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Abstract

This thesis deals with design, implementation, and verification of a system for state
estimation of an Unmanned Surface Vehicle (USV) known as a boat by an Unmanned
Aerial Vehicle (UAV). First, linear and nonlinear mathematical models of the boat
extended by wave dynamics are presented. Introduced mathematical models of the
boat are used by Kalman filters that perform estimation of boat states using data
from UAV onboard sensors. Kalman filters also use data received from sensors placed
on the boat, which is sent to the UAV by a wireless communication link. The result
of this thesis is a UAV onboard system that provides state estimation of the boat
moving on a wavy water surface. The estimation system of boat states is imple-
mented into the UAV control system. The presented estimation system was tested
in a realistic robotic simulator Gazebo, and estimation results were analyzed in de-
tail. Then, the presented estimation system was verified by conducting real-world
experiments. Using the proposed estimation system, the UAV followed the boat and
landed on it successfully.

Keywords: Unmanned Aerial Vehicles, Unmanned Surface Vehicle, State estima-
tion, Kalman filter, Mathematical boat model, Sensor fusion

Abstrakt

Tato práce se zabývá návrhem, implementaćı a ověřeńım systému pro estimaci
stav̊u lodi z bezpilotńı helikoptéry. Představen je lineárńı a nelineárńı matemat-
ický model lodi, který je rozš́ı̌ren o dynamiku vln. Představené matematické modely
lodi jsou využity v Kalmanově filtru, který pro estimaci stav̊u lodi použ́ıvá data
z palubńıch senzor̊u bezpilotńı helikoptéry. Kalman̊uv filtr též využ́ıvá data ze sen-
zor̊u umı́stěných na lodi, která jsou bezdrátově pośılána do bezpilotńı helikoptéry.
Výsledkem práce je palubńı systém pro bezpilotńı helikoptéru poskytuj́ıćı estimace
stav̊u lodi pohybuj́ıćı se v prostřed́ı s vlnami. Vytvořený systém pro estimaci stav̊u
lodi je začleněn do ř́ıd́ıćıho systému bezpilotńı helikoptéry. Představený systém je
testován v realistickém robotickém simulátoru Gazebo a výsledky estimace stav̊u lodi
jsou detailně analyzovány. Systém estimace stav̊u lodi byl také ověřen při reálných
experimentech. Bezpilotńı helikoptéra využ́ıvaj́ıćı představený systém následovala
lod’, na kterou i posléze přistála.

Kĺıčová slova: Bezpilotńı prostředky, Dron, Lod’, Estimace stav̊u, Kalman̊uv filtr,
Matematický model lodi, Senzorická fúze
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Chapter 1

Introduction

In recent years there has been a significant development in the field of mobile robotics.
Key technologies for their development and production are becoming more and more afford-
able. One of the robot types, whose popularity is rapidly growing every year, is the aerial
vehicle. This kind of robot is often called an Unmanned Aerial Vehicle (UAV) or a Micro
Aerial Vehicle (MAV), though to the general public it is commonly known as a drone. An ex-
ample of a UAV is shown in Fig. 1.1a. Typical representatives of aerial robots are multirotor
helicopters. Their construction usually consists of several fixed pitch angle propellers mounted
on a rigid body that carries necessary electronics. The dimensions of these helicopters can
range from centimeters to meters. Thanks to their propellers, multirotor helicopters can take
off and land vertically. Their great advantage is also the ability to hover in place.

The popularity of multirotor helicopters is growing due to their wide usage [1]. The UAVs
can be used to explore unknown spaces [2], take a photos of a hard-to-reach places [3], capture
videos of events such as festivals [4], deliver packages [5], localize fires and aid with fire-
fighting [6], search for lost people in the forest or at the sea after a natural disaster [7],
detect the objects in water such as garbage [8], monitor marine mammals [9], survey marine
fauna [10]. However, research has started to focus on using a heterogeneous team of robots to
accomplish a given task [11]–[13].

One of the currently active research fields of multi-robot systems is cooperation between
UAVs and Unmanned Surface Vehicles (USVs) known as ships or boats [14] (see an example
of such vehicle in Fig. 1.1b). The USVs operate on the water surface, where they are used to
look for and remove garbage from the water [15], assist in dealing with the aftermath of disas-
ters [16], transport materials and objects from one place to another [17], cooperate with rescue
services [18], compile data about water environment [19], protect ports [20]. In many cases
mentioned above, cooperation between different types of robots results in a better solution to
the desired task [12], [16], [21].

(a) An example of UAV. (b) An example of USV [22].

Figure 1.1: Example of UAV and USV mobile robots.

CTU in Prague Department of Cybernetics
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Important aspect of a robot cooperation system is mutual localization [23]. The UAV
needs to know the current state of the USV that typically consists of position, orientation,
velocity, and angular velocity [24]. Using this information, the UAV is able to plan its next
steps. The UAV can follow the USV, explore different part of the environment than the USV
or land on the USV [25], which is the primary motivation of this thesis. In order to land on
the USV, the UAV requires precise localization of the landing platform placed on the USV
[26]. The estimation of USV states is vital for the UAV to cooperate with the USV in many
application scenarios.

The ability to land on the USV is very beneficial for the UAV as the USV can provide
services to the UAV. An example of such service is recharging of the UAV battery, because
the UAV flight time is mainly limited by battery capacity [27]. Other examples are to unload
cargo carried by the UAV [28] and transportation of the UAV [29]. The USV can also provide
a safe docking spot for the UAV in case of inclement weather [27]. However, as mentioned
above, the key element for a safe landing or any cooperation between the USV and the UAV
is a system for estimation of USV states [25], [30], whose design is the main content of this
thesis.

1.1 State of the art

The USV described in [14], [24], [31] has become the subject of research in the broad
scientific community. The typical usage of the USV is water environment monitoring [32]–
[35]. Pollutant tracking using the USV is proposed in [36]. Another usage of the USV is port
protection presented in [20]. The USV is also useful for bathymetric measurements providing
water depth and information about the floor of oceans, rivers or lakes [37], [38]. As the USVs
provide data from the top of the water surface, the UAVs [1], [2], [39] collect information from
the air.

The usage of UAVs near a water surface is becoming frequent [8], [9], [40], [41]. One
of the tasks of the UAV is conducting marine fauna surveys [10], [40], [42]. The study in
[41] focuses on mapping and classification of ecologically sensitive marine habitats using the
UAV. The UAV enables us to monitor animals as presented in [9]. Another task is to find
and monitor garbage (e.g., plastic marine debris) in the water [8] or to detect oil pollution
from ships [43]. Although the UAV and the USV can accomplish the given task on their own,
better results can be potentially achieved through their cooperation [29].

The cooperation between the UAV and the USV is very useful especially in marine
search and rescue operations [7]. In 2005, a team of USVs and UAVs assisted during rescue
and monitoring works after the calamity caused by Hurricane Wilma [11], [16]. The sea rescue
system based on a coordinated group of robots consisting of USVs and UAVs is described in
[18], where the UAV provided data about castaways position to the USV. In case of a flooded
environment, the UAV can build a ground map to plan a path for a rescue boat [21]. A team
of USV and UAV is also used to inspect littoral environments and monitor the surroundings
of a ship [12], [13]. System for monitoring water pollution based on a combination of USV
and UAV is proposed in [15]. The cooperative USV-UAV measurement approach is presented
in [19], where low-cost robots are used to collect hydrologic data.

As a result of the increasing usage of the UAV-USV team, the UAV needs to detect the
USV and be able to land on it. The USV-UAV platform which enables docking of the UAV
on the USV is presented in [29]. The study in [27] introduced a concept of an autonomous
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solar USV that is designed for autonomous launch and recovery of a UAV. The autonomous
landing of a UAV on a USV is proposed in several publications [25], [26], [30], [44]. Most of
the landing approaches require detection of a USV and estimation of its states — position,
orientation, velocity, and angular velocity.

The approaches to state estimation can be separated into two groups. The first group
consists of systems implemented onboard that typically use Global Navigation Satellite System
(GNSS) (e.g., Global Positioning System (GPS)) and Inertial Measurement Unit (IMU) to
estimate the states [45]–[48]. However, this thesis aims to provide USV states to the UAV to
plan the subsequent steps, such as landing or following. Therefore, the estimated states of the
USV should be sent to the UAV via a reliable communication link with sufficient frequency and
bandwidth. However, the required communication link is challenging to achieve in real-world
deployment [49].

State estimation methods in the second group use vision-based relative localization
systems that can be placed on another robot to provide information about desired target [23],
[50]–[55]. The concept of these systems enables them to be put onboard UAVs that use them
to estimate USV states without the need of any communication link. However, these relative
localization systems require a target in a detectable position. Usually, the system must be
close to the target, and the vision sensor, e.g., the camera, must see the target in its frame.
Therefore, in case of a relatively long distance between the UAV and the USV, these relative
localization systems do not provide any measurements. Some of them need sufficient light
conditions to work properly [50]–[52], i.e. they are not useful in poor lighting conditions such
as at night.

Sensor data is then processed in real time to estimate the desired states. Most of the
approaches address state estimation using the Kalman filter [56]–[59]. The Kalman filter fuses
measurements from different sensors to obtain precise state estimation of a given system [57],
[60]. Usage of the Kalman filter to estimate states of the USV is presented in many scientific
studies [14], [24], [61]–[63]. The Kalman filter used as a state estimator requires a mathematical
model of the system whose states should be estimated.

The mathematical models of the USV are described in [14], [24], [31]. These books
present different models that are suitable in many application scenarios. Simulation models
are used to precisely capture and reproduce the system’s behavior. In order to design a system
to control the USV, a simplified model of the USV is used. The most important model for this
thesis is observer design model, which contains all the necessary dynamics of the USV for
state estimation. More precise model provides better state estimation results and can also be
used to predict future states of the system.

1.2 Contributions

This work presents a complex robust system for the USV state estimation from onboard
the UAV. Usage of Kalman filter as state observer allows to fuse data from multiple sensors,
resulting in accurate estimation. The selected sensors provide sufficient data to estimate all
USV dynamics, and thanks to them, the system can be used at any time of day or at a rel-
atively long distance between the USV and the UAV. Moreover, a detailed USV model is
proposed to capture the motion of the USV precisely in different environmental conditions
such as wavy water surfaces. The presented system also provides a prediction of future USV
states using the current estimate and the mathematical model. The system has been imple-
mented into a realistic robotic simulator for further use by other colleagues and verified in
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many simulations. The proposed system has also been deployed to the real world in different
scenarios.

1.3 Outline

This thesis is structured as follows. After the Introduction chapter (Chap. 1), the dif-
ferent types of Kalman filters used as states estimators are presented in Chap. 2. The chapter
also contains methods used to verify the performance of presented filters. Chap. 3 proposes
a detailed description of a non-linear mathematical USV model, which is then simplified to
obtain a linear model. The sensors used to estimate states of the USV are proposed in Chap. 4.
They are divided into two groups — sensors placed on the USV and UAV onboard sensors.
Chap. 5 presents tools used to simulate the system presented in this thesis. The verification
of the designed approach is the content of Chap. 6. The performed real-world experiments are
proposed in Chap. 7. Finally, the conclusion of this thesis is written in Chap. 8, where the
achieved results are discussed together with proposals of future work.

1.4 Mathematical notation

The mathematical notation used in this thesis is summarized in Table 1.1.

Symbol Example Description

lower or uppercase letter y, Y scalar
bold lowercase letter x column vector
bold number 0 0 zero column vector
bold uppercase letter X matrix
bold uppercase letter I I identity matrix
bold uppercase letter O Ox×y zero matrix of x rows and y columns
symbol E E{·} mean value of term inside brackets
upper index T xT ,XT transposition of vector x or matrix X
letter k in brackets after x x(k) vector x at the sample k
lowercase letter accented by a dot ẋ, ẋ 1st time derivative of x, x
text diag before symbols in brackets diag{x, y} diagonal matrix with x, y on the diagonal
symbol R R set of real numbers
symbol Z Z set of integers

Table 1.1: Mathematical notation, nomenclature and notable symbols.
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Chapter 2

Kalman filters

Kalman filter, member of the Bayesian filters family, is a standard method of solving
optimal filtering problems [57]. The filter was introduced in the year 1960 [56] and has since
become one of the most widely used methods for state estimation. Originally the Kalman filter
was defined for a discrete Linear time-invariant (LTI) system. Nowadays, there exist many
extensions of Kalman filters such as Extended Kalman filter [60] or Unscented Kalman filter
[58] that are also usable for nonlinear systems. The Kalman filter can be briefly described as
an optimal algorithm that processes data recursively [64].

The filter uses a model of system dynamics as well as models of sensors. However, in
a lot of applications, models are simplified and do not describe the reality accurately [65].
Therefore uncertainty of the dynamics models is considered in the Kalman filter. Another
essential knowledge relates to the statistical properties of a system and measurement noise.
Finally, any information about initial conditions of the variables of interest improves the filter
performance [64]. Typical Kalman filter application in control systems is shown in Fig. 2.1.

As mentioned above, the Kalman filter is a recursive algorithm. Only previous estimate
and new input data are needed for a new estimate update. Therefore there is no need to store
all past observed data. As a result, the Kalman filter is more efficient in terms of computation
of new estimates than estimation methods using all past data at each update [57]. It also
reduces memory requirements as only the current estimate has to be stored in memory.

The process of Kalman filtering consists of two phases. The first phase is called the
prediction step. In the prediction step, the current estimate is propagated through the system
model together with the current value of the system input. The second phase of the filtering
is known as the data-update step. The current estimate is updated using a new measurement
during the data-update step. These two phases are repeated over and over again. Flowchart
of a Kalman filter is shown in Fig. 2.2. In the following sections (Sec. 2.1–2.3), different types
of Kalman filters are presented.

System Sensors Kalman filter

Desired system  
states Measurements Estimated states

Measurement noiseDisturbances

Inputs

System model
Sensors models

Initial conditions
Noises properties

Controller

System inputs

Figure 2.1: Diagram of typical Kalman filter application.
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Predict

Update

Unit
delay

Measurements

Initial conditions

Kalman filter

Estimated states

Predicted states

Inputs

Figure 2.2: Flowchart of Kalman filtering algorithm.

2.1 Linear Kalman filter

According to [56], the Linear Kalman filter was first used on a linear discrete-time
stochastic system whose state-space equations are as follows

x(k + 1) = Ax(k) +Bu(k) + v(k), (2.1)

y(k) = Cx(k) +Du(k) + e(k). (2.2)

State x(k) is defined as a set of variables that fully describe the system behavior in discrete
time k [57]. In other words, the state contains all necessary information from past behavior
of the system in order to predict its future behavior. State transition matrix A applied on
state x(k) and input matrix B applied on input u(k) is used to determine the new state
x(k+ 1). Vector v(k) is process noise. The goal of the filter is to estimate the unknown state
x(k). Typically, it is not possible to get the state x(k) directly. However, data from sensors
y(k) are available. Measurement y(k) depends on desired state x(k) through matrix C and
can also depend on system input u(k) via matrix D. The term e(k) is measurement noise.
Measurement equation (2.2) varies for different types of sensors.

The process noise v(k) can be intuitively described as an uncertainty of the system
model or disturbance acting on the system. The measurement noise e(k) can represent the
sensor’s inaccuracy. As described in [57], it is assumed that both noises are additive, white
and they are normally distributed with zero mean

E
{(

v(k)
e(k)

)}
= 0 (2.3)

and covariances

E

{(
v(k)
e(k)

)(
v(k)
e(k)

)T}
=

(
Q S
ST R

)
. (2.4)

If v(k) and e(k) are independent, the matrix S is a zero matrix and prediction step and
data-update step can be done separately.

The algorithm of the Linear Kalman filter is described in [57]. Firstly, the estimate of
state x̂(0) and its covariance P (0) have to be initialized

x̂(0) = x̂0, (2.5)

P (0) = P0. (2.6)
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Then in each prediction update step, the model of the system is used to propagate the state
to the next discrete time step

x̂(k + 1) = Ax̂(k) +Bu(k), (2.7)

P (k + 1) = AP (k)AT +Q. (2.8)

In order to use new incoming measurement, the Kalman gain G(k) is computed

G(k) = P (k)CT (k)
(
CP (k)CT +R

)−1
. (2.9)

The estimate of the state is updated together with its covariance

x̂(k) = x̂(k) +G(k)(y(k)−Cx̂(k)), (2.10)

P (k) = (I −G(k)C)P (k), (2.11)

where I is the identity matrix.

2.2 Extended Kalman filter

The Linear Kalman filter presented in Sec. 2.1 is applicable only on linear systems.
However, in many applications, the system dynamics and sensors models are nonlinear, and
therefore the Linear Kalman filter cannot be used as it is defined. A possible solution to
this problem is the Extended Kalman filter [66]. The Extended Kalman filter linearizes the
nonlinear model of the system and then applies the same equations as used in the Linear
Kalman filter (Sec. 2.1).

The nonlinear discrete-time stochastic system is described by following equations

x(k + 1) = f(x(k),u(k),v(k), k), (2.12)

y(k) = h(x(k),u(k), e(k), k), (2.13)

where f(x(k),u(k),v(k), k) represents a nonlinear state-space mapping from state x(k) to
state x(k + 1) and h(x(k),u(k), e(k), k) is a nonlinear model of sensors. The other symbols
represent the same variables as in Sec. 2.1. It is assumed that the distribution of state x(k)
is Gaussian. Therefore the distribution can be parameterized by mean and covariance.

As mentioned in [66], the nonlinear system described in (2.12) and (2.13) is linearized
in each discrete time step k according to the following equations

AD(k) =
∂f(x,u,v, k)

∂x

∣∣∣∣
x=x(k),u=u(k),v=0

, (2.14)

Γv(k) =
∂f(x,u,v, k)

∂v

∣∣∣∣
x=x(k),u=u(k),v=0

, (2.15)

CD(k) =
∂h(x,u, e, k)

∂x

∣∣∣∣
x=x(k),u=u(k),e=0

, (2.16)

Γe(k) =
∂h(x,u, e, k)

∂e

∣∣∣∣
x=x(k),u=u(k),e=0

. (2.17)
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The assumption of linearization in the Extended Kalman filter (2.14)–(2.17) is differentiable
functions f(x(k),u(k),v(k), k) and h(x(k),u(k), e(k), k). Similar to the Linear Kalman filter,
the Extended Kalman filter is firstly initialized

x̂(0) = x̂0, (2.18)

P (0) = P0. (2.19)

The prediction update step of the Extended Kalman filter is performed as

x̂(k + 1) = f(x(k),u(k),0, k), (2.20)

P (k + 1) = AD(k)P (k)AT
D(k) + Γv(k)QΓTv (k). (2.21)

The following equations define the data-update step of the Extended Kalman filter using
incoming measurement y(k)

GD(k) = P (k)CT
D(k)

(
CD(k)P (k)CT

D(k) + Γe(k)RΓTe (k)
)−1

, (2.22)

x̂(k) = x̂(k) +GD(k) (y(k)− h(x(k),u(k),0, k)) , (2.23)

P (k) = P (k)−GD(k)
(
CD(k)P (k)CT

D(k) + Γe(k)RΓTe (k)
)
GT
D(k), (2.24)

where matrix GD(k) is known as Kalman gain for the Extended Kalman filter.

The Extended Kalman filter performance deteriorates in case of strongly nonlinear func-
tions (2.12) and (2.13) [66]. A more accurate estimate can be obtained using Iterative Extended
Kalman filter [66]. The prediction update step remains the same as presented in (2.20) and
(2.21). The data-update step is modified into the following algorithm (Alg. 1), where ϵiekf
represents threshold value and maxi is maximum number of iterations.

Algorithm 1 Data-update step of Iterative Extended Kalman filter

1: x̂(0)(k)← x̂(k)
2: i← 0
3: repeat

4: C
(i)
D (k)← ∂h(x,u, e, k)

∂x

∣∣∣∣
x=x̂(i)(k),u=u(k),e=0

5: Γ
(i)
e (k)← ∂h(x,u, e, k)

∂e

∣∣∣∣
x=x̂(i)(k),u=u(k),e=0

6: G
(i)
D (k)← P (k)C

(i)T

D (k)
(
C

(i)
D (k)P (k)C

(i)T

D (k) + Γ
(i)
e (k)RΓ

(i)T

e (k)
)−1

7: x̂(i+1)(k)← x̂(k) +G
(i)
D (k)

(
y(k)− h(x̂(i)(k),u(k),0, k)−C

(i)
D (k)(x̂(k)− x̂(i)(k))

)
8: i← i+ 1
9: until

∣∣x̂(i−1)(k)− x̂(i)(k)
∣∣ < ϵiekf or i > maxi

10: x̂(k)← x̂(i)(k)

11: P (k)← P (k)−G
(i−1)
D (k)

(
C

(i−1)
D (k)P (k)C

(i−1)T

D (k) + Γ
(i−1)
e (k)RΓ

(i−1)T

e (k)
)
G

(i−1)T

D (k)
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2.3 Unscented Kalman filter

In practice, the Extended Kalman filter has well-known problems presented in [58]:

1. Linearization can produce highly unstable filters if the assumptions of local linearity are
violated.

2. The derivation of the Jacobian matrices is nontrivial in most applications and often
leads to significant implementation difficulties.

Another possible method for the nonlinear system estimation called an Unscented Kalman
filter is presented in [58]. The idea behind this filter is to use weighted points to approximate
the mean and the covariance of probability distribution together with the new component
called unscented transformation. The main advantage of this filter is that no linearization step
is required. As a result, the derivation of the Jacobian matrices is not needed. Moreover, the
accuracy of the Unscented Kalman filter is better than the accuracy of the Extended Kalman
filter as presented in [58], [67]. Therefore, the Linear Kalman filter and the Unscented Kalman
filter are selected as states estimators in this thesis.

The unique method that does not need linearization of the system is called unscented
transformation. The transformation is used to calculate statistics of random variables on
which nonlinear function is applied [58]. According to [58], [67], the fundamental step of the
transformation is to approximate mean x̂ of the n-dimensional random variable x and its
covariance Pxx using weighted points called sigma points χ as follows

χ0 = x̂, (2.25)

χi = x̂+ (
√
(n+ ν)Pxx)(i), (2.26)

χi+n = x̂− (
√
(n+ ν)Pxx)(i−n), (2.27)

w0 =
ν

n+ ν
, (2.28)

wi =
1

2(n+ ν)
, (2.29)

wi+n =
1

2(n+ ν)
, (2.30)

where i = 1, . . . , n and ν ∈ R. The term wj is the weight of a corresponding sigma point χj
and (

√
(n+ ν)Pxx)(i) is the i-th row of the matrix

√
(n+ ν)Pxx.

Consider g(x) as a nonlinear function that is applied to random variable x. The steps
of the unscented transformation are defined in [58], [67] as follows

Yj = g(χj), (2.31)

ŷ =
∑
j

wjYj , (2.32)

Pyy =
∑
j

wj (Yj − ŷ) (Yj − ŷ)T , (2.33)

where j = 0, . . . , 2n. The term ŷ is the mean value of transformed sigma points Yj and Pyy

is their covariance.

The properties of unscented transformation are the subject of many scientific studies
[58], [68], [69]. In comparison with the Extended Kalman filter, the Unscented Kalman filter
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provides higher order of accuracy for mean value thanks to the unscented transformation [58].
The unscented transformation approximates the mean in second-order accuracy. However,
the Extended Kalman filter algorithm is able to capture the mean in first-order accuracy [68].
The second order of accuracy for covariance is the same for both approaches [69]. To compute
square root of the covariance matrix in (2.26) and (2.27) the Cholesky decomposition can
be used as numerical stable method [70]. As shown in equations (2.25)–(2.33), only standard
matrix operations such as matrix addition and multiplication are needed to compute the mean
and covariance [58]. Against the Extended Kalman filter, the Unscented Kalman filter is faster
because there is no need to evaluate the Jacobian matrix [68].

The algorithm of the Unscented Kalman filter for states estimation is presented in [58],
[68] under the assumption that v(k) and e(k) are independent. Firstly, the filter is initialized
as follows

x̂(0) = x̂0, (2.34)

P (0) = P0. (2.35)

Then the set of sigma points χa(k) using equations (2.25)–(2.30) is computed in each discrete
time step k

χa(k) = {χ0(k), χi(k), χi+n(k)}. (2.36)

The prediction update step in discrete time step k using sigma points χaj (k) from the set
χa(k) (2.36) is defined as follows

χj(k) = f(χaj (k − 1),u(k),0, k), (2.37)

x̂(k) =
2n∑
j=0

wjχj(k), (2.38)

P (k) =

2n∑
j=0

wj (χj(k)− x̂(k)) (χj(k)− x̂(k))T , (2.39)

where f(χaj (k − 1),u(k),0, k) represents the nonlinear model of system (2.12). The data
update step using measurement y(k) proceeds according to the following equations

Yj(k) = h (χj(k),u(k),0, k) , (2.40)

ŷ(k) =
2n∑
j=0

wjYj(k), (2.41)

Pỹỹ(k) =
2n∑
j=0

wj (Yj(k)− ŷ(k)) (Yj(k)− ŷ(k))T +R, (2.42)

Pxy(k) =
2n∑
j=0

wj (χj(k)− x̂(k)) (Yj(k)− ŷ(k))T , (2.43)

G(k) = Pxy(k)P
−1
ỹỹ (k), (2.44)

x̂(k) = x̂(k) +G(y(k)− ŷ(k)), (2.45)

P (k) = P (k)−G(k)Pỹỹ(k)G
T (k), (2.46)

where h(χj(k),u(k),0, k) represents nonlinear mapping from states x̂(k) and inputs u(k) to
measurements (2.13).
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2.4 Verification of Kalman filter

The algorithms for states estimation have been presented. An important step of their
development is to verify their performance. One of the most common methods is Root Mean
Square Error (RMSE) [71], [72]. The RMSE is computed as

RMSE =

√∑T
t=1 (x̂(t)− xGT (t))

T (x̂(t)− xGT (t))

T
, (2.47)

where xGT (t) is ground-truth of estimated state x̂(t) and T is time window in which the
RMSE is computed. However, it is usually challenging to obtain the ground-truth xGT (t),
especially in real-world conditions.

Another possible method to verify the performance of the Kalman filter is to check the
consistency of the filter using innovations [73], [74]. Innovation ζ(k) is defined as

ζ(k) = y(k)− ŷ(k), (2.48)

where y(k) is a measurement obtained from the sensors in time step k and ŷ(k) is expected
measurement with respect to the current estimated state. The covariance of innovation S(k)
has the following form

S(k) = E
{
ζ(k)ζT (k)

}
. (2.49)

If the filter is working correctly, then the mean of innovation ζ(k) is zero, and the matrix
S(k) is its covariance matrix. For the Linear Kalman filter, the equations (2.48) and (2.49)
change to the following form

ζ(k) = y(k)−Cx̂(k), (2.50)

S(k) = CP (k)CT +R, (2.51)

where the P (k) is covariance of the current estimate x̂(k) before data-update step according
to the measurement y(k). For the Unscented Kalman filter, the innovation covariance S(k)
corresponds to the matrix Pỹỹ(k) (2.42).

Test 1 - Innovation magnitude bound test

The first test is to check whether the innovation ζ(k) is consistent with its covariance
S(k). According to [73], [74], the innovation is consistent with its covariance if approximately
95% of the innovation values are within the 95% confidence ellipsoid defined by the matrix
S(k). In the scalar case, the test means that approximately 95% of the innovation values lie
within bounds ±2

√
S(k).

Test 2 - Normalized innovation squared χ2 test

The second test is to prove the unbiasedness of the innovation [73], [74]. To perform the
test, firstly, the normalized innovation squared q(k) is computed as follows

q(k) = ζ(k)S−1(k)ζ(k). (2.52)
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Then the mean value of q(k) is computed

q̄ =
1

N

N∑
k=1

q(k). (2.53)

To pass this test, the q̄ should lie in confidence interval [r1, r2] that is characterized by the
hypothesis H0. The hypothesis H0 is defined as follows [74]: Nq̄ is χ2

Nm distributed with
probability P = 1− α, where m is a dimension of the measurement vector and α defines the
confidence region, e.g., α = 0.05 specified 95% confidence region,

P (Nq̄ ∈ [r1, r2]|H0) = 1− α. (2.54)

Test 3 - Innovation whiteness (autocorrelation) test

The last test tries to show the whiteness of the innovation [74]. The time-averaged
correlation is computed during the test

corr(τ) =
1

N

N−τ−1∑
kr=0

ζ(kr)
T ζ(kr + τ), (2.55)

which can be normalized by corr(0). The idea of the test is that for large enough N , corr(τ)

is assumed to be normally distributed with zero mean and variance
1

N
[74]. Therefore at least

95% of the values of corr(τ) should be in confidence region defined as ± 2√
N

.

In all the tests presented above, the performance of the Kalman filter is measured with
the assumption that the system’s model and noises’ statistics are perfectly known. However,
the Kalman filter can work incorrectly if the model of the system or statistics of noises is
wrong [74]. According to [74], typically, two types of error can happen:

• Error in the statistics of process and measurement noise,
• Error in the model of the system.

If the covariance of the process noise or the measurement noise is under-estimated, more
values than 5% fall outside of the confidence ellipsoid (test 1). Moreover, in test 2, the mean
of normalized innovation squared does not fit the confidence interval defined by hypothesis
H0 because the mean is larger. The meaning of these results is that the combined process and
measurement noises levels are too low [74].

Another possibility is that process noise’s covariance, or measurement noise’s covariance
is over-estimated. In such a case, the innovation is within the required confidence ellipsoid
(test 1). However, the mean of the normalized innovation squared is smaller than the confi-
dence interval defined by hypothesis H0 (test 2). This means that the combined process and
measurement noise levels are too high [74].

The second error called the mis-matched filter problem [74] happens when the model of
the measured system is wrong. The consequence is that mean of normalized innovation squared
values contains drift. This type of error is nicely seen in all presented tests. To reduce the
effects of mis-matched filter problem, the covariance matrix of process noise Q can be boosted
in magnitude. This leads to an increased influence of measurements on state estimation, i.e.
the estimates follow measurements more closely [74].
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Chapter 3

Mathematical USV models

The mathematical USV model is one of the most important components of the state es-
timator designed in this thesis. The USV model is used to fuse multiple sensors data (Chap. 4)
and also to predict the future states of the USV that correspond to the USV model. In this
chapter, a full nonlinear model of the USV is presented. The nonlinear model is then simpli-
fied to obtain a linear model that can be used for linear state estimators such as the Linear
Kalman filter (Chap. 2). The approach in this thesis focuses on state estimation of the USV
moving in water areas with waves, e.g., sea or ocean [75]. Therefore, the interaction of the
waves with the USV model is introduced to be used in the state estimator to obtain better
precision.

The USV moves in six Degrees of Freedom (DOFs), which means six independent coor-
dinates are required to fully describe the orientation and position of the USV. The DOFs are
composed of position displacements and rotations with respect to three axes in body frame of
the USV (see Fig. 3.1). The longitudinal motion of the USV in direction of the xb axis is called
a surge. The rotation around the xb axis is known as a roll. A sway is lateral motion, also
called sideways motion, in the direction of the yb axis. The rotation corresponding to the yb
axis is named pitch. The last motion known as a heave takes place in a vertical direction with
respect to the zb axis, and a yaw is the corresponding rotation. The notation of presented
DOFs of the USV together with their forces, moments, and time derivatives representing
linear and angular velocities is summarized in Table 3.1.

Figure 3.1: Motion of the USV in six DOFs [61, p. 36].
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DOF meaning
Forces and
moments

Linear and
angular velocities

Positions and
Euler angles

1 surge X u x
2 sway Y v y
3 heave Z w z
4 roll K p ϕ
5 pitch M q θ
6 yaw N r ψ

Table 3.1: The notation of DOFs for the USV.

The USV models can be classified into three different types according to their usage
[14]. The first class consists of simulation models. A simulation model should describe the
system most accurately. Therefore, the model uses all DOFs of the system to capture the
complex behavior of the system. For the USV, it means that the simulation model contains
USV dynamics, actuators, and sensors models, environmental disturbances such as wind,
waves, water current, etc. The main goal of the simulation model is to provide the same
time response as the real system. However, these models are often very complex. To control
the motion of the USV, the simulation model is simplified, and the number of DOFs can
be reduced to get the control design model. The one DOF model (yaw) is suitable for
designing a heading autopilot (yaw controller). The three DOF model consisting of the surge,
sway, and yaw is sufficient for a path-following system.

The third type of model is called observer design model [14] which this chapter
focuses on. Unlike the control design model, the observer design model captures the addi-
tional dynamics, i.e. disturbances, sensors, navigation systems, etc. However, the observer
design model is still simpler than the simulation one as it captures only dynamics relevant
to the desired task, e.g., three DOFs — surge, sway and yaw in the path-following approach.
The observer design model of the USV very often incorporates models of waves, wind, and
water currents in order to provide precise filtering and motion prediction of desired states.
The model’s diagram is shown in Fig. 3.2 with a marked observer design model that is used
in this thesis.

Controller based on 
control design 

 model
Simulation model

Observer based on 
observer design 

model

Focus of this
thesis

Input

Disturbances

Figure 3.2: Three different types of models in control system application.
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The motion of the USV is modeled using two theories — the Maneuvering theory
and the Seakeeping theory [14]. Maneuvering theory studies the motion of the USV at
constant positive speed U in calm water where wave disturbances are not presented, e.g.,
harbor or sheltered waters. The main assumption of this theory is the frequency independence
of hydrodynamic (maneuvering) coefficients, which means no wave excitation. As a result, the
added mass and damping due to motion in water can be modeled by constant parameters
[14]. The second theory — Seakeeping theory — studies the motion of the USV at a constant
heading and zero or constant speed in the water with waves. The hydrodynamic coefficients
depend on the frequency of wave excitation where the distribution of mass and geometry of
the hull are taken into account [14]. The unification of these two theories results in a model
describing the motion of the USV in a seaway where the most important terms of both theories
are preserved [14].

3.1 Kinematics

Geometrical aspects of the USV motion are studied using kinematic analysis. The kine-
matic transformation has to be defined to describe the motion of the USV in different coordi-
nate frames [24]. During analysis of the USV motion, two coordinate frames shown in Fig. 3.3
are usually defined [31]. The first one is fixed with body frame of the USV (see Fig. 3.1). The
origin of this frame is typically put into the center of gravity. The body-fixed frame is trans-
formed into a global coordinate frame whose origin is fixed on the Earth surface. It is assumed,
that position and orientation of the USV is expressed in a global coordinate frame while linear
and angular velocities are described in a body-fixed coordinate frame [31]. According to the
coordinate frames presented above, the following vectors describe the USV motion

η = (pT , ΘT )T = (x, y, z, ϕ, θ, ψ)T , (3.1)

ν = (vT , ωT )T = (u, v, w, p, q, r)T , (3.2)

τ = (τT1 , τ
T
2 )T = (X, Y, Z, K, M, N)T , (3.3)

where η denotes position p = (x, y, z)T and orientation Θ = (ϕ, θ, ψ)T in terms of
intrinsic Euler angles [76] in a global coordinate frame. The vector ν denotes linear velocity
v = (u, v, w)T and angular velocity ω = (p, q, r)T in a body-fixed coordinate frame.
The term τ represents forces τ1 = (X, Y, Z)T and moments τ2 = (K, M, N)T relative to
body-fixed coordinate frame.

The transformation of body-fixed frame variables to global variables is given by

ṗ = J1(Θ)v, (3.4)

Θ̇ = J2(Θ)ω, (3.5)

where J1(Θ) and J2(Θ) are the transformations depending on the current Euler angles Θ.
The ṗ denotes velocity of the USV in global frame and Θ̇ denotes angular rates of Euler
angles. The inverse transformation is as follows

v = J−1
1 (Θ)ṗ, (3.6)

ω = J−1
2 (Θ)Θ̇. (3.7)
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The transformation J1(Θ) is commonly composed of three rotations RΘi [31]. Each
rotation is described by one Euler angle according to the following matrices

Rϕ =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , (3.8)

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (3.9)

Rψ =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (3.10)

Beware of using rotations RΘi mentioned above. A correctly performed transformation de-
pends on the order in which these rotations are applied. Usually, the intrinsic zyx–convention
is used to transform variables from a global frame to a body-fixed frame [14]. This means
that the system in a global frame is first rotated by yaw angle ψ about the z axis. Then, the
obtained system is rotated by pitch angle θ about the new y axis. Finally, the system resulting
from previous two steps is rotated by roll angle ϕ about the new x axis. The transformation
from a body-fixed frame to a global frame is mathematically written as follows

J1(Θ) = RψRθRϕ. (3.11)

Thanks to the orthogonality of the rotation matrices, the inverse transformation J−1
1 (Θ) is

expressed by (intrinsic zyx–convention)

J−1
1 (Θ) = RT

ϕR
T
θR

T
ψ = JT1 (Θ). (3.12)

The transformation of angular velocities ω from a body-fixed frame to Euler angle rates
Θ̇ in a global frame is given by matrix J2(Θ). According to [14], the transformation J−1

2 (Θ)
is derived as follows

ω =

ϕ̇0
0

+RT
ϕ

0

θ̇
0

+RT
ϕR

T
θ

0
0

ψ̇

 = J−1
2 (Θ)Θ̇. (3.13)

xg

zgyg

Global coordinate frame 

xb

yb zb

Body-fixed coordinate frame 

Figure 3.3: Two coordinate frames used in analysis of the USV motion.
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The (3.13) can be written in matrix form as follows

ω =

1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 Θ̇. (3.14)

To obtain desired transformation J2(Θ) from a body-fixed frame to a global frame, the in-
version of matrix J−1

2 (Θ) defined in (3.14) is computed

J2(Θ) =
(
J−1
2 (Θ)

)−1
=

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0
sinϕ

cos θ

cosϕ

cos θ

 . (3.15)

However, transformation matrix J2(Θ) is not defined for θ =
π

2
+ kπ, k ∈ Z. The USV

moving on the water surface will probably not get into such a situation. Nevertheless, the
solution to such a problem is to use two conventions of the Euler angles representations that
have different singularities. If the USV is close to the singularity point in one convention, it
is switched to another convention [14].

To summarize, the kinematic transformation is mathematically described as follows(
ṗ

Θ̇

)
=

(
J1(Θ) O3×3

O3×3 J2(Θ)

)(
v
ω

)
, (3.16)

or, equivalently,

η̇ = J(η)ν. (3.17)

3.2 Nonlinear USV model

The nonlinear six DOF USV model is presented in [14], [24], [31] as

η̇ = J(η)ν, (3.18)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ , (3.19)

where

• M represents inertia matrix,
• C(ν) denotes matrix of Coriolis and centripetal terms,
• D(ν) is damping matrix,
• g(η) represents gravitational forces and moments,
• τ denotes vector forces acting on the USV, e.g., wave forces, wind forces, and control
inputs.

The inertia M is composed of two matrices

M = MRB +MA. (3.20)
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The matrix MRB is the positive definite rigid-body mass matrix that is written as

MRB =

(
mI3×3 O3×3

O3×3 Ib

)
=



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix −Ixy −Ixz
0 0 0 −Iyx Iy −Iyz
0 0 0 −Izx −Izy Iz

 , (3.21)

where m is the mass of the USV and I3×3 is the identity matrix. The Ib is the inertia matrix,
whose components Ix, Iy, Iz are the moments of inertia about corresponding body-fixed frame
axes xb, yb, zb and Ixy = Iyx, Ixz = Izx, Iyz = Izy are the products of inertia [14] determined
as

Ix =

∫
V
(y2 + z2)ρmdV, (3.22)

Iy =

∫
V
(x2 + z2)ρmdV, (3.23)

Iz =

∫
V
(x2 + y2)ρmdV, (3.24)

Ixy =

∫
V
xyρmdV =

∫
V
yxρmdV = Iyx, (3.25)

Ixz =

∫
V
xzρmdV =

∫
V
zxρmdV = Izx, (3.26)

Iyz =

∫
V
yzρmdV =

∫
V
zyρmdV = Izy, (3.27)

where ρm is a mass density and V is the volume of the body. The matrix MA is the virtual
hydrodynamic added mass defined in [14] as ”a virtual mass added to a system because an
accelerating or decelerating body must move some volume of the surrounding fluid as it moves
through it. Moreover, the object and fluid cannot occupy the same physical space simultane-
ously.” The matrix MA can be mathematically expressed as

MA =



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 , (3.28)

where elements Xu̇, Xv̇, . . . , Nṙ are coefficients of hydrodynamic added mass.

The Coriolis and centripetal matrix C(ν) is similarly to inertia matrix M (3.20) com-
posed of two matrices

C(ν) = CRB(ν) +CA(ν). (3.29)

The Coriolis and the centripetal term is a result of the rotation of the body-fixed reference
frame [14]. The CRB stands for rigid-body Coriolis and centripetal matrix, which can be
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expressed according to [14] as follows

CRB =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 −Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq
−mw 0 mu Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq + Ixp
mv −mu 0 −Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0

 .

(3.30)

In order to move the rigid body in a fluid, the hydrodynamic Coriolis and centripetal matrix
CA(ν) is defined in [14] as

CA(ν) =



0 0 0 0 −Ca3 Ca2
0 0 0 Ca3 0 −Ca1
0 0 0 −Ca2 Ca1 0
0 −Ca3 Ca2 0 −Cb3 Cb2
Ca3 0 −Ca1 Cb3 0 −Cb1
−Ca2 Ca1 0 −Cb2 Cb1 0

 , (3.31)

where the individual elements of the matrix CA(ν) are defined as

Ca1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr, (3.32)

Ca2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr, (3.33)

Ca3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr, (3.34)

Cb1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr, (3.35)

Cb2 =Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr, (3.36)

Cb3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr. (3.37)

The termD(ν) represents the damping of the system. As presented in [14], the nonlinear
damping D(ν) can be expressed as linear damping

D(ν) ≈D =



Xu 0 0 0 0 0
0 Yv 0 Yp 0 Yr
0 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Kr

0 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr

 , (3.38)

where the coefficients Xu, Yv, Yp, Yr, Zw, Zq, Kv, Kp, Kr, Mw, Mq, Nv, Np, Nr are known
as hydrodynamic derivatives. There are several causes of the damping — potential damping,
skin friction, wave drift damping, damping due to vortex shedding, and lifting forces [14].

The restoring forces g(η) for the USV are based on Archimedes principle where weight
WUSV is equal to buoyancy BUSV

WUSV = mg = ρg∇ = BUSV , (3.39)

where g is the acceleration of gravity (positive downwards), ρ is the fluid (water) density,
and ∇ is a fluid volume that the body displaces. According to [14], the function g(η) can be
rewritten using linear approximation as

g(η) ≈ Gη, (3.40)
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where matrix G has the following form

G =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −Zz 0 −Zθ 0
0 0 0 −Kϕ 0 0
0 0 −Mz 0 −Mθ 0
0 0 0 0 0 0

 . (3.41)

The coefficients of the matrix G are determined using formulas presented in [14].

The vector of forces τ acting on the USV is often difficult to determine. The wave effects
are presented in a separate section (Sec. 3.4) as it is one of the challenges for states estimation
that is dealt with in this thesis. Under assumption no acting forces τ , the nonlinear model of
the USV is expressed as

η̇ = J(η)ν, (3.42)

ν̇ = M−1 (−C(ν)ν −D(ν)ν −Gη)) . (3.43)

Let’s define xUSV = (ηT , νT )T , the nonlinear model of the USV defined in (3.42) and (3.43)
can be written as

ẋUSV = fUSV (xUSV ). (3.44)

The nonlinear USV model in (3.44) defines derivatives of USV states. To obtain new
state xUSV (t+ h) after time step h from current state xUSV (t), the numerical integration of
function fUSV (xUSV ) has to be performed [77]. One of the simplest algorithms for this task
is known as Forward Euler integration

xUSV (t+ h) = xUSV (t) + fUSV (xUSV )h. (3.45)

However, the Forward Euler method becomes inaccurate for fast or lightly damped systems.
The decreasing time step h, i.e. to use faster sampling, is not a sufficient adjustment for
all possible situations [78]. The higher-order approximation accuracy can be obtained using
Runge-Kutta methods. The well-known and often used algorithm is the Runge-Kutta method
of fourth order

ẋUSV (t) = fUSV (xUSV (t)), (3.46)

xP1
USV = xUSV (t) +

h

2
ẋUSV (t), (3.47)

ẋP1
USV = fUSV (x

P1
USV ), (3.48)

xP2
USV = xUSV (t) +

h

2
ẋP1
USV , (3.49)

ẋP2
USV = fUSV (x

P2
USV ), (3.50)

xP3
USV = xUSV (t) + hẋP2

USV , (3.51)

ẋP3
USV = fUSV (x

P3
USV ), (3.52)

xUSV (t+ h) = xUSV (t) +
h

6

(
ẋUSV (t) + 2ẋP1

USV + 2ẋP2
USV + ẋP3

USV

)
. (3.53)

In order to use numerical integration with fixed time step h, it is possible to rewrite continuous
states transition (3.44) in term of fixed step k as follows

xUSV (k + 1) = fd(xUSV (k), k). (3.54)
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3.3 Linear USV model

The nonlinear USV state space model defined in (3.44) can be linearized if the following
assumptions are considered [14]. Firstly, the roll angle ϕ and pitch angle θ are assumed to be
small. This assumption holds for a USV whose roll and pitch motions are limited. The (3.42)
can be reformulated using first assumption as

η̇ = J(η)ν
ϕ=θ=0
≈ Jψ(ψ)ν, (3.55)

where transformation matrix Jψ(ψ) is defined as

Jψ(ψ) =

(
Rψ O3×3

O3×3 I3×3

)
. (3.56)

Using (3.55), the Vessel parallel coordinate system is defined according to [14] as follows

ηL = JTψ (ψ)η, (3.57)

where ηL denotes the position and orientation in global coordinate frame expressed in body-
fixed coordinate frame and JTψ (ψ)Jψ(ψ) = I6×6. According to the [14], the time derivative of
ηL can be expressed as

η̇L = J̇Tψ (ψ)η + JTψ (ψ)η̇. (3.58)

After substitution of term η = Jψ(ψ)ηL and η̇ ≈ Jψ(ψ)ν, the equation (3.58) becomes

η̇L = J̇Tψ (ψ)Jψ(ψ)ηL + JTψ (ψ)Jψ(ψ)ν = rSηL + ν, (3.59)

where r is yaw angular velocity and

S =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (3.60)

Considering r ≈ 0 [14], the equation (3.59) can be written as follows

η̇L ≈ ν. (3.61)

The term Gη (3.40) representing the gravitational and buoyancy forces might also be
expressed using Vessel parallel coordinate system according to [14] as

Gη
ϕ=θ=0
≈ GηL. (3.62)

The nonlinear damping term D(ν) can be converted to a linear form as presented in (3.38).
The last nonlinear term represents Coriolis and centripetal forces C(ν). Assuming that ϕ =
θ = 0 and that in low-speed applications ν ≈ 0 [14], the term C(ν) becomes zero matrix
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C(ν) = O6×6. Finally, the nonlinear state space equations (3.42) and (3.43) is transformed
into a linear form as follows

η̇L = ν, (3.63)

ν̇ = −M−1Dν −M−1GηL. (3.64)

The LTI state space model is expressed in matrix form as

ẋV P = AV PxV P , (3.65)

where xV P = (ηTL , ν
T )T and

AV P =

(
O6×6 I6×6

−M−1G −M−1D

)
. (3.66)

The global position η is computed from ηL as

η = Jψ(ψ)ηL. (3.67)

3.4 Wave model

The motion of the USV is significantly influenced by the wave forces. The wave forces
are separated into two groups according to their effects on the USV motion [14]. The first
group is called First-order wave-induced forces. The results of their action are oscillatory
motions with zero mean. The second group is called Second-order wave-induced forces, which
represents wave drift forces. These forces are modeled as nonzero components that slowly vary
in time.

The characteristics of sea waves are captured in their spectrum S(ωk). There exist
many spectrum models that are used to derive wave state-space models or wave filtering [14].
The well-known wave spectra are the Neumann spectrum, Bretschneider spectrum, Pier-
son–Moskowitz spectrum, and JONSWAP spectrum. The amplitude Ak of wave component
k is related to wave spectrum S(ωk) as

1

2
A2
k = S(ωk)∆ωk, (3.68)

where ∆ωk denotes a constant difference between the frequencies of component k and k − 1.
The wave elevation can be expressed as a sum of N harmonic components

ζ =
N∑
k=1

Ak cos(ωk + ϵk), (3.69)

where ϵk is a random phase angle of wave component k.

To use wave elevation in the nonlinear USV model, a system generating harmonic signal
as one wave component is needed. Inspired by a model described in [79], the system of one
wave component is designed as

ẋωN1 = xωN2 , (3.70)

ẋωN2 = −xωN3 sin(xωN1)− γxωN2 , (3.71)

ẋωN3 = 0, (3.72)

yωN = xωN2 , (3.73)
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where xωN1 , xωN2 and xωN3 are state variables of the system, yωN is an output signal of one
wave component, γ is a damping term of the wave component. The state xωN3 corresponds
to the frequency of the wave component that does not evolve in time. However, the state
xωN3 can be updated in the Kalman filter like any other state. A prior knowledge about the
frequency of the wave component can be used to initialize the state xωN3 . The system defined
by equations (3.70)–(3.73) can be expressed using xωN = (xωN1 , xωN2 , xωN3)

T as

ẋωN = fωN (xωN ), (3.74)

yωN = gωN (xωN ). (3.75)

The Nnc individual components yωN defined in (3.75) are summed together to obtain complex
wave motion

ẋωN1 = fωN (xωN1), (3.76)

yωN1 = gωN (xωN1), (3.77)

ẋωN2 = fωN (xωN2), (3.78)

yωN2 = gωN (xωN2), (3.79)

...

ẋωNNnc
= fωN (xωNNnc

), (3.80)

yωNNnc
= gωN (xωNNnc

), (3.81)

ywave = yωN1 + yωN2 + . . .+ yωNNnc
, (3.82)

which can be simplified using xwave = (xTωN1
, . . . , xTωNNnc

)T into

ẋwave = fwave(xwave), (3.83)

ywave = gwave(xwave). (3.84)

The ywave (3.84) is used to create new state vector νwave as

νwave = (ywave,u, ywave,v, ywave,w, ywave,p, ywave,q, ywave,r)
T , (3.85)

where each element ywave,u, ywave,v, ywave,w, ywave,p, ywave,q, ywave,r corresponds to a one
wave system defined in (3.83) and (3.84). The nonlinear model of the USV (3.42) and (3.43)
is rewritten as

η̇ = J(η)ν, (3.86)

ν̇ = M−1 (−C(ν)ν −D(ν)ν −Gη)) + νwave, (3.87)

ẋwave,u = fwave(xwave,u), (3.88)

ẋwave,v = fwave(xwave,v), (3.89)

ẋwave,w = fwave(xwave,w), (3.90)

ẋwave,p = fwave(xwave,p), (3.91)

ẋwave,q = fwave(xwave,q), (3.92)

ẋwave,r = fwave(xwave,r). (3.93)
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The wave system defined in (3.83) and (3.84) cannot be used for the linear USV model
as the wave system is nonlinear. However, the waves can also be represented by linear state-
space model [14]. The simple state-space model of a one wave component including two states
xωL1 , xωL2 is as follows (

ẋωL1

ẋωL2

)
=

(
0 1
−ω2

0L
−2λLω0L

)(
xωL1

xωL2

)
, (3.94)

yωL =
(
0 1

)(xωL1

xωL2

)
, (3.95)

where ω0L represents the frequency of the wave component and λL is the damping of the wave
component. The wave component defined in (3.94) and (3.95) is expressed in matrix form as

ẋωL = AωLxωL , (3.96)

yωL = CωLxωL . (3.97)

To achieve complex wave motion composed of several harmonics, the Nlc state-space wave
components yωL can be joined together with different parameters ω0L and λL

ẋωL1 = AωL1xωL1 , (3.98)

yωL1 = CωL1xωL1 , (3.99)

ẋωL2 = AωL2xωL2 , (3.100)

yωL2 = CωL2xωL2 , (3.101)

...

ẋωLNlc
= AωLNlc

xωLNlc
, (3.102)

yωLNlc
= CωLNlc

xωLNlc
, (3.103)

ywaveL = yωL1 + yωL2 + . . .+ yωLNlc
. (3.104)

The system described in (3.98)–(3.104) can be expressed as a one linear system

ẋwaveL = AwaveLxwaveL , (3.105)

ywaveL = CwaveLxwaveL , (3.106)

where

xwaveL = (xTωL1
, xTωL2

, . . . , xTωLNlc
)T , (3.107)

AwaveL = diag{AωL1 , AωL2 , . . . , AωLNlc
}, (3.108)

CwaveL =
(
CωL1 CωL2 · · · CωLNlc

)
, (3.109)

where diag{·} means a block diagonal matrix of given elements AωL1 , AωL2 , . . . , AωLNlc
.
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The one wave system in (3.105) and (3.106) influences one USV state of ν (3.2). There-
fore, the complex wave system for the USV states ν is defined as

ẋwave,ν = Awave,νxwave,ν , (3.110)

ywave,ν = Cwave,νxwave,ν , (3.111)

Awave,ν = diag{AwaveL , AwaveL , AwaveL , AwaveL , AwaveL , AwaveL}, (3.112)

Cwave,ν =



CwaveL O1×2Nlc
O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc

O1×2Nlc
CwaveL O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc

O1×2Nlc
O1×2Nlc

CwaveL O1×2Nlc
O1×2Nlc

O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc
CwaveL O1×2Nlc

O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc
O1×2Nlc

CwaveL O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc
O1×2Nlc

O1×2Nlc
CwaveL

 , (3.113)

where Awave,ν is a block diagonal matrix of this complex wave system and

xwave,ν = (xTwaveL,u, x
T
waveL,v

, xTwaveL,w, x
T
waveL,p

, xTwaveL,q, x
T
waveL,r

)T . (3.114)

A linear model of the USV (3.65) is then modified as

ẋV P,waves = AV P,wavesxV P,waves, (3.115)

where xV P,waves = (ηTL , ν
T , xTwave,ν)

T and

AV P,waves =

 O6×6 I6×6 O6×12Nlc

−M−1G −M−1D Cwave,ν

O12Nlc×6 O12Nlc×6 Awave,ν

 . (3.116)
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Chapter 4

Sensors

The main goal of this thesis is to estimate the USV states. The crucial component for
a state estimator is to have enough sensors whose measurement data will cover all parts of
the USV model (Chap. 3). The Kalman filter is selected as a state estimator (Chap. 2). In
order to apply the filter, the observation model that defines mapping from the USV states
to the measurements for individual sensors has to be defined together with its measurement
covariance [80]. The sensors used to estimate the USV states are presented in this chapter.
The sensors are divided into two groups. The first one contains sensors that are directly placed
on the USV. The UAV onboard sensors form the second group.

4.1 Sensors placed on USV

In many real-world scenarios, the UAV is at such a distance that it is not possible to
use the onboard sensors. However, it is assumed that the communication link between the
UAV and the USV is present. As our objective is autonomous UAV landing on the USV, it
is necessary to get closer to the USV where the UAV onboard sensors can be used together
with the sensors placed on the USV. To move the UAV towards the USV, at least the raw
position of the USV has to be estimated. The GPS sensor [81] has been selected as a device
that measures the global position of the USV which is subsequently sent to the UAV.

Another sensor that is placed on the USV is the IMU. The IMU is a device used to
measure orientation, angular velocity, and linear acceleration [82]. Typically IMU consists of
an accelerometer and a gyroscope. However, a magnetometer can be added to obtain more
accurate measurement [82]. The IMU and the GPS are part of the Multi-robot Systems (MRS)
boat unit that contains necessary electronic equipment for the landing platform. A picture of
the landing platform is shown in Fig. 4.1.

Figure 4.1: The GPS and the IMU placed on landing platform.
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4.1.1 GPS

The GPS is a type of GNSS that is well-known and widely used to estimate the position
in several application scenarios [39], [47], [48], [83]–[86]. The usage of GPS is motivated by an
estimation of the USV and the UAV position in common frame. The global position obtained
from the GPS device placed on the USV is sent to the UAV via a wireless communication
link. The UAV uses this received data to estimate the position of the USV, and the control
system takes the UAV to the proximity of the USV, where onboard sensors are used to update
estimate to be more precise (Sec. 4.2).

The GPS device is a standard outdoor sensor that needs an open area without obstacles
disturbing its GPS signal to estimate the position properly. Water surface typically satisfies
these requirements. Therefore usage of the GPS is reasonable on the USV moving on water
surface [45], [46]. However, the GPS signal can still be influenced by natural interference
such as ionospheric anomalies, and intentional attacks such as jamming and spoofing [87].
These situations can significantly reduce the accuracy of the GPS position estimation or
cause the GPS data to be completely unavailable The error of the GPS position estimation
is approximately in meters [81] which is insufficient to estimate the USV states precisely for
a landing approach. In order to obtain better accuracy, the Real-time Kinematics (RTK)-
GPS method can be used [88]. However, this method requires a calibrated base station and a
reliable GPS signal.

The UAV uses the received GPS data yGPS from the USV containing Universal Trans-
verse Mercator (UTM) coordinates in the data-update step of Kalman filters (Chap. 2)

yGPS = (xUTM , yUTM , zUTM )T . (4.1)

To perform the data-update step in the Linear Kalman filter (Sec. 2.1) based on the linear
USV model (Sec. 3.3 and 3.4), the sensor matrix CGPS for GPS data is as follows

CGPS =

1 0 0 O1×(9+12Nlc)

0 1 0 O1×(9+12Nlc)

0 0 1 O1×(9+12Nlc)

 . (4.2)

The Unscented Kalman filter (Sec. 2.3) requires the function hGPS(xUSV ) that defines model
of sensor for the nonlinear model of USV (Sec. 3.2 and 3.4) to provide the data-update step
of the filter

hGPS(xUSV ) = p = (x, y, z)T . (4.3)

4.1.2 Inertial Measurement Unit

The IMU provides the linear acceleration, angular rotation, and orientation data in high
update rates [89]. Similar to the GPS data, the IMU data is sent to the UAV via a wireless
communication link. The motivation to add the IMU sensor on the USV landing platform is
to obtain a better estimation of motion caused by the waves (Sec. 3.4). Another reason is that
the IMU and the GPS can be used together to estimate more accurate states of the system
[89], [90]. However, the IMU suffers from time accumulating of bias in the sensor readings [89].

The IMU data yIMU used in the Kalman filters is in the following form

yIMU = (ϕIMU , θIMU , ψIMU , pIMU , qIMU , rIMU )
T , (4.4)
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where ϕIMU , θIMU and ψIMU are the Euler angles corresponding to states ϕ, θ, ψ of the USV.
Variables pIMU , qIMU and rIMU are the angular velocities in case of the USV states p, q, r.
The sensor model is needed to use Kalman filters presented in Chap. 2. Using the linear model
of USV (Sec. 3.3 and 3.4) the Linear Kalman filter (Sec. 2.1) applies IMU measurement data
in the data-update step via sensor matrix CIMU

CIMU =



0 0 0 1 0 0 0 0 0 0 0 0 O1×(12Nlc)

0 0 0 0 1 0 0 0 0 0 0 0 O1×(12Nlc)

0 0 0 0 0 1 0 0 0 0 0 0 O1×(12Nlc)

0 0 0 0 0 0 0 0 0 1 0 0 O1×(12Nlc)

0 0 0 0 0 0 0 0 0 0 1 0 O1×(12Nlc)

0 0 0 0 0 0 0 0 0 0 0 1 O1×(12Nlc)

 . (4.5)

The Unscented Kalman filter (Sec. 2.3) needs to have the sensor model function hIMU (xUSV )
of the nonlinear USV model (Sec. 3.2 and 3.4) defined in order to provide the data-update
step. For the IMU measurement data, the function hIMU (xUSV ) is defined as follows

hIMU (xUSV ) = (ΘT , ωT )T = (ϕ, θ, ψ, p, q, r)T . (4.6)

4.2 UAV onboard sensors

In Sec. 4.1 sensors placed on the USV are presented. The data from these sensors have
to be sent to the UAV via a communication link. However, data exchange between the USV
and the UAV can be difficult to achieve in real-world environments [49]. Also, precision of
the GPS sensor is insufficient to perfectly estimate the USV states that have to be used to
land on the USV [81]. The precise GPS position can be obtained under a special system, e.g.
RTK-GPS [88] which requires a reliable GPS signal and calibrated base station.

To handle these issues, the UAV is equipped with onboard vision systems that allow
estimation of the USV states without the need for communication or common reference frame
of the USV and the UAV. To increase the redundancy and ensure a properly working system
in different real-world conditions, two onboard sensors are used: an UltraViolet Direction
And Ranging (UVDAR) system [23], [53], [91], [92] and an AprilTag detector [50]–[52]. Both
the vision systems require special markers placed on the target. Therefore a custom landing
platform was designed to satisfy these preconditions. The description of both systems is given
in the following subsections (Sec. 4.2.1 and 4.2.2).

4.2.1 UVDAR system

The UVDAR system is an onboard vision-based relative localization system developed
by the MRS group. One of the great advantages of this system is that no communication
is needed. As mentioned above, the UVDAR system requires markers placed on the target.
The marker is composed of an UltraViolet (UV) LED that blinks a unique binary signal code.
The blinking UV LEDs are captured by UV sensitive cameras (Fig. 4.2) placed onboard on
the UAV.

The principle of the UVDAR system is presented in detail in [23], [53], [91], [92]. The
onboard UV sensitive cameras take images of the surrounding area. The captured images
are passed to the algorithm that extracts the blinking UV markers, whereas the targets are
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Figure 4.2: Comparison between the visible and UV camera footage from UVDAR, collected
during an experiment. The UV image is significantly easier to process to retrieve information
on the observed MAV [91, p. 2638].

distinguished by the binary signal code of the UV LEDs and a pattern created from these
LEDs. The position and orientation estimation rely on knowledge of the exact location of the
UV LEDs on the target. Extracted positions of the UV markers from an image are used to
compute the final position and orientation of the target with respect to onboard UV cameras
[23], [91].

Typical usage of the UVDAR system is for mutual localization of UAVs in a swarm
[93]–[95]. The layout of UV LEDs is defined according to a UAV type. However, the UVDAR
system used to detect the horizontal landing platform is a novel application of this system.
For this purpose, the novel pattern of UV LEDs layout has to be defined. The five UV LEDs
form a plus sign on the landing platform as shown in Fig. 4.3. In order to unambiguously
define the orientation of UV LEDs pattern with respect to UV cameras, the two UV LEDs
have different signal codes than the others. The distance between UV LEDs on the edge and
the middle UV LED is 0.4m.

The data yUR obtained from the UVDAR system contains position (xUR, yUR, zUR)
and orientation (ϕUR, θUR, ψUR)

yUR = (xUR, yUR, zUR, ϕUR, θUR, ψUR)
T . (4.7)

To use the data measured by the UVDAR system, the sensor model has to be defined for a
desired Kalman filter described in Chap. 2. For the linear model of the USV (Sec. 3.3 and
3.4), the sensor matrix CUR for the Linear Kalman filter (Sec. 2.1) is defined as follows

CUR =



1 0 0 0 0 0 O1×(6+12Nlc)

0 1 0 0 0 0 O1×(6+12Nlc)

0 0 1 0 0 0 O1×(6+12Nlc)

0 0 0 1 0 0 O1×(6+12Nlc)

0 0 0 0 1 0 O1×(6+12Nlc)

0 0 0 0 0 1 O1×(6+12Nlc)

 . (4.8)

To use measured data in the data-update step of the Unscented Kalman filter (Sec. 2.3) based
on the nonlinear model of USV (Sec. 3.2 and 3.4), the function hUR(xUSV ) that defines model
of sensor has the following form

hUR(xUSV ) = (pT , ΘT )T = (x, y, z, ϕ, θ, ψ)T . (4.9)
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(a) UV LEDs placed on the landing platform. (b) Detected pattern in UV camera image.

Figure 4.3: UV LEDs pattern placed on the landing platform together with detected UV LEDs
in UV camera image.

4.2.2 AprilTag detector

The AprilTag detector is a visual fiducial system that detects artificial landmarks known
as AprilTags [50], [51]. The AprilTags are black-and-white tags defined by a binary code that
can have flexible layouts if some restrictions are satisfied [52]. The AprilTag detector consists of
the tag detector and the coding system. The purpose of the tag detector is to find candidates
for AprilTags in the image. Found candidates for AprilTags are then put into the coding
system, which determines whether the candidates are valid or not, and finally, positions and
orientations of the detected AprilTags are estimated [50], [51].

A camera taking images of surroundings is needed to use the AprilTag detector. The
taken image is converted to a binary image using an adaptive threshold [51]. The segmentation
algorithm is applied to find connected black and white components to find edges in the binary
images. Then the quads are fitted to boundary points of the segmented components and
put to the decoding algorithm as candidates for AprilTags. The decoding algorithm selects
valid candidates for AprilTags. Finally, the position and orientation of detected a AprilTag is
estimated using the knowledge of AprilTag binary code, and its size [50], [51].

One of the advantages of using the AprilTag detector is a flexible layout of its markers
[52]. The custom tag layout is a special AprilTag layout containing empty space in the middle,
which allows to recursively put a smaller tag inside. This configuration of an AprilTag is
suitable to localize the landing spots [44], [52]. However, other flexible tag layouts have been
successfully used for landing approaches [59], [96]. The AprilTag layout placed on the landing
platform designed in this thesis is shown in Fig. 4.4a. The custom tag layout is used, hence a
smaller AprilTag is placed in the empty space of the bigger AprilTag. The size of an AprilTag
configuration on real landing platform is shown in Fig. 4.4b. This configuration of an AprilTag
allows its detection from short and long distances.

A single camera with a processing unit is sufficient to detect an AprilTag on a target.
However, the AprilTags are passive markers, meaning they do not broadcast any signal or emit
light. This method is therefore only useful under sufficient image taking light conditions. If the
UAV has to land in the dark, the AprilTag detector will not produce a reliable position and
orientation estimation. Although the AprilTag detector should be robust to light conditions
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(a) AprilTag layout used on the landing plat-
form.

(b) AprilTag placed on the landing platform.

Figure 4.4: AprilTag used on landing platform.

(e.g., the landing platform can be lit) [50], [51], the UVDAR system (Sec. 4.2.1) is able to
work properly at any time of day as it uses active blinking markers. This is another reason to
use two onboard detection systems since robustness is one of the main goals for the system
designed in this thesis.

The data yAG measured by the AprilTag detector consists of position (xAG, yAG, zAG)
and orientation (ϕAG, θAG, ψAG)

yAG = (xAG, yAG, zAG, ϕAG, θAG, ψAG)
T . (4.10)

Same as for the previously presented sensors, the sensor model has to be defined to use
AprilTag detector measurements. For the linear model of the USV (Sec. 3.3 and 3.4) used in
the Linear Kalman filter (Sec. 2.1) the sensor matrix CAG of the AprilTag detector is defined
as follows

CAG =



1 0 0 0 0 0 O1×(6+12Nlc)

0 1 0 0 0 0 O1×(6+12Nlc)

0 0 1 0 0 0 O1×(6+12Nlc)

0 0 0 1 0 0 O1×(6+12Nlc)

0 0 0 0 1 0 O1×(6+12Nlc)

0 0 0 0 0 1 O1×(6+12Nlc)

 . (4.11)

The Unscented Kalman filter (Sec. 2.3) using the nonlinear model of the USV (Sec. 3.2 and
3.4) requires the function hAG(xUSV ) which defines model of sensor in the following form

hAG(xUSV ) = (pT , ΘT )T = (x, y, z, ϕ, θ, ψ)T . (4.12)
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Chapter 5

Development tools

5.1 Software platform

The system designed in this thesis is based on a software platform called Robot Oper-
ating System (ROS) [97]. The ROS1 is the free open-source framework that enables writing of
modular software for robot applications. The software implemented according to this frame-
work consists of individual packages. A package is a basic unit containing source codes of
processes, libraries, configuration files, and other files related to the package.

The concept of ROS framework is to use the following tools: nodes, messages, topics,
and services. The computational processes are performed using nodes that typically represent
one robotic software module, e.g., one node reads data from a sensor, and the second node
fuses and filters this data. In order to share the data between individual nodes, the messages
are defined as a strongly-typed data structure. The atomic units of messages are basic types
(e.g., integer, float, boolean, etc.) that can be organized into arrays. The new message can
also be composed of previously defined individual messages or their arrays.

The communication between nodes is performed via topics or services using defined
messages. The node sends data to desired topics specified by name and message type. The
other nodes can connect to this topic and receive the available data. Multiple nodes can
publish and subscribe to this topic. However, the request-reply model of communication is
often needed in real applications. This communication model is ensured via services defined
by their name and pair of messages. One message defines a request of the client node. The
other message characterizes the reply of the target server node. The ROS structure of the
system presented in this thesis is shown as a diagram in Fig. 5.1.

The system designed in this thesis is implemented into the MRS UAV system [1]. This
open-source system2 is based on the ROS framework. The MRS UAV system proposes tools
to control and estimate UAVs in various applications scenarios, such as outdoor or indoor
flying, GNSS or GNSS-denied environments, etc. The tools enable a realistic simulation of the
UAVs, sensors, and localization systems. The MRS UAV system was used in many real-world
applications [2], [39], [53], [55], [92]–[95].

5.2 Simulation environment

The initial validation of the proposed USV estimation system was performed using
the realistic robotic simulator Gazebo [98]. The Gazebo simulator3 is an open-source project

1https://www.ros.org/
2https://github.com/ctu-mrs/mrs uav system
3http://gazebosim.org/
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Figure 5.1: Diagram of the system presented in this thesis in the ROS framework.

enabling realistic simulation of robots in different complex environments. The simulator offers
multiple high-performance physics engines (e.g., ODE, Bullet), high-quality graphics, and
convenient programmatic and graphical interfaces. Both the ROS system and the MRS UAV
system are implemented into the Gazebo simulator. In order to simulate the USV on a wavy
water surface, the Virtual RobotX (VRX) simulator is used as an extension of the Gazebo
simulator.

The VRX simulator4 is an open-source project designed to support the development,
testing, and evaluation of USVs that operate on wavy water surface [99]. The VRX simulator
adds new features into the Gazebo simulator, such as a water surface including a wave gen-
erator based on different ocean spectra that influences the USV motion. The USV motion is
also affected by the wind. To achieve a real USV behavior, the six DOF model of a surface
vessel is included that can be controlled via a propulsion system. The screenshots from the
Gazebo simulator extended by the VRX simulator and the MRS UAV system are shown in
Fig. 5.2.

The USV model in the VRX simulator is based on equations presented in [14]. The USV
observer design model presented in Chap. 3 is created on the same basis. However, the model
used in the VRX simulator belongs to the simulation models that capture complex behavior
of the system to achieve the same response as the real system. The equations are as follows

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +D(νr)νr + g(η) = τpropulsion + τwind + τwaves.
(5.1)

The relative velocity νr = ν − νc represents the motion of the USV with respect to the water
current velocity νc. The τpropulsion is force generated by the USV propulsion system. The
winds and waves forces are denoted as τwind and τwaves. The other terms are more thoroughly
described in Chap. 3.

The waves are modeled using the Gerstner Waves approach [99]. The approach repre-
sents the water surface as a trochoidal shape. The water surface is modeled as a summation

4https://github.com/osrf/vrx
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Figure 5.2: The screenshots from the Gazebo simulator extended by the VRX simulator and
the MRS UAV system.

of Gerstner waves according to the following equations

x(x0, t) = x0 −
N∑
i=1

qi
ki
ki
Ai sin

(
kTi x0 − ωit+ ϕwave,i

)
, (5.2)

ζ(x0, t) =
N∑
i=1

Ai cos(k
T
i x0 − ωit+ ϕwave,i), (5.3)

where horizontal x and vertical ζ displacement describe the wave field according to the undis-
turbed horizontal location x0 = (x0, y0)

T and the vertical height ζ0 = 0. The other terms are
amplitude Ai, steepness qi, wave-number ki, angular frequency ωi, time t and random phase
ϕwave,i. The wave-vector ki represents a direction of travel with magnitude ki.

In order to achieve a simple wave field, the selection of small set of wave components in
(5.2) and (5.3) is enough to obtain realistic wavy water surface. However, the wave components
can be obtained using a wave spectrum S(ω) that captures the characteristics of the sea or the
ocean. One of the wave spectra is the Pierson-Moskowitz spectrum describing fully developed
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Figure 5.3: The Pierson-Moskowitz spectrum for different KH and ωp values.

sea in deep water. The expression of such spectrum used in the VRX simulator is as follows

S(ω) = (KH)
2αg

2

ω5
exp

(
−5

4

(ωp
ω

)4
)
, (5.4)

where ωp is the peak angular frequency, KH is the non-dimensional gain value, g is the
acceleration of gravity and α = 8.1 · 10−3. The Pierson-Moskowitz spectrum for different KH

and ωp values is shown in Fig. 5.3. The individual wave components are obtained from the
spectrum using the following equation

A2
i = 2S(ωi)∆ωi , (5.5)

where ωi is the sample location along the spectrum and ∆ωi is the width of the frequency
band of an individual sample.

The wind disturbance can significantly influence the object on the water surface [99].
The total wind speed Vω(t) is defined as follows

Vω = v̄ + vg(t). (5.6)

The v̄ is constant mean wind speed and the vg(t) is varying wind speed with zero mean.
The vg(t) component is modeled using approximation of the Harris spectrum that can be
expressed in the following transfer function

h(s) =
Kω

1 + τgs
, (5.7)

where Kω is the response magnitude and τg is a time constant. The models of waves and wind
are then used to compute τwaves and τwind acting on the USV according to the algorithm
presented in [99].
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Figure 5.4: Simulation model of the USV (WAM-V) and the UAV (Tarrot t650) used in the
Gazebo simulator.

The USV model used in simulations is called Wave Adaptive Modular Vessel (WAM-V).
The WAM-V is constructed as a catamaran with two parallel hulls on which the deck with
required equipment is located. In order to use the estimation system designed in this thesis, the
WAM-V deck is modified to carry necessary sensor equipment (Chap. 4). The AprilTag is put
on top of the WAM-V deck and represents the spot for the UAV landing. On the AprilTag, the
UV LEDs used by UVDAR system are placed according to the pattern described in Sec. 4.2.1.
Finally, the GPS and the IMU sensors5 are added on the WAM-V deck as the USV onboard
sensors. The WAM-V model is shown in Fig. 5.4a. On the left part of the Fig. 5.4a, the side
view of WAM-V is presented. On the right part, the top view of the WAM-V is given with a
marked AprilTag and a UV LED.

The system for estimation of the USV states is designed to be onboard of the UAV.
The used UAV model is called Tarot t650 designed by the MRS group2. The Tarot is a
quad-rotor helicopter that is able to carry necessary the sensor equipment for the presented
estimation system, i.e. GPS sensor, UV camera for UVDAR system, and RealSense D435
camera6. The RealSense D435 camera is used to provide images to the AprilTag detector.
The Tarot t650 used in simulations is shown in Fig. 5.4b.

5http://wiki.ros.org/hector gazebo plugins
6https://www.intelrealsense.com/depth-camera-d435/
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Chapter 6

Verification

This chapter demonstrates the functionality of the estimation system designed in this
thesis. Firstly, the estimation system was tested in the realistic robotic simulator Gazebo.
A large number of simulations were performed to tune the parameters of the estimation system
and prepare it for real-world deployment. After successfully testing in the Gazebo simulator,
the system was verified by conducting real-world experiments. The UAV was cooperating with
the USV using estimations and predictions given by the estimation system proposed in this
thesis. During the verification, the estimation system provides state estimates at 10 Hz.

The USV state estimations are obtained using the Kalman filter (Chap. 2). The esti-
mated states are used to predict the future states using the mathematical model of the USV.
The prediction step of the Kalman filter is repeatedly applied to compute the desired num-
ber of predictions. Therefore, the estimation system proposes the estimation of current USV
states and also predicts the future states, that can be used by planning systems of the UAV.
In simulations, the UAV takes off from the pier and flies above position of the USV estimated
using the received data from the USV onboard sensors (Fig. 5.2). Then, the UAV follows the
USV using the Model Predictive Control (MPC) as a UAV trajectory planning algorithm [39].
The UAV also uses its onboard sensors to update the USV state estimations.

In order to verify the Kalman filters, the innovation tests presented in Sec. 2.4 for in-
dividual sensors were performed. The comparison of the estimated and predicted states with
the Ground Truth (GT) is given by the RMSE value (2.47). The test 1 called Innovation
magnitude bound test checks the consistency of the innovation ζ(k) (2.48) with its covariance
matrix S(k) (2.49). The Normalized innovation squared χ2 test (test 2) tries to prove un-
biasedness of the innovation by the computation of a sum of normalized innovation squared
q(k) (2.53) which should lie in the interval defined by the hypothesis H0 (2.54) for α = 0.05.
Test 3 uses a normalized time-averaged innovation correlation to show the whiteness of the
innovation. Therefore, test 3 is known as the Innovation whiteness test.

6.1 Linear Kalman filter verification in Gazebo simulator

The Linear Kalman filter (Sec. 2.1) verified in this section uses the linear USV model
(Sec. 3.3) extended by wave model (Sec. 3.4). The linear USV model uses wave model with
predefined frequencies (3.94). Thus the frequencies of waves used in the Gazebo simulator
have to be determined. The USV motion influenced by the waves is shown in Fig. 6.5 and 6.6.
Waves used in the Gazebo simulator have a frequency spectrum shown in Fig. 6.1 obtained
from the Discrete Fourier transform [100]. The wave frequency spectrum is an approximation
of the Pierson-Moskowitz spectrum (5.4) using the parameters ωp = 0.18 Hz and KH = 0.025.
The five most important frequencies according to their magnitude have been selected as wave
components in the linear USV model ω0L ∈ {0.1792, 0.2160, 0.1930, 0.1976, 0.1884} Hz.
The method to obtain the wave frequencies is proposed as
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Figure 6.1: Fourier spectrum of waves used in the Gazebo simulator with Pierson-Moskowitz
spectrum for ωp = 0.18 Hz and KH = 0.025.

1. select the number of wave components Nlc in the linear USV model,
2. initialize the wave component frequencies with arbitrary values,
3. estimate USV motion in waves for at least 60 s,
4. use Discrete Fourier transform to obtain a spectrum of estimated states as a time signal,
5. select the most important frequency components according to their magnitude,
6. set the obtained frequencies into the linear USV model,
7. repeat from step 3 until convergence of frequencies is reached.

6.1.1 Innovation tests of Linear Kalman filter

The innovation tests (Sec. 2.4) applied to the Linear Kalman filter on the USV states
η (3.1) are summarized in Table 6.1. The USV states η (3.1) consist of x, y, z positions and
roll ϕ, pitch θ, and yaw ψ angles. The tests are divided according to the individual sensors
with respect to the measured USV states (Table 3.1). Only the one selected sensor was used
in the Linear Kalman filter in its verification using the innovation tests. The percentage value
of test 1 should be approximately 95%. The q value of test 2 has to lie inside the interval
[qmin, qmax]. The value of test 3 should be at least 95%.

All the innovation tests of the GPS and the IMU sensor are satisfied (Table 6.1). The
test 1 and test 3 for the GPS sensor are shown in Fig. 6.2. The states (x, y, z) estimated
using the GPS sensors are shown in Fig. A.1. The GT is shown blue, the sensor data is in
yellow and the estimated values are in red named as Estimated (LKF ). The Fig. A.3 shows
the test 1 and test 2 for the IMU sensor. Result of the estimation of states (ϕ, θ, ψ) using
the IMU is shown in Fig. A.2. The graphs and test results for the GPS and the IMU prove
good estimation performance.

The test 1 of the UVDAR for states (x, y, z) reaches 100% (Table 6.1). Fig. 6.3a shows
that covariance ellipsoid is much bigger than mutual distances between individual innovation
samples. That is caused by an over-estimated UVDAR sensor covariance matrix R that has to
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handle peaks in the UVDAR measurements (see Fig. 6.4). As the UVDAR sensor covariance
matrix R is over-estimated, the value q in test 2 lies outside the interval defined by hypothesis
H0. The peaks in measurement also occur for states (ϕ, θ, ψ) measured by the UVDAR
system. The test 3 for states (x, y, z) and (ϕ, θ, ψ) in case of the UVDAR measurement
passed successfully. Graphs showing the estimation of states (x, y, z) (Fig. 6.4) and states
(ϕ, θ, ψ) (Fig. A.4) demonstrate performance of the Liner Kalman filter using the UVDAR
system suffering from peaks in measurement.

The AprilTag detector measuring states (x, y, z) and (ϕ, θ, ψ) successfully passes
all the tests (Table 6.1). Test 1 and test 3 of the AprilTag detector for states (x, y, z) and
(ϕ, θ, ψ) are shown in Fig. A.7 and in Fig. A.9 respectively. The estimation of states (x, y, z)
using the AprilTag detector is presented in Fig. A.6. The AprilTag measurements of states
(ϕ, θ, ψ) are noisy as shown in Fig. A.8. However, the Linear Kalman filter estimates the
states (ϕ, θ, ψ) precisely which is demonstrated in Fig. A.8.

Performed innovation tests verified that the Linear Kalman filter is consistent with the
obtained measurements from individual sensors. The covariance matrices of individual sensors
R and the covariance matrix of the model Q have been determined according to the results
of innovation tests (Sec. 2.4). As the Linear Kalman filter estimates the USV states using an
individual sensor, the next Sec. 6.1.2 presents the results of the estimation using the Linear
Kalman filter in which data of all the sensors is fused into one precise estimation.

sensor states test 1 test 2 (q of [qmin, qmax]) test 3

GPS (x, y, z) 98.18% 644.67 of [590.70, 733.08] 99.70%
IMU (ϕ, θ, ψ) 93.68% 1008.73 of [866.48, 1037.31] 98.53%
UVDAR (x, y, z) 100.0% 683.56 of [824.48, 991.31] 96.91%
UVDAR (ϕ, θ, ψ) 96.47% 830.38 of [824.48, 991.31] 99.34%
AprilTag (x, y, z) 96.66% 8701.39 of [8486.71, 9005.08] 97.27%
AprilTag (ϕ, θ, ψ) 95.46% 8800.21 of [8486.71, 9005.08] 98.46%

Table 6.1: Innovation tests applied to the Linear Kalman filter according to the individual
sensors.

(a) Innovation test 1.
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Figure 6.2: Innovation test 1 and test 3 of the Linear Kalman filter for states (x, y, z) using
the GPS measurements.
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(a) Innovation test 1.
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Figure 6.3: Innovation test 1 and test 3 of the Linear Kalman filter for states (x, y, z) using
the UVDAR measurements.
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Figure 6.4: Estimated states (x, y, z) by the Linear Kalman filter using the UVDAR mea-
surements.

CTU in Prague Department of Cybernetics



6. VERIFICATION 41/83

6.1.2 Estimation of USV states using Linear Kalman filter

The Table 6.2 presents the RMSE with respect to the sensors used for estimation of the
desired USV states. The best estimation of states (ϕ, θ, ψ) is achieved using the IMU data as it
has the smallest RMSE. The estimation of states (x, y, z) and corresponding linear velocities
(u, v, w) using GPS provides the results with the largest RMSE. A better estimation than
the GPS for states (x, y, z) and (u, v, w) is obtained using the UVDAR system. The RMSE
for states (x, y, z) is twice smaller using the UVDAR system than when using the GPS and
for states (u, v, w) the RMSE using the UVDAR system is a slightly smaller than when
using the GPS sensor. However for the states (ϕ, θ, ψ) and corresponding angular velocities
(p, q, r) the UVDAR has the largest RMSE from all the sensors. The smallest RMSE for
(x, y, z) and (u, v, w) is reached using the AprilTag detector. The estimation of states
(ϕ, θ, ψ) and (p, q, r) using the AprilTag provides two times smaller RMSE in comparison
with the UVDAR system. However, RMSE of the AprilTag for states (ϕ, θ, ψ) is still four
times larger than RMSE of the IMU for the same states.

Fusing data from all the sensors in the Linear Kalman filter provides a nice estimation
of the USV states as shown in Fig. 6.5 and 6.6. The graphs show that the GT of all the desired
USV states (x, y, z, u, v, w, ϕ, θ, ψ, p, q, r) is captured by the estimated states using
the Linear Kalman filter. The RMSE of estimation using all the sensors in the Linear Kalman
filter is provided in Table 6.2 in the last row. The RMSE of all the USV states is the lowest
for fusing all the data from sensors in comparison with the onboard measurement systems
(AprilTag and UVDAR) as they measure position (x, y, z) and orientation (ϕ, θ, ψ) of the
USV. The RMSE of all states for the IMU and the GPS is not provided because the GPS
is applicable only for the estimation of position (x, y, z) and corresponding linear velocities
(u, v, w), and the IMU is usable only for orientation (ϕ, θ, ψ) and corresponding angular
velocities (p, q, r). Overall, the estimation of all the USV states using data fusion from all
the sensors in the Linear Kalman filter provides better results than estimation using a single
sensor.

sensor
RMSE

(x, y, z)
RMSE

(ϕ, θ, ψ)
RMSE

(u, v, w)
RMSE
(p, q, r)

RMSE
all states

GPS 0.768 - 0.985 - -
IMU - 0.795 - 0.114 -
UVDAR 0.330 8.275 0.977 0.220 8.339
AprilTag 0.068 3.579 0.848 0.129 3.680
all sensors 0.090 1.437 0.171 0.050 1.451

Table 6.2: RMSE of estimated USV states using the Linear Kalman filter according to the
individual sensors.
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Figure 6.5: Estimated position (x, y, z) and orientation (ϕ, θ, ψ) of the USV using the Linear
Kalman filter.
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Figure 6.6: Estimated linear (u, v, w) and angular (p, q, r) velocities of the USV using the
Linear Kalman filter.
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6.1.3 Predictions using Linear Kalman filter

The previous Sec. 6.1.2 presents precise estimation of the USV states using the Linear
Kalman filter. In this section, the estimated USV states using the Linear Kalman filter and
the linear USV model are used to predict the future states of the USV. The two seconds
predictions of the USV states are computed every two seconds. Resulted predictions of states
(x, y, z) and (ϕ, θ, ψ) are shown in Fig. 6.7 and 6.8. The figures show that the predictions
deviate more from the GT at the beginning of the simulation. However, the predictions of the
USV states are more precise with the increasing time of estimation.

The RMSE of the predicted states is proposed in Table 6.3 in comparison with RMSE
of the subsequent estimates. The predictions of states (x, y, z, ϕ, θ, ψ) have ten times larger
RMSE than the estimated states. However, the RMSE of predictions for states (x, y, z)
corresponds to RMSE of estimation of these states using only GPS sensor (Table 6.2). The
RMSE of predictions for states (ϕ, θ, ψ) corresponds to RMSE of these states estimated
using UVDAR measurements (Table 6.2). These results prove the applicability of computed
predictions to UAV planning algorithm.

USV states
RMSE

(x, y, z)
RMSE

(ϕ, θ, ψ)
RMSE

(x, y, z, ϕ, θ, ψ)

predicted states 0.737 11.194 11.218
estimated states 0.090 1.437 1.440

Table 6.3: RMSE of predicted and estimated USV states using the Linear Kalman filter.
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Figure 6.7: Predicted and estimated position (x, y, z) of the USV using the Linear Kalman
filter.
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Figure 6.8: Predicted and estimated orientation (ϕ, θ, ψ) of the USV using the Linear Kalman
filter.

6.2 Unscented Kalman filter verification in Gazebo simulator

This section presents a verification of the Unscented Kalman filter (Sec. 2.3) that uses
the nonlinear USV model (Sec. 3.2) containing wave dynamics (Sec. 3.4). In contrast with
the Linear Kalman filter (Sec. 6.1), the nonlinear USV model does not need set frequencies of
individual components of the wave model (Sec. 3.4). The frequencies of wave model compo-
nents are directly influenced by the state xωN3 of the wave model (Sec. 3.4) that is estimated
during update steps of the Unscented Kalman filter. The Sec. 6.2.1 presents innovation tests
of the Unscented Kalman filter using individual sensors. The Sec. 6.2.2 proposes results of
an estimation of the USV states. The Sec. 6.2.3 demonstrates the usability of prediction steps
of the Unscented Kalman filter to predict future USV states.

6.2.1 Innovation tests of Unscented Kalman filter

The Table 6.4 contains results of the innovation tests applied to the Unscented Kalman
filter on USV states η (3.1) consisting of position x, y, z and angles: roll ϕ, pitch θ and yaw ψ.
The innovation tests are done in the same manner as for the Linear Kalman filter (Sec. 6.1.1).
The innovation tests are performed for individual sensors with respect to the USV states that
the sensors measure. In graphs, the estimated USV states using the Unscented Kalman filter
are called Estimated (UKF ). The results in Table 6.4 show that the GPS innovation passes
all innovation tests. The innovation test 1 and test 3 of the GPS are shown in Fig. 6.9 and
the estimated USV states (x, y, z) are in Fig. A.10. The IMU innovation also passes all
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the tests (Table 6.4). The Fig. A.12 displays the innovation test 1 and test 3 if the IMU is
used. Estimated states (ϕ, θ, ψ) using the IMU are proposed in Fig. A.11.

The UVDAR sensor is applied to estimate (x, y, z) as shown in Fig. A.13 and (ϕ, θ, ψ)
as shown in Fig. A.15. All the tests are satisfied when the UVDAR sensor is used (Table 6.4).
The innovation test 1 and test 3 for states (x, y, z) measured using the UVDAR are shown
in Fig. A.14. The Fig. A.16 presents the UVDAR innovation test 1 and test 3 for states
(ϕ, θ, ψ). The estimations of (x, y, z) and (ϕ, θ, ψ) using the AprilTag are presented
in Fig. A.17 and 6.11. As well as for previous sensors, all innovation tests for the AprilTag
innovations passed. The test 1 and test 3 of the AprilTag for states (x, y, z) are proposed in
Fig. A.18. The Fig. 6.10 shows the test 1 and test 3 of the AprilTag for states (ϕ, θ, ψ).

The results of the innovation tests for all the sensors demonstrate that covariance ma-
trices R for individual sensors and covariance matrix Q of the nonlinear USV model are
determined correctly (Sec. 2.4). Against the Linear Kalman filter (Sec. 6.1.1), the test 1 of
the Unscented Kalman filter for states (x, y, z) using the UVDAR does not reach 100%.
The sensor covariance matrix R for the UVDAR in case of the Unscented Kalman filter does
not have to be over-estimated as for the Linear Kalman filter.

sensor states test 1 test 2 (q of [qmin, qmax]) test 3

GPS (x, y, z) 98.96% 2162.16 of [1998.16, 2253.63] 99.81%
IMU (ϕ, θ, ψ) 93.10% 1040.71 of [893.23, 1066.56] 94.83%
UVDAR (x, y, z) 96.42% 571.28 [547.23, 684.56] 95.77%
UVDAR (ϕ, θ, ψ) 98.37% 590.67 of [547.23, 684.56] 99.02%
AprilTag (x, y, z) 99.06% 8568.12 of [8510.35, 9029.43] 95.30%
AprilTag (ϕ, θ, ψ) 93.57% 8725.63 of [8510.35, 9029.43] 97.67%

Table 6.4: Innovation tests applied to the Unscented Kalman filter according to the individual
sensors.

(a) Innovation test 1.
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Figure 6.9: Innovation test 1 and test 3 of the Unscented Kalman filter for states (x, y, z)
using the GPS measurements.
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(a) Innovation test 1.
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Figure 6.10: Innovation test 1 and test 3 of the Unscented Kalman filter for states (ϕ, θ, ψ)
using the AprilTag measurements.
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Figure 6.11: Estimated states (ϕ, θ, ψ) by the Unscented Kalman filter using the AprilTag
measurements.
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6.2.2 Estimation of USV states using Unscented Kalman filter

The RMSE according to the individual sensors used to estimate the desired USV states
is proposed in Table 6.5. The worst result from all the sensors in case of RMSE for states
(x, y, z) and (u, v, w) is provided by estimation using the GPS sensor. In contrast, the
estimations of states (ϕ, θ, ψ) and (p, q, r) using the IMU sensor achieve the best results
from all the sensors as the values of IMU RMSE for states (ϕ, θ, ψ) and (p, q, r) are the
lowest. The estimated USV states (x, y, z) and (u, v, w) using the UVDAR system have twice
smaller RMSE than states estimated by the GPS. However, the states (ϕ, θ, ψ) estimated
using the UVDAR system have ten times greater RMSE then estimations using the IMU. The
RMSE for states (p, q, r) is three times smaller for the IMU in comparison with the UVDAR.
The smallest RMSE for states (x, y, z) and (u, v, w) from all the sensors is achieved using
the AprilTag. However, the RMSE of the AprilTag for (ϕ, θ, ψ) is five times higher than
RMSE of the IMU. The RMSE for states (p, q, r) using the AprilTag is slightly higher than
RMSE for these states using the IMU.

The estimation of all USV states using the Unscented Kalman filter is presented in
Fig. 6.12 (states (x, y, z, ϕ, θ, ψ)) and Fig. 6.13 (states (u, v, w, p, q, r)). The estimated
values nicely catch the GT data as the Unscented Kalman filter fuses data from all sensors.
The last row of Table 6.5 provides RMSE of the estimated USV states using the Unscented
Kalman filter. The RMSE for all states has the lowest value for fusion data from all sensors
in comparison with onboard measurement systems — the AprilTag detector and the UVDAR
system.

The RMSE of estimated USV states using the Unscented Kalman filter (Table 6.5) is
lower than RMSE for the Linear Kalman filter (Table 6.2). Therefore, the Unscented Kalman
filter provides better estimation than the Linear Kalman filter. That is caused by the nonlinear
USV model (Sec. 3.2) used in the Unscented Kalman filter. The Linear Kalman filter uses the
linear USV model (Sec. 3.3) that comes as linearization of the nonlinear USV model (Sec. 3.2).
Thus, the linear USV model is less accurate when trying to capture dynamics of real USV.

sensor
RMSE

(x, y, z)
RMSE

(ϕ, θ, ψ)
RMSE

(u, v, w)
RMSE
(p, q, r)

RMSE
all states

GPS 0.681 - 0.837 - -
IMU - 0.653 - 0.087 -
UVDAR 0.289 7.055 0.385 0.248 7.075
AprilTag 0.046 3.517 0.146 0.092 3.634
all sensors 0.097 0.930 0.157 0.025 0.948

Table 6.5: RMSE of estimated USV states using the Unscented Kalman filter according to the
individual sensors.
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Figure 6.12: Estimated position (x, y, z) and orientation (ϕ, θ, ψ) of the USV using the
Unscented Kalman filter.
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Figure 6.13: Estimated linear (u, v, w) and angular (p, q, r) velocities of the USV using the
Unscented Kalman filter.
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6.2.3 Predictions using Unscented Kalman filter

The Unscented Kalman filter provides precise estimation of the USV states as presented
in Sec. 6.2.2. The estimated states can be used to predict future USV states applying the pre-
diction steps of the Unscented Kalman filter. Every two seconds, the USV states are predicted
for two seconds. The predicted USV states (x, y, z, ϕ, θ, ψ) are shown in Fig. 6.14 and 6.15.
The graphs in Fig. 6.14 and 6.15 demonstrate, that the Unscented Kalman filter is able to
estimate and predict the motion of the USV.

The RMSE of estimated and predicted USV states is presented in Table 6.6. The RMSE
of states (x, y, z, ϕ, θ, ψ) is five times larger for predicted states than for estimated ones.
However, the RMSE of predicted states (x, y, z) corresponds to the RMSE of estimated states
(x, y, z) using only the GPS sensor (Table 6.5). The RMSE of predicted states (ϕ, θ, ψ) is
smaller than RMSE of estimated states (ϕ, θ, ψ) using the UVDAR (Table 6.5). However,
RMSE of predicted states (ϕ, θ, ψ) is still larger than the RMSE of these states estimated
by the AprilTag detector (Table 6.5).

USV states
RMSE

(x, y, z)
RMSE

(ϕ, θ, ψ)
RMSE

(x, y, z, ϕ, θ, ψ)

predicted states 0.647 4.613 4.659
estimated states 0.097 0.930 0.935

Table 6.6: RMSE of predicted and estimated USV states using the Unscented Kalman filter.
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Figure 6.14: Predicted and estimated position (x, y, z) of the USV using the Unscented
Kalman filter.
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Figure 6.15: Predicted and estimated orientation (ϕ, θ, ψ) of the USV using the Unscented
Kalman filter.

6.3 Comparison of Linear and Unscented Kalman filter

The main difference between the Linear Kalman filter and Unscented Kalman filter is
in the USV model. The Unscented Kalman filter uses the nonlinear USV model extended
by the nonlinear wave model (Sec. 3.2 and 3.4). The Linear Kalman filter uses the linear
USV model obtained by linearization of the nonlinear USV model (Sec. 3.3). The linear USV
model is extended by the linear wave model (Sec. 3.4). The Sec. 2.1 presents the algorithm
of the Linear Kalman filter as a set of matrix equations. The Unscented Kalman filter uses
the unscented transformation that enables to use the nonlinear USV model. Algorithm of the
Unscented Kalman filter is presented in Sec. 2.3.

The innovation tests of Linear Kalman filter are presented in Sec. 6.1.1. The innovation
tests demonstrate that estimations using the Linear Kalman filter are consistent with the
sensor’s measurements. However, test 1 of the UVDAR system for states (x, y, z) reaches
a value 100%, but this value should be around 95%. The sensor covariance matrix R in the
Linear Kalman filter for states (x, y, z) measured by the UVDAR system is over-estimated.
The reason is high peaks in UVDAR measurements (Fig. 6.4) which must not affect the esti-
mation. The innovation tests of the Unscented Kalman filter proposed in Sec. 6.2.1 prove that
estimations using the Unscented Kalman filter are consistent with the sensor’s measurements.
The UVDAR measurements still contain the peaks (Fig. A.13). However, the sensor covari-
ance matrix R of the UVDAR system in the Unscented Kalman filter for states (x, y, z) is
not over-estimated as the value of test 1 is 96.42%.
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The RMSE of the Linear Kalman filter using all sensors for the estimation is 1.451
(Table 6.2). However, the Unscented Kalman filter achieves better results as its RMSE using
all sensors is 0.948 (Table 6.5). The difference is mainly caused by estimating orientation
(ϕ, θ, ψ). The Linear Kalman filter has RMSE of the orientation 1.437. However, the RMSE
of orientation estimated by the Unscented Kalman filter is 0.930. Therefore, the Unscented
Kalman filter provides a more precise estimation of the USV orientation (ϕ, θ, ψ). The reason
is that the Unscented Kalman filter uses the nonlinear USV model that better captures the
USV motion dynamics.

The predictions computed using the Linear Kalman filter are presented in Sec. 6.1.3.
The RMSE of predicted states using the Linear Kalman filter is 11.218 (Table 6.3). However,
the RMSE of predictions using the Unscented Kalman filter is 4.659 (Table 6.6), which is
lower than for the Linear Kalman filter. The difference between these two values of RMSE
is again caused by RMSE of the USV orientation (ϕ, θ, ψ). The RMSE of predicted states
(ϕ, θ, ψ) using the Unscented Kalman filter is 4.613 (Table 6.6). However, the RMSE of
predicted states (ϕ, θ, ψ) using the Linear Kalman filter is 11.194 (Table 6.3).
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Chapter 7

Real-world experiments

After a successful verification in the realistic robotic simulator Gazebo, the estimation
system designed in this thesis was deployed in real-world experiments. The experiments took
place in the Czech republic by the Vltava river. The place of real-world experiments is shown
in Fig. 7.1. The estimation system designed in this thesis was implemented into MRS system
containing the MPC controller [39] that is used as a trajectory planning algorithm for the
UAV. Videos documenting real-world experiments are available at http://mrs.felk.cvut.
cz/theses/novak2022.

In the first scenario (Sec. 7.1), the UAV followed the moving USV. The USV moved
in the water arbitrarily, and its motion also included a small wave excitation. The proposed
estimation system of the USV states used data from sensors presented in Chap. 4 and com-
puted the estimations and prediction of the USV states. The trajectory planning algorithm
received the estimations and predictions of the USV states. Then the trajectory planning algo-
rithm aligned the UAV trajectory with the current estimated USV states and the subsequent
predictions of the USV states.

The second scenario (Sec. 7.2) demonstrated the ability of the UAV to take off from
the ground and fly above the USV using an estimation of the USV states from data taken by
sensors which are located onboard USV. The estimations and following predictions were then
improved using data from the UAV onboard measurement systems — the AprilTag detector
and the UVDAR system. The trajectory planning algorithm running onboard the UAV created
a trajectory to land on the USV based on predicted states of the USV.

The third scenario (Sec. 7.3) was a combination of the previous two scenarios. The UAV
took off and flew above the USV whose states were estimated using received data from the
USV onboard measurement systems. Then the UAV followed the moving USV using estimated
and predicted states of the USV. During the USV following, the UAV used the predicted USV
states to select the moment for landing. Finally, the UAV landed on the estimated landing
platform located on the USV.

Figure 7.1: Place of real-world experiments in the Czech republic by the Vltava river.
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The UAV used in real-world experiments is presented in Fig. 7.2. The UAV is Tarot
t650 constructed by the MRS group that is the same type as used in simulations (Sec. 5.2).
The UAV is equipped with the necessary sensors for the estimation system of USV states
presented in this thesis. The RealSense for the AprilTag detector and the UV camera for the
UVDAR system, both pointing down, are located below the case with the computing unit
as shown in Fig. 7.2. The UAV also carries a GPS module to obtain its position in GPS
coordinates that is used to include incoming USV GPS data into the estimation system of the
USV states.

The Fig. 7.3 shows the USV with a landing platform used in real-world experiments.
The sensors placed on the landing platform are defined in Chap. 4. The AprilTag is put in
the center of the landing platform. The four UV LEDs are located around the perimeter of
the AprilTag, and one UV LED is placed in the center of AprilTag (Sec. 4.2.1). Next to the
AprilTag with UV LEDs, the MRS boat unit is installed. The MRS boat unit contains a GPS
module and a IMU sensor.

Figure 7.2: The UAV used in real-world experiments.

Figure 7.3: The USV with the landing platform used in real-world experiments.
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7.1 Following USV

Estimation of the USV states during the process of the USV being followed by the UAV
is presented in this section. Firstly, the UAV moved above the USV while the USV states are
estimated using received GPS and IMU data from the USV. Then, the UAV onboard sensors
improved the estimation of the USV states. The USV was moving while the UAV flew above
it. The UAV followed the USV at a constant altitude. As the estimation system of the USV
states provides the predictions of future USV states, the UAV planned trajectory according to
predicted USV states to keep the USV in the proximity of the UAV onboard sensors. The USV
was manually influenced to imitate waves acting on the USV (see video1). Snapshots from
this real-world experiment are shown in Fig. 7.4.

The Fig. 7.5 presents the estimated USV states x, y, z, roll ϕ, pitch θ, and yaw ψ using
the Linear and Unscented Kalman filter. The onboard UAV sensors provided the first data at
time t = 30 s that improved the estimation of the USV states, especially in the z position.
The graphs of roll ϕ and pitch θ contain the motion caused by the person imitating wave
excitation. The pitch was influenced from 37 s to 130 s. Then the roll was affected from 130 s
to 200 s. The pitch was again influenced from 200 s to 264 s. Both Kalman filters captured these
motions in their estimations. The graphs of roll, pitch, and yaw do not contain the UVDAR
and AprilTag measurements because these measurements are very noisy. The graphs of roll,
pitch, and yaw including UVDAR and AprilTag measurements are proposed in Fig. B.1.

(a) time t = 70 s (b) time t = 155 s

(c) time t = 160 s (d) time t = 218 s

Figure 7.4: Snapshots from the real-world experiment in which the UAV followed the USV.

1http://mrs.felk.cvut.cz/theses/novak2022
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Figure 7.5: Estimation of the USV states (x, y, z, ϕ, θ, ψ) using the Linear Kalman filter
(LKF) and the Unscented Kalman filter (UKF) while the UAV followed the USV.
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7.2 Landing on USV

In this real-world experiment, the UAV autonomously took off and flew to the altitude
of 8 m to x, y positions of the USV estimated using data received from the USV onboard
sensors — the GPS and the IMU. After time t = 20 s (Fig. 7.7) the UAV got close to the USV
and the estimated states were updated using measurements from the UAV onboard sensors —
the UVDAR and the AprilTag. The USV moved only slightly as it was anchored on the water
surface. The UAV hovered above the USV for 20 s. Thereafter the UAV successfully landed
in the center of the landing platform on the USV using estimated USV states (see video1).

The graphs of USV states x, y, z, roll ϕ, pitch θ and yaw ψ estimated using the Linear
and Unscented Kalman filter are proposed in Fig. 7.7. The graphs of position (x, y, z) prove
the importance of using onboard UAV sensors to estimate USV states in case of a landing.
Data of the GPS drifted up to 2 m compared to the onboard sensors. The graphs in Fig. 7.7
also show that the UVDAR measurements of z, roll, pitch, yaw and AprilTag measurements
of roll and pitch were very noisy. However, the Linear and Unscented Kalman filter handled
the situation well. The UAV landed on the USV at time t = 53 s. After this moment, the UAV
onboard sensors did not propose measurements as they did not see desired markers in their
camera frames. Therefore, the estimated USV states converged to measurements obtained
from the GPS and the IMU placed on the USV. The Fig. 7.6 proposes the snapshots of this
real-world experiment.

(a) time t = 10 s (b) time t = 14 s

(c) time t = 40 s (d) time t = 53 s

Figure 7.6: Snapshots from the real-world experiment in which the UAV landed on the USV.
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Figure 7.7: Estimation of the USV states (x, y, z, ϕ, θ, ψ) using the Linear Kalman filter
(LKF) and Unscented Kalman filter (UKF) while the UAV landed on the USV.
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7.3 Following and landing

This real-world experiment is combination of previous two scenarios Sec. 7.1 and 7.2.
Firstly, the UAV flew above the USV and estimated the USV states only using data received
from the USV onboard sensors — the GPS and the IMU. After the UAV onboard sensors
(UVDAR system and AprilTag detector) detected desired markers in their camera frames,
the measurements from these UAV onboard sensors improved the estimations of the USV
states. The UAV followed the USV for 98 s using the estimated and predicted USV states
while the USV was moving. The USV was slowly towed by another boat. While following the
USV, the UAV was looking for good conditions to land on the USV and canceled the landing
maneuver whenever the landing was inconvenient for the UAV. At time t = 142 s, the UAV
successfully landed on the USV. The whole experiment is captured on video1.

The estimations of the USV states during this real-world experiment are presented in
Fig. 7.9. The graphs of the USV states show that the Linear and Unscented Kalman filter
estimated the motion of the USV nicely. The UAV onboard sensors started providing data at
time t = 45 s and improved an estimation of the USV states which is obvious especially in
graph of the USV state z. As in the previous two real-world experiments (Sec. 7.1 and 7.2),
the UVDAR measurements of z, roll, pitch, yaw and AprilTag measurements of roll and pitch
were very noisy. However, the Linear and Unscented Kalman filter filtered the noise out and
provided smooth estimation of the USV states. The snapshots of this real-world experiment
are shown in Fig. 7.8.

(a) time t = 83 s (b) time t = 138 s

(c) time t = 141 s (d) time t = 162 s

Figure 7.8: Snapshots from the real-world experiment in which the UAV followed the USV
and then landed on it.
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Figure 7.9: Estimation of the USV states (x, y, z, ϕ, θ, ψ) using the Linear Kalman filter
(LKF) and Unscented Kalman filter (UKF) while the UAV followed the USV and then landed
on it.
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Chapter 8

Conclusion

In this thesis, an UAV onboard estimation system of the USV states has been de-
veloped. The estimation system is able to estimate and predict the USV states on a wavy
water surface. Two types of Kalman filters were selected as state estimators — the Linear
Kalman filter and the Unscented Kalman filter. The Unscented Kalman filter uses the de-
signed nonlinear USV model extended by a nonlinear model of waves. The nonlinear USV
model, including the wave model, was linearized and provided to the Linear Kalman filter.
A precise robust estimation is performed by fusing data from multiple sensors. The first group
of sensors consisting of the GPS and the IMU is placed directly on the USV. The data from
these sensors is sent to the UAV using a wireless communication link. Two sensors — the
UVDAR system and the AprilTag detector — located onboard the UAV form the second
group. The selected sensors enable estimations of all considered USV states. The estimation
system was integrated into a UAV control system developed by the Multi-robot Systems
group at Czech Technical University (CTU) in Prague. Performance of the presented estima-
tion system was verified in the realistic robotic simulator Gazebo. The results were analyzed
in detail, and the estimation performances of the Linear Kalman filter and the Unscented
Kalman filter were compared. The presented mathematical USV model and the estimated
USV states were also used to predict future USV states. The developed estimation system
was also verified by conducting real-world experiments. The performance of the estimation
system was demonstrated in different application scenarios in which the UAV followed the
USV and then landed on it. The multimedia materials complementing this thesis are available
at: http://mrs.felk.cvut.cz/theses/novak2022.

The assignment of this thesis has been successfully completed. To summarize, the fol-
lowing points have been accomplished.

• The Linear Kalman filter and the Unscented Kalman filter selected as state estimators
have been studied in Chap. 2. This chapter also contains methods to verify each filter’s
performance.

• A nonlinear model of the USV used by the Unscented Kalman filter is presented in
Chap. 3. A linear model of the USV used by the Linear Kalman filter is derived from
the presented nonlinear model. Both models are then extended by the wave model.

• The selected sensors used by the estimation system are presented in Chap. 4.
• The Chap. 5 focuses on the integration of the estimation system into the MRS system.
This chapter also described the simulation environment in the Gazebo simulator used
for verification.

• The verification of the designed estimation system is presented in Chap. 6. The esti-
mation performance of the Linear Kalman filter and the Unscented Kalman filter are
analyzed and compared.

• The estimation system was also verified by conducting real-world experiments that are
presented in Chap. 7.
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8.1 Future work

Future research can head in several directions. For instance, different state estimation
methods can be used, e.g., Cubature Kalman filter, Particle filter, and Adaptive filter. Re-
searchers can also focus on data-driven state estimation methods based on neural network
learning. The estimation system can be extended by a real-time system to determine the wave
parameters that can be directly put into the wave model. A different USV model influenced
by waves can be designed to describe reality more precisely and predict future states more
accurately.
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Appendix A

Verification

GPS – Linear Kalman filter verification – position
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Figure A.1: Estimated states (x, y, z) by the Linear Kalman filter using the GPS measure-
ments.
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IMU – Linear Kalman filter verification – orientation
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Figure A.2: Estimated states (ϕ, θ, ψ) by the Linear Kalman filter using the IMU measure-
ments.
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Figure A.3: Innovation test 1 and test 3 of the Linear Kalman filter for states (ϕ, θ, ψ) using
the IMU measurements.
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UVDAR – Linear Kalman filter verification – orientation
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Figure A.4: Estimated states (ϕ, θ, ψ) by the Linear Kalman filter using the UVDAR mea-
surements.
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Figure A.5: Innovation test 1 and test 3 of the Linear Kalman filter for states (ϕ, θ, ψ) using
the UVDAR measurements.
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AprilTag – Linear Kalman filter verification – position

60 65 70 75 80 85

time (s)

8

9

10

x
 (

m
)

60 65 70 75 80 85

time (s)

-39.6

-39.4

-39.2

-39

y
 (

m
)

60 65 70 75 80 85

time (s)

0

1

2

z
 (

m
)

GT AprilTag Estimated (LKF)

Figure A.6: Estimated states (x, y, z) by the Linear Kalman filter using the AprilTag mea-
surements.

(a) Innovation test 1.
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Figure A.7: Innovation test 1 and test 3 of the Linear Kalman filter for states (x, y, z) using
the AprilTag measurements.
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AprilTag – Linear Kalman filter verification – orientation
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Figure A.8: Estimated states (ϕ, θ, ψ) by the Linear Kalman filter using the AprilTag mea-
surements.
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Figure A.9: Innovation test 1 and test 3 of the Linear Kalman filter for states (ϕ, θ, ψ) using
the AprilTag measurements.
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GPS – Unscented Kalman filter verification – position
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Figure A.10: Estimated states (x, y, z) by the Unscented Kalman filter using the GPS mea-
surements.
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IMU – Unscented Kalman filter verification – orientation
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Figure A.11: Estimated states (ϕ, θ, ψ) by the Unscented Kalman filter using the IMU
measurements.
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Figure A.12: Innovation test 1 and test 3 of the Unscented Kalman filter for states (ϕ, θ, ψ)
using the IMU measurements.
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UVDAR – Unscented Kalman filter verification – position
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Figure A.13: Estimated states (x, y, z) by the Unscented Kalman filter using the UVDAR
measurements.
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Figure A.14: Innovation test 1 and test 3 of the Unscented Kalman filter for states (x, y, z)
using the UVDAR measurements.
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UVDAR – Unscented Kalman filter verification – orientation
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Figure A.15: Estimated states (ϕ, θ, ψ) by the Unscented Kalman filter using the UVDAR
measurements.
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Figure A.16: Innovation test 1 and test 3 of the Unscented Kalman filter for states (ϕ, θ, ψ)
using the UVDAR measurements.
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AprilTag – Unscented Kalman filter verification – position
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Figure A.17: Estimated states (x, y, z) by the Unscented Kalman filter using the AprilTag
measurements.

(a) Innovation test 1.
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Figure A.18: Innovation test 1 and test 3 of the Unscented Kalman filter for states (x, y, z)
using the AprilTag measurements.
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Appendix B

Real-world experiments
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Figure B.1: Estimation of the USV states (x, y, z, ϕ, θ, ψ) using the Linear Kalman filter
(LKF) and Unscented Kalman filter (UKF) while the UAV followed the USV.
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Appendix C

CD Content

The names of all root directories on the attached CD are listed in Table C.1.

Directory name Description

thesis.pdf thesis in pdf format
sources/thesis LATEX source codes
sources/usves software source codes
videos videos from real-world experiments

Table C.1: CD Content
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Appendix D

List of abbreviations

In Table D.1 are listed abbreviations used in this thesis.

Abbreviation Meaning

CTU Czech Technical University

DOF Degree of Freedom

GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

LTI Linear time-invariant

MAV Micro Aerial Vehicle

MPC Model Predictive Control

MRS Multi-robot Systems

ROS Robot Operating System

RTK Real-time Kinematics

UAV Unmanned Aerial Vehicle

USV Unmanned Surface Vehicle

RMSE Root Mean Square Error

UVDAR UltraViolet Direction And Ranging

UV UltraViolet

VRX Virtual RobotX

WAM-V Wave Adaptive Modular Vessel

GT Ground Truth

UTM Universal Transverse Mercator

Table D.1: List of abbreviations
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