all (X,a), (Y,B) € T'(E) and f € C*°(M). To prove the compatibility of V¢ with the
Courant metric, take arbitrary (X, a), (Y,5), (Z,7) € I'(F) and make a few straightforward
steps, namely

PX.@)g((Y: 8),(Z,7)) = X1(V) + XB(2)
= (VX)) +(VXY) + (VX98)(2) + BVX2)
=95(Vx o) (V2 ), (Z:9) + (Y, 0), Vi oy (Z7)- - (2:39)

Indeed, VY is a Courant algebroid connection. We claim that V9 is even compatible with the
minimal generalized metric GY. This follows from that the following series of equalities:

p((X,)GI((Y,B),(Z,7) =Xg(Y,. Z) + Xg~'(B,7)
= g(V5Y, Z) + g(YV, V0 Z) + g HVE98,7) + 971 (B, V)
= G9(Vix o) (Y. 8), (Z,7)) + GU(Y, B), Viy  (Z,7)) (2.40)

is satisfied for all (X, «), (Y, ), (Z,7) € I'(E). During the procedure, we have used the propo-
sition 2.13 twice.

Remark 2.17. Note that we have used the fact that VX9 is compatible with the g exclusively
to prove the compatibility of V¢ with the G9, and furthermore, the torsion-freeness of VZ¢9
has not been used at all. In particular, it means that any affine connection defines a Courant
algebroid connection on (E 5 M, p,[.,.]%, gr) in the way of (2.37), and also that any affine
connection compatible with a metric induces a Courant algebroid connection compatible with
the minimal generalized metric corresponding to the metric.

Example 2.18 (Torsion and curvature of V¥). We have not calculated any torsion or Riemann
tensor explicitly yet. It was mainly because we did not have any specific Courant algebroid
connection in our hands. However, this has just changed. Take an arbitrary Riemannian metric
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gon M and for all (X, ), (Y,5), (Z,7) € I'(E) proceed as follows:
Ty (X, a), (Y, B),(Z,7))
=95(Vix 0 (YsB) = Viy 5(X,a) = [(X,0), (Y, B)]5, (Z.7)) + 9B(V{y (X, @), (Y. 8))
=95 ((VEY = V9K — [X,Y], V598 = V%0 — £xB +iy da+ H(X,Y, ), (2,7))
+9p(V579X,V59a), (Y, 8))
=Ty, X,Y) + H(X.Y, Z)
= (Vy70)(2) + (da)(Y, 2)
The terms on the right-hand side containing 8 can be rewritten as

(VEC98)(2) — (£xB)(Z) + B(VEC9X)
=XB(Z) - BVEIZ) — XB(Z) + B(X, Z]) + B(V;9X) =THC9(8, 2, X),  (2.42)

(VEIB)(Z) — (£xB)(Z) + BIVE9X)

+
+ (VES90) (7). (2.41)

and similarly for the terms with «, using the formula (da)(Y,Z) = Ya(Z) — Za(Y) — o([Y, Z])
results into

(da)(Y, 2) + (VZ59)(Y) = (Vy79a)(2) = T"9(a, Y, Z). (2.43)

Since the Levi-Civita affine connection is torsion free, we obtain
Tvg((X,Oé),(Y,B),(Z,')/)):H(X,Y,Z), <~ Tvs :P*H (244)

Let us now have a look at the Riemann tensor. For all (X, «), (Y, ), (Z,7), (V,w) € I'(E) there
holds

Rovg(( a), (Y, 8),(Z,7), (V,w))

95(V5 ) Vi) (Vo 8) = Vi Vi, (V8) = Vi i (Vi B), (X))
~ g5 (<<VZC*QV€C*’ — VIV VY, <Véc"’V€C’g — VIV - ViS9)8), (X, )
= RM9(0,Y, Z,V) + (V;OV98)(X) — (VEEIV598)(X) — (ViS5 8)(X). (2.45)

The terms on the right-hand side containing 8 can be further rewritten as

(VZI9IB)(X) = (VyIVZ8)(X) = (V7 8)(X)
= Z(VyTIB)(X) = (VyTIB)(VZTIX) = V(VZ798)(X) + (V579B) (VI X)
—[2,VIB(X) + B(V 735 X)
= ZVB(X) = ZB(Vy“IX) = VB(VZ7IX) + BV IV5IX) - VZB(X)
+VB(VZIX) + ZB(VyTIX) = BVLIVETIX) = [2,VIB(X) + BV X)
=AVIIVL7X) = BVEITOIX) = BV AX)
=R, X,V, 2), (2.46)

and therefore

Rovs (X, @), (Y, B),(Z,7), (V,w)) = R*9(a,Y, Z,V) + R*9(8, X, V, Z). (2.47)
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Besides this, there is also one term to be determined in order to express the whole Riemann
tensor. By choosing an arbitrary local frame of the standard type, one immediately sees that
this term vanishes identically, and therefore the Riemann tensor Rygs can be expressed as

Res(X,0), (¥, 8), (Z,7), (V) = 5 (RM9(a, ¥, 2,V) + RE9(8, X,V 2)

+ REC9(~,V, X,Y) + REC9(w, 2, Y, X)), (2.48)

for all (X,a), (Y,5), (Z,7), (V,w) € T'(E). We can continue and compute the Ricci tensor
Ricys. Taking arbitrary (X, «) and (Y,3) € I'(E), choosing an arbitrary local frame of the
standard type for taking trace lead to

RiCVg((X, Oé), (K 6)) = Ryy (ﬁE éﬂ’ (Xv a)v 5;“ (Y7 ﬁ))
= RVQ((O7 ej)a (X7 Oé), (€j7 0)7 (K B)) + RVQ((ek7 0)7 (X’ Oé), (Oa ek)> (Y7 B))

1 4
= 5(RLC’g(ej, X,e;,Y)+ RLC’g(ek, Y, e, X))

1
= —(Ric’®9(X,Y) + Rict“9(Y, X)). 2.49
2

Since Ric“®9 is symmetric, we have
Ricys ((X, a), (Y, 8)) = Rick“9(X,Y), & Ricys = p* Ricl9 . (2.50)

There are two yet undetermined curvature objects, the Courant-Ricci scalar and G9-Ricci scalar.
For the former, one easily finds

RY.' = Ricys (fr &",€,) = Ricya((0,€7), (¢;,0)) + Ricys ((ex, 0), (0,€)) =0, (2.51)
whereas for the latter, we obtain

Res = Ricys (fas £, 6,) = Ricys (T98E €, €,)
= Ricys(79(0,¢7), (e,0)) + Ricys (19(ex, 0), (0, €))
= Ricys((Hy ¢7,0), (e7,0)) + Ricys ((0,by e1), (0,€%)) = RickC9(4, e/ e;) = RECI. (2.52)

We have used the general identity ¢ = 78g , see proof of the theorem 1.41, in the second step
and the matrix representation of 79, see the proposition 2.13, in the fourth step.

Remark 2.19. Tt is good to realize that if we start from an arbitrary affine connection VA€ and
not the Levi-Civita one, we would obtain the associated torsion tensor 7' in the form

T(X,a),(Y,B),(Z,~) = HX,Y,Z)+ T%a,Y, Z) + TA° (8, Z, X) + T4 (v, X, Y), (2.53)

for all (X,a), (Y,B), (Z,7) € I'(E). The associated Riemann tensor, Courant-Ricci scalar and
GY9-Ricci scalar would take exactly the same form as the quantities derived above, but all the
ordinary curvature tensor fields would be related to VAC instead of V9. The Ricci tensor
would be of the form (2.49), as RicA” is not necessarily symmetric.

Let us now proceed further with the construction of a Levi-Civita Courant algebroid connec-
tion. As we already have a Courant algebroid connection compatible with GY9 at our disposal,
we are able to derive the minimal Levi-Civita Courant algebroid connection corresponding to it.
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Notation 2.20. Note that covariant divergences can be naturally used even on the level of or-
dinary affine connection, namely for a given metric g and an affine connection VA€ on M, we
define

divgac X := e/ (V2O X), div e a = (VECa)(Hy €), (2.54)

for all X € I'(TM) and all a € Q(M), especially we state div? := divyrc, and div? := div?

VvVLC.g-

Example 2.21 (Minimal Levi-Civita Courant algebroid connection corresponding to V7). To
obtain such connection, it is necessarily to compute the tensor field C' given by (1.138). For
arbitrary (X, a), (Y, ), (Z,v) € T'(E), one sees

C((X,), (Y, 5),(Z,7))

= — S (Tos (i (X, ),y (Y, 8), 74 (Z,7) + Talr_ (X, 0), 5 (¥, 6),7(2,7))

- TV‘](T(-F(X? O‘)’W—(Yvﬁ)ﬂr—(zvv» - TV«‘](W—(X’O‘)77T+(Yv/8)777+(27 ’Y))

= g (HX 4 8y0.Y +8,8.2 4 8,7) + H(X ~ty0.Y —4,8,2 ~ t,7)
—|—3H(X+1jgoz,Y—ﬁgﬂ,Z—ﬁg7)+3H(X—ﬁgo¢,Y+ﬁgﬁ,Z+ﬁg'y)>

1
3

H(X.Y.Z) = 3H(X,4,8.87) + gHEy 0 Vity 1) + 5H g 0,8, 8.2), (25

the equation (2.44) and the lemma 2.14 have been used simultaneously in the second step. To
get an explicit form of the minimal Levi-Civita connection VO corresponding to V9, we have to
cast the smooth section g C'((X, ), (Y, 3),.) in the form of an ordered pair. It can be done by
solving the equation

OZQE((‘/’C‘)) _ﬁEC((XaO‘)a(YVaB)")’(ZarY)) (2'56)

for (V,w), where (X, a), (Y, ), (Z,7) € ['(F) are arbitrary. By employing (2.55), one finds that
the equation above is equivalent to

(V) +w(Z)
=C((X, ), (Y, 8),(Z,7))

=~ SH(X,Y,2) ~ 3 H(X. 8 B.8g7) + gHlly .Y 8,7) + 5ty 08, 8,7)
=13ty H(X 8o 5,) + gy Hllg 0, Y, ) + (—3 H(X, Y,.) + cH by 08, 8,)(2), (257
hence

ﬁE C((X7 a): (Y7 5)7 )
= (= St HOGE B + Gta Htg .Y, —g HOX, V) + gH 00y 5,)). (259)

Finally, V° can be written as
1 1
V(Y2 B) = Vi o (V. 8) + (= 5t H(X, 89 B,) + 5o H(zg . Y, ),

_ %H(X, Y, )+ éH(ﬁg a, t B, .)), (2.59)
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or in the matrix representation as

Vo = (VX et Hlgas) —if HXgyx) ) (2.60)
’ —TH(X,*,.) VY 9+ tH (g o g%, .)

for all (X,a), (Y,5) € T'(E). At the end of the example, we derive the covariant divergence
corresponding to V0. It is actually sufficient to calculate divys and C, see (1.142). For all
(X,a) € I'(E), one finds

C((Xv a)) = C(ﬁE flﬁ’ g,u’ (X7 a))
= C((O’ ej)v (6]', 0)’ (Xv a)) =+ C((eka 0)7 (07 ek)v (Xv a))

T %H(ﬁg e, ej, fg ) = 0. (2.61)

It vanishes, since H is completely skew-symmetric. While C = 0, we find the following for divys:

divys (X, ) = E"(V{ (X,a)) = (¢, 0)(V{,, 0)(X, @) = e (VEOIX) = div? X. (2.62)
Putting these together, we arrive at
divgo = divys = div? op. (2.63)

Thanks to the theorem 1.59, any element V of the set LC(TM,GY) can be for all (X, a)
(Y,B) € T'(E) expressed as

Vixa (Y 8) = Vix oY 8) + s K((X,a), (Y, 8),.), (2.64)

where V° is the minimal Levi-Civita Courant algebroid connection corresponding to V9 known
explicitly from the previous example and K is a tensor field possessing appropriate properties,
see 1.61. So, the task is accomplished, we have just described the whole set LC(TM,GY).
However, another additional step can be made, we can “simplify” the parametrization of this
set. What exactly is meant under the “simplification” is described by the following lemma.

Lemma 2.22. Consider the generalized tangent bundle TM over a smooth manifold M, the
fiber-wise metric gp on TM defined in the example 2.1 and a generalized metric T. Then for
any K € QYE) @ Q%(E) satisfying

K(w1a¢2779¢3) - K(¢1,Tg¢2a¢3) =0, (265)
K (1,2,13) + cyc(r, ¥2,v3) =0, (2.66)

for all Y, o, s € T'(E), there is a unique ordered pair (W, J) of ordinary tensor fields from
the set TY(M) such that the equality holds

K((X,a),(Y,8),(Z,7))
:W(ﬁgOZ»Y,Z) + W(X,ﬁgB,Z) + W(X,Y,ﬁg’y) +W(ﬁgaaﬁgﬁaﬁg7)
+ J(Xvﬁgﬁ7ﬁg7) + J(j;tga,Y,j:tgv) =+ J(ﬁgaaﬁgﬁvz) + J(X,Y,Z), (2'67)

for all (X, ), (Y,8), (Z,v) € T(E). Moreover, both of the tensor fields W and J are skew-
symmetric in the last two inputs and their complete skew-symmetrizations vanish identically.
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Proof. Take an arbitrary K € Q'(E) ® Q?(E) satisfying the properties (2.65) and (2.66); and
an arbitrary (X, a) € I'(E), and define a C°°(M )-module endomorphism Ky oy : ['(E) — T'(E)
as

K(X,a)(Y:B) = ﬁEK((Xaa)7(Kﬁ)a)7 (268)
for all (Y, 3) € T'(FE). Apparently, IA((XVQ) = IA((X,O) —{—IA((O’(X), and therefore we can represent it as

A <Lx+Aa Nx-i-Ea)

Kxea) =gy 450 Tx + 04 (2.69)

where all eight objects contained in the matrix are C°°(M)-linear maps between the appropriate
C°(M)-modules. Let us see what constraints are imposed on them by the properties of K. First
of all, K is skew-symmetric in the last two inputs, that is

0=K((X,a),(Y,8),(Z,7)) + K(X,a),(Z,7), (Y, 8))
= 95(K(x,0) (Y, B),(Z,7)) + 98(K(x ,0)(Z,7), (Y, B))
=gp((LxY 4+ AyY + NxB +Eaf, SxY + ZoY + Tx 8+ 0408), (Z,7))
+ 95((LxZ 4+ Ao Z + Nx7y + B, Sx Z 4+ S0 Z + Txy 4+ 007), (Y, 8)), (2.70)

for all (X, ), (Y,0), (Z,7) € I'(E). One can check that it is equivalent to the set of relations

Tx = — LY, Y(NxB) = — B(Nx"), (SxY)(Z2) = — (Sx2)(Y),
B4 = — AL, Y(EaB) = — BE), (ZY)(2) = = (BaZ)(Y). (2.71)

In the exactly same way, one finds that (2.65) is under the assumption that (2.71) holds equiv-
alent to the set of relations

L% = —b, Lxt,, AT = — b, Autly, Sx =by Nxbg, Yo =byZaby (2.72)

hence

LX +Aa NX +Ea > (2 73)

Kov o= »
(X,a) <bg (NX + \:a)bg bg (LX + Aa)ﬁg

Considering K (X,a) 1n this form yields

K((X,),(Y,B),(Z,7))
:gE'(K(X,a)(Yvﬁ)v (Zvry))
:gE(<LXY + AaY + NXB + Ea/By bg NngY + bg Eocbg Y + bg LXﬂgB + bg Aaﬁg 5)7 (Z77))
=7(LxY) +7(AY) + 7(NxB) +¥(EaB) + (bg Nxbg Y)(Z) + (bg Eabdg Y)(Z)
+ (bg Lxty B)(Z) + (bg Aty B)(Z), (2.74)
for all (X, ), (Y,0), (Z,7) € I'(E). Denoting
W(X7Y7Z) = g(LXY7Z)? J(X,Y,Z) = g(AngKZ)v (275)
for all X, Y, Z € I'(T'M) leads to

K(X,a),(Y,B),(Z,7))
=W(X,Y, 8g7) + W(X, 8y B8, Z) + 9(ZaB, g 7) + 9(Zabdy Y, Z)
+J(Hga, Y, 8gy) + (g, 89 8, Z) + g(NxB,8g7) + 9(Nxby Y, Z). (2.76)
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By comparing with (2.67), one sees that the last missing piece of the puzzle is to show that the
relations

S0 oby = Ly, o Nx = Ay, x ot (2.77)
hold. To do that, we need to employ the property (2.66) in the following form:
K(r9(X, a), (X, ), (Y, B)) + cye(m?(X, ), (X, a), (Y, 8)) =0, (2.78)
for all (X, ), (Y,5) € I'(E). Realize that the skew-symmetry in the last two inputs of K says
K((Y,8), (X, @), (X, a)) = =K((Y, §), (X, a), 77(X, a)), (2.79)
whereas (2.65) implies
K((Y, 8), (X, @), (X, a)) = K((Y, 8), (X, ), 77(X, @)). (2.80)
That is K((Y, 5), 79(X, ), (X, )) = 0, and therefore we can write (2.78) equivalently as
0= K((8g a,bg X), (X, ), (Y, 8)) = K((X, ), (§g @,bg X), (Y, 5)). (2.81)
For IA((X@) in the form (2.73), it says
0=9g(Npyabg X — Ao X + 5, xbg X — Lx X + Ly aliga — Eqa + Ay xfga — Nxa,Y)
+ B(Ls, aX — Zaby X + Ay, x X = Nxbg X + Ny, a0 — Aalga + 5, o — Lyfga). (2.82)
In particular, choosing X =Y =0 and X =0, § =0 lead to
0= Ny, o — Aally a, 0=Zaa — Ly, oflg @, (2.83)

for all & € Q!(M) respectively. By putting these back into (2.82) and imposing 3 = 0 and
Y =0, we obtain

0= Nﬁgang —AaX—i-AngﬁgOé — Nxa, 0= LﬁgaX — Eang—i-Enga — Lijga, (2.84)

for all « € QY(M) and X € T'(T'M) respectively. Thanks to the linearity, the relations (2.83)
can be expanded as follows:

O:Nﬁg(a_‘_ng)(a—i-ng) _Aoz+ngttg (06+ng)

=Nxa+ Nﬁg abg X — A X — Angﬁg a, (2.85)
0 :Ea+ng(a + by X) — Lﬁg (a+ng)ﬁg (o +by X)
=Eabg X + Sy, x— Ly o X — Lxt, . (2.86)

Combining these with (2.84) results into the desired relations
NXa = Angﬁg «, Eabg X = Lﬁg aX, (2.87)

thus we have just found W and J such that (2.67) holds. This proves the existence. To prove
the uniqueness, it remains to realize that any pair (W, J) satisfying (2.67) can be expressed as

W(X,Y,Z) = K((0,bg X),(0,bgY), (0,04 2)), J(X,Y,Z)=K((X,0),(Y,0),(Z,0)), (2.88)

forall X, Y, Z € T(TM). It is immediately seen if we choose X =Y =Z =0ora==7=0
for (2.67). The last thing to prove is that W and J are skew-symmetric in the last two inputs
and that their complete skew-symmetrizations vanish identically. Considering W and J in the
form (2.88), it follows directly from that K possesses those properties. O
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Remark 2.23. We have just shown that set LC(TM, GY9) can be parametrized by a pair of ordinary
manifold tensor fields instead of one tensor field on TM, thus the aforementioned “simplification”
means that parametrization can be reformulated in the terms of more fundamental objects. Note
that the correspondence between K and (W, .J) is one-to-one.

Corollary 2.24. Let all assumptions and notation of the previous lemma hold and impose
W = W(ﬁg ej7ej7')7 j = J(ﬁg ej7€j7')' (289)

Then the identities

W(X,Y,Z) =K((0,by X),(0,b,Y), (0,b, 2)) (2.90)
J(X,Y,Z) =K((X,0),(Y,0),(Z,0)) (2.91)
K=20W,4,7), (2.92)

are satisfied for all X, Y, Z € I'(TM).

Proof. The validity of first two identities have been already shown at the end of the proof of
the previous lemma. To prove the third one, take an arbitrary (X, «) € I'(E) and proceed as
follows:

’C((Xv a)) :K(ﬁE §M7§M, (X7 CY)) = K((07 ej)7 (€j7 0)7 (X7 a)) + K((ek7 0)7 (07 ek)v (X7 a))
=Wt ej,ej,X) + J (44 ej,ej,tig a) + Wieg, g ek,X) + J (e, g ek,jjg a)
=2W(X) +2J(t, a), (2.93)
hence IC = 2(W, 4, 7). The relation (2.67) has been used in the third step. O

In the next, we will calculate both of the Ricci tensor contractions associated with an arbi-
trary V € LC(TM, GY). Especially, the result for GY9-Ricci scalar will play a crucial role in the
next chapter.

Theorem 2.25. Consider a Courant algebroid (E = M, p,]., ), gE) and a Riemannian metric
g. Moreover, let VO € LC(TM,GY) be the minimal Levi-Civita Courant algebroid connection
corresponding to V9 defined in the example 2.16. If V € LC(TM, GY) is related to V° as

V(X,a) (K 6) = V?X@) (Yv /8> + ﬂE K((X7 a)v (Y7 5)7 ')7 (294)

for all (X,a), (Y,B) € I'(E), then the corresponding Courant-Ricci scalar and GI9-Ricci scalar
can be expressed as

RY, =4divI(T) — 8¢~ (W, J), (2.95)
Ry =RECY — %(H, H)y+4divI(W) —4g W, W) — 49~ (T, T), (2.96)

where W, J € TY(M) are uniquely given by K trough the lemma 2.22.

Lemma 2.26. Let all assumptions of the theorem hold. Then the Ricci tensor corresponding to
VO can be expressed as

Ricgo((X, a), (Y, 8)) = Ric"“I(X,Y) = —((VEOIH) (X, 1y B, g ) — (VECIH) (B, Y, g €7))

1
4
1. ) 1. .

— §(1XH, iyH)g + 6(% oH, iy, sH)g, (2.97)
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for all (X, ), (Y,8) € T'(E). Moreover, the corresponding Courant-Ricci scalar and G9-Ricci
scalar take the form

1
RY =0, RY, =RV — 5 (H, H),. (2.98)

Proof of the lemma. The first part of the proof is a simple use of the proposition 1.65, we just
need to compute all the terms on the right-hand side of (1.160) for the particular choice of C'
given by (2.55). In our case, the first term is Ricys, which can be due to (2.50) cast as

Ricys = p* Ricl@9 (2.99)

The second, the third and the sixth term is proportional to C. As (2.61) says C = 0, all three
terms vanish. The fourth and the fifth term are both of the same type, the former can be
expanded as follows:

(VL. O)(X, ), (Y, B), 85 ")
= (V. ) ON(X, ), (Y, 5), (0,¢") + (V) 1y ON(X, @), (Y, B), (ex, 0))
=¢;C((X,a), (Y, 8),(0,¢)) = C((VETIX,VEIa), (Y, B), (0,€7))
- O((X,a), (VEO9Y, vw% (0,€7)) = C((X, ), (Y, 8), (0, VEC9eT))
lvfﬂﬂ%mK%d) ot

=5 VESIH) (X, b B, g €), (2.100)

for all (X, a), (Y,3) € I'(F) and the latter is obtained by swapping (X, «) with (Y, ). Let us
now move to the quadratic terms in C, for all (X, «), (Y,8) € I'(E) there holds

ClEeC( & (Y, 8)), (X, @), BE ")

Cltes", & (Y, 8))C (&, (X, @), fp £")

=C((0.¢%), (ex,0), (Y, 8))C((e5,0), (X, ), (0,€")) + C((e1,0), (ex, 0), (Y B))
-C((0,¢"), (X, ), (0,")) + C((0,¢), (0, ™), (Y, 8))C((e}, 0), (X, @), (€, 0))
+O<(el, 0). <0,em>,<Y,B>)C<<o,e‘),(X,oo,(em,o»
= - 7H(ﬁg ej,ek, g B)H (ej,8g g ek) - iH(elvek’Y)H(ﬁg el’X’ g ek)

18 18
_7H(ﬁge ﬁg ) ) (ej?Xﬂem)_%H(elvﬁgemvﬁgﬁ)ﬂ(ﬁgelaﬁga7em)
= - %(iugaH)(ﬂg e tg€) iy, sH) (e, ex) — é(iXH)(ﬁg el g €")(iy H)(er, ex)
= — ligyaHig, sH)y — - (ix H iy )y, (2101)

The two remaining quadratic terms can be calculated in the exactly same manner. Moreover,
both of them are mutually the same up to the order of the sections (X, ) and (Y, 3); and each
of them leads precisely to

1. . 1. .
E(lﬁg o, iy, gH)g — 5(1XH, iyH),. (2.102)
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It remains to deal with the last two terms. For the first of them, the equations (2.44) and (2.55)
yield

C(TVQ((X7 CK), ﬁE é‘ﬂ), fll’ (Y7 B)) :Tvg((X, Oé), ﬂE é‘li’ ﬁE gl/)c(&” gl“ (Y7 B))

:TVQ((X7 a)’ (ejv 0)7 (ekv O))C((Ov ek)v (07 ej)a (K ﬁ))
_ %H(X, e en)H(ty ¥ 8, ¢0,Y)

1
== g(iXH, iy H)g, (2.103)

for all (X, a), (Y,5) € I'(E). Note that we have omitted three terms in the second step, it is
because they vanish identically thanks to (2.44). Since the second term with the torsion differs
only in the order of the inputs (X, «) and (Y, ) and the expression above is symmetric in
those, it must yield the same result. Putting (2.99), (2.61), (2.100), (2.101), (2.102) and (2.103)
together results into the dseired formula for the Ricci tensor. Let us now have a look on the
part concerning with the Ricci scalars. As both R}’ and C vanish, see (2.51) and (2.61), the
formula (1.163) says that

1 )
RE' = =3(C, Too)i = —5C((0,¢9), (0,¢), (0, ) Hej,enen) = 0. (2104)

By using the result for Ricyo and following the approach for derivation of R, see (2.52), we
obtain

Ry = Ricyo(fao €",€,) = Ricgo(r945 £, &)
= Ricgo((ty €', 0), (¢j,0)) + Ricgo((0,bg ex), (0,¢"))

1. ) 1. .
:RLC,Q — g(lﬁgejH’ lejH)g + g(lekHy lﬁgekH)g

1
=RLC9 _ §(H, H),. (2.105)
O

Proof of the theorem. The cornerstones of this proof are the propositions 1.67 and 1.69. The
Courant-Ricci scalar Rgo is already known from the lemma, so let us have a look on the ex-
pressions containing IC = 2(W, #, J ), see (2.92). The formula for the covariant divergence of the
minimal Levi-Civita connection (2.63) together with (1.41) implies

divgo £ = 2div? J. (2.106)
It remains to determine the last term on the right-hand side of (1.164), one easily finds
QEI(’Q IC) = gE(ﬁE IC? ﬁE ’C) = 49E((ﬁg \7’ W)7 (ﬁg \7a W)) = SW(ﬁg j) = 8g_l(W7 j) (2107)
By employing (2.98), (2.106) and (2.107) into the equation (1.164), we obtain the relation to be
proven. To prove the second formula, first realize that T'(VY) = {(X,+b, X) | X € T(TM)},
hence {(e;, £bg ej)}?g(M) is apparently a local frame of VY, and {(3e/, £34, ej)}(;l:r?(M) is the
corresponding dual one. Without loss of generality, we will work exclusively with the local
frames of this form. The important ingredients for calculating the divergences are

LC, .
vo ) (iﬁ ej7€j) _ VQJ- 4 :l: %ﬁg H(@j,*, ) L—C‘%ﬁg H(ej,ﬁg *, ) (iﬁg.e]>
(ej,£bg ej) Y —%H(ej,*, ) vej 9 4 %H(ejaﬁg x,.) e

= (£V 9y el VL), (2.108)
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where vanishing of the partial trace of H € Q3(M) has been used. Considering this leads to

. 1 ) . 1 o 1 o
divio K = 3 (V0. 24, KB (¢, g ) = JeiK (2 €, &) = SK(VE,, by, o)) (g € ¢7))

(€5
= e (W &) + ¢/ (8, 7)) F WIVECT, o) — (VEC9E) (8, )
=+ (VEOW) (g ) + & (VEO9, T) = £divI W+ div? J . (2.109)

It remains to compute the terms (gi£) ' (K*, k%), one easily derives that

(9) 71005, %) =K (1K) = K (E)K* (1 65) = 5K ((e5, %0y ) K* (i (¢, 1y )

= %/C((ej» g ) (g ¢/, ¢7)) = 20W(e;) £ T (e))) (EW(Hg €) + T (Hy €7))
= 4207 W W) + 497 W, T) £ 207 1T, T) (2.110)

Employing (2.98), (2.109) and (2.110) into (1.171) yields the formula for the GY9-Ricci scalar. [

Another result, which we will appreciate later, is the criterion for the Ricci compatibility of
an arbitrary V € LC(TM, GY) with the GY.

Notation 2.27. Right before we state the respective theorem, we recall the commonly used
notation from the Riemannian geometry. Consider an oriented Riemannian manifold (M, g, 0),
then for all k € {1,---,dim(M)} one can introduce a map d, : Q¥(M) — QF~1(M), a so called
codifferential, as

8y = (—1)F 5, L dxgo, (2.111)

where x4, is the Hodge star operator associated with g and o. Moreover, one can show that the
identity
((5gw)(X1, cee an:—l) = —(Véc’gw)(ﬁg ej, Xl, s ,Xk_l) (2112)

is satisfied for all w € QF(M) and all X1, ---, X;_; € I'(T'M). In particular, for k = 1 one has
0y = —div?. From the equation above we see that we do not actually need an oriented manifold
to have the codifferential defined.

Theorem 2.28. Let all assumptions of the theorem 2.25 hold. Then V is Ricci compatible with
GY if and only if

0 = Rict%9(X,Y) — %(%H)(X,Y) - %(iXH, iyH)y — H(X,Y, 8, W)
+ (VECIW) (V) 4+ (VECIW) (X) + (VEC9 7) (X)) — (V599 7)(7), (2.113)
forall X, Y e I(TM).

Lemma 2.29. Let all assumptions of the theorem 2.25 hold. Then V° is Ricci compatible with
GY if and only if

1 1
0 = Rick9(X,Y) — 5 O H)(X,Y) = 5 (H, H),, (2.114)

forall X, Y e T(TM).
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Proof of the lemma. As T(VY) = {(X,4b, X) | X € I(TM)}, V° is Ricci compatible with G9
if and only if
0 = Ricgo (X, by X), (Y, —bg Y)), (2.115)

for all X, Y € I'(TM). Thanks to (2.112) and the lemma 2.26, the right hand-side can be
expanded as follows:

1 . ,
Ricgo((X,bg), (Y, =0y V) = Ric" (X, Y) + S (VEH) (X, Y, g €)) + (Vo H) (X, Y, 4y 7))

1. . 1. .
- g(le, lyH)g — é(le, lyH)g
1 1
= Rick9(X,Y) - 5 O H)(X,Y) = o (ix H,iy H)g, (2.116)

and thus the proof is complete. O

Proof of the theorem. We start similarly as in the lemma, V is Ricci compatible with GY if and
only if
0 = Ricy ((X, 0y X), (Y, =by Y)), (2.117)

forall X, Y € I'(TM). Combining the property (1.149) possessed by K with the lemma 1.70 and
(1.116) leads through (1.161) to the following equivalent formulation of the Ricci compatibility:

0 = Ricgo((X,by X), (Y, —b, Y))
(T (e, KV, by ¥) + (V3,1 K) (X, g X)), (2118)

for all X, Y € I'(TM). To be able to make the next step, we need to calculate the covariant
derivative VO(X,ibg x)(Y,FbyY). One immediately sees

VECS £l H(X %) —Ltg H(X, %) >( Y )

VO (x5, x) (Y, Fhg Y) =
(X,£by X) g —LH(X,x,.) véf’g + §H(X fgx,.) ) \FbgV

1 1
— (VEO9y 4 Sl HXY.), TVEC Y — SHX,Y.))  (2119)
By employing this together with the lemma into (2.118), we obtain

1
0 = Ric"™(X,Y) — ~(6,H)(X,Y) — 5 (ix H,iy H),g

1
C 2
1 1 1
+3 (XIC((Y, by ) = K((VEHY + S8, H(X,Y, ), =V, Y = SH(X,Y,.)))
FYK((X,by X)) — K(VEC9X — %ﬁg H(Y,X,.),VEC9, X — %H(Y, X, .)))

= Ric" (X, Y) — (3, H)(X.Y) ~ L (ix H. iy H)y + XW(Y) = XT(V) - W(TE7Y)

1
)
+ T(VEIY) + YW(X) + YT (X) - W(VIX) — T(Vi99X) — Wit H(X, Y, )

= Ricl99(X,Y) - %(%H)(X, Y) - %(iXH, iyH), — H(X,Y,t, W)
+ (VEEIW)(Y) + (VW) (X) + (V9T (X) = (VEAT)(Y), (2.120)

which is exactly what should have been proven. O
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Corollary 2.30. Let all assumptions of the theorem 2.25 hold. Then V is Ricci compatible with
GY if and only if the pair of equations

0 = Ric’@9(X,Y) — %(iXH, ivH), + (VEOIW) (V) + (VECIW) (X)), (2.121)
0=H(X,Y 4, W)+ %@H)(X, Y) + (VEIT)(Y) = (Vi) (X) (2.122)

is satisfied for all X, Y € T'(TM).

Proof. Tt follows immediately by decomposing (2.113) into the symmetric and skew-symmetric
part. ]

As you have probably noticed, we were concerned exclusively with the simplest case of
generalized metric, a minimal one. In the general case, the set LC(TM,G) is so far completely
unknown. However, there is a trick that makes the task of describing an arbitrary Levi-Civita
Courant algebroid connection trivial. Consider a Courant algebroid (E = M,p,[.,.]%, g5)
equiped with a generalized metric G and denote the corresponding Riemannian metric and
2-form on M as g and B respectively. Then, thanks to the proposition 2.7 and the remark 2.15,
eP is a metric preserving Courant algebroid isomorphism mapping (E = M, p,|., .}g_dB 9E)
endowed with G9 to (E & M, p,]., ]2, gr) endowed with G. Consequently, see 1.18 and 1.71,
any Levi-Civita Courant algebroid connection V € LC(TM,G) on (E 5 M, p,][., .]g,g};) can
be for all (X, ), (Y,8) € I'(E) expressed as

ﬁ(XvO‘) (Y7 /8) = eB(Ve*B(X,a) e_B(Y7 B))v (2123)

where V € LC(TM,GY) is some Levi-Civita Courant algebroid connection on the Courant
algebroid (E = M, p, [.,.]g_dB,gE) with respect to G9. Note, that all such V are available
by the previous procedure, since we can clearly replace H with H — d B in all the relations
above. Therefore, we have just described all Levi-Civita Courant algebroid connections on
(E5 M,p,]., .]g,gE) with respect to an arbitrary generalized metric. Moreover, if V and V
are related as (2.123), we are able to easily compute its curvature tensors. Now, we state the
most important result of the whole chapter in the form of corollary.

Remark 2.31. We would like to emphasize that by choosing a 4-tuple of ordinary manifold
tensor fields (g, B, W, J) with the suitable properties, one uniquely determines any Levi-Civita
connection on (F 5 M, p, [, ]g ,gr) with respect to the appropriate generalized metric.

Corollary 2.32. Consider a Courant algebroid (E = M,p,[.,.|%, gr) equipped with a gen-
eralized metric G associated with a pair of Riemannian metric and 2-form (g, B) on M; and
with V € LC(TM,G). Then the corresponding Courant-Ricci scalar and G-Ricci scalar can be
expressed as

RY, =4divi(T) — 8¢~ (W, J), (2.124)
RY, =RLC %(H —dB,H —dB), +4divi(W) —4g ' W, W) —4g (T, T).  (2.125)
Moreowver, V is Ricci compatible with G if and only if the pair of equations
0 = Rick99(X,Y) — %(iX(H —dB),iy(H — dB)), + (VE9W)(Y) + (VES9 W) (X), (2.126)
0=(H ~dB)(X,Y,1,W) + L (5,(H ~ d B))(X,¥) ~ (VE47)(X) + (VEO97)(v)  (2121)
is satisfied for all X, Y € T(TM). Tensor fields W, J € T (M) are given uniquely by (2.123).
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Proof. The proof is based on the discussion in the paragraph above. By combining (2.95) with
1.32, one immediately obtains the relation for the Courant-Ricci scalar. Similarly, using (2.96)
and 1.48 leads to the G-Ricci scalar formula. The part concerning with Ricci compatibility
follows from the corollary 2.30 combined with 1.50. O
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Chapter 3

String effective action

Although the previous chapters have already provided us many interesting and maybe surprising
results, the true miracle® is yet to come. We will show that the string effective action, see [17],
and the associated equations of motion can be expressed in the language of Courant algebroids.
Moreover, this Courant algebroid formulation seems very natural in the sense that it reminds
us of the Finstein-Hilbert action and the vacuum Einstein field equation from general relativity.

3.1 In classical fashion

The string effective action is an action functional arising from string theory, which describes
a motion of the bosonic string in the target oriented manifold M of dimension equal to 26. If
we omit all overall constants, it is given as

Slo.B.0):= [

e 2O(RLCY — %(d B,dB), +4(d¢,d $),) Vol . (3.1)
M

As you can see it depends on three background fields, namely a Riemannian® metric g on M,

B € Q%(M) called the B-field (also known as the Kalb-Ramond field) and ¢ € C°°(M) called
the dilaton. The symbol Vol, denotes the canonical volume form corresponding to g. Let us
make a slight generalization, we will suppose that for some fixed closed 3-form H, the 3-form
H' := H — d B appears instead of d B in the string effective action formula. It is clear that for
a special choice H = 0 it reduces to the original case.

Notation 3.1. We introduce the Lapalace-Beltrami operator, A, : C*°(M) — C*°(M), as
Ay :=div/od. (3.2)
Note that Ay = —d4 0 d.

Theorem 3.2 (Equations of motion for string effective action). Let M be an oriented manifold
and H € Q3(M) an arbitrary closed 3-form on M. Then (g, B, ), where g is a Riemannian
metric on M, B € Q*(M) and ¢ € C®°(M), is an extremal of the action functional

Slg. B0 = [ HRICH— LT, +4(d 6,4 6),) Vol (33)

81t was discovered by authors in [2].
In physics ¢ is not Riemannian but Lorentzian. However, Lorentzian metric is more complicated to handle
with. So, in order to make all steps clearer, we will be happy with just a Riemannian one.
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where H' = H — d B, if and only if

0 =R _ %(H’, H')y + 40,6 — 4(d ¢,d ¢),, (3.4)
1

025(69H,)(X7Y)+H,(X¢Y7ﬁg d(b)? (35)

0 = RickCI(X,Y) — %(iXH’, iy HY), + (VEC9d6)(Y) + (VEC9dg)(X),  (3.6)

forall X, Y e T(TM).

Proof. The proof is based on the variations of the action functional with respect to g, B and ¢.
It actually means to perform several pages long calculations. Since this result is already known
and it is not main purpose of this thesis, we omit the proof. ]

Remark 3.3. The set of equations (3.4), (3.5) and (3.6) is sometimes called the supergravity
equations or the SUGRA equations for short.

3.2 In Courant algebroid fashion

In this section, we reformulate the string effective action and the corresponding equations of
motion in terms of Courant algebroids, namely in terms of the one introduced in Chapter 2.

Notation 3.4. In order to make expressions more readable, we the adopt index notation com-
monly used in the physical literature. Suppose E = M is a vector bundle equipped with a
fiber-wise metric h. For an arbitrary A € ’7;0(E), k € N, we impose

A,ul...,uk = A(é,u,la s 7&;%)7 AbLRE = A(ﬁh 5#13 s 7ﬁh g#k)’ (37)

where {£, ,P}ink(E) denotes an arbitrary local frame of E.

Lemma 3.5. Let (M, g,0) be an oriented Riemannian manifold and k € {0, ...,dim(M) — 1}.
Then for all o € QF(M) and B € QFTY(M), the identity

/ (da, B), Vol, = / (v, 5,3), Vol, + / a A xgof (3.8)
M M oM

holds.

Proof. First of all, denote n := dim(M), choose an arbitrary k € {0,...,n}, take arbitrary «,
B € QF(M) and expand a A %4, in the way

1 ; ; 1
aNxgofl = (k‘ajl---jkejl ASNNA 6”) A ((n _ k)lklBllmlk‘gll--.lkml...mnfkeml Ao A em"k>
— 1 L gl J1eJemaemy g 1 n
- mahmﬁw@ €l dgmy..mp, € e N Ne
1 Iy sg1---Jk 1
- klklajl“'jk’@ ! kéljllljkke /\ e /\ en
1

= B e

= (a, B)4 Vol . (3.9)
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We have used the fact that one can always and without loss of generality choose a right-handed
orthonormal local frame to work with. Considering the just proven identity one can for all
a € QF(M) and B € QFF! proceed as follows:
d(a A xgoB) = da Axgof + (—1)fa Adxgof = (da, B)g Volg +a Axgo((—1)F %, b dxg.0)B
=(da, f)g Volg+a A *g,048 = (da, 5)4 Volg +(c, 648)4 Volg . (3.10)

The rest follows immediately from the Stokes’ theorem. O

Theorem 3.6 (String effective action in terms of Courant algebroids). Let M be an oriented
manifold with dim(M) # 1 and let (E 5 M, p,[.,.]%, gr) be a Courant algebroid defined in the
example 2.1. Then for a given 3-tuple (g, B, ®) consisting of a Riemannian metric g, 2-form
B and a smooth function ¢ on M, there is a generalized metric G and a Levi-Civita Courant
algebroid connection V € LC(E,G) on E such that the string effective action given by the
formula (3.3) can be cast as

Slg, B, ¢] = /M 2 RS, Vol, . (3.11)

Proof. Note that the string effective action (3.3) is a functional, which needs solely an oriented
manifold M and a closed 3-form for its living. These two objects are given by choosing a
Courant algebroid (E =5 M, p,[.,.]%, gr) over an oriented base manifold. Next, take arbitrary
Riemannian metric g on M, B € Q*(M) and ¢ € C°°(M), that is an arbitrary input of the
action functional. The pair (g, B) uniquely determines a generalized metric G on E, see theorem
2.9. By choosing an arbitrary V € LC(E, G), it follows from (2.125) that

Slg, B, ¢] = /M e 2 (RY —AdivIOWV) + 49 W, W) + 497 1(T, T) +4(d ¢,d ¢),) Vol, . (3.12)

It means that Levi-Civita Courant algebroid connection cannot be chosen arbitrarily, but we
have to impose some constraints on it. Since the only remaining free object, which is not bound
to the Courant algebroid yet, is the smooth function ¢, we should be looking for a relation
between ¢ and a pair of tensor fields (W, J), the last two yet unspecified parameters of the
Levi-Civita Courant algebroid connection. The lemma 3.5 implies that for all f € C°°(M) there
holds

/ e 2l A f Vol, = — / (e721,5,d f), Vol,
M M
=2 / e I (d f,d f), Vol, + / e 2wy od f. (3.13)
M oM
Therefore, choosing J := 0 and W := d ¢ leads precisely to'°
Slg, B, ¢] :/ e 2 RY Vol,, . (3.14)
M

The last thing to be done is to find out if such a choice for W and J is possible. In other words,
if there are tensor fields W, J possessing the appropriate properties, which are compatible with

0Under the physically relevant assumption that d ¢ vanishes identically on the boundary of M.



72 CHAPTER 3. STRING EFFECTIVE ACTION

the choice J = 0 and W = d¢. One immediately sees that J = 0 certainly meets all the
requirements. The choice for W is not so obvious, however, one can easily check that

W(X.Y.Z) == G (X V)(d0)(2) = 9(X. Z)(d0)(V)) (315)
forall X, Y, Z € I'(TM), is a suitable one. O

We have just arrived at the pretty interesting result, the reformulated string effective ac-
tion looks very similar to the FEinstein-Hilbert action from general relativity. It indicates that
Courant algebroid connections form a natural mathematical framework for the field theory as-
sociated with the respective action. We hope that the next arguments and results will convince
the reader that it is not just a coincidence, but that there is a true natural bound between
Courant algebroids and the respective physical theory.

Since the relation between a general Levi-Civita Courant algebroid connection and tensor
fields (W, J) is rather complicated, we would like to rephrase the constraint on the connections
arising from the previous proof in a clearer way.

Proposition 3.7. Let (E = M, p,|., 1. gE) be a Courant algebroid defined in the example 2.1
endowed with a generalized metric G and a Levi-Civita Courant algebroid connection V and let
¢ € C®(M) be a smooth function. Then the equality

p(9)6 = 5 (div? p(y) — dive ), (3.16)
holds for all ¢ € T'(E) if and only if
J =0, W =dg¢. (3.17)

Proof. First, assume that (3.16) is satisfied. For an arbitrary X € I'(T'M), using (2.92) and
(1.142) consecutively gives

2J(X) = K((0,bg X)) = divyo(0,by X) — dive (0,by X), (3.18)
where V is a Levi-Civita Courant algebroid connection on (E = M, p,][., .]gde,gE) with
respect to GY given uniquely by (2.123). The identity (2.63) together with 1.23 then implies

27 (X) = —divy e5(0,b, X) = — divy(0,b, X) =0, (3.19)
where (3.16) has been used in the last step. Analogously, for all X € T'(T'M) there holds
1 1
do(X) =Xo =p((X,0))¢ = §(div9X —divy(X,0)) = §(div9X —divg e B(X,0))
1 .. .
= §(d1V9X —divge (X, -B(X,.)) + K((X,—B(X,.)))) =W(X) — B(X,4,J)
=W(X). (3.20)

The last equality follows from the already proven equality J = 0. Conversely, realize that
p((X,a))p =(d¢)(X) = W(X) + (a = B(X,.))(8; T) = %K(G_B(Xa a))
= Ldiv? p((X, 0)) — diveo e B(X, ) + K(e B (X, )
(div? p((X, @) — divg e B(X,a))

NN =N

(div? p((X, @) — divy (X, «)) (3.21)
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is satisfied for all (X, ) € T'(E). It follows simply by a modification the steps of the derivation
(3.20) and taking them in the reverse order. O

Theorem 3.8 (Equations of motion for string effective action in terms of Courant algebroids).
Let M be an oriented manifold and (E = M, p,[., ], gr) be a Courant algebroid defined in
the example 2.1. Then (g, B, ¢) satisfies equations of motion associated with the string effective
action (3.4), (3.5) and (3.6) if and only if

R =0, Ricy|roy,)xr ) = 0, (3.22)

where G is a generalized metric on E related to (g, B) and V € LC(E, G) is related to ¢ by the
formula (3.16).

Proof. Tt follows immediately from 2.32. Indeed, by employing J = 0 and W = d ¢, equations
(2.125), (2.127) and (2.126) precisely become the equations of motion for dilaton, B-field and
Riemannian metric respectively. O

This result provides another support for our belief that Courant algebroids are suitable for
describing the field theory associated with the string effective action. It is because the reformu-
lated equations of motion remind us of the vacuum FEinstein field equation without cosmological
constant from general relativity, Ric”®*9 = 0. There are some differences, the second equation
of (3.22) says that not the whole Ricci tensor vanishes, but only “one half of it”, whereas the
ordinary manifold version of the first equation RF“9 = 0 is the consequence of the vanishing the
ordinary Ricci tensor, unlike in the case of (3.22), where both equations of motion are mutually
independent.
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Chapter 4

Palatini approach to
Einstein-Hilbert action

Right before we get to the final part of this thesis, let us take a little detour, we will present
the famous Palatini approach to the Einsten-Hilbert action. Instead of following the approach
provided by standard general relativity books, we will take a more insightful way motivated by
the paper [18].

Theorem 4.1 (Palatini approach to Einstein-Hilbert action). Let M be an oriented smooth
manifold with dim(M) # 2. Then a (semi-)Riemannian metric g and an affine connection V
on M extremalize the Einstein-Hilbert action

Slg, V] := / RV Vol, (4.1)
M
if and only if there is w € QY(M) such that the equations
1
0 =(Ric¥)s(X,Y) - SRVg(X,Y), (4.2)
VxY =VE9Y + w(X)Y, (4.3)

are satisfied for all X, Y € I'(TM).

Lemma 4.2. Suppose (M, g) is a (semi-)Riemannian manifold and h € T (M) is a symmetric
tensor field with a compact support. Then there is a real number € > 0 such that ¢’ := g + €h
remains a (semi-)Riemannian metric with the same signature as g, and furthermore, that there

holds

g =18g —€llgh(fg*,.) + O(é%). (4.4)
Proof of the lemma 4.2. The proof is rather technical and it is not crucial for the main part of
the thesis, thus we omit it. ]

Lemma 4.3. For all A € GL(n,R) and all j, k € {1,...n} there holds “{;*thﬁj‘) = det(A) A}

Proof of the lemma 4.3. By using the Laplace expansion along the j-th row, we get

n . n '7l
8det(A) _ Z(—1)3+l aAjl det(A(]’l)) 4 Z(—l)]JrlAjl 8det(A(J ))
=1

8Ajk — aAjk 8Ajk
- \T-/ \7_/
5k
= (—1)"* det(AUM) = (adjA)s; = det(A) A}, (4.5)
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AUD denotes a matrix that results from A by removing the j-th row and the [-th column. [

Proof of the theorem. The idea of the proof is simple, we just perform variations of the action
with respect to a metric and an affine connection. For the variation with respect to g, assume
a symmetric and compactly supported tensor field h € 73°(M) and a real number ¢ > 0 small
enough to ensure that ¢’ := g+e¢h is still a (semi-)Riemannian metric with the same signature as
g and that (4.4) holds, its existence is guaranteed by the lemma 4.2. Since g and V are mutually
independent, the Ricci scalar varies simply as

RY9 = RicY (#y ¢/, ;) = Ric¥ (f, ¢’ e;) — eRicY (t, h(ty €, .), e;) + O(e?)
=RV — eh?*(RicY ) jx) + O(e?) (4.6)

under the transformation g — g+e€h. The second object depending on the metric is the canonical
volume form, choosing a right-handed local frame leads to

Vol = /| det(g/)[e! A+ A emM) — /| det(g + eh)| e! A - A B (4.7)

so we need to determine a transformation rule for det(g). One can consider det(g+ €h) as a real
function of a real variable, and furthermore, since g and h are smooth tensor fields, it is even a
smooth function. Therefore, Taylor’s theorem can be used to express det(g + €h) as

d det(g")

det(g + eh) = det(g) +
(g-+l) = det(a) + =

hjre + O(€?). (4.8)
e=0

By using the lemma 4.3, formula (4.4) and the symmetry of ¢’ _1, one finds

D) — den(f) (g™ = detl)g Gy e ) = et g8 1,5 ) + (0
ik
= det(g)g’* 4+ O(e), (4.9)
hence
det(g + eh) = det(g) + 2edet(g)(h, g)y + O(€). (4.10)

The Taylor expansion then yields

Vldet(g+ eh)| = /] det(g)l\/l +2¢(h, g)g + O(e2) = /[ det(g)|(1 + e(h, g)g) + O(). (4.11)

Finally, we see that
Vol = (1 + €(h, g)4) Vol +O(€?). (4.12)

By employing (4.6) and (4.12), we obtain
Slg + eh, V] = / RY9 Vol
M
. 1 .
= [ (R — b (Ric%) gy + O(E))(1 + 5eh gy + O(E) Val,

=5l9.V) — ¢ [ (i) iy — 3R Ig50) Vol, +O(€). (4.13)
M



7

Therefore, for the variation with respect to a metric, it follows that

$98]g,V] = lim 29 V1= Slg V]

e—0t €

=— /M h]k((Rlcv)(jk) - 5RV7ggjk) Vol,.  (4.14)
Consequently, Fundamental lemma of calculus of variations states that 695[g, V] = 0 if and only
if
1
(RicY)g — 5RWQ = 0. (4.15)

Let us now deal with the variation with respect to an affine connection. One easily realizes
that any affine connection V on (M, g) can be for all X, Y € T'(T'M) expressed as

VxY = V99Y 44, L(X,Y, ), (4.16)

where L € 7?30(M ).l Note that L does not possess any other additional properties, unlike a
difference tensor field of two Courant algebroid connections. Note that an affine connection on
(M, g) is fully characterized by the choice of a tensor field L, thus it is convenient and without
loss of generality to perform the variation with respect to a tensor field L instead of the variation
with respect to an affine connection. Suppose € > 0 is a real number and N € TL (M) is a tensor
field vanishing identically on the boundary of M, moreover, denote

VXY := VxY +et, N(X,Y,.) = VEOIY + 4, L(X,Y,.) + ety N(X,Y,.). (4.17)

In order to discover how RV varies under the transformation V — V', we have to start with
the Riemann tensor

RY (o, X,Y, Z)

—a(V'yV'2X =V 7V'y X = V'y 5 X)

—RY (e, X, Y, Z) + ca (vyug N(Z,X,) +t, N(Y,V2X,.) = Vi, N(Y, X, )
—ty N(Z,VyX,) =, N([V, 2], X,.) ) + O(¢})

=RY(a, X,Y, Z) + e(aoty) (vﬁC’QN(Z, X,) =Nz, V99X, ) - N(VEC97 X, )
—VEYINWY, X, )+ N(Y,VEIX )+ N(VED9Y, X, )+ L(Y, 8, N(Z, X, ), )
+N(V,t,L(Z,X,.),) — L(Z,4, N(Y, X, .),.) — N(Z,4, L(Y, X, ), .)) +0(&2)

=R¥(e, X,Y, 2) + e((V{OIN) (2, X £y 0) — (VEIN)(V, X £ )
+ N(Z, X, 8y YL(Y,e1, 85 ) + N(Y, 4yl 8, ) L(Z, X, e) — N(Y, Xty eV L(Z, e, 8, @)
~ N(Z g€ 1y @) LY, X, ) ) + O(e?), (4.18)

for all « € QY(M) and all X, Y, Z € I'(TM). Note that we have used the compatibility with
the metric and the torsion-freeness of the Levi-Civita affine connection in the third step. If we
denote N} := N(#,¢7,e;,.) and Nz := N(t; e/, ., e;), the Ricci scalars are then related as

RV'9 — va(ej, i ek, e, er)
=RV + e(divI (N} — No) + N L7+ NPULEy — NOM Ly — NMIL ) + O(e)
=RV + €(3y(No — N1) + N¥ (g L™, + g L™ i — Lits — Liji)) + O(€)). (4.19)

HThe proof is a simple modification of the first part of the proof of the lemma 1.56.
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Combining lemma 3.5 and N|,,, = 0 yields

/ 5,(Na — N) Vol, = — / xgoNo — A7) =0, (4.20)
M oM
and therefore
S[g, V’] = S[g, V] + 6/ Njkl(gjkLmlm + glemmk — Lklj — Lljk)) VOlg +O(62). (4.21)
M

Fundamental lemma of calculus of variations then says that §V S[g, V] = 0 if and only if for all
X,Y,Z eTI'(T'M) there holds

0=g(X,Y)Ls(Z) + (X, Z)L1(Y) — L(Y, Z,X) — L(Z, X, Y), (4.22)

where £1 := L(#y¢€’,e;,.) and Lo := L(fy €/, ., e;).

In order to conclude the proof, we have to find a most general solution of the equation (4.22)
for L. Writing the equation three times with X, Y, Z cyclically permuted, we obtain

0=g(X,Y)Lo(Z) + g(X,Z)L1(Y) — L(Y, Z,X) — L(Z, X, Y), (4.23)
0=g(Y,2)Lo(X) + g(Y, X)L1(Z) — L(Z,X,Y) — L(X,Y, Z), (4.24)
0=g(Z,X)La(Y) + g(Z,Y)L1(X) — L(X,Y, Z) — L(Y, Z, X). (4.25)

Subtracting the second and the third equation from the first one yields
2L(X,Y,2)
=9(X,Y)(L1(2) — L2(2)) + g(Y, Z)(L1(X) + L2(X)) — 9(Z, X)(L1(Y) — L2(Y)). (4.26)
Taking the partial trace in the first two inputs results into

2£1(Z) = dlm(M)(ﬁl(Z) — EQ(Z)) + £1<Z> + EQ(Z) — ﬁl(Z) + EQ(Z), (4.27)
0 -2

& (dim(M) — 2)£1(Z) — (dim(M) — 2)Ls(Z), (4.28)

which is equivalent to £1 = Lo for dim(M) # 2. It follows immediately by employing this into
(4.26) that L(X,Y,Z) = L1(X)g(Y, Z) for all X, Y, Z € T(TM). In other words, there exists
w € QY(M) such that L = w ® g, so we have just proven that §VS[g, V] = 0 implies (4.3). The
converse can be easily checked by plugging L = w ® g into the equation (4.22). O

One sees that the Palatini approach to the Einstein-Hilbert action does not determine an
affine connection uniquely, instead it says that there is a freedom of choice provided through a
1-form w. However, as the next proposition states, the choice of the 1-form is irrelevant for the
physics.

Proposition 4.4. Let (M, g) be a (semi-)Riemannian manifold equipped with an affine connec-
tion V of the form (4.3) for some w € QY (M). Then the general relativity dynamics is invariant
with respect to the choice of the 1-form.

Proof. By the invariance of the general relativity dynamics is understood that the vacuum
Einstein field equation remains the same for all w € Q'(M), and moreover, the property of
being a geodesic does not depend on the choice of the 1-form. To see how the field equation
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is varied, let us calculate the Riemann tensor and its contractions associated with an affine
connection V given by (4.3). One easily finds that for all a € Q'(M) and all X, Y, Z € T(TM)
there holds

RY(a, X,Y, Z) = REC9(a, X, Y, Z) + (VE90)(Z) — (VE90)(Y))a(X), (4.29)
RicY(X,Y) = Ric’“9(X,Y) + (VEH9w)(Y) — (VES90) (X)), (4.30)
RY = RLCY, (4.31)

hence for any w € Q' (M), we have
1 1
(RicY)g — 5RWg = (Rict®9) g — QRLC’gg. (4.32)

Secondly, a curve 7 on M is a geodesic with respect to V if and only if there is f € C*°(M)
such that

Vi = f5. (4.33)
Since V is given by (4.3), it is can be equivalently expressed as
C,g. NN
VO = (f — w)A, (4.34)

that is v is a geodesic with respect to the Levi-Civita affine connection, thus the property of
being a geodesic apparently does not depend on the choice of w € Q(M). O

The Palatini approach together with the previous proposition provide a robust argument for
choosing the Levi-Civita affine connection for the general relativity, since the case of w = 0 is
the simplest one, and moreover, the physics does not depend on the choice.

To conclude this chapter, we would like to point out an interesting proposition.

Proposition 4.5. Let (M,g) be a (semi-)Riemannian manifold and w € QY(M). Then it
1s enough to impose either the torsion-freeness or the metric compatibility with g on affine
connection of the form (4.3) to ensure that it is already the Levi-Civita one.

Proof. Assume that V of the form (4.3) is torsion-free, that is
0=T"(a,X,Y) =a(VxY - VyX — [X,Y]) = w(X)a(Y) — w()a(X), (4.35)

for all « € QY(M) and X, Y € T'(TM). Choosing an arbitrary j,k € {1,...,dim(M)}, j # k
and imposing a := €, Y = ¢, X := e; yields w(e;) = 0. Since it can be done for all j and
all local frames, we have w = 0, thus V = VX9, On the other hand, assuming that V is
compatible with the metric g leads for all X, Y, Z € I'(T'M) to

0=X(9(Y.2)) —9(VxY,Z) = g(Y,VxZ) = —2w(X)g(Y, Z). (4.36)

AsY and Z can be for sure chosen in the way that g(Y, Z) # 0, the equation above is equivalent
to w = 0, and therefore V = V£C9, ]
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Chapter 5

Palatini approach to
Courant-Einstein-Hilbert action

In light of the two last chapters, one might be curious if there is something like the Palatini
approach to Einstein-Hilbert action also for the string effective action of the form (3.11), which
would justify our choice of the Courant algebroid connection in the proof of the theorem 3.6.
During the research, we have found out that it is possible to go even further. As you will see,
we devised the Palatini formalism not only for the Courant algebroid associated with the gen-
eralized geometry (widely discussed in Chapter 2), but even for a general Courant algebroid.

First of all, let us clarify what action functional will be at our point of interest. For an arbi-
trary Courant algebroid (E = M, p,[.,.]g, gE), we define Courant-Einstein-Hilbert action
as the functional

S[G,V,Vol| := / R Vol, (5.1)
M

which depends on three inputs, a generalized metric G on FE, a Courant algebroid connection
V on E and a volume form'2 Vol on M. Moreover, in contrast to the action (3.11), where the
Courant algebroid connection is a priori related to the generalized metric and the volume form
by the Levi-Civita condition and (3.16) respectively, we assume no a priori relations between
the inputs of the Courant-Einstein-Hilbert action. Therefore, it is a more general concept even
on the level of the specific Courant algebroid from Chapter 2.

Right before we state the most important theorem of the whole thesis, we point out several
lemmas, which will be useful for the variation of the Courant-Einstein-Hilbert action with respect
to a Courant algebroid connection.

Lemma 5.1. Suppose M is an oriented connected smooth manifold. For any volume form Vol
on M there is a Riemannian metric g on M such that either Vol = Vol, or Vol = — Vol,.

Proof. Choose an arbitrary auxiliary Riemannian metric go on M and denote n := dim(M).
Since Rank(Q"(M)) = 1, for any volume form Vol there is a unique nowhere vanishing smooth
function h € C°°(M) such that

Vol = h Vol . (5.2)

2By a volume form on M is understood a nowhere vanishing dim(M)-form on M.
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Taking an arbitrary right-handed local frame {e;}7_; of T'M, one finds

Vol = h Vol
= hy/det(go)e! A---Ae"
= sgn hy/h2det(go)e' A -+ Ae”

=sgnh (h%)” det(gg)e! A---Nem

= sgnhy/det(hngo) el A+ Ae™ (5.3)

In order to avoid an unnecessary discussion, we have restricted ourselves to connected manifolds
in the above calculation, thus sgn h is defined properly because a sgnooth non-vanishing function
clearly cannot swap the sign on a connected manifold. As g := h=ngp is certainly a Riemannian
metric on M, the proof is complete. O

Remark 5.2. Note that a Riemannian metric g from the above lemma is not determined uniquely
by Vol. If we take some other auxiliary metric g at the beginning, it induces a unique smooth
nowhere vanishing function b’ € C°°(M) such that the equality

Vol = b/ Vol,, (5.4)

holds. For any point p € M there are right-handed orthonormal local frames of M with respect
to go and g{, over some neighbourhoods U C M and U’" C M of p, let us denote some of these

as {e;}7_; and {e;- % respectively. Since both of them are local frames over U NU ' there is a

smooth map A : U NU’" — GL(n,R) relating both of the local frames as

¢ = Akjek, (5.5)

for all j € {1,...,n}. Therefore, it follows from (5.4) that
hel A - Ae™ = Vol
=h'e" AnE”
_ara—11 -1 j in
=HAT AT e AN e

11 _1n i
:h/A 1 ]1A 1 Jng,]l]nel/\/\en

=h'det(A"Y)el A Aem, (5.6)
hence )
h = det(A) ' (5.7)
By using (5.5), one obtains
goles,en) = Gjk = golef, k) = AL Ao (er, em). (5.8)
Therefore,
I Am
oles ) = WEoley ) = LW AP i) = Lk ), (69

which in general means g # ¢'.
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Lemma 5.3. Let (E = M, p,[., .5, 9g) be a Courant algebroid with an oriented connected base
manifold and let G be a generalized metric on it. If the signature (p,q) of the Courant metric gg
satisfies p # 1 and at the same time q # 1, then for any volume form Vol there is V € LC(E, G)
and a Riemannian metric g on M satisfying the relation

[ raivewvoi== [ faubypw) = [ o) Vol (5.10)
M oM M

for all f € C®(M).13

Proof. Take an arbitrary volume form Vol on M. Thanks to the previous lemma there is a
Riemannian metric ¢g such that Vol = + Vol,. Moreover, assume that there is V € LC(E, G),
the divergence of which is given as

divy = divY op. (5.11)
Then for all f € C°°(M) there holds

| faivouvol = [ (dive(fv) - plv) ) Vol
M M
=& [ aivt(p(0) Vol, = [ p(w) Vo
=% [ 8y Vol = [ () Vol
= [ franot) = [ ptw)fvol (5.12)

In the first step, the second axiom of a Courant algebroid connection is used. The last equality
follows from the lemma 3.5. The main issue is now to prove that there actually is a Levi-
Civita Courant algebroid connection V € LC(E, Q) satisfying (5.11). As we already know that
LC(E,G) # 0, see theorem 1.55, one can take an arbitrary V¢ € LC(E,G). Moreover, we
know, see theorem 1.59, that any other V' € LC(FE,G), hence also the potentially existing
one satisfying (5.11), is related to V¢ through some K € Q'(E) ® Q%(E) possessing certain
additional properties. The task is now to find a suitable K. It follows from (1.142) that condition
(5.11) already unambiguously determines the partial trace of K as

K = divyre — div? op. (5.13)

The first question is if such K is at least C°°(M)-linear, take an arbitrary f € C°°(M) and
proceed as follows:

K(fv) = divgre (fo) — div? p(fo) = fR@W) + p() f = (/)€ (p(v)) = fLW).  (5.14)

Therefore, it makes sense to continue searching for the desired K. Relatively speaking, the
obvious candidate is

K (1, ) =~ (95014t divere v, = div? (s, )
— (W4 sy ) (divere vy —div? plvn,)) )
T (gm0 ) (divese s — div? plys_)

— gp(r s )(divgse v —div? plyz ) ). (5.15)

_l’_

13The ambiguity of the sign in front of the integral over the M means that the relation is satisfied with either
a plus or a minus.
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for all 11, ¥9, 3 € T'(E). Apparently, K is skew-symmetric in the last two inputs and all of six
“mixed” restrictions of K vanishes identically. Using the Courant metric symmetry one easily
finds that the cyclic permutations of K |F(Vi)><F(Vi)><F(Vi) vanish. Therefore, an R-bilinear map
V:T'(E) x I'(E) = I'(E) defined as

Ve = Vi + 85 K (1,2, .), (5.16)

for all 91, 9 € T'(E), is indeed a Levi-Civita Courant algebroid connection with respect to G.
The last thing to check is whether the partial trace of our specific K meets the requirement
(5.13). This is easily seen if one chooses a local frame of E adapted to the generalized metric G
for taking the partial trace of K and uses the C*°(M)-linearity of (divyzc — div? op) proven by
(5.14). O

Lemma 5.4. Consider an oriented smooth manifold M. Then for an arbitrary volume form
Vol and for any pair of Riemannian metrics g and g’ assigned to Vol by lemma 5.1 there holds

div? = div9 . (5.17)

Proof. First of all, note that for an arbitrary Riemannian metric m on M and an arbitrary local

dim() of 7'M it follows easily from the Koszul formula that

frame {€;},

div" X = éng@mX) = &([¢j, X)) — %m(éj, &) (Xm(fm &, m €7)) (5.18)

holds for all X € I'(T'M). Especially, if the local frame is orthonormal with respect to m, one
has

div™ X = & ([é;, X)), (5.19)
since m(fm &7, i, €) = 67, In the next, let us use the same notation as in the remark 5.2. As
g (g €ty e*) are components of the inverse matrix to the matrix with components J'(ej, exr),
which satisfies (5.9), one arrives at

g (ej en)Xg' (g € g €

2 1l _1m 1 ; s r
= det(A)n AT AT g(er em) (X (————5 A (85 €%, g ) AR,))
det(A)n
1 .
= hn det(A) 7 AT AT (X ( AI_AFSY)

hw det(A)n
DA 18 _ 2(Xh) 2 1 Odet(A)
— J 15 ks 1 _z _ = .
1 8det(A)> 1
det(A) 0Ajj h

= — 2(dlog |A])(X), (5.20)

= 2((XAj) (A~ — (dh)(X))

where we have used the lemma 4.3 in the last step. Therefore,
divy’ X = div® (X) + (dlog |h])(X), (5.21)

while on the other hand

. . 1 ; 1 2 1 1
div? X — div®(X) = = 5o(e;, ) Xgldy o by ) = ~gh (X (5 6%) = 3 (Xn)

n

— (dlog |Al)(X), (5.2
for all X € I'(T'M). O
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Remark 5.5. Tt is good to realize that lemma 5.1 together with the lemma 5.4 say that any
volume form Vol uniquely determines a divergence div9.

It is finally the time to state the theorem.

Theorem 5.6 (Palatini approach to Courant-Einstein-Hilbert action). Consider a Courant
algebroid (E = M, p,]., g, 9E) over an oriented connected smooth manifold M with the Courant
metric gg, whose signature (p,q) satisfies p # 1 and at the same time q # 1. Then a generalized
metric G on E, a Courant algebroid connection V on E and a volume form Vol on M extremalize
the Courant-FEinstein-Hilbert action

S[G,V,Vol| := / R Vol, (5.23)
M

if and only if the G-Ricci scalar Rg vanishes identically, V is Ricci compatible with G and
Levi-Civita with respect to G, and moreover,

divy = div? op, (5.24)
where div? is uniquely determined by Vol.

Lemma 5.7. Suppose M is a smooth manifold, Vol is an arbitrary volume form on it and
f e C®(M) is a compactly supported smooth function. Then there is a real number € > 0 such
that (14 €f) Vol is a volume form.

Proof of the lemma 5.7. Volume form is a nowhere vanishing dim(M )-form on M, so we have to
find e € R small enough for ensuring ((1 + €f) Vol)|p £ 0, for allp € M. For any p € M ~supp f
we can choose € arbitrarily, thus it remains to investigate only the subset supp f C M. Take an

arbitrary p € supp f and denote

1
€p = FOET (5.25)

Apparently, a smooth function (1+€,f) € C°°(M) is not vanishing in p. Since it is smooth, hence
also continuous, there is a neighbourhood U, C M of the point p such that ((1+ €,f) Vol)]Up
is nowhere vanishing form on U,. Therefore, we have the open cover {U, N supp f}pesupp f Of
the compact set supp f and the collection of real strictly positive numbers {€p}pesupp s such that
(1+e€f) V01)|Upﬂsupp f =% 0, for all p € supp f. The compactness of supp f implies that there
is a finite collection of points {pj}é\[:l C supp f, N € N, such that {U,, Nsupp f}é\[:1 is a cover
of supp f. Imposing

= i . 5.26
bt o

concludes the proof. O

Lemma 5.8. Let (E = M,p,[.,.]g,95) be a Courant algebroid equipped with a generalized
metric V. C E. Then for any other generalized metric Vi C E there is a C*°(M)-module
morphism Wy : T'(Vy) — T'(V_) such that

P(VL) = {6+ W44 |6 € (V). (5.27)
On the other hand, for any compactly supported C*°(M)-module morphism Wy : T'(Vy) — T'(V_),

there 1s a real number € > 0 such that

V= |_| {fv+evivlveVy,} (5.28)
peEM
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s a generalized metric on E, and furthermore, that there holds

T
T,:T+2€< 0 le‘I’+|7E> +O(), (5.29)
U, 0

where the matriz is considered with respect to the decomposition E =V, & V_.

Proof of the lemma 5.8. Assume that we have an arbitrary pair of generalized metrics V; and
Vi. As V| and V_ is a positive and a negative definite subbundle respectively, one sees that
I'(V-)n I'(V]) = {0}. Hence for all ¢ € T'(VY), ¢ # 0, there are ¢y € I'(Vy), ¢4 # 0, and
Y_ € T'(V_) such that ¢ = 14 +1_. Moreover, due to the fact that I'(V]) is closed with respect
to the C°°(M)-linear combinations, ¥_ is determined uniquely by the choice of ¥ ;. Therefore,
there is a C°°(M)-module morphism ¥, : I'(Vy) — I'(V_) such that

T(VL) = {¢ + Uyip | € W CT(V4)}, (5.30)

where W is a C*°(M )-submodule of I'(V,.). The maximality of V| implies Rank(V,.) = Rank(V]),
thus W = T'(V4). In the same way, one can show that there is W_ : I'(V_) — I'(V) such that

PV ={y+V_o |y el(Vo)}. (5.31)

Moreover, the map ¥_ can be expressed in the terms of U . It follows easily from the defining
relation V! =V’ i that any pair of ¢ € T'(V4) satisfies

0=g(t+ + Vi1, -+ VY ) = gp(Vihi, ) + ge(Ps, V_1p-)
=0 v )(Uity) + Gp ) (V) = (Tibp v ) () + ety ) (T y_)
= by ) (e Vibe + ¥ )y ). (5.32)

Since ¢+ € I'(VL) were arbitrary, the relation
U_=—tpUlhy (5.33)

is true.

To prove the second part of the lemma, take an arbitrary generalized metric V; C F and
a compactly supported C°°(M)-module morphism W, : I'(Vy) — I'(V_). It follows easily from
Local frame criterion for subbundles, see [11, Lemma 10.32], that

Vi=| [{v+e¥yvloeV,} (5.34)
peEM

is a subbundle of E, for any ¢ € RT. Apparently Rank(V,) = Rank(V]), thus it remains to
find out how to choose a real number € > 0 in order to ensure V[ is positive definite. For all
p € supp ¥, and all v € V) there holds

9E,(v+ eV v, v+ eV v) = gp,(v,v) + engp(\Ilerv, W ,v) (5.35)
because of V_ , = V+IJ; with respect to gg,. One immediately sees that for any v € Ker ¥

v # 0, the inequality
9Ep(v+ ¥y v, v+ eV v) = gg,(v,v) >0 (5.36)
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is true for all ¢ € RT. On the other hand, if we take v € Vi, ~Ker¥,

9Bp(v,0)
9Ep(v+ eV v, v+ eV v) >0 = €< . (5.37)

\/—ng(‘Ierp% ¥y ,0)

Note that the maps HH;t Vi, — R{ defined for all v € Vi, as

+
[olly := \/£9E,(v,v) (5.38)

represent norms on the respective vector spaces, thus for all v € V4, one has

- +
[Tl < 1 lI0lly (5.39)
where ||.|| denotes the operator norm. Consequently, the condition
1
€< —— (5.40)
|
‘e - 1 ol .
already ensures the positive definiteness of gg, VI vt because el = Tomyell Since the
+p +p +p +p? »
operator norm is a continuous map, the function f : M — R™ introduced as
f) = ot (5.41)
P e 1 '

for all p € M, is also continuous. The fact that ¥, is compactly supported then implies

= inf = min{l, inf >0, 5.42
€1 pléle(p) min{ s f(p)} (5.42)

hence indeed Vi := | |,cp/{v+ e ¥y v|ve Vi, }is a generalized metric on E.
Consider the generalized metric V| constructed in the previous paragraph, it induces a vector

bundle decomposition E = V[ @V, hence for any ¢, € I'(V,) there exist a unique ¢4 € I'(V4)
such that

Vp=¢1 +eVidy +o- +eV g, (5.43)
where U_ := —{p \Ilib B, see (5.33). It follows from the unambiguity of the section decomposition
with respect to £ =V @ V_ that

Yy = +eV_o, 0=0¢-+e¥igy, (5.44)
hence
Uy = ¢y — VWi by = (g, )~V )6, (5.45)

Analogously one finds that for all ¢)_ € I'(V_) there are unique x4 € I'(V4) such that
0=x4+e¥_x-, Yo = x— +eVixs, (5.46)
and therefore the equality

Yo =x_ — €V, W_x_ = (Idp ) —* U U_)x_ (5.47)
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is satisfied. Note that ¢4 and x_ are determined uniquely by %, and ¥_ respectively, and
therefore (5.45) and (5.47) can be equivalently rewritten as

¢r = (Idpy,) —€V_U )"y, X- = dppy =0, W)y (5.48)

Take an arbitrary p € supp ¥4. As (Vi,, H||§) are finite-dimensional normed vector spaces,
they are even Banach spaces, so the following implication holds:

+oo
[0, 0e || <1, = (v, =0z, Uy )7 =Tdy, + ) (€0, 0y )", (5.49)
k=1

see [19, Theorem 7.3-1]. Using the inequality [|AB|| < ||A|| || B|| satisfied by all bounded operators
on normed vector spaces leads to

—+o00
1 _
€< ,o= o My, —E0g Uy ) =Tdy + Y (€05, Te )k (5.50)

12— [ 1%, =

Let us now define the continuous function h : M — RT as

h(p) == ! (5.51)

1w [ 24} + 2

for all p € M. It follows from the fact that supp W is a compact subset of M that

— inf h 0. 5.52
€= inf (p) > (5.52)

Taking € := min{ej, €2}, where ¢; is defined by (5.42), is apparently sufficient for

Vi= | [{v+ e¥yvlve Vi) (5.53)
peEM

to be a generalized metric, and moreover, for the following equality to hold

+oo
(Idp(y, ) —€V_0, )~ =Idpy, ) +Z(62\11_\If+)’f = Idp(y, ) +O(€?), (5.54)
k=1

and analogously
(Idp ) =0 )" = Idp ) +0(€). (5.55)
For an arbitrary ¢4 € I'(V,.) there exist unique ¢4 € I'(V4) such that

Ty =7 (04 + €W 104 + b +e¥_¢)
=01 +eVidy —p — eV o
= (Idp(y,) =€V W)y + el (Idpgy, ) —€W W) "y 4+ eWy (Idpgy, ) +€0 W) "y
+ VU (Idpgy, ) —€V_W )Ty
=Py +2eV ¢y + O(€%)
=71ty + 26V h, + O(e?), (5.56)
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where we have used (5.44) and (5.48) in the third step. Analogously, one can derive that for all
_ € I'(V_) there holds

T = —p_ 4+ 2etp Uibpy_ + O(€%) = Ty + 2ellp Ulbpy_ + O(e?). (5.57)

Therefore,
T =7+ 2 <\I?+ he \I;)IbE) +0(e%), (5.58)
where the matrix is considered with respect to the decomposition £ =V, ¢ V_. ]

Proof of the theorem. The proof is similar to the proof of theorem 4.1. Let us start with the vari-
ation with respect to a volume form. Assume a volume form Vol, any other volume form is related
to Vol through multiplication by a smooth function. Take an arbitrary compactly supported
smooth function f € C*°(M), and a real number € > 0 small enough for Vol' := (1 + ef) Vol
being a volume form on M, the existence of such e is guaranteed by the lemma 5.7. Then

S[G,V,Vol’}:/ Rg(1+ef)V01=S[G,V,VO1]+6/ FRE Vol (5.59)
M M

Then, it follows from Fundamental lemma of calculus of variations that §V°'S[G, V, Vol] = 0 if
and only if
RE = 0. (5.60)

Let us continue with the variation with respect to a generalized metric. Take a generalized
metric V4. Any other generalized metric is then associated with some C'*°(M )-module morphism
U, T(Vy) — I'(V_), see lemma 5.8. Take such a morphism ¥, and moreover, assume that it
is compactly supported. Then the lemma 5.8 ensures that there is a real number ¢ > 0 small
enough for Vi = | |, {v+ eV v|v € V4,} to be a generalized metric, and furthermore,
for the relation (5.29) to be satisfied. The matrix in the relation represents a C'*°(M )-module
endomorphism of I'(E), denote it as ¥. One easily finds how the G-Ricci scalar is varied under
the change of generalized metric Vi +— V|

R = Ricy(ter €, €,)
=G (fer €', 8 €) Ricy (€4, &)
=G/ (T"p €, T'tp £) Ricy (€4, £))
=gp(te &, 7'te &) Ricy (&4, &)
=gp(ip &, Tip &) Ricy (&1, &) + 266" (Vip €) Ricy (&, &) + O(€?)
=R + 26§ (8 WIE) Riew (65, 6,) + €7 (V i &P Ricy (&, ,€)) + O(€%)
=RE + 4 (V5 £ Riew (&, ,&7) + O(€?), (5.61)

where {gu}ffj}k(’” = {fj}aRirllk(V” U {{;}Sirllk(v_) is an arbitrary local frame of E adapted to

E =V, ®V_. During the derivation we have used several identities widely discussed throughout
the whole thesis. Therefore,

S[G',V, Vol] = / R Vol
M

= S[G, V, Vol] + 4e / E (W itp £) Ricy (&, , &) Vol +O(€2), (5.62)
M
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hence using Fundamental lemma of calculus of variations leads to

8¢S [G,V,Vol] =0 & V is Ricci compatible with G. (5.63)

It remains to perform the variation of the Courant-Einstein-Hilbert action with respect to a
Courant algebroid connection. We will follow the approach used before for the variation of the
Einstein-Hilbert action with respect to an affine connection. Take an arbitrary trio (G, V, Vol)
of a generalized metric G on E, a Courant algebroid connection V on F, and a volume form
Vol on M. As we have shown in the lemma 5.3, there is VY € LC(E, G) associated with Vol
by the equality (5.10). Let us take the one constructed in the proof, that is the one satisfying
divy = div? op, where div? is uniquely determined by Vol. It follows from the lemma 1.56 that
Courant algebroid connections V and VV are related by a tensor field L € Q}(E) @ Q%(E) as

vwle - V'LO/)l/(ZJQ + ﬁE L(wla 1/}27 ')7 (564)

for all i1, o € T'(E). If we would like to describe any other Courant algebroid connection than
V, we have to take yet another tensor field from Q' (F)® Q?(E). Therefore, assume an arbitrary
N € QY(F) ® Q%(E) identically vanishing on M and an arbitrary € € R, and denote

Vs 1= Vit + ebp N(¥1,12,.) = Vi, o + 85 L(t1, 1, .) + e g N (11,12, ), (5.65)

for all ¥y, 19 € I'(E). Now we need to find out how is the G-Ricci scalar changed under the
transformation V — V’. Let us do it step by step. For all 11, 12, ¥3, ¥4 € T'(E) there holds

Rov (Y1,v2,13,14)
=gB(V'y Vigba = V', Vitbo — V' 1y a10%2, Y1)

= Rov (1,92, vY3,14) + €gE <liE (Vs N (¥, 1b2,.) + N (3, Vi, 2, .) — Vi, N (3,12, .)
— N, Vg, ) = N[5, 0l 62,.)), 91 ) + O(e)

= Rov (Y1, 92,93, 14) + f(P(¢3)N(¢4, P2, Y1) — N (Y4, V2, V1) — N (Y4, Vb2, 1)
— p(a) N V3,92, ¥1) + N (b3, 02, Vi, t01) + N (b3, Vi aba, 1) — N(Vy, 4, 1b2, 1)
N (V05,02 61) = 9V, s, Ua) N (§us 2, ¥1) ) + O(E)

= Rov (1,2, ¥, ¥a) + € (V, N) (Wha, 2, v1) — (V5, N) (W, ¥, 1)

— N (4,02, 88 ") L(V3,¢1, &) — N (Y4, i1 ", 1) L(3, 102, &)
+ N (3,92, 85 §") L(¥a, Y1, &) + N (Y3, 88 &, 1) L(a, P2, &)
~ N(

b €, 2, V1) gu(VE, o, 1) ) + O(). (5.66)

We have used the compatibility of V with the Courant metric in the second step and the torsion-
freeness of V¥ in the third step. There is yet another term in the definition of Riemann tensor,
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see 1.28, which is changing as

95 (Ve 03, 04)gE (Vs entha, 1)
=98(Ve, U3, ¥a)ge(Vig enth2, ¥1) + 6(9E(V5ﬁ/}3, VYa)N(HE 12, 11)

+ 95(Ve, o, B1)N (b €, U5, 1) ) + O(e)

= 95V, U3, 00) 91 (Vg 002, 1) + € (Nt €, 2, ¥1)g (T2, 3, 1)
+ N(2p ", 03, 00)gp(VE, 2, 91) + N(Eg &, o, 1) L&y, 3, 14)
N (85 € s, V) LG Y2, 1)) + O(), (5.67)

for all ¥y, 9, 13, ¥4 € T'(E). In summary, one obtains the transformation relation for the
Riemann tensor in the form

RV’ (1111’ 1/}2a sz)37 ¢4)
= Ry (¢1,12,¥3,1hs) + 6% ((V?pgN)(W, Vo, 1) — (Vi N) (s, Y2, 901) + (Vi N) (11, 3, 4)

— (V3 N) (W2, ¥3,904) — N (a4, o, 5 E*) L33, 1, &) — N (va, 86 €, 1) L(3, 2, &)

+ N (3, Y2, 85 ") L(a, ¥1, &) + N (3, 85 &, 1) L(Ya, ¥2, &)

— N (1,93, 88 ") L(Y2,v4,8u) — N (U1, 88 8", a) L(2, 13, &4)

+ N (2, 3,85 ") L(Y1, 04, &) + N (o, 85 EH,0a) L(1, 13, )

+ N(ﬁE §u> w27 ¢1)L(fua /‘7/)37 ¢4) + N(ﬁE guv ¢3, ¢4)L(§u7 w27 zbl)) + 0(62)7 (568)

for all ¥, ¥, ¥3, ¥4 € T'(E). Let us now denote the non-trivial partial traces of tensor fields N
and L with respect to the Courant and generalized metric as

N = N(8g &, &, ), Ng == N(tc&", &), (5.69)
L:=L{#e&" &), Lg = L(ic&", &y, ) (5.70)

The relation for the variation of the Ricci tensor is given by the contraction of (5.68) in the first
and the third input with respect to gg. For arbitrary 1, 12 € I'(E), one obtains

Ricy/(¢1,v2)
= Ricv (¢1,12)
+ 6% ((VEVN)(¢27 zﬂh ﬁE gl/) + (V%QN)(wl> + (v%lN)(wQ) — (VSVN>(¢1, ﬁE flj7w2)

= N(W2, 91,85 8")L(E) — N (Y2, 8", 85 E")L(&w, ¥1, &)

+ N(tE & Y1, 8p &) L(Y2, &0, §u) — N(BE ) L(2, Y1, ) — N (BE E*) L(Y1,¥2, &)
— N & 4p &, o) L(v1, &, &) + N (U1, 85 &Y 8 &) L(Ey, 2, &)

+ N1, 85§ 2) L) + N(BE & 1,88 €7) L(Eu, §u, 2)

+ N(

b €t €, Vo) L(Euws ¥1,6) ) + O(e) (5.71)

We have used the compatibility of VO with the Courant metric, see lemma 1.64. By using the
skew-symmetry of tensor fields L and N in the last two inputs and reordering the terms on the
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right hand side of the above equation, one obtains

Ricy/ (¢1,12)
= Ricy (¢1,2)

+ 6% ((V%QN)(%) + (Vo N) (@2) + (V& N) (2,91, 8 €) — (V& N)(¥1, 85 £, )

= N (b2, 91,8 ") L(E) — N (Y1, v2, 85 £*)L(Eu)
= N(te ") L(Y2,91,&u) — N(HE &) L(Y1, 2, &u)
— N2, 86 €", 8 §") L(Evs §ps 1) — N (Y1, 8E €7, BE §*) L(Evs §ps 1P2)
— N{He&" ie 8" v2) L(¥1, 80, &) — N(E &Y 8 &, 1) L(ve, &0, §p)
— N(

ﬁE £M7 ﬁE gu’ ¢1)L(fm 51/7 @Z}z) - N(ﬁE &'M’ ttE gyv @ZJQ)L(@“ 5117 ¢1)> + 0(62)' (572)

Finally, the formula for the G-Ricci scalar appears by taking the trace of (5.72) with respect to
the generalized metric G, it yields

RE =RE +¢((VEN) (e €) + (VENG) (5 €") — Nalts €)L(6,) — N (82 €)La(E)

— Nta & 85" 85 € L, i &) — N(ip €, 85 €, 86 €%V L6, 60, 6)
— N(Ep€", 856”46 €)L(6u & 6) ) + O()

=RE + e((VLN) (7t €) + diveo No
— NG 098" 9ExLu + 9Bm LGy + GrogE" Luys + Guoge” Ly + GyogEU)‘Lw,\))
+0(e)

=RY + e( divego (7 N) + divge Ng
— N"™G Ly + 9By Lap + G Lyux + G Ly + G#ALM)) +0(e%). (5.73)

In the first step, we have used the compatibility of V? with the generalized metric G in the sense
of lemma 1.64. In the second step, an easy to check identity

ta " =G, &r)gp(tes", 1 ")ip g" (5.74)

has been used. For the final equality, the compatibility of V° with the generalized metric G has
been used again, but this time in the sense of (1.115). The divergence terms in (5.73) can be
further rewritten, see (1.41), as

divgo (T N) 4 divge Ng = divygoe g (TP N + Ng)
= div? p(te (TTN + Ng))
= divI b, p(tr (TTN + Ng))
= — (1, 8¢bg p(tm (TN + NG)))g, (5.75)

where div? is uniquely determined by Vol. Hence, and from the lemmas 5.1 and 3.5, it follows
/ diveo (rTA + Ng) Vol = + / (L, 8,09 plte (7N + Ng)))g Vol
M M

=F /8M *g.00g p(EE (TTN+N(;)) =0, (5.76)
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the last step is an easy consequence of N|,,, = 0. Therefore, for the difference of Courant-
Einstein-Hilbert actions one can write

S[G,V', Vol — S[G, V, Vol]

= / RY Vol — / R Vol

— e / N (G Ly + g L6y + G s + G Ly + G, L) Vol +0(e2). (5.77)
M

Pundamental lemma of calculus of variations then says 6V S[G, V, Vol] = 0 if and only if

=G (Y1, Y2)L(Y3) — G(Y1,¥3)L(Y2) + 9E (Y1, ¥2)La(Y3) — ge(¥1,3) La(ib2)
+ L(¢27 w3a TQ,ZJl) - L(w?n ¢27 7—11}1) + L(Twi% ¢17 ¢2)
— L(12,11,v3) + L(v¥1, 92, TP3) — L(2)1,¢3, T12), (5.78)

for all 41, 19, 13 € T'(F). The skew-symmetrization in the last two inputs appears, since N is
skew-symmetric in these two.

The last missing piece is to solve the equation of motion (5.78) for an unknown tensor field
L € QYE) ® Q%(E). Taking the partial trace in 11 and 5 from it with respect to the Courant
metric gg results for all ¢ € I'(E) into

0=(p—@L(Y)+ Rank(E) — 2)Ls(¢), (5.79)

while on the other taking the same partial trace but with respect to the generalized metric G
leads to

0 = (Rank(E) = 2)L(¢) + (p — 9)La(¥), (5.80)

for all 1) € T'(E). Solving this pair of equations with respect to unknown 1-forms £, Lo € QY(E)
is a trivial task, for example we can compute the determinant of the matrix associated with the
set of linear equations

Rani(;‘i _2 Ran;‘(i)l T =-9*—(p+q-2°=—4pg—p—q+1). (5.81)

It vanishes if and only if p = 1 or ¢ = 1, which is exactly the case excluded in the assumption of
the theorem. Therefore the set of the equations is satisfied if and only if £ = L5 = 0. Employing
this back to the equation of motion (5.78) yields

:L(w% ¢377¢1) - L(w3a ¢277¢1) + L(T¢37¢17 1/12)
— L(m42,91,v3) + L(3p1, Y2, T1P3) — L1, ¥3, T2), (5.82)

for all 1, 19, 13 € T'(F). By choosing arbitrary ¢, sy, 3, € I'(Vy) for the (5.82), we
obtain

LA(¢11,¢21,¢31) = 07 (583)

whereas if we take a trio of inputs such that they are either in I'(V}) or in T'(V_), but not
that all of them are in the one of these set, we find out that all “mixed” restrictions vanish
identically. These are exactly the properties necessary and sufficient for V to be a Levi-Civita
Courant algebroid connection on E with respect to G, see 1.61. We have just shown that if
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some tensor field L € QY (E) ® Q%(E) satisfies the equation of motion (5.78), then the Courant
algebroid connection V defined by (5.64) is Levi-Civita with respect to G, and furthermore,
divy = div? op. The latter follows directly from employing £ = 0 into (1.142).

To finish the proof, let us show the converse. Assume that V related to VO by (5.64) is an
element of LC(E, G) and divy = div/ op. Then one immediately sees that £ vanishes thanks to
the formula (1.142). As V € LC(E, G), for all ¢ € I'(E) there holds

EG(w) :L(ﬁggu,gu,lb) = L(ﬁE §+a,§j7¢+) - L(ttE §_a7‘5a_7w—) = L(ﬁE f“,éﬁﬂm - 77/}—)
= L(7v), (5.84)

hence also L5 = 0. Therefore, the equation (5.78) simplifies into (5.82). One can easily check
that it is satisfied for a difference tensor field between two Levi-Civita Courant algebroid con-
nections with respect to 7. O

Remark 5.9. The approach used for the variation of a generalized metric appeared earlier in a
different context in [20].

Remark 5.10. Note that all three equations of motion are invariant with respect to the metric
and connection preserving Courant algebroid isomorphisms, see propositions 1.48, 1.50, 1.71 and
1.23.

Let us now state the corollary reformulating the previous theorem for the specific class of
Courant algebroids, those associated with the generalized geometry, see Chapter 2.

Corollary 5.11. Let (E 5 M, p,[.,.]%, gr) be a Courant algebroid defined in example 2.1 over
an oriented connected smooth manifold M with dim(M) # 1. Then a generalized metric G
on E, a Courant algebroid connection V on E and a volume form Vol on M extremalize the
Courant-Finstein-Hilbert action

S[G, V,Vol| := / R Vol, (5.85)
M

if and only if the G-Ricci scalar Rg vanishes identically, V is Ricci compatible with G and
Levi-Civita with respect to G, and moreover

1
doop= §(diVV —div? op), (5.86)

where g is a Riemannian metric on M uniquely determined by G and Vol is without loss of
generality parametrized as Vol = 4 e ™2 Vol,.

Proof. Since the signature of the chosen Courant algebroid is (dim(M),dim(M)), the assump-
tions of the theorem 5.6 are satisfied. Therefore,

sVoIS[G,V, Vol =0 & RE =0, (5.87)
6GS[G, V,Vol] =0 <«  V is Ricci compatible with G, (5.88)
6VS[G,V,Vol] =0 & Ve LC(E,G) and at the same time divy = diviop,  (5.89)

where div? is uniquely determined by Vol, see (5.21), as

div? = div? +(dlog |h]), (5.90)
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where Vol = +Volz = hVoly, here g denotes without loss of generality, see lemma 5.1, the
Riemannian metric on M associated with the generalized metric G on TM and h is a smooth
function on M uniquely determined by the choice of g as an auxiliary metric. As M is connected,
the smooth function & does not change its sign on M. We can thus represent it as either h = e~2¢
or h = — e~ 2% by defining a smooth function ¢ € C*°(M) as ¢ := —3 log |h|. The formula (5.90)
then goes into the form

div? = div?y —2d ¢. (5.91)
As divy = div? op and p is surjective, the equation above is equivalent to
1
dpop= i(divg op — divy). (5.92)
O

This is a very interesting result, because we have just discovered that the more or less
artificial-looking set-up constructed in Section 3.2 to rewrite the string effective action and the
corresponding equations of motion, can be actually derived from the variational principle in a
very natural way. This is a rather strong argument for our belief that Courant algebroids provide
a natural mathematical framework for the respective physical theory. The result is even more
interesting, since we obtain qualitatively the same equations of motion for an arbitrary Courant
algebroid completely unrelated to the generalized geometry.

It is good to realize that a Levi-Civita Courant algebroid connection is generally not de-
termined uniquely by fixing its divergence. Therefore, the Palatini approach provides a certain
freedom for the choice of the Courant algebroid connection. However, as the following proposi-
tion states, the other equations of motion are invariant with respect to this freedom, consequently
the physics is not influenced by our choice.

Proposition 5.12. Let (E 5 M, p, [.,.]E,9E) be a Courant algebroid equipped with a generalized
metric G, and assume that we have two Courant algebroid connections V, V' € LC(E,G)
satisfying divy = divy,. Then

RY = RE, (5.93)

and,
V is Ricci compatible with G & V' is Ricci compatible with G. (5.94)

Proof. First of all, realize that V, V/ € LC(E, G), hence there is a tensor field K € Q' (E)®0?(E)
possessing the appropriate properties such that

Vb2 = Vy, ¥ + i K (Y1, ¥2, ). (5.95)

Since divergences associated with the respective Courant algebroid connections are identical, it
follows from (1.142) that the partial trace of K vanishes, that is = 0. One immediately sees
from the proposition 1.69 that Rg = Rg/. Let us now have a look at the Ricci compatibility.
As K vanishes identically, the relation between the corresponding Ricci tensors, see proposition
1.65, reduces to

Ricy (¢1,12) = Riev (¢1,12) + %((V@K)(@bbi/}z,ﬂEé“) + (Ve, K) (Y2, 91,8 8")
- K(w% ﬁE K(§u7 wl’ ')7 ﬁE é.'u) - K(ﬂE §u> ﬁE K(¢17 g,ua ')7 ¢2)
+ K (e K (. € t2), 01,8 €)), (5.96)
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for all 41, 19 € I'(E). Taking arbitrary ¢»x € I'(Vy), one has

Rico:(1hs,9-) = Riey (s, 9) + 5 ((Ve, ) (01,6, 15 €) + (Ve K)(w, Y 8 6°)
K (6, GK (€ 8 ) — K (1, 0 &) K (2.6 .87, 0)
+ K (60, G ) K (56" 1, 82 €))
= Ricy (Y4, 9¥-). (5.97)

The terms with the covariant derivative vanish thanks to (1.116) and the fact that all “mixed”
restrictions of K are identically zero. If we choose an adapted local frame, it is easy to see that
also the other terms vanish due to the fact that all of them are “mixed”. O



Conclusion

Let us now summarize all the accomplishments and failures of this work. In Chapter 1, we
have presented a detailed and self-contained text introducing the subject of Courant algebroid
connections with all the proofs included. Particularly noteworthy is the proof of the existence
of a Levi-Civita Courant algebroid connection for a general Courant algebroid.

Chapter 2 is focused on the specific example of a Courant algebroid. It is the generalized
tangent bundle endowed with the H-twisted Dorfman bracket and some other suitable struc-
ture. We have successfully illustrated all the abstract concepts introduced in Chapter 7?7 on
this particular example. In particular, we have included the detailed proof that the set of all
generalized metrics on the respective Courant algebroid is possible to parametrize by a pair of
Riemannian metric and 2-form on the base manifold. We have also showed that the set of all
Levi-Civita Courant algebroid connections with respect to some fixed generalized metric can be
fully described by a pair of ordinary tensor fields of the rank 3 on the base manifold, which
are in addition skew-symmetric in the last two inputs and their complete skew-symmetrizations
vanish identically.

Chapter 3 builds on Chapter 2; specifically, we have reformulated the string effective action
and the corresponding equations of motion in terms of Courant algebroid connections on the
specific Courant algebroid introduced in Chapter 2. In Chapter 4, we have been concerned with
the Palatini approach to the Einstein-Hilbert action from general relativity. The complete and
detailed proof of the theorem has been carried out in a pure geometrical way, which is more
insightful than the standard way usually presented in physics literature.

The final Chapter 5 has provided even more than it was originally intended. The initial aim
has been to devise an analogue of the Palatini approach for the reformulated string effective
action. Instead, we have taken a step towards a greater generality and introduced a so called
Courant-Einstein-Hilbert action living in the framework of a general Courant algebroid and de-
pending on the three mutually independent inputs; namely, a generalized metric and a Courant
algebroid connection on the respective Courant algebroid, and a volume form on the base man-
ifold. This action functional reduces to the reformulated string effective action if we take the
specific Courant algebroid from Chapter 2, and moreover, if we a priori restrict ourselves only to
Levi-Civita Courant algebroid connections related to a given volume form in some way instead
of general Courant algebroid connections.
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We have indeed succeeded and proved that a trio of a generalized metric, a Courant algebroid
connection and a volume form extremalizes the Courant-Einstein-Hilbert action if and only if

1. The respective G-Ricci scalar vanishes identically.
2. The Courant algebroid connection is Ricci compatible with the generalized metric.

3. The Courant algebroid connection is Levi-Civita with respect to the generalized metric,
and furthermore, its divergence is given uniquely by the volume form as a divergence
associated with a certain Riemannian metric on the base manifold.

For the specific Courant algebroid from Chapter 2, the first two of these equations of motion
reduce to the reformulated equations of motion for the string effective action. The third equation
of motion precisely coincides with the a priori assumption on the admissible Courant algebroid
connections mentioned in the paragraph above.

Although a lot of questions have been answered in this thesis, there still remain some to be
solved. First of all, our Palatini approach is working only if p # 1 and at the same time ¢ # 1,
where (p,q) denotes the signature of the Courant metric. Therefore, it might be interesting
to properly examine the case p = 1 or ¢ = 1, which is not covered yet. Another interesting
thing would be to examine the rank of the affine space of a special class of Levi-Civita Courant
algebroid connections that appeared as a result of the Platini approach to the Courant-Einstein-
Hilbert action. One could also investigate whether it is possible to obtain the generalized
supergravity equations from the formalism presented here.
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