
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Detection of Microscopic Fungi and Yeast in
Clinical Samples

Jakub Paplhám

Supervisor: Ing. Vojtěch Franc, Ph.D.
Field of study: Cybernetics & Robotics
May 2022

ii

Acknowledgements
First and foremost, I would like to thank
my supervisor, Ing. Vojtěch Franc, Ph.D.,
for his guidance, patience, and invaluable
feedback.

My sincere thanks also go to MUDr.
Daniela Lžičařová for collecting the
dataset, providing expert insight into the
task, and for continued interest in the
project.

My heartfelt gratitude goes to my
family, mother, brother, sister, and
father, who has always been and always
will be an inspiration to me.

Thank you also to my girlfriend
Helena for her support and for putting
up with me working long days instead of
spending time with her.

Finally, I’d like to express my heartfelt
gratitude to my friends.

I gratefully acknowledge the Center
for Machine Perception’s assistance in
providing computational resources for
this project.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, 19. May 2022

iii

Abstract
Early detection of yeast and filamentous
fungi in clinical samples is critical in treat-
ing patients predisposed to severe infec-
tions caused by these organisms. The pa-
tients undergo regular screening, and the
gathered samples are manually examined
by trained personnel.

This thesis investigates the use of deep
neural networks to detect filamentous
fungi and yeast in the clinical samples to
simplify the work of the human operator
by filtering out samples that are clearly
negative and presenting the operator with
only samples suspected of containing the
contaminant.

Domain-specific data augmentation
techniques utilizing Poisson image editing
and gradient-based localization are pro-
posed to alleviate the scarcity of the data,
and the model performance is compared
against expert and novice level humans.

State-of-the-art models are success-
fully used to detect the contaminant.
The method achieves human-level perfor-
mance, theoretically reducing the amount
of manual labor by 86.9%, given a true
positive rate of 99%.

Keywords: filamentous fungi, yeast,
convolutional neural networks,
automated detection, automated
microscopy, fluorescence staining, Poisson
image editing, gradient-based localization

Supervisor: Ing. Vojtěch Franc, Ph.D.
Katedra kybernetiky, ČVUT FEL
Na Zderaze 269/4,
121 35 Praha 2

Abstrakt
Včasná detekce kvasinek a vláknitých hub
v klinických vzorcích má zásadní význam
pro léčbu pacientů náchylných k závažným
infekcím způsobeným těmito organismy.
Pacienti podstupují pravidelný screening
a odebrané vzorky jsou manuálně vyšet-
řovány školeným personálem.

Tato práce se zabývá využitím hlubo-
kých neuronových sítí k detekci vláknitých
hub a kvasinek v klinických vzorcích, za
účelem zjednodušení práce lidské obsluhy
tím, že se nejprve odfiltrují vzorky, které
jsou jednoznačně negativní, a obsluze se
následně předloží pouze vzorky s podezře-
ním na obsah kontaminantů.

Pro zmírnění nedostatku dat jsou v
práci navrženy techniky rozšíření dat spe-
cifické pro tuto úlohu, které využívají Po-
issonovu úpravu obrazu a lokalizaci zalo-
ženou na gradientu. Funkčnost modelu je
následně srovnána s odborníky a začáteč-
níky.

K detekci kontaminantu jsou úspěšně
použity state-of-the-art modely. Metoda
dosahuje výsledků na úrovni člověka a te-
oreticky snižuje množství manuální práce
o 86.9% při sensitivitě 99%.

Klíčová slova: vláknité houby, kvasinky,
konvoluční neuronové sítě, automatická
detekce, automatizovaná mikroskopie,
fluorescenční barvení, Poissonova úprava
obrazu, lokalizace založená na gradientu

Překlad názvu: Detekce
mikroskopických hub v klinickém
materiálu

iv

Contents
1 Introduction 1
2 The State-of-the-art 5
2.1 Deep Learning for Image

Classification . 5
2.1.1 Model Architectures 5
2.1.2 Data Augmentation 6

2.2 Relevant Medical Applications . . . 7
2.2.1 Prior Research 7
2.2.2 Summary 9

3 Methods 11
3.1 Dataset . 11
3.2 Classification 13
3.3 Metrics . 15

3.3.1 Saved Time Metric 15
3.4 Implementation Details 18

3.4.1 Models 18
3.4.2 Optimizer Settings 19
3.4.3 Data Augmentation 20

3.5 Domain-Specific Augmentation . 20
3.5.1 Positive Sample Augmentation 21
3.5.2 Negative Sample

Augmentation 24
3.6 Evaluation Protocol 26

3.6.1 K-Fold Construction 26
3.6.2 Saved Time Metric 28
3.6.3 Inference Time 30

4 Experiments & Results 31
4.1 Baseline Development 31

4.1.1 Image Scale 31
4.1.2 Effects of Data Augmentation 32
4.1.3 Transfer Learning 34
4.1.4 Freezing Layers 35
4.1.5 Image Color Space 36
4.1.6 Performance of the Baseline

Model . 38
4.2 Model Architecture Search 39

4.2.1 Alternative Architectures . . . 39
4.2.2 Ensemble of Multiple

Architectures 43
4.3 Domain-Specific Augmentations 46

4.3.1 Poisson Augmentation of
Fluorescent Stained Positive
Samples . 46

4.3.2 Blur Augmentation of Positive
Samples with Localization Map. . 47

4.3.3 Poisson Augmentation of
Negative Samples with Localization
Map . 50

4.3.4 Poisson Augmentation of
Negative & Positive Samples 54

4.4 Learning Curve 55
4.5 Influence of Difficult Samples on

the Metric . 57
4.6 Inference Time 60
4.7 Human-Machine Comparison . . . 64
5 Discussion 67
6 Conclusion 69
Bibliography 71
Acronyms 75
Glossary 77
A Pretrained Model Weights 79
B Module List 81
C Project Specification 83

v

Figures
1.1 Positive images 3
1.2 Negative images 3
1.3 Single yeast cell induces positive

classification . 3

3.1 Imaging artifacts 12
3.2 Binary classifier sensitivity 17
3.3 Saved time metric of binary

classifier: Gaussian distribution . . . 18
3.4 Saved time metric in 2-D 19
3.5 Extraction of binary mask 23
3.6 Poisson augmentation 23
3.7 Inpainting methods 23
3.8 Inpainting yeast 24
3.9 Blur augmentation 25
3.10 Fungi-like negative image 27
3.11 Negative Poisson augmentation 27
3.12 K-Fold construction 28
3.13 Saved time metric variants 30

4.1 Dependence of the saved time
metric on image scale: 1 33

4.2 Dependence of the saved time
metric on image scale: 2 33

4.3 Saved time metric of grayscale and
RGB model variants 38

4.4 Saved time metric of baseline . . . 39
4.5 Saved time metric of baseline for

high sensitivity 40
4.6 ROC curve of baseline 41
4.7 Saved time metric of multiple

models . 42
4.8 Saved time metric of multiple

models for high sensitivity 42
4.9 Saved time metric of ensemble . . 45
4.10 Saved time metric of the ensemble

for high sensitivity 45
4.11 Saved time metric of ensemble

variants . 46
4.12 Effect of Poisson augmentation on

the saved time metric 48
4.13 Effect of Poisson augmentation on

the saved time metric of EfficientNet 48
4.14 Effect of blur augmentation on

the saved time metric 51
4.15 Example of the FGSM adversarial

attack . 52

4.16 Performance of models when
subject to the FGSM adversarial
attack . 53

4.17 Effect of Poisson augmentation of
negative samples on the saved time
metric . 54

4.18 Effect of Poisson augmentation of
positive and negative samples on the
saved time metric 56

4.19 Typical learning curve 58
4.20 Saved time metric depending on

the size of the dataset 58
4.21 Learning curve 59
4.22 Volatility of the saved time

metric . 61
4.23 Volatility of the saved time metric

for the ensemble of models 62
4.24 Inference time of models 63
4.25 Throughput of models 64
4.26 Human-Machine performance

comparison: 1 65
4.27 Human-Machine performance

comparison: 2 66
4.28 Human-Machine comparison on

ROC . 66

vi

Tables
3.1 Dimensions of images in the

dataset. 12
3.2 The standard training protocol

used for experiments. 20

4.1 Saved time metric dependence on
data augmentations 35

4.2 Saved time metric of grayscale and
RGB model variants 38

4.3 Saved time metric of multiple
model architectures 43

4.4 Saved time metric of the ensemble 44
4.5 Weights of ensemble components 44
4.6 Saved time metric of the optimal

ensemble . 44
4.7 Effect of Poisson augmentation on

the saved time metric 47
4.8 Effect of Poisson augmentation on

the saved time metric of EfficientNet 49
4.9 Effect of blur augmentation on the

saved time metric 50
4.10 Effect of Poisson augmentation of

negative samples on the saved time
metric . 54

4.11 Effect of Poisson augmentation of
positive and negative samples on the
saved time metric 56

4.12 Inference time of models 63

A.1 Pretrained model weights 79

vii

Chapter 1
Introduction

Early detection of yeast and filamentous fungi in clinical samples is critical in
treating patients predisposed to severe infections caused by these organisms.
Fluorescence microscopy is a suitable method for this detection, where after
application to a slide, the material is stained with a fluorescent dye (e.g.,
Calcofluor White), which binds to chitin contained in the fungal cell wall. This
staining process is non-specific, as other structures that may occur accidentally
in the sample (e.g., dust, pollen, arthropods) can also bind the dye. The
samples commonly consist of respiratory secretions or non-invasive tissue
biopsy samples; the aforementioned foreign bodies are therefore routinely
present.

Severe infections caused by filamentous fungi are sporadic but severe;
thus, patients with a risk factor undergo regular screening. It follows that a
considerable number of slides must be carefully examined, most of which do
not contain yeast or filamentous fungi. Fungi and yeast cells are currently
detected manually by trained personnel based on their typical morphology.
Laboratory staff then spend a significant amount of time examining negative
samples, which leads to job dissatisfaction, and development of musculoskeletal
disorders caused by repetitive stress injuries, [George, 2010].

Further, there has recently been an increase in demand for clinical screening
as evidence has shown an association between severe respiratory diseases
and fungal infections, e.g., prevalent pulmonary aspergillosis in patients with
acute respiratory distress syndrome, [Lai and Yu, 2021]. The combination of
increased demand and a shortage of skilled personnel1 [Garcia et al., 2021]
makes the detection of fungal infections an ideal candidate for automation.

Automatic detection and diagnosis of infectious diseases from clinical
samples is an area of ongoing research. Classically, the automation was
performed by detecting specific morphological attributes of fungi and other
manually designed features in microscopic images and yielded unsatisfactory
results. With the advent of machine learning, manually designed methods
were gradually replaced by deep learning, particularly by convolutional neural
networks (CNNs).

Recently, automated slide scanners were used for slide imaging and CNNs

1The worker shortage is reported by The American Society for Clinical Pathology;
however, the expert consensus is that similar issues are present in Europe.

1

1. Introduction
for evaluation of the data. This allowed for fully automatic detection and
classification of bacteria in Gram stains of blood culture, [Smith et al., 2018],
and detection of intestinal protozoa in trichrome stained stool samples,
[Mathison et al., 2020]. Gram staining dyes were also applied to samples
containing yeast and yeast-like fungi, allowing their successful classifica-
tion, [Zieliński et al., 2020]. Perhaps most similar to the goals of this work,
[Gao et al., 2021] fully automate the process of scanning and classification of
fluorescent stained skin samples containing fungi.

This work was done in collaboration with Motol University Hospital, whose
staff amassed a unique dataset of fluorescence microscopy images over a
period of several years in order to develop an automated system to detect
microscopic filamentous fungi and yeast. The ultimate goal is to develop a
fully automated system that reduces the amount of manual work by using
an automated slide scanner and an automatic classifier. The automated
system’s mode of operation would be to filter out samples that are easily
distinguishable as negative and present the remaining potentially positive
samples to a medical expert for verification. An example of positive and
negative images is shown in Figures 1.1 and 1.2 respectively.

This work’s goal is to be an intermediate step toward the creation of the
automated system. The work’s contributions are the following:. proof-of-concept detector based on deep CNNs is created,. novel data augmentation techniques specific to the task are proposed,. performance of the developed model is evaluated and compared against

expert and novice level humans.

The main challenges of the work are twofold: (i) the amount of available
data is relatively low, and (ii) positive and negative images have a high degree
of similarity. The dataset contains high-resolution images, which are a priori
assumed to be negative. The images become positive when structures specific
to the contaminant are detected, even if low-resolution and present only in
a small portion of the image, i.e., a positive and a negative image can be
identical except for a small region of the image. An example of such a case,
when the contaminant is present in a very small portion of the image, is
shown in Figure 1.3.

The structure of the thesis is as follows. Chapter 2 examines state-of-the-art
approaches to medical image classification. The methodology is described
in Chapter 3. The experiments and their results are described in Chapter 4.
Chapter 5 discusses the findings and Chapter 6 concludes the thesis.

2

......................................1. Introduction

Figure 1.1: Example of positive images from the dataset.

Figure 1.2: Example of negative images from the dataset.

Figure 1.3: Except for a single budding yeast cell, there is no contaminant in
the image. The yeast cell takes up only a small portion of the image, but it is
entirely responsible for the final classification.

3

4

Chapter 2
The State-of-the-art

Historically, machine learning techniques have attained promising results on
a wide range of problems. Still, they have not been widely used in med-
ical diagnostics due to a lack of trust in a machine’s decisions regarding
human health. However, as data-driven methods began to outperform hu-
man capabilities, these automated techniques gradually crept into medical
image diagnostics, where they are successfully used to detect a wide range
of diseases. Models trained on the ChestX-ray8 dataset, [Wang et al., 2017],
facilitate early detection of common thorax diseases from chest radiogra-
phy. Images of dermatoscopic melanoma, [Rotemberg et al., 2020], enable
discerning between benign and malign skin lesions, and histopathological
images collected by [Koziarski et al., 2021] allow for reliable prostate cancer
detection. [Ali et al., 2020] implement a deep-learning-based system capable
of early heart disease detection.

The distrust of having a machine make decisions about one’s health has
somewhat diminished, and deep learning has become common practice in
many healthcare facilities.

This chapter reviews state-of-the-art approaches to image classification,
Section 2.1, and successful application of these methods to tasks similar to
the detection of microscopic fungi and yeast in clinical samples, Section 2.2.

2.1 Deep Learning for Image Classification

2.1.1 Model Architectures

Image classification has been dominated by CNNs since the victory of AlexNet,
[Krizhevsky et al., 2012], in the 2012 ImageNet competition. CNNs have
become increasingly popular each year, and significant breakthroughs have
been made both in the design of the networks and in the training procedure.

It was discovered that the performance of CNNs improves when more layers
are added. Training deep networks was, however, complicated. The skip-
connections introduced in the ResNet architecture, [He et al., 2016a], allowed
for easy training of these deep networks, and yet deeper models continued to
be developed. A race started of who could train the most extensive network.
The state-of-the-art models grew from millions of parameters to hundreds

5

2. The State-of-the-art..................................
of millions. Still, the diminishing returns motivated the researchers to shift
their interest to discovering more efficient architectures.

[Tan and Le, 2019] show that increasing the depth, width, and resolution
of the network in unison is superior to increasing the depth in isolation. They
propose EfficientNet, a CNN architecture that outperforms previous methods
yet is computationally tractable with regular hardware.

The success of CNNs in computer vision tasks can largely be attributed to
their intrinsic inductive biases, such as locality and invariance to translation.
They were primarily inspired by the visual cortex of the brain1 and were
designed such that they mimic how humans process images. However, recently
[Dosovitskiy et al., 2021] show that these inductive biases are unnecessary or
even detrimental when vast amounts of training data are available. They
train a Vision Transformer model, utilizing attention blocks introduced by
[Vaswani et al., 2017] for natural language processing, and reach new state-
of-the-art.

Results competitive with the Vision Transformer (ViT) are also attained
by [Tolstikhin et al., 2021], utilizing a model based exclusively on multi-layer
perceptrons (MLPs). This finding supports the claim that the inductive
biases of CNNs are superfluous and that more general models with sufficient
expressivity can better utilize large amounts of training data.

As of the time of writing, CNNs remain competitive with transformers
by utilizing semi-supervised training, [Xie et al., 2020], [Pham et al., 2021]
and scaling up previously established architectures, [Kolesnikov et al., 2020],
[Tan and Le, 2021], with modifications.

2.1.2 Data Augmentation

At the moment, the most effective techniques are data-driven. When there
is enough data, stronger knowledge can be extracted directly from the data
rather than relying on manually designed features. However, data is frequently
limited, and gathering additional data is costly. Domain adaptation techniques
are one approach to dealing with this. Another strategy is to use data
augmentation techniques.

Data augmentation is the process of increasing the amount of data available
by creating synthetic data from existing data. Assuming that the available
data are generated by some underlying probability distribution, data aug-
mentation techniques would ideally sample new data from the distribution.
This can sometimes be accomplished by applying transformations that do not
change the class to existing data, such as creating a new realistic image by
slightly rotating an existing image. As obtaining samples from the underlying
distribution is often impossible, an alternative approach to data augmenta-
tion is to generate samples that, while not from the distribution, contain
certain features that allow or even force the models to learn the distribution’s
features.

1For more information, refer to the theoretical background in [Paplhám, 2020].

6

............................. 2.2. Relevant Medical Applications

Some standard image augmentation techniques produce a realistic-looking
new image by applying natural transformations, such as horizontal/vertical
mirroring, rotation, scaling, or deforming the image. Other augmentations,
such as the addition of noise and minor changes in the image’s brightness, hue,
or contrast, attempt to change the values of the pixels while maintaining the
overall visual content of the image. Another type of standard augmentations
removes information from the images, e.g., cropping or occluding random
portions of the image.

Other augmentations are less intuitive. For example, the mixup augmen-
tation, [Zhang et al., 2017], generates convex combinations of pairs of data
samples and their labels, resulting in strong regularisation and increased
model robustness. CutMix, [Yun et al., 2019], uses a similar technique to
combine data samples, swapping cropped regions of the images and assigning
a convex combination of the labels to the result.

Much potential has recently also been attributed to augmentation meth-
ods utilizing generative models. E.g., generative adversarial networks (GANs)
have been used to generate synthetic, realistic-looking scans of liver lesions,
[Frid-Adar et al., 2018], for a task with a meager amount of available data.
Furthermore, the output of the generative models can be guided to produce
very specific augmentations; for example, [Aakash Saboo and Wang, 2021]
show how GANs in combination with latent-space optimization can be used
to generate images depicting consistently progressing stages of a disease.

An alternative use of generative models is to generate synthetic data directly
in the model’s latent space, [Du et al., 2022], rather than generating realistic
synthetic data to be used as an input.

2.2 Relevant Medical Applications

In the following section, Section 2.2.1, we review works most relevant to
our goal, attempting to automate the evaluation of clinical samples ob-
served through a microscope. We provide a summary of the approaches in
Section 2.2.2.

2.2.1 Prior Research

This section describes previous research in a similar domain to our work,
analyzing medical images collected with a microscope.

Automated Interpretation of Blood Culture Gram Stains by Use of a
Deep Convolutional Neural Network

[Smith et al., 2018] use an automated slide scanner and a 40× optical lens
to record non-overlapping images from predefined locations of Gram-stained
blood culture samples containing bacteria and classify them into four classes.

They follow the industry-standard approach of taking a pre-trained CNN2

2Inception-V3, [Szegedy et al., 2015].

7

2. The State-of-the-art..................................
and fine-tuning the fully-connected classifier head on a downstream task. Each
captured image is classified individually with a stringent, manually selected
classification threshold3 θ = 0.99, to minimize the amount of false-positive
predictions. The classification for the whole slide is obtained using a majority
class vote. If no class accumulates six (of 192 total) or more votes, the slide
is classified as negative.

The authors propose standardizing the sample acquisition and staining
process. This would reduce the number of modalities the network needs to
learn, e.g., multiple possible backgrounds. It would also allow the development
of a specialized focusing algorithm suitable for the task, as some of the images
taken by the automated scanner were out of focus. They achieve a slide-level
accuracy of 92.5%.

Deep Learning Approach to Describe and Classify Fungi Microscopic
Images

[Zieliński et al., 2020] classify microscopic images of yeast-like fungi, colored
using standard Gram staining equipment, into nine separate classes. The
images were taken using a 100× optical lens.

They utilize a pre-trained CNN4 as the fixed backbone and remove the
fully-connected classification head to replace it with a bag-of-words encoding
followed by a support-vector-machine (SVM) classifier. They show that
their modification provides better results than the former classifier head.
An identical approach was previously used by [Zieliński et al., 2017] for the
classification of bacterial colonies. It should be noted that the backbone was
locked and not modified. Therefore, it is unclear whether the novel approach
would achieve consistently better results if the backbone were allowed to
fine-tune its weights and a more sophisticated training protocol was used.

Image of the stained slide is captured using an automated slide scanner.
Regions of interest, "patches", are discovered by thresholding the image, and
each patch is classified individually. The classification for the whole slide is
obtained using a majority class vote.

The authors present their method as a means of identifying the species
rather than simply detecting its presence. They claim that their approach
makes the last stage of conventional biochemical identification unnecessary
and thereby replaces the currently used fluorescence in situ hybridization
(FISH) or polymerase chain reaction (PCR) analysis of replicated DNA. They
achieve patch-level and slide-level accuracy of 82.4% and 93.9% respectively.

Detection of Intestinal Protozoa in Trichrome-Stained Stool
Specimens by Use of a Deep Convolutional Neural Network

[Mathison et al., 2020] use an automated slide scanner to record images of
trichrome stained stool, with a 40× lens and an optical doubler, in three

3We refer the reader to Section 3.2 for detailed definition.
4AlexNet, [Krizhevsky et al., 2012] or ResNet [He et al., 2016a].

8

............................. 2.2. Relevant Medical Applications

planes of Z-stack. The images are processed using a pre-trained CNN5, which
classifies the images into one of 11 classes and predicts bounding boxes around
the contaminants of interest - the object detection/localization task, with the
goal of detecting intestinal protozoa.

They show that the CNN-based method can detect protozoa in heavily
diluted solution, up to the ratio of 1 : 256, while human personnel is able to
detect the specimen in dilutions of at most 1 : 8 ratio. Further, their method
achieves slide-level accuracy equal to a human evaluation.

They successfully deploy the model in a real-life setting, with the model
presenting its results to a human expert for confirmation.

2.2.2 Summary

All of the listed methods utilize the standard technique of fine-tuning a pre-
trained CNN. They employ an automated scanner to obtain a large number
of images from each sample, classify the images separately, then aggregate
the result over the images to classify the sample. An identical approach can
be observed in other research in the field of automatic evaluation of digital
microscopy.

The methods achieve human-level performance, motivating future large-
scale deployment. Some novelty can be observed in replacing the linear
classification head with bag-of-words encoding followed by an SVM classifier.
To our knowledge, no notable domain-specific modifications of the standard
techniques were used in these works.

5A single-shot multibox detector Inception-V2, [Szegedy et al., 2015].

9

10

Chapter 3
Methods

The methodology used to carry out the experiments is described in this
Chapter. Section 3.1 introduces the dataset. Section 3.2 defines the task
of binary classification and introduces notation used in the remainder of
the thesis. Section 3.3 defines and analyzes the evaluation metric used
to compare different models. Section 3.4 contains technical details of the
implementation, lists the models used, and establishes the training protocol.
Section 3.5 describes a novel data augmentation technique, tailored to the
task of contaminant detection. Section 3.6 describes the evaluation procedure.

3.1 Dataset

The dataset used for training and evaluation of the models was collected and
manually annotated by a medical expert from January 2018 to April 2021.
Clinical material (sputum, endotracheal or bronchial aspirate, bronchoalveolar
fluid, tissue, pleural fluid, pericardial fluid, cerebrospinal fluid, liquid or solid
contents of pathological cavities) was smeared on a sterile slide and dried.
The dried slides were dyed with Calcofluor White mixed 1 : 1 with 20%
potassium hydroxide solution and immediately covered with cover slides and
examined. Fluorescence microscopy was performed manually with the use of
Olympus BX 53 fluorescence microscope, UplanFLN 20x objective lens, FN
26,5. The entire slide was examined, and a representative section of the slide
was selected, i.e., for positive slides, the section containing the contaminant.
The image of the selected section was captured using an Olympus DP72
microscope digital camera.

The manually captured dataset contains a total of 1244 high-resolution
images. The dimensions of the images are not identical. However, the aspect
ratio is constant throughout the dataset, and each image captures the same
field of view. The number of images with corresponding dimensions is shown
in Table 3.1.

Annotations are given in the form of the binary label (positive/negative)
for each image, that is, the region of interest is not specified. In other words,
the annotation provides no information on the location or size of the specimen
within the image.

It should be noted that multiple images in the dataset could originate

11

3. Methods.......................................
from the same slide. The images are thus not statistically independent. The
dependency was ignored, as there was no possibility of retrospectively deciding
which slide an image was taken from.

Width × Height Annotation
Positive Negative

4140 × 3096 374 546
2040 × 1536 77 3
1360 × 1024 231 13

Total 682 562

Table 3.1: Dimensions of images in the dataset.

Figure 3.1: Imaging artifacts in the dataset. Because of the artifacts, the images
can most likely be downsampled without significant information loss.

The positive images were further separated into either (i) fungi: 545,
(ii) yeast: 61, or (iii) both yeast & fungi: 75 images, with the majority
of images containing solely fungi. Note, however, that this separation was
performed by the author of the thesis, who is not an expert in medical biology,
i.e., the labels can be noisy.

The images were obtained encoded in JPG format in the RGB color space.
The data was converted to PNG format to reduce the number of artifacts
created in further processing and converted to grayscale colorspace. The
motivation and the procedure are explained in detail in Section 4.1.5.

Scale

As the images have approximately the same aspect ratio of Width
Height ≈ 1.33,

they can be resized to a uniform shape. This allows for mini-batching of the
data, improving the training efficiency.

12

.................................... 3.2. Classification

We consider the smallest shape among images in the dataset, 1360 × 1024
pixels, as the base shape. To discuss different image sizes, we define scale of
an image as the coefficient which relates the image size to the base size, e.g.,
scale = 50% signifies images downscaled to shape 680 × 512 pixels.

Training networks on smaller scales is less computationally demanding,
whereas higher scales preserve more detail, potentially allowing for superior
performance. The original, high-resolution images, however, are not precisely
in focus and contain artifacts, as shown in Figure 3.1. This further encourages
downscaling because the loss of information should be minor.

We evaluate and report the effects of image scale on performance in
Section 4.1.1.

3.2 Classification

Detection of yeast and fungi in images is treated as a binary classification
problem. In this section, we formalize the task and introduce the necessary
notation used later in the thesis.

Binary Classifier. Binary classification is a task of assigning a binary class
label to an observation of features. Formally, a binary classifier is a mapping

h : X → Y, (3.1)

from the set of features X to the set of labels Y = {1+, −1}.

Sample. By a sample, we refer to either (i) a clinical sample, biological
material prepared in a slide, (ii) the pair (x, y) ∈ X × {+1, −1}, or (iii) the
feature x ∈ X , depending on the context. We associate the label +1 with
presence of the contaminant and refer to samples {(x, +1) | x ∈ X } as positive
samples. Complementarily, we associate the label −1 with absence of the
contaminant and refer to samples {(x, −1) | x ∈ X } as negative samples.

The samples (x, y) are assumed to be generated by a random process with
the distribution p(x, y) defined on X × {+1, −1}. We use p(x) and p(x | y)
to denote the marginal and the class conditional distribution of the inputs x,
respectively. The prior probability of the positive and the negative class are
denoted p(y = +1) and p(y = −1), respectively. The expected value of f(z)
w.r.t. the distribution p(z) is denoted by Ez∼p(z)f(z).

Image Classification. Many classification models exist and are chosen based
on the specific properties of the input features. The task of image classification
necessitates special consideration due to its uniqueness in two ways: (i) the
feature space is vast, and (ii) the feature values (pixels) are interdependent
and only weakly connected to the class label when considered in isolation,
i.e., knowing the color of a single pixel provides minimal information. Prior
to the rise of deep learning, the traditional approach to processing images
was to reduce the size of the feature space by using hand-designed feature
extractors, such as edge detectors or texture detectors, to express the general

13

3. Methods.......................................
properties of the image more compactly. E.g., instead of each pixel color
being encoded individually, the overall color tones of the image are expressed.
Current state-of-the-art models, such as convolutional neural networks, which
are used in this thesis, learn these feature extractors from the data.

Binary Image Classifier. The task at hand is a binary image classification
task. We continue with a formal definition. Let us denote the common pixel
domain as

D ⊂ Z2, (3.2)

the color domain and the monochromatic domain are defined, respectively as

C ⊂ {(r, g, b) | r, g, b ∈ R}, M ⊂ {x | x ∈ R}, (3.3)

where lower and upper bounds of the values and machine precision are ignored
for simplicity. The set of all possible images is then

I = CD ∪ MD. (3.4)

A binary image classifier is the mapping

h : X → Y, (3.5)
X = I, (3.6)
Y = {+1, −1}. (3.7)

Often the classifier is further decomposed as

h = f ◦ d, (3.8)
f : X → R, (3.9)
d : R → {+1, −1}, (3.10)

with the decoding mapping d defined as

d(x, θ) =
{

+1 for x ≥ θ,

−1 for x < θ,
(3.11)

for some fixed threshold θ ∈ R.

Ensemble of Binary Image Classifiers. In the rest of the thesis, by an en-
semble of binary classifiers, we refer to a binary classifier where the prediction
rule f is defined as

f(x) =
∑n

i=1 fi(x)
n

, fi : X → R. (3.12)

By weighted ensemble, we refer to a binary classifier with the prediction rule

f(x) =
∑n

i=1 αi · fi(x)∑n
i=1 αi

, fi : X → R. (3.13)

Sometimes, the ensemble is also used to refer to the set of classifiers

{f1, f2, . . . , fn | fi : X → R}, (3.14)

used in the prediction rule f(x).

14

....................................... 3.3. Metrics

3.3 Metrics

The development of any machine learning system includes evaluation of a
performance metric. The metric is used to measure the model’s performance
and numerically express the expected results so that the best method can be
selected for the final implementation.

In the case of a detection task, the model is a binary classifier. The
contaminant of interest is detected, or it is not detected. Traditional metrics
such as accuracy, precision, and recall are helpful, but we argue that they are
not ideal for selecting a model to be used within a medical facility. Instead,
we propose an alternative metric, the saved time metric, which is a scalar
measure of the model’s utility for clinical use. The saved time metric is
defined as a portion of input samples which do not need to be manually
evaluated by laboratory staff. Equivalently, the metric directly represents the
number of man-hours that the model saves. The introduced metric has two
advantages. First, it has a clear interpretation. Second, the scalar metric
allows for easy model comparison, accelerating the development. We continue
with a formal definition and analysis.

3.3.1 Saved Time Metric

Assuming that manual examination of each sample takes constant time, the
saved time is directly proportional to the number of samples which need not
be examined by human personnel. If the clinical sample is to be classified
as positive, manual confirmation is required. This ensures that a patient
is not diagnosed with infection until reviewed by a qualified human expert,
increasing the patients’ confidence in the diagnosis. Therefore, the saved time
is proportional to the number of samples classified as negative.

One could achieve the maximal value of such a metric simply by classifying
all samples as negative. This is undesirable. We, therefore, define the saved
time metric as the portion of samples classified as negative while guaranteeing
that the true positive rate is higher than a specified level.

Formally, we evaluate the prediction rule h : X → {+1, −1} in terms of two
metrics. First, the true positive rate (a.k.a. sensitivity)

TPR(h) = Ex∼p(x|y=+1)[[h(x) = +1]], (3.15)

which is the probability that a positive sample is correctly predicted as
positive. Secondly, the saved time

ST(h) = Ex∼p(x)[[h(x) = −1]], (3.16)

equal to the probability that an input sample is predicted as negative. It is
useful to rewrite the saved time as

ST(h) =
[
1 − p(y = +1)

]
·
[
1 − FPR(h)

]
+ p(y = +1) ·

[
1 − TPR(h)

]
,

(3.17)

15

3. Methods.......................................
where p(y = +1) is the prior probability of the positive class, and

FPR(h) = Ex∼p(x|y=−1)[[h(x) = +1]] (3.18)

is the false positive rate, i.e., the probability that a negative sample is
incorrectly classified as positive. The equation (3.17) shows that the two
metrics, TPR(h) and ST(h), are antagonistic, i.e., increasing one leads to a
decrease of the other and vice versa.

The predictor is a binary image classifier of the form

h(x; θ) =
{

+1 for f(x) ≥ θ,

−1 for f(x) < θ,
(3.19)

where f : X → R is a score trained from examples and θ ∈ R is a decision
threshold used to tune the operating point of the predictor. With a slight
abuse of notation, we use TPR(θ) and ST(θ) as a shortcut for TPR(h(·; θ))
and ST(h(·; θ)), respectively.

The number of positive and negative samples in the test set is approximately
the same, which does not match the real distribution at the deployment time.
According to Motol University Hospital’s staff, approximately 9 out of 10
samples that arrive at the laboratory for examination are negative. As a
result, for the remainder of the thesis, we assume that the incidence rate is
p(y = +1) = 0.1. However, the methodology as a whole is general and, if
necessary, can be applied to any incidence rate. When evaluating the metrics
from the data, we resolve the mentioned mismatch as follows. Given a test
set {(xi, yi) ∈ X × {+1, −1} | i = 1, . . . , n}, we first compute the empirical
estimates of TPR(θ) and FPR(θ) as

T̂PR(θ) = 1
n+

n∑
i=1

[[h(xi; θ) = +1 ∧ yi = +1]], (3.20)

F̂PR(θ) = 1
n−

n∑
i=1

[[h(xi; θ) = +1 ∧ yi = −1]], (3.21)

where n+ =
∑n

i=1[[yi = +1]] and n− =
∑n

i=1[[yi = −1]]. Then, we fix the posi-
tive class prior to the expert estimate of the incidence rate, p(y = +1) = 0.1,
and compute the empirical estimate of the saved time

ŜT(θ) =
[
1 − p(y = +1)

]
·
[
1 − F̂PR(θ)

]
+ p(y = +1) ·

[
1 − T̂PR(θ)

]
.

(3.22)

We evaluate the predictor h by a curve {(T̂PR(θ), ŜT(θ)) | θ ∈ (−∞, ∞)}
which summarizes the entire space of achievable true positive rates and saved
times. As a reference, we also plot the best achievable saved time curve as a
function of TPR, i.e., we plot the curve {(TPR, ST∗(TPR)) | TPR ∈ (0, 1)}
where ST∗(TPR) = p(y = +1) · [1−TPR]+[1−p(y = +1)], which is obtained
from (3.17) when assuming an ideal predictor with zero FPR(h).

16

....................................... 3.3. Metrics

In case we need to evaluate the predictor by a single scalar, e.g., when
ranking different models, we report the saved time at desired true positive
rate τ , which is defined as

ŜTτ = max
θ∈(−∞,∞)

ŜT(θ) subject to T̂PR(θ) ≥ τ . (3.23)

Visual Example

In this section, we illustrate the concept of the saved time in a simple
setting when the predictor’s input is scalar, x ∈ R and the class distributions
p(x | y = +1), p(x | y = −1) are univariate Gaussians.

Threshold θ of the classifier is chosen such that ratio of areas TPR =
blue

purple + blue in Figure 3.2 is larger than desired TPRconst..

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

P
ro

b
ab

il
it

y
D

en
si

ty

θ

p(x|y = −1) p(x|y = +1) FN TP

Figure 3.2: Illustration of the sensitivity of a binary classifier with a known
Gaussian probability distribution of classes.

When the threshold is determined, the proposed metric, percentage of all
images, which will be classified as negative, can be interpreted as

ST =
θ∫

−∞

p(y = +1) · p(x|y = +1) + p(y = −1) · p(x|y = −1) dx. (3.24)

Visually, it is the ratio ST of areas in Figure 3.3, where

ST = orange + purple
orange + purple + red + blue . (3.25)

We provide another illustrative example in Figure 3.4, where the inputs are
points in a 2-D plane. The area to the left/right of the vertical line equates
to the samples, which should be classified as positive/negative. The classifier
is an ellipse, where points inside of the ellipse relate to the positive class
and points outside the ellipse relate to the negative class. We continue with
commentary for each of the subplots in Figure 3.4.

17

3. Methods.......................................

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

P
ro

b
ab

il
it

y
D

en
si

ty

θ

p(x|y = −1)

p(x|y = +1)

FN

TP

TN

FP

Figure 3.3: Illustration of the saved time metric of a binary classifier with a
known Gaussian probability distribution of classes.

Case a): The saved time metric is high, as large number of samples is
classified negative (purple + orange). These would not be manually examined.

The classifier, however, does not satisfy the condition of high sensitivity
due to a large number of positive samples being classified as negative (purple).
With such low sensitivity, the classifier could not be deployed.

Case b): The classifier satisfies the condition of high sensitivity as only a
small number of positive samples is classified as negative (purple). Therefore
the classifier could be deployed for analysis of clinical samples.

The saved time metric however is low, as a small number of samples is
classified negative (purple + orange). The classifier would thus be usable but
would not significantly lower the number of manual examinations.

Case c): The classifier satisfies the condition of high sensitivity as only a
small number of positive samples is classified as negative (purple). Therefore
the classifier could be deployed for analysis of clinical samples.

The saved time metric is high as a large number of samples is classified
negative (purple + orange). The classifier would thus be ideal for deployment.

3.4 Implementation Details

This section goes over the specifics of training the models. First, the architec-
tures under consideration are introduced. Second, the optimizer settings and
data augmentation techniques used to train the models are listed.

3.4.1 Models

We choose ResNet-50 as our baseline model and use the shallower variant,
ResNet-18, for initial experiments, e.g., to search for data augmentations that

18

................................ 3.4. Implementation Details

Positive Negative

a)

Positive Negative

b)

Positive Negative

c)

TP TN FP FN

Figure 3.4: Example of a binary classifier of vectors in the 2-D plane, used to
provide an intuitive understanding of the saved time metric. For a model to
be useful, it must achieve both: (i) high sensitivity, and (ii) high saved time
metric.

improve the model performance, as explained in Section 3.4.3. The ResNet-18
variant is used because its training is significantly faster, allowing for more
experiments with the available hardware. The reason we choose ResNet-50
as our baseline is that (i) ResNet models are well-established CNNs (ii) are
one of the industry’s standard baselines, and (iii) larger variants, such as
ResNet-152, are far too computationally expensive.

After deriving the data augmentations and the training protocol suitable
for the dataset, we experiment with other model architectures and compare
them against the baseline. We experiment with pre-trained state-of-the-art
models of limited size. Namely, we train and evaluate. ResNet-50x1-V2, [He et al., 2016b],. EfficientNet models, [Tan and Le, 2019], from B0 to B4,. EfficientNet-V2-S model, [Tan and Le, 2021],. Vision Transformer ViT-B using 32×32 embeddings, [Dosovitskiy et al., 2021].

For links to the specific pre-trained weights, refer to Appendix A. We confine
ourselves to these models for several reasons, (i) it is necessary to limit the
search space, as not all possible models can be evaluated, (ii) the selected
models are similar to the baseline in either the number of parameters or per-
formance on large scale datasets, (iii) the models can be trained in reasonable
time on the available hardware, and (iv) the inference time is sufficiently
brief, as explained in Section 3.6.3.

3.4.2 Optimizer Settings

Unless explicitly specified otherwise, we train all models using stochastic
gradient descent (SGD) with the initial learning rate (LR) of 0.001 and
momentum 0.9. We decay the learning rate by a factor of 3 at 33% and 66%

19

3. Methods.......................................
of the 150 total training steps and use a batch size of 10 samples due to
hardware limitations.

Our training protocol is heavily inspired by [Kolesnikov et al., 2020], Big
Transfer (BiT), who empirically analyze the transfer of models pre-trained on
large datasets to smaller downstream tasks. They conclude with a fine-tuning
protocol recommended as a starting point for any general visual recognition
task. Our protocol, however, does not follow the recommended protocol in
exact, with the comparison shown in Table 3.2.

Parameter Protocol
BiT Ours

Optimizer SGD SGD
Momentum 0.9 0.9
Initial LR 0.003 0.001

LR Decay Factor 10 3
LR Decay Steps 30, 60, 90 [%] 33, 66 [%]

Epochs − 150
Batch Size 512 10

Table 3.2: The standard training protocol used for experiments.

Namely, BiT uses a larger initial LR of 0.003 but decays the value more
rapidly. Our incentive to decrease the initial LR is the batch size.
[Kolesnikov et al., 2020] are able to train using a batch size of 512 samples,
and the optimizer, therefore, attains descent direction with higher confidence;
hence, the optimization step size can be longer.

For initial experiments, we utilize training, test, and validation splits of
60, 20, and 20% respectively, changing the partitioning to 80, 10, and 10%
respectively for later experiments. Unless stated otherwise, experiments were
conducted using the latter.

3.4.3 Data Augmentation

To enlarge the number of samples used for training, we utilize standard image
data augmentations, namely the common augmentations (i) horizontal flip,
(ii) vertical flip, (iii) rotation, and (iv) crop and resize. We train ResNet-18
model using the augmentations in isolation and evaluate the effects on the
model performance. The procedure of deciding which augmentations to use
is described in Section 4.1.2. We further experiment with additional, hand-
designed augmentations, described in Section 3.5, and perform experiments
with the augmentation in Section 4.3.

3.5 Domain-Specific Augmentation

In this section we propose novel data augmentation methods specific to the
task of contaminant detection in microscopic images, where the location and

20

.............................3.5. Domain-Specific Augmentation

size of the contaminant within the image are not a priori known.
To generate additional positive samples, we locate the contaminant within

the image either by (i) gradient-based localization, [Selvaraju et al., 2017],
which is a broadly applicable method with minimal prerequisites, or (ii) by
exploiting the fluorescent staining process. We then augment the image either
by (i) inpainting the located contaminants into uncontaminated images, or
(ii) blurring a portion of the contaminant. Motivation, as well as a detailed
explanation of the augmentations, are given in Section 3.5.1.

We further generate more negative samples, which are purposefully difficult
to classify in order to force the network to learn a more robust representation
of the data and minimize the number of false positives. This is achieved
by localizing structures in negative images that are visually similar to the
contaminants, using gradient-based localization, [Selvaraju et al., 2017], and
inpainting them into the image multiple times. The full description is provided
in Section 3.5.2.

Experiments conducted with the augmentations are described in Section 4.3.

3.5.1 Positive Sample Augmentation

In this section, we describe two image augmentation methods devised to in-
crease the number of positive sample images. First, the Poisson augmentation
of positive samples, which inpaints the contaminant into negative backgrounds.
Second, the blur augmentation of positive samples, which partially blurs the
contaminant.

Poisson Augmentation of Fluorescent Stained Positive Samples

Motivation. While obtaining negative samples is simple, getting positive
samples is comparatively complex and expensive. We propose an augmenta-
tion method specific to the detection task, where any negative image becomes
positive if the contaminant is introduced. The technique takes advantage
of a large number of negative images and uses them to generate synthetic
positive images by inpainting the positive contaminant into a negative image,
as shown in Figure 3.6. The contaminant can further be rotated and shifted
to create practically an unlimited number of positive samples.

Poisson Image Editing. Consider the task of inserting a source image into
a target image, assuming that the dimensions of the source are smaller than
the target. The naive approach is to directly copy the pixel values in the
color domain from the source to the target. Instead, Poisson image editing,
[Pérez et al., 2003], attempts to perform the inpainting in the gradient domain.
The inpainting is done by ignoring the exact pixel values of the source image
and focusing on the image’s gradient1. To insert the source image into the
target image, (i) the border pixels of the source image are set to match the
color of neighboring pixels in the target image, and (ii) the remaining pixel
values of the inpainted source image are found by solving the Poisson equation

1The gradient is frequently extracted only along the vertical and horizontal axes.

21

3. Methods.......................................
with the condition of the original gradient preserved. I.e., the colors of the
source image are modified to match the colors of the target image without
discarding details. The task is often over-constrained and has to be solved
approximately.

Description of the proposed method. The procedure requires (i) a positive
image, source, (ii) a localization mask, and (iii) a negative image, destination.
We use the mask to select pixels from the positive image and inpaint them
into the negative image. The naive procedure of directly copying the pixel
values creates visible edges between the contaminant and the background,
see Figure 3.7a. To generate realistic-looking synthetic images, we instead
perform the inpainting using Poisson image editing, [Pérez et al., 2003]. A
comparison of the two inpainting variants is shown in Figure 3.7.

For the inpainting, it is first necessary to locate the contaminant. We
exploit the fact that due to the fluorescent staining, the pixel values of the
contaminant are always greater than those of the background. Therefore, we
can obtain a rough localization mask by thresholding the pixel values, shown
in Figure 3.5.

It must be noted that the fluorescent dye is non-specific, however, and other
structures, such as dust, pollen, or arthropods, may also bind the dye. We,
therefore, guarantee that the method inpaints the contaminant of interest,
but inadvertently also other miscellaneous structures.

The method can be further expanded by detecting connected components of
the mask and inpainting each component separately with random rotation and
random position in the target image. This modification is especially suited for
yeast, where the number of connected components in the localization mask is
high. An example of two different possible results obtained by augmenting
an image of yeast is shown in Figure 3.8.

The following steps summarize the entire augmentation:..1. Find parts of a positive image suspected of containing the contaminant.. Localization with fluorescent staining can be accomplished by thresh-
olding the image, e.g., by employing Yen’s thresholding algorithm,
[Yen et al., 1995], as the contaminant will always be brighter than
the background.. Localization can be performed for a general detection task by se-
lecting regions of the image that result in the highest activation of
the model, as with Grad-CAM, [Selvaraju et al., 2017], or Captum,
[Kokhlikyan et al., 2020]...2. Select a random negative image...3. Insert each part discovered in step 1 into the negative image. The

position and rotation of the part are selected randomly.. Naive approach is to copy the pixel values directly.

22

.............................3.5. Domain-Specific Augmentation

. The novel approach utilizes Poisson image editing for the inpainting,
ensuring that the part is inserted seamlessly.

−→ −→

Figure 3.5: Example of thresholding a positive sample to obtain the binary
mask, which is then used to extract the positive cutout for inpainting.

+ −→

Figure 3.6: Example of inpainting a positive cutout into a negative sample using
Poisson image editing. The change in color of the cutout within the result should
be noted, creating a seamless blend.

(a) : Naive inpainting. (b) : Poisson inpainting.

Figure 3.7: Comparison of the inpainting methods. The inpainted region has a
distinct background color when the value of pixels is copied directly. The Poisson
image editing ensures that the cutout seamlessly blends into the negative image,
creating a more realistic result.

Blur Augmentation of Positive Samples with Localization Map

Motivation. CNNs trained for computer vision tasks learn to detect easily
recognizable features, textures, and patterns, focusing on the most discrimi-
native input regions, often resulting in low model robustness. We propose
an augmentation method in which the most discriminative input regions are

23

3. Methods.......................................

Figure 3.8: Two distinct outcomes of inpainting yeast into a negative image.
Each image is noticeably different due to each connected component within the
mask of the positive image being inpainted separately.

partially blurred, forcing the model to recognize less discriminative but still
important features. Similar methods had been previously proposed to address
this issue, occluding the input images, with mixed results, [Wei et al., 2017],
[Fong and Vedaldi, 2019].

Description. The procedure requires (i) a positive image, source, and (ii) a
localization mask, identifying regions which attribute for the classification
result. We exploit gradient-based localization, [Selvaraju et al., 2017], to dis-
cover which regions of the image contribute the most to positive classification
of the image. This results in a course heatmap that we threshold to obtain
a binary mask. For each connected component in the mask, we create the
minimal bounding box.

Instead of blurring the entirety of the bounding boxes, we only blur a
portion - to not cover the whole contaminant. Specifically, for each bounding
box, we create a random rectangle that covers a desired percentage of the
bounding box and only blur pixels inside the rectangle.

We further ensure that the transition between the blurred region and the
original image is smooth. To achieve this, we create the final image as an
affine combination of the blurred region and the original image,

result = α · imageblurred + (1 − α) · imageoriginal, α ∈ [0, 1]. (3.26)

We compute the coefficient α for each pixel separately by applying Gaussian
blur to the binary mask, interpreted as an array of real numbers, and nor-
malizing the result. Therefore, the value of α is 0 for pixels distant from the
blurred region and increases as pixels get closer to the region. The result of
the blur augmentation is shown in Figure 3.9.

3.5.2 Negative Sample Augmentation

In this section, we describe an image augmentation method devised to increase
the number of negative sample images.

24

.............................3.5. Domain-Specific Augmentation

(a) : Original image. (b) : Binary mask indicating regions
of the original image to be blurred.

(c) : Result of simple blur augmenta-
tion. Noticeable contour is present at
the border of the blurred region.

(d) : Blur augmentation result with
smooth transition between the blurred
region and the rest of the image.

Figure 3.9: Example of the blur augmentation outcome. The augmentation is
intended to make positive images artificially difficult to correctly classify, forcing
the model to recognize less discriminative but important contaminant features.

25

3. Methods.......................................
Poisson Augmentation of Negative Samples with Localization Map

Motivation. As previously stated, obtaining negative samples is relatively
simple, as a samples can be taken from healthy individuals on mass without
the need for manual examination.

The provided dataset, however, contains specifically chosen negative images
with structures that are visually similar to filamentous fungi or yeast, such
as cloth threads, see Figure 3.10. The fact that the structures are easily
mistaken for fungi is demonstrated further by the results of a survey given to
people with no background experience in microbiology, see Figure 4.26. By
replicating the structures that are visually similar to fungi, negative images
can be made even more similar to positive images.

The motivation for this is that the models will need to learn non-trivial
features that will allow them to distinguish between structures similar to the
contaminant and the actual contaminant.

Description. The procedure requires (i) a negative image, and (ii) a localiza-
tion mask, identifying regions which contain structures visually similar to the
contaminant. We exploit gradient-based localization, [Selvaraju et al., 2017],
to discover the regions mentioned above. As a result, we obtain a course
heatmap from which we generate a binary mask by thresholding. It must be
mentioned that the heatmap produced by Grad-CAM, [Selvaraju et al., 2017],
specifies the relative magnitude of activations. If there are no structures in
the image that are similar to the contaminant, the activations across the
entire image are of similar magnitude, and the resulting mask covers the
entire image. The augmentation must, therefore, not be used for such cases.

The augmentation procedure itself is similar to the Poisson augmentation
described in Section 3.5.1, with the exception that we do not inpaint a positive
cutout into a negative image here. Instead, (i) the source, and (ii) the target
are both derived from the same negative image. The augmentation can also
be performed multiple times, repeatedly inpainting the same cutout. An
example of the augmentation result is shown in Figure 3.11.

3.6 Evaluation Protocol

3.6.1 K-Fold Construction

We train using 30-fold cross-validation with training, validation, and test sets
containing 80%, 10%, and 10% of the total data set, respectively. Figure
3.12 shows an example of how the folds are created. The diagram depicts
the construction for the number of bins N = 4. However, we construct the
folds with N = 10 so that each bin contains 10% of the dataset. The bins are
balanced, i.e., each bin contains an equal number of positive and negative
samples.

As a result, we generate a total of 90 folds. For the experiments, we choose
30 folds so that all images are in the training, test, or validation split precisely

26

..................................3.6. Evaluation Protocol

Figure 3.10: Negative image that contains structures similar to filamentous fungi.

(a) : Original image. (b) : Augmented image.

Figure 3.11: Example of the Poisson augmentation of negative images. Notice
the cross-like structure in the right half of the image copied multiple times.

27

3. Methods.......................................
three times. The model is trained using the training split. After each epoch,
the performance is measured on the validation split and the results are used
to select the best epoch weights. The final reported performance of a model
is its performance on the test set.

Training

Validation
Testing

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6
Fold 7
Fold 8
Fold 9
Fold 10
Fold 11
Fold 12

N : Total number of bins

Figure 3.12: Construction of the folds used for cross-validation. The total
number of folds which can be constructed is N · (N − 1), where N is the number
of bins. The example is shown for each bin containing 100

N = 25% of the dataset.

3.6.2 Saved Time Metric

We evaluate the saved time metric for sensitivities of 98%, 99%, and 99.5%
as the criterion for determining the best model. The high values of sensitivity
were directly requested by the staff of Motol University Hospital. Models
with significantly lower sensitivity would be of no practical use. The value of
the metric for sensitivity approaching 100% is not used because the metric is
volatile for very high sensitivities and does not serve as a good measure of
model performance, see Section 4.5.

Saved Time Metric over Multiple Folds

It should be noted that when evaluating the saved time metric for multiple
folds, there are two ways to report the average performance.

Variant A is to compute FPR which is the average FPR for a fixed TPR
over all folds, then compute the saved time using the TPR and FPR. This
approach is equivalent to computing the average saved time over all folds for
a fixed TPR.

Variant B is to compute TPR which is the average TPR for a fixed FPR
over all folds, then compute the saved time using the FPR and TPR.

28

..................................3.6. Evaluation Protocol

Formally, given a classifier fk trained on the k-th fold and a corresponding
test set Tk = {(xk,i, yk,i) ∈ X × {+1, −1} | i = 1, . . . , n}, we can measure
performance of the model in isolation by computing the empirical estimates
of TPRk(θ) and FPRk(θ) on the test set as

T̂PRk(θ) = 1
n+

n∑
i=1

[[h(xk,i; θ) = +1 ∧ yk,i = +1]], (3.27)

F̂PRk(θ) = 1
n−

n∑
i=1

[[h(xk,i; θ) = +1 ∧ yk,i = −1]], (3.28)

where n+ =
∑n

i=1[[yk,i = +1]] and n− =
∑n

i=1[[yk,i = −1]]. Then, we fix the
positive class prior to the expert estimate of the incidence rate and compute
the empirical estimate of the saved time

ŜTk(θ) =
[
1 − p(y = +1)

]
·
[
1 − F̂PRk(θ)

]
+ p(y = +1) ·

[
1 − T̂PRk(θ)

]
.

(3.29)

A curve {(T̂PRk(θ), ŜTk(θ)) | θ ∈ (−∞, ∞)} can then be constructed
which summarizes the entire space of achievable true positive rates and saved
times for a single classifier. To measure the average performance of multiple
classifiers, we can choose from the following approaches.

Variant A. The curve {(T̂PRk(θ), ŜTk(θ)) | θ ∈ (−∞, ∞)} can with a slight
abuse of notation be equivalently expressed as {(TPR, ŜTk(TPR)) | TPR ∈
(0, 1)}, where ŜTk(TPR) = ŜTk(θ) with θk ∈ R such that T̂PRk(θk) = TPR.

Performance of multiple models evaluated across different test folds can
then be computed as the average saved time for a fixed TPR, i.e., the curve{(

TPR,

∑l
k=1 ŜTk(TPR)

l

)
| TPR ∈ (0, 1)

}
, (3.30)

where l is the total number of folds. An equivalent approach is to create
the curve {(TPR, FPR(TPR)) | TPR ∈ (0, 1)}, where FPR =

∑l

k=1 F̂PRk(θk)
l ,

and θk is chosen such that T̂PRk(θk) = TPR. The average saved time ST
can then be obtained as

ST(TPR) =
[
1 − p(y = +1)

]
·
[
1 − FPR(TPR)

]
+ p(y = +1) ·

[
1 − TPR

]
.

(3.31)

Variant B. An alternative to the previous is to first create the curve
{(TPR(FPR), FPR) | FPR ∈ (0, 1)}, where TPR =

∑l

k=1 T̂PRk(θk)
l , and θk is

chosen such that F̂PRk(θk) = FPR. The average saved time ST can then be
obtained as

ST(FPR) =
[
1 − p(y = +1)

]
·
[
1 − FPR

]
+ p(y = +1) ·

[
1 − TPR(FPR)

]
.

(3.32)

Result of the two variants is shown in Figure 3.13. Unless explicitly stated
otherwise, we report the average performance of models using variant B, as
the curve of the variant appears to provide more detail near TPR = 100%.

29

3. Methods.......................................

0.90 0.92 0.94 0.96 0.98 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

Variant A

Variant B

Upper Bound

Figure 3.13: Two possible variants of reporting the average saved time metric
over folds. Unless explicitly stated otherwise, we report the average performance
of models using Variant B, as the curve of the variant appears to provide more
detail as the true positive rate approaches 100%.

3.6.3 Inference Time

As stated in Section 2.2, automation of clinical sample diagnosis requires
automated slide imaging, which results in a large number, typically thousands,
of images being taken for each clinical sample. These images can be composed
to form a single composite image of the slide; however, processing the partial
images separately is more computationally efficient as they can be evaluated
before the scanning process finishes.

Due to the large number of images, it is imperative that the evaluation is
fast, ideally without any specialized hardware. We, therefore, limit the model
selection. For all trained models, we evaluate the inference time, measuring
only the forward pass of the models. Thus we do not consider the time spent
reading and transferring the data to the processing device.

We (i) force synchronous execution of CPU and GPU, (ii) warm-up the
GPU by artificial computations, and (iii) measure forward pass time by
torch.cuda.Event timers. We evaluate the inference time on a single
NVIDIA GeForce GTX 1080 Ti GPU, with the results shown in Section 4.6.

30

Chapter 4
Experiments & Results

This chapter describes the experiments that were conducted, how they were
set up, and what the outcomes were. Section 4.1 describes experiments that
were carried out in order to develop a strong baseline model and explore
the dataset using standard machine learning methods. Section 4.2 describes
experiments that attempt to improve on the baseline by (i) examining alter-
native deep learning models, and (ii) assembling the models into an ensemble.
Section 4.3 evaluates the effects of the augmentations proposed in Section 3.5.
In Section 4.4, we construct a learning curve and evaluate whether collect-
ing more data would be beneficial. Section 4.5 examines how the achieved
value of the saved time metric changes when the dataset is slightly changed.
In Section 4.6 the inference time of the models is measured. Section 4.7
compares human performance against that of the models.

4.1 Baseline Development

This section describes experiments carried out to create a robust baseline
model using standard machine learning techniques. We experiment with
the ResNet family of models, assuming that results obtained for one ResNet
model transfer to other ResNet models; for example, if data augmentation
helps ResNet-18, it also helps ResNet-50 and ResNet-101. The result of the
experiments in this section is a tuned ResNet-50 model.

4.1.1 Image Scale

Motivation & Goal. The provided training dataset contains images of
multiple pixel dimensions, as mentioned in Section 3.1. The field of view
captured by the images is identical. However, the pixels correspond to a
different actual size if the shapes of the images differ, i.e., pixels in larger
images capture smaller regions of the real world than pixels in smaller images.
It is beneficial for the models if the typical size of the contaminants is constant,
allowing the models to learn filters of a fixed size. Within the data, however,
some images may contain yeast cells spanning 10 pixels, and other images may
contain yeast cells spanning 40 pixels. To address this issue, we downscale all

31

4. Experiments & Results.................................
images in the dataset to the size of the smallest image in the data, 1360×1024
pixels, resampling using pixel area relation.

Training models on images with low scale, see Section 3.1, is computationally
less demanding, while higher scales preserve more detail. The images, however,
are not precisely in focus and contain artifacts, as shown in Figure 3.1. This
begs the question, on what scale should the model be trained?

An experiment was thus conducted to compare model performance based
on the image scale and select the optimal scale for further experiments.

Setup. ResNet-18 models were trained with images of scale s ∈ {10%, 20%, . . . , 100%},
where 100% corresponds to the base shape 1360 × 1024, using 20-fold cross-
validation. The training, test, and validation splits were 60, 20, and 20%,
respectively. The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 0.5 · 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.1 every 50 epochs,. total training epochs: 200,. batch size: b = 2,. loss function: binary cross entropy.
The resulting models were then evaluated on the saved time metric.

Result. The dependence of the saved time metric on the image scale is shown
for sensitivities of 98%, 99%, and 99.5% in Figure 4.1. It can be observed
that larger image scales result in better performance with diminishing returns
when using a scale larger than 50%, i.e., increasing the image scale further
yields marginal improvements to the metric.

The same observation can be made for Figure 4.2, which shows the curve
of all achievable values of the saved time metric {(TPR, ST(TPR)) | TPR ∈
(0, 1)} for all image scales.

The scale of 70% was chosen for further experiments due to (i) achieving
values of the saved time metric comparable with all larger scales, and (ii) pos-
ing lower computational costs than larger scales. Any scale over 50% would,
however, be a valid choice.

4.1.2 Effects of Data Augmentation

Motivation & Goal. When presented with limited dataset size, it is custom-
ary to utilize augmentations that generate new training samples from the
available data, i.e., modify the available images such that a new sample looks
like it was drawn from the underlying data distribution. If done correctly,
this allows the models to more precisely fit the underlying data distribution,
prevent overfitting, and achieve better performance.

Many augmentations are domain-specific, e.g., image rotation. However,
whether a specific augmentation is beneficial depends both on the task and
the provided dataset and must be verified experimentally. We, therefore,
evaluate the effect of multiple data augmentation techniques commonly used

32

.................................4.1. Baseline Development

20 40 60 80 100

Scale [%]

0.0

0.2

0.4

0.6

0.8

1.0
S

av
ed

T
im

e

Sensitivity

0.98 0.99 0.995

Figure 4.1: Dependence of the saved time metric on image scale. Higher image
scales result in a higher value of the saved time metric with diminishing returns
over the scale of 50%, i.e., increasing the image scale further yields marginal
improvements to the metric. An unexpected drop in the metric can be observed
on scale of 90%.

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

Scale

10

60

20

70

30

80

40

90

50

100

0.8 0.9 1.0

0.7

0.8

0.9

Figure 4.2: Dependence of the saved time metric on image scale. The curves for
scale over 50% overlap, suggesting that further increase in the image scale yields
only marginal or no improvements.

33

4. Experiments & Results.................................
for images on the saved time metric, to select suitable augmentations for
further experiments.

Setup. Standard image augmentation techniques of (i) horizontal mirroring,
(ii) vertical mirroring, (iii) rotation, (iv) crop and resizing, and (v) Gaussian
blur, were experimented with. The horizontal mirroring augmentation was
used in all of the experiments. ResNet-18 models were trained for 90-fold
cross-validation with the training, test, and validation splits of 60, 20, and
20% respectively, on a dataset of image scale 20%. The SGD optimizer was
utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.
The resulting models were then evaluated on the saved time metric for
sensitivities of 98%, 99%, and 99.5%.

Result. The (i) rotation augmentation, and (ii) crop & resizing improved
the model performance. The Gaussian blur augmentation, on the other hand,
hindered the performance. We therefore set up an experiment where models
were trained with all of the beneficial augmentations, namely (i) horizontal
mirroring, (ii) rotation, (iii) cropping a portion of the image and resizing the
crop to the original image size, and (iv) additionally also vertical mirroring.
This combination of augmentations resulted in the best model performance.

As a high variance of the saved time metric was observed between the 90
folds, it was decided to change the training, test, and validation splits for
further experiments to 80, 10, 10% from 60, 20, 20%.

Performance of the models depending on the augmentations, measured by
the saved time metric, is shown in Table 4.1. The results were later verified
for ResNet-50 and larger image scales on a 5-fold experiment. It was decided
to use ResNet-50 models for future experiments, as the larger model exhibited
improved performance.

4.1.3 Transfer Learning

Motivation & Goal. The industry-standard approach of training a model
is to take a pre-trained model and fine-tune the weights on a downstream
task. This procedure, called transfer learning, preserves the general filters
learned on large datasets, matches the filters to the specific task, and slightly
modifies the filters to fit the downstream dataset better.

Transfer learning allows for training on much smaller dataset sizes without
overfitting the data. However, for specific tasks, especially if the amount
of provided data is sufficiently large, training end-to-end from a random
initialization yields better results.

34

.................................4.1. Baseline Development

Augmentation Sensitivity
98% 99% 99.5%

Horizontal mirroring 0.632 (0.181) 0.453 (0.207) 0.359 (0.256)
+ Rotation 0.655 (0.141) 0.500 (0.199) 0.438 (0.249)
+ Crop & resize 0.656 (0.136) 0.495 (0.175) 0.463 (0.204)
+ Blur 0.551 (0.189) 0.383 (0.218) 0.307 (0.252)
+ Rot. + Crop + Vert. m. 0.670 (0.134) 0.511 (0.198) 0.458 (0.245)

Table 4.1: Saved time metric dependence on training data augmentation. Results
shown for image scale of 20% and ResNet-18 models. The first value indicates
the mean saved time metric; the second value is the standard deviation between
folds. The best discovered combination of data augmentations was found to be
i) horizontal mirroring, ii) vertical mirroring, iii) rotation, iv) cropping a portion
of the image and resizing the crop to the original image size.

Therefore, the goal of the experiment was to evaluate whether the use of
transfer learning results in improved performance.

Setup. ResNet-18 and ResNet-50 models were trained with either (i) initial-
izing the weights randomly, or (ii) fine-tuning weights obtained by training
on a large dataset. The models were trained using 5-fold cross-validation
with the training, test, and validation splits of 80, 10, and 10%, respectively,
and the image scale of 70%. The Nesterov variant of the SGD optimizer was
utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 200,. batch size: b = 10,. loss function: binary cross entropy.
The training and validation losses of the models were observed, and the
resulting models were evaluated on the saved time metric.

Result. Unsurprisingly, models trained from scratch exhibited slower learning,
i.e., the training loss decreased significantly slower. Further, the training loss
of multiple models trained from a random initialization failed to converge
by the last training epoch. The models trained from random initialization
also exhibited poor generalization, reaching training loss values an order of
magnitude lower than the validation loss.

The same conclusion was reached by comparing the saved time metric
values, where models trained by fine-tuning pre-trained weights achieved
significantly better results.

4.1.4 Freezing Layers

Motivation & Goal. As mentioned in Section 4.1.3, transfer learning is the
industry-standard approach of training computer vision models. However, the

35

4. Experiments & Results.................................
debate continues over whether (i) the general filters learned on large datasets
should remain fixed and only be matched to the specific task, i.e., only a
subset of the weights (typically of the classifier head) is fine-tuned, and the
remaining weights are frozen, or (ii) the filter weights should also be modified,
i.e., all weights are fine-tuned.

To resolve this question, an experiment was set up where models were
trained using both strategies mentioned above.

Setup. ResNet-50 models were trained using 5-fold cross-validation with
the training, test, and validation splits of 80, 10, and 10%, respectively. The
folds were trained for an image scale of 70%.

The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 200,. batch size: b = 10,. loss function: binary cross entropy.
The resulting models were evaluated on the saved time metric.

Result. Models where all of the layers were fine-tuned exhibited significantly
higher values of the saved time metric than models where only the classifier
head was trained on the downstream task. The improved performance was
also observed on (i) the training loss, and (ii) the validation loss.

4.1.5 Image Color Space

Motivation & Goal. Some digital microscopy imaging techniques are capable
of capturing the true colors of magnified objects, while others are not. The
obtained dataset was encoded as RGB images. However, the color was
added artificially in the imaging software using an unknown colormap. It
was theorized that the trained models would be better applicable to other
microscopy hardware and other preparation methods (e.g., different fluorescent
dye) if they were trained using grayscale images. As the color was added
artificially, this procedure should lead to no loss of information if done correctly.
Further, the proposed augmentations are better suited for the grayscale color
space, as Poisson image editing may introduce out of distribution colors to
an RGB image, i.e., the inpainted region may contain colors that could not
be created with standard fluorescent miscroscopy.

Conversion of colored images to grayscale can be done in many ways.
Human vision is more sensitive to some light wavelengths than to others. It
is also excellent at detecting minor changes in color at low luminance but
poor at detecting changes at high luminance. The most common procedure
of converting colored images to grayscale consists of (i) taking the weighted
average of the color channels such that the different perception of colors
is accounted for, [Stokes and Anderson, 1996]. This procedure can further
be improved by a (ii) non-linear transformation of the color domain, which

36

.................................4.1. Baseline Development

ensures that more colors are concentrated at the lower end of the range,
where differentiating between colors is easier. Another approach is to use a
(iii) linear approximation of the non-linear transformation, see [ITU, 2011].

It remained to be experimentally verified how the conversions above would
affect the model performance.

Setup. The conversion variants yielded, for all practical purposes, indistin-
guishable performance on the saved time metric for a small, 3-fold experiment
with ResNet-50 models. Full experiment was therefore set up, using the
conversion variant (iii)1, where ResNet-50 models were trained using 30-fold
cross-validation with the training, test, and validation splits of 80, 10, and
10%, respectively, and the image scale of 70%.

The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.
For preprocessing of the RGB data, ImageNet normalization parameters2 were
used, as the pre-trained model weights were learned using these parameters.
The grayscale normalization parameters3 were obtained from ImageNet images
converted to grayscale using the conversion (iii). For the models which process
grayscale images, the first convolutional layer (projecting from the three RGB
channels into a higher dimension) was replaced by a layer projecting from
one channel. The initial weights of the layer were obtained as a sum over
the weights of the RGB variant. The resulting models were evaluated on the
saved time metric.

Result. Models trained on grayscale images achieved performance similar to
models trained on RGB images. The saved time metric for the two variants is
shown in Table 4.2 and Figure 4.3. This suggests that the loss of information
caused by converting the images to a single channel is insignificant. It was
decided to use the grayscale images for future experiments, even though the
performance when using grayscale images is slightly hindered. As a result,
should a dataset be collected using an automated slide scanner in the future,
the models produced in this thesis can be directly evaluated on the new data
without repeating the training.

1We use specifically the luma formula defined by ITU-R 601-2, taking the weighted
average of the RGB channels as L = R · 299/1000 + G · 587/1000 + B · 114/1000. This is a
standard approach used throughout the industry, e.g. by MATLAB, Pillow, and OpenCV.

2RGB normalization uses the parameters mean =
[
0.485 0.456 0.406

]
) and std =[

0.229 0.224 0.225
]

for the three respective color channels.
3Grayscale normalization uses the parameters mean = 0.44531 and std = 0.26924.

37

4. Experiments & Results.................................
Sensitivity

Color 98% 99% 99.5%

Grayscale 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
RGB 0.820 (0.118) 0.758 (0.156) 0.666 (0.192)

Table 4.2: Saved time metric comparison for ResNet-50 models trained on
grayscale images and RGB images. The first value indicates the mean saved time
metric; the second value is the standard deviation between folds. The models
achieve slightly better performance when using RGB images.

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

Grayscale

RGB

Upper Bound

0.9 1.0

0.7

0.8

0.9

Figure 4.3: Saved time metric comparison for ResNet-50 trained on grayscale
images and RGB images. The curves for both color domains are nearly identical,
suggesting that the conversion to grayscale results in insignificant or no loss of
information while allowing the models to better transfer to different microscopy
or slide preparation methods.

4.1.6 Performance of the Baseline Model

This section provides a concise assessment of the baseline model performance
and the experimentally discovered optimal training configuration. The curve
of all achievable values of saved time is shown in Figure 4.4, with a close-up
of the region of interest shown in Figure 4.5. Alternatively, the ROC curve is
displayed in Figure 4.6.

The model achieves a saved time metric value of 0.758 for a true positive
rate of 99%, i.e., if deployed, the model could be expected to reduce the
number of manual examinations by 75.8%. This assumes that the model’s
performance would transfer to images obtained from an automated slide
scanner. The findings suggest that an automated classifier can be developed
and successfully used as a filter of samples to be presented to human workers.

The models were trained on grayscale images of scale 70%, i.e., resolution
952 × 716 with data augmentations of (i) horizontal mirroring, (ii) vertical
mirroring, (iii) rotation, and (iv) cropping a portion of the image and resizing
the crop to the original image size. The models were initialized to weights

38

...............................4.2. Model Architecture Search

pre-trained on ImageNet, see links in Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
S

av
ed

T
im

e

ResNet-50 Upper Bound

0.95 1.00

0.70

0.75

0.80

0.85

0.90

Figure 4.4: Saved time metric for baseline ResNet-50 models trained on 30-fold
grayscale images. The model achieves a value of 0.758 for a true positive rate
of 99%, i.e., if deployed, the model could be expected to reduce the number of
manual examinations by 75.8%. This assumes that the model’s performance
would transfer to images obtained from an automated slide scanner. The findings
suggest that an automated classifier can be developed and successfully used as a
filter of samples to be presented to human workers. A Close-up of the region of
interest is shown in Figure 4.5.

4.2 Model Architecture Search

This section describes experiments carried out to discover a better classifier
model. We first experiment with models other than the ResNet family in
Section 4.2.1. We then evaluate whether the performance can be improved
by organizing the models into an ensemble in Section 4.2.2.

4.2.1 Alternative Architectures

Motivation & Goal. Although CNNs have dominated computer vision tasks
for the past decade, alternative approaches such as vision transformers have
recently gained traction. Furthermore, many different CNN architectures
have been developed, with tens of different model architectures commonly
being used.

We select and train multiple state-of-the-art models and compare them
against the baseline ResNet-50 to determine which model performs best at
detecting fungi and yeast in clinical samples.

The models are frequently published as a family of models with varying
hardware requirements and performance. The new state-of-the-art perfor-
mance is usually only achieved after the model and the dataset have been

39

4. Experiments & Results.................................

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

ResNet-50 Upper Bound

Figure 4.5: Saved time metric for ResNet-50 models trained on 30-fold grayscale
images shown for high values of true positive rate. The model achieves values
of the saved time metric over 75% for the necessary sensitivity of 99%+. The
findings suggest that an automated classifier can be developed and successfully
used as a filter of samples to be presented to human workers.

scaled up to the point where training the model becomes far too computation-
ally expensive for both individuals and academia, e.g., new state-of-the-art
methods are typically trained on an internal Google dataset JFT-3B contain-
ing nearly three billion images. Therefore, we select the variant from each
family of models that is computationally reasonable and achieves performance
similar to the baseline ResNet-50 on the ImageNet benchmark, e.g., from the
Vision Transformers, we select ViT-Base instead of ViT-Huge.

With this selection, should any model perform significantly better than the
baseline, the improvement can be assumed to be caused by the superiority
of the model architecture. Otherwise, the new model might achieve better
performance only due to its increased complexity and expressive power.

Setup. The models. ResNet-50x1-V2, [He et al., 2016b],. EfficientNet B0, B1, . . . , B4, [Tan and Le, 2019],. EfficientNet-V2-S, [Tan and Le, 2021],.MLP-Mixer-B-32, [Tolstikhin et al., 2021],. ViT-B-32, [Dosovitskiy et al., 2021],
were trained using 30-fold cross-validation with the training, test, and valida-
tion splits of 80, 10, and 10%, respectively, and using an image scale of 70%.
The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,

40

...............................4.2. Model Architecture Search

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Single Fold ROC

Mean ROC (AUC = 0.991 ± 0.006)

± 1 Standard Deviation

Ensemble ROC (AUC = 0.994)

Random Classifier

0.0 0.1
0.80

0.85

0.90

0.95

1.00

Figure 4.6: ROC curve (receiver operating characteristic) for ResNet-50 models
trained on 30-fold grayscale images. The orange curve is the mean ROC over
all folds, with the light orange area marking the standard deviation between
folds. The pink curve was constructed for an ensemble of the trained baseline
models. An ensemble was produced for each image in the dataset separately.
Each image in the dataset was present in the test set of three folds; therefore,
the ensemble for each image always contained three ResNet-50 models. For the
definition of the ensemble, refer to Section 3.2.

. batch size: b = 10,. loss function: binary cross entropy.
The specific pre-trained weights which were used can be found in Appendix A.
The resulting models were then evaluated on the saved time metric.

Result. Multiple models achieve higher values of the saved time metric than
the baseline. From the EfficientNet family of models, we only report the best
performer, EfficientNet-B2. The saved time metric values are provided in
Table 4.3 and the entire range of achievable values of the metric is plotted in
Figure 4.7. The metric is also shown for high values of sensitivity in Figure 4.8.
Training of the MLP-Mixer model was not successful with the default training
protocol, and the model’s performance is therefore not reported.

Performance of all models is within a 5% margin, with an outlier, the
Vision Transformer model performing the worst. The best performance was
achieved by EfficientNet-B2 models, reaching both the highest value of the
saved time metric and the lowest standard deviation between folds, i.e., the
architecture performs the best consistently.

41

4. Experiments & Results.................................

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

ResNet-50

EfficientNet-B2

ViT-B-32

EfficientNet-V2-S

ResNet-50-V2

Upper Bound

0.95 1.00
0.65

0.70

0.75

0.80

0.85

0.90

Figure 4.7: Saved time metric comparison of various models trained on grayscale
images of scale 70%. Performance of all models is within a 5% margin, with an
outlier, the Vision Transformer model performing the worst. The best-performing
architecture is the EfficientNet-B2. The region of interest, with sensitivity higher
than 95%, is displayed enlarged in Figure 4.8.

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

ResNet-50

EfficientNet-B2

ViT-B-32

EfficientNet-V2-S

ResNet-50-V2

Upper Bound

Figure 4.8: Saved time metric comparison of various models trained on grayscale
images of scale 70%. The best performing architectures are the EfficientNet-
B2 and EfficientNet-V2-S, which outperform the baseline ResNet-50 with a
significant margin.

42

...............................4.2. Model Architecture Search

Sensitivity
Model 98% 99% 99.5%

ResNet-50 (Baseline) 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
EfficientNet-B2 0.839 (0.048) 0.790 (0.095) 0.756 (0.100)
ViT-B-32 0.744 (0.116) 0.628 (0.178) 0.472 (0.217)
EfficientNet-V2-S 0.838 (0.053) 0.805 (0.116) 0.695 (0.119)
ResNet-50-V2 0.823 (0.081) 0.724 (0.194) 0.555 (0.275)

Table 4.3: Saved time metric comparison for different models. The first value
indicates the mean saved time metric; the second is the standard deviation
between folds. The models were trained on grayscale images of scale 70% with
30-fold cross-validation. The best performance is achieved by EfficientNet models,
reaching both the highest value of the saved time metric and the lowest standard
deviation between folds, i.e., the architecture performs the best consistently.

4.2.2 Ensemble of Multiple Architectures

Motivation & Goal. It is well known that ensembling techniques, where
a collection of models is used to create a single prediction, such as bag-
ging and boosting, result in improved performance at the cost of increased
computational complexity.

We, therefore, collect the models trained in Section 4.2.1 into an ensemble,
defined in Section 3.2 and evaluate whether the ensemble achieves better
performance.

Setup. To produce an ensemble, models {f1, . . . , f5 | fi : X → R} obtained
from the experiment described in Section 4.2.1 were collected and their pre-
dictions were averaged, see Section 3.2. An ensemble was created for each
of the 30 folds of data. Models within each ensemble were therefore trained
on an identical portion of the dataset. Each ensemble of the model architec-
tures was composed of a single (i) baseline ResNet-50, (ii) ResNet-50x1-V2,
(iii) EfficientNet-B2, (iv) EfficientNet-V2-S, and (v) ViT-B-32.

We evaluate both variants of the ensemble defined in Section 3.2, i.e.,
variant where (i) all component models fi are assigned identical importance,
and (ii) different component models fi are assigned different importance. For
the case when different importance is assigned to each component, we obtain
the weights αi by maximizing the integral of the saved time metric curve
from the true positive rate of 95% to the true positive rate of 100% on the
validation set, i.e., we maximize the objective function

∫ 100%
TPR=95% STval.(TPR),

where STval. is the average value of the metric achieved on the validation set.

Result. Values of the saved time metric achieved by the ensemble can
be found in Table 4.4. The entire curve displaying all possible values of
the metric is shown in Figure 4.9. Figure 4.10 depicts the curve only for
high values of true positive rate. The ensemble achieves results superior
to its components. For the sensitivity of 98%, the ensemble also achieves
exceptionally low standard deviation between folds, i.e., ensembling improves

43

4. Experiments & Results.................................
the performance consistently across all folds.

The weights αi assigned to components of the weighted ensemble are
displayed in Table 4.5. The performance of the two ensemble variants is
shown in Figure 4.11 and in Table 4.6. The performance of both variants
is nearly identical, i.e., assigning different importance to components of the
ensemble did not improve the performance of the ensemble on the test set.

Sensitivity
Model 98% 99% 99.5%

ResNet-50 (Baseline) 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
EfficientNet-B2 0.839 (0.048) 0.790 (0.095) 0.756 (0.100)
Ensemble 0.869 (0.027) 0.869 (0.155) 0.837 (0.156)

Table 4.4: Saved time metric comparison for the baseline ResNet-50, the best
architecture of EfficientNet-B2, and an ensemble of multiple model architectures.
The first value in the table indicates the mean saved time metric; the second
value is the standard deviation between folds. The models were trained on
grayscale images of scale 70% with 30-fold cross-validation. The ensemble of
model architectures is composed of (i) the baseline ResNet-50, (ii) EfficientNet-
B2, (iii) ViT-B-32, (iv) EfficientNet-V2-S, (v) ResNet-50-V2. An ensemble
containing the aforementioned architectures was constructed for each fold of the
dataset. The ensemble’s output is constructed as the average of the component
outputs.

Model
ResNet-50 EfficientNet-B2 EfficientNet-V2-S ResNet-50-V2 ViT

0.153 0.329 0.304 0.160 0.054

Table 4.5: Weights αi assigned to components of the ensemble such that the
predictions are optimal on the validation set. The objective function of the
optimization is the integral of the saved time metric curve on the validation set
from the true positive rate of 95% to the true positive rate of 100%.

Sensitivity
Model 98% 99% 99.5%

ResNet-50 (Baseline) 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
Ensemble: W. Average 0.870 (0.028) 0.854 (0.148) 0.806 (0.146)
Ensemble: Mean 0.869 (0.027) 0.869 (0.155) 0.837 (0.156)

Table 4.6: Saved time metric of ensemble variants. The first value in the table
indicates the mean saved time metric; the second value is the standard deviation
between folds. The Ensemble: Mean model output is constructed as the average
of the component outputs. The Ensemble: W. Average model output is formed
as the weighted average of the component outputs, with the weights available
in Table 4.5. For a formal definition of the two ensemble variants, refer to
Section 3.2.

44

...............................4.2. Model Architecture Search

0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e ResNet-50

EfficientNet-B2

Ensemble

Upper Bound

0.95 1.00
0.65

0.70

0.75

0.80

0.85

0.90

Figure 4.9: Saved time metric of model ensemble trained on grayscale images of
scale 70% with 30-fold cross-validation. The ensemble of model architectures
is composed of (i) the baseline ResNet-50, (ii) EfficientNet-B2, (iii) ViT-B-32,
(iv) EfficientNet-V2-S, (v) ResNet-50-V2. An ensemble containing the aforemen-
tioned architectures was constructed for each fold of the dataset. The output of
the ensemble is constructed as the average of the component outputs.

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
av

ed
T

im
e ResNet-50

EfficientNet-B2

Ensemble

Upper Bound

Figure 4.10: Saved time metric of model ensemble presented in Figure 4.9 shown
for high values of sensitivity. Comparison of the ensemble with the baseline
ResNet-50 model and the best performing architecture EfficientNet-B2.

45

4. Experiments & Results.................................

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
av

ed
T

im
e

ResNet-50

Ensemble: Weighted Average

Ensemble: Mean

Upper Bound

Figure 4.11: Saved time metric of ensemble variants. The Ensemble: Mean
model output is constructed as the average of the component outputs. The
Ensemble: Weighted Average model output is produced as the weighted average
of the component outputs, with the weights available in Table 4.5. For a formal
definition of the two ensemble variants, refer to Section 3.2.

4.3 Domain-Specific Augmentations

This section describes experiments conducted with data augmentation tech-
niques proposed in Section 3.5 and evaluates their effects on model perfor-
mance.

4.3.1 Poisson Augmentation of Fluorescent Stained Positive
Samples

This section describes the experiment carried out to evaluate the effects of
the Poisson augmentation described in Section 3.5.1.

Motivation & Goal. The experiment’s goal is to see if the Poisson augmen-
tation, designed specifically for the visual detection task, improves model
performance. Another goal is to determine whether it is necessary to use
Poisson image editing to perform the inpainting.

Setup. ResNet-50 and EfficientNet-B2 models were trained using a modi-
fication of the training protocol summarized in Section 3.4.2. The number
of total training epochs for the experiment was increased from 150 to 200,
and the Poisson augmentation described in Section 3.5.1 was applied to each
positive sample with a probability of 25%. The models were trained using

46

............................ 4.3. Domain-Specific Augmentations

30-fold cross-validation and the training, test, and validation splits of 80, 10,
and 10%, respectively. The models were trained using an image scale of 70%.
The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 200,. batch size: b = 10,. loss function: binary cross entropy.
An ablation experiment was performed with the ResNet-50 models. The
models were trained using the augmentation with both variants of inpainting
shown in Figure 3.7, (i) the naive inpainting where the value of pixels is
copied directly, and (ii) the seamless inpainting using Poisson image editing.
The resulting models were evaluated on the saved time metric.

Result. ResNet-50 models trained with the augmentation using the seamless
inpainting based on Poisson image editing consistently outperform the baseline.
The augmentation does not improve performance when using the naive
inpainting method. The saved time metric of the ResNet-50 models is shown
in Figure 4.12 and in Table 4.7.

The same result, however, could not be replicated with EfficientNet-B2
models, where models trained without the novel augmentation performed
better than models using the Poisson augmentation. The saved time metric
of the EfficientNet-B2 models is shown in Figure 4.13 and in Table 4.8.

Sensitivity
Augmentation 98% 99% 99.5%

Baseline 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
+Poisson inpainting 0.839 (0.032) 0.804 (0.194) 0.733 (0.205)
+Naive inpainting 0.822 (0.071) 0.759 (0.170) 0.627 (0.177)

Table 4.7: The effect of Poisson augmentation on the saved time metric. The first
value in the table indicates the mean saved time metric; the second value is the
standard deviation between folds. The baseline ResNet-50 model, trained using
the standard augmentation protocol developed through experiments described in
Section 4.1.2, is compared against ResNet-50 models trained using the standard
protocol extended by the Poisson augmentation. The augmentation can be
performed using two inpainting methods; both are shown in the table. The
use of the augmentation consistently improves the model performance. The
improvement can only be observed when utilizing the seamless inpainting method
of Poisson image editing.

4.3.2 Blur Augmentation of Positive Samples with
Localization Map

This section describes experiment carried out to evaluate the effects of the
blur augmentation described in Section 3.5.1.

47

4. Experiments & Results.................................

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e Baseline

Poisson

Naive Copy

Upper Bound

Figure 4.12: The effect of Poisson augmentation on the saved time metric. The
baseline ResNet-50 model, trained using the standard augmentation protocol
developed through experiments described in Section 4.1.2, is compared against
ResNet-50 models trained using the standard protocol extended by the Poisson
augmentation. Models using the Poisson augmentation with Poisson inpainting
outperform the baseline. Models trained with the augmentation variant using
naive copy inpainting perform analogously to the baseline.

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e ResNet-50

ResNet-50: Poisson

EfficientNet-B2

EfficientNet-B2: Poisson

Upper Bound

Figure 4.13: The effect of Poisson augmentation on the saved time metric of
ResNet-50 and EfficientNet-B2 models. The use of the augmentation improves
the performance of ResNet-50. It, however, slightly hinders the performance of
EfficientNet-B2 models.

48

............................ 4.3. Domain-Specific Augmentations

Sensitivity
Augmentation 98% 99% 99.5%

Baseline 0.839 (0.048) 0.790 (0.095) 0.756 (0.100)
+Poisson inpainting 0.837 (0.044) 0.788 (0.148) 0.727 (0.155)

Table 4.8: The effect of Poisson augmentation on the saved time metric of the
EfficientNet-B2 models. The first value in the table indicates the mean saved
time metric; the second value is the standard deviation between folds. Models
trained without the augmentation reach higher values of the metric as well as
lower standard deviation of the metric between folds.

Motivation & Goal. The goal of the experiment is to see if adding localized
blur to regions with easily detectable contaminant features improves model
performance and robustness.

Setup. ResNet-50 models were trained using a modification of the training
protocol summarized in Section 3.4.2 with the addition of the blur aug-
mentation described in Section 3.5.1. Within the first ten training epochs,
the augmentation was not used in order to allow the model to learn the
features without the difficulty of the task being increased. Afterward, the
augmentation was utilized for a training sample with a probability of 20%.
Although the data augmentation technique was designed for positive samples,
we apply the augmentation to both positive and negative samples to prevent
the model from learning that only positive samples are blurred. To apply the
augmentation to a negative sample, we choose a localization mask generated
by some positive sample at random.

Ideally, the contaminant localization map of a sample would be created
using Grad-CAM, [Selvaraju et al., 2017], each time the sample was chosen
for a mini-batch. To reduce computation time, we generate maps for all
samples every ten epochs and keep them fixed for the following ten epochs.
Grad-CAM localization maps contain a wide range of values. We use Yen’s
thresholding algorithm, [Yen et al., 1995], to convert each map into a binary
localization mask, which indicates the position of the contaminant.

When the augmentation is applied, regions specified by the binary mask
are blurred. The experiment was repeated multiple times, blurring either 25,
50, or 75% of the masked regions. For details, refer to the description of the
augmentation in Section 3.5.1.

The models were trained using 30-fold cross-validation and the training,
test, and validation splits of 80, 10, and 10%, respectively, and using an image
scale of 70%. The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.

49

4. Experiments & Results.................................
The resulting models were evaluated on the saved time metric.

Result. No consistent improvement was observed when utilizing the aug-
mentation. Performance of ResNet-50 models trained with the augmentation
depends on the area which was blurred, e.g., the variant blurring 50% of
the masked area outperforms the baseline for TPR < 0.99, but the variant
blurring 25% of the masked area performs comparably with the baseline for
TPR < 0.99. All variants of the augmentation however result in performance
degradation for TPR > 0.99. The saved time metric of the models is shown
in Figure 4.14.

We evaluate the robustness of the models by computing their performance
when subject to an adversarial attack, specifically the Fast Gradient Sign
Method (FGSM), [Goodfellow et al., 2014]. The attack consists of adding
noise to the input of the model, which is designed to cause incorrect prediction.
Specifically, instead of the input x ∈ X , the model f is presented with the
input x + ϵ · sign

(
∇xL(x, y)

)
, where L(x, y) is a loss function. The severity

of the attack depends on the magnitude of the noise ϵ ∈ R. Example of the
attack is shown in Figure 4.15. We show the performance of the models
subject to FGSM in Figure 4.16. Models trained with the blur augmentation
consistently exhibit better adversarial robustness; however, the improvement
over the baseline is marginal.

The augmentation can not be recommended in its current form. An
improvement of the augmentation, proposed by [Fong and Vedaldi, 2019],
is to utilize batch augmentation, i.e., each mini-batch contains augmented
copies of a single image. The procedure could also be improved by generating
contaminant localization masks at each epoch, see experiment setup.

Sensitivity
Augmentation 98% 99% 99.5%

Baseline 0.805 (0.116) 0.758 (0.180) 0.643 (0.201)
+Blur 25% 0.807 (0.094) 0.759 (0.201) 0.532 (0.227)
+Blur 50% 0.838 (0.142) 0.772 (0.229) 0.460 (0.285)
+Blur 75% 0.805 (0.087) 0.724 (0.184) 0.574 (0.224)

Table 4.9: The effect of blur augmentation on the saved time metric. The first
value in the table indicates the mean saved time metric; the second value is the
standard deviation between folds. The augmentation does not provide significant
improvement in performance. Instead, the performance is exacerbated for a true
positive rate of over 99%.

4.3.3 Poisson Augmentation of Negative Samples with
Localization Map

This section describes the experiment carried out to evaluate the effects of
the augmentation described in Section 3.5.2.

50

............................ 4.3. Domain-Specific Augmentations

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
av

ed
T

im
e

Baseline

Blur 25%

Upper Bound

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
av

ed
T

im
e

Baseline

Blur 50%

Upper Bound

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.60

0.65

0.70

0.75

0.80

0.85

0.90

S
av

ed
T

im
e

Baseline

Blur 75%

Upper Bound

Figure 4.14: The effects of the blur augmentation of positive samples on the saved
time metric of ResNet-50 models. Due to the overlapping of the curves, the result
of each experiment is presented in a separate graph. The augmentation does not
provide significant improvement in performance. Instead, the performance is
exacerbated for a true positive rate of over 99%.

51

4. Experiments & Results.................................

+ ϵ · −→

x sign
(
∇xL(x, y)

)
x + ϵ · sign

(
∇xL(x, y)

)
Figure 4.15: Example of the FGSM adversarial attack.

Motivation & Goal. The goal of the experiment is to see if replicating struc-
tures in negative images, which are visually similar to yeast and filamentous
fungi, forces the models to learn stronger features and consequently improves
model performance and robustness.

Decrease of false positive rate can be expected when using the augmentation,
because the augmentation is designed to make the model better at recognizing
negative samples. Consequently, the saved time can be expected to improve
for TPR → 1, as the saved time then depends purely on the incidence rate
and false positive rate,

ST(h) TPR→1=
[
1 − p(y = +1)

]
·
[
1 − FPR(h)

]
. (4.1)

Setup. Identically to the experiment described in Section 4.3.2, the local-
ization map is generated using Grad-CAM, [Selvaraju et al., 2017]. Ideally,
the contaminant localization map of a sample would be created from scratch
each time the sample was chosen for a mini-batch. However, in the same
manner as described in Section 4.3.2, we generate maps for all samples every
ten epochs to reduce the computation time.

The augmentation was not applied for the initial ten epochs. Afterward, the
augmentation was utilized for a negative training sample with a probability of
25%. If the localization mask spanned an area larger than 40% of the entire
image, the augmentation was not utilized, as the localization was deemed
insufficiently specific. The cause of such cases is explained in the description
of the augmentation, Section 3.5.2.

The models were trained using 20-fold cross-validation and the training,
test, and validation splits of 80, 10, and 10%, respectively, and using an image
scale of 70%. The Nesterov variant of the SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.
The resulting models were evaluated on the saved time metric.

Result. ResNet-50 models trained with the Poisson augmentation of negative
samples consistently perform worse than the baseline. The saved time achieved
by the models is shown in Figure 4.17 and in Table 4.10.

52

............................ 4.3. Domain-Specific Augmentations

0 10−5 10−4 10−3

Magnitude ε of Noise

0

20

40

60

80

100

R
el

at
iv

e
P

er
fo

rm
an

ce
[%

]

Sensitivity: 0.98

Baseline

Blur 50%

0 10−5 10−4 10−3

Magnitude ε of Noise

0

20

40

60

80

100

R
el

at
iv

e
P

er
fo

rm
an

ce
[%

]

Sensitivity: 0.99

Baseline

Blur 50%

0 10−5 10−4 10−3

Magnitude ε of Noise

0

20

40

60

80

100

R
el

at
iv

e
P

er
fo

rm
an

ce
[%

]

Sensitivity: 0.995

Baseline

Blur 50%

Figure 4.16: Performance of models when subject to the FGSM adverse-
rial attack. Instead of the input x, the model f is presented with the input
x + ϵ · sign

(
∇xL(x, y)

)
, where L(x, y) is a loss function . Models trained with

the blur augmentation consitently exhibit better adversarial robustness; however,
the improvement is marginal. 53

4. Experiments & Results.................................
Models trained with the augmentation of negative samples outperform

the baseline only for TPR = 1, where they reach non-zero saved time. This
improvement likely arises from the models being better at recognizing negative
samples, hence a decrease of the FPR and an increase of the saved time.

The augmentation can not recommended for the agreed-upon mode of
operation, where models operate at a true positive rate TPR = 0.99. However,
if the requested TPR on the test data changes to TPR = 1, the augmentation
should be used.

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e Baseline

Positive Poisson

Negative Poisson

Upper Bound

Figure 4.17: The effect of Poisson augmentation on the saved time metric. The
augmentation of positive samples was experimented with in Section 4.3.1
and is shown purely for comparison. The augmentation of negative samples
consistently decreases the achieved saved time, except for TPR → 1, where
models trained with the augmentation of negative samples are the only ones
to reach non-zero saved time. This improvement likely arises from the models
being better at recognizing negative samples, hence decreasing the FPR.

Sensitivity
Augmentation 98% 99% 99.5% 100%

Baseline 0.805 (0.068) 0.756 (0.162) 0.643 (0.181) 0.000 (0.202)
+Negative Poisson 0.789 (0.125) 0.687 (0.146) 0.611 (0.148) 0.354 (0.150)

Table 4.10: The effect of Poisson augmentation of negative samples on the
saved time metric. The first value in the table indicates the mean saved time
metric; the second value is the standard deviation between folds. The use of the
augmentation consistently hinders the model performance. An improvement can
only be observed for TPR → 1, likely caused by a decrease of the FPR.

4.3.4 Poisson Augmentation of Negative & Positive Samples

This section describes the experiment carried out to evaluate the effects of
using Poisson augmentation of both positive, and negative samples. The two

54

....................................4.4. Learning Curve

variants of the augmentation are described in Sections 3.5.1 and 3.5.2.

Motivation & Goal. The Poisson augmentation was evaluated in isolation
for positive and negative samples in Sections 4.3.1 and 4.3.3 respectively. The
Poisson image editing can potentially create artifacts in the images. If the
augmentation is utilized for images of a single class, the model can learn to
associate the artifacts with the class. Therefore, the goal of the experiment
is to evaluate the effect of utilizing both augmentations concurrently.

Setup. The models were trained using 15-fold cross-validation and the
training, test, and validation splits of 80, 10, and 10%, respectively, and using
an image scale of 70%. Poisson augmentation of both positive and negative
samples was utilized. The exact setup of the augmentations was identical to
the setups described in Sections 4.3.1 and 4.3.3. The Nesterov variant of the
SGD optimizer was utilized with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.
The resulting models were evaluated on the saved time metric.

Result. Models trained using the augmentation of both positive and neg-
ative samples consistently outperform the baseline. They also consistently
outperforms models trained with Poisson augmentation of only positive or
only negative samples. The saved time achieved by the models is shown in
Figure 4.18 and Table 4.11.

Because Poisson augmentation of negative samples in isolation degrades
performance compared to baseline, a model trained with both positive and
negative samples augmented could be expected to perform worse than models
trained with only positive samples augmented. However, this is not the case.
We contend that the most likely reason is that potential inpainting artifacts
cannot be associated with a single class when both classes are augmented.
As a result, instead of detecting that inpainting was performed, the model
must learn to decide based on the inpainted content.

4.4 Learning Curve

Motivation & Goal. The dataset, described in Section 3.1, was collected
over three years and contains a total of 1244 samples. Other machine learning
datasets can typically contain orders of magnitude more samples. Collecting
additional positive samples is a strenuous and expensive process, but increasing
the size of the training dataset generally improves the final performance of the
model. At a certain point, however, additional samples yield no improvement
in the performance, or the improvement is not worth the investment.

55

4. Experiments & Results.................................

Sensitivity
Augmentation 98% 99% 99.5% 100%

Baseline 0.838 (0.053) 0.788 (0.102) 0.696 (0.110) 0.450 (0.118)
+ Negative Poisson 0.789 (0.131) 0.685 (0.155) 0.579 (0.157) 0.354 (0.159)
+ Positive Poisson 0.854 (0.022) 0.820 (0.170) 0.758 (0.178) 0.112 (0.186)
+ P. & N. Poisson 0.853 (0.020) 0.822 (0.046) 0.806 (0.047) 0.691 (0.049)

Table 4.11: The effect of Poisson augmentation of positive and negative samples
on the saved time metric. The first value in the table indicates the mean saved
time metric; the second value is the standard deviation between folds. The models
trained with augmentation of both positive and negative samples consistently
outperform all of the other variants and achieve the lowest standard deviation
between folds by a large margin.

0.95 0.96 0.97 0.98 0.99 1.00

True Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
av

ed
T

im
e

Baseline

Positive Poisson

Negative Poisson

Positive & Negative Poisson

Upper Bound

Figure 4.18: The effect of Poisson augmentation of positive and negative samples
on the saved time metric. The baseline ResNet-50 model, trained using the
standard augmentation protocol developed through experiments described in
Section 4.1.2, is compared against ResNet-50 models trained using the standard
protocol extended by the Poisson augmentation. Models using the Poisson aug-
mentation for positive samples outperform the baseline except for TPR → 1.
Models trained with the augmentation of negative samples perform consis-
tently worse than the baseline. Models trained using the augmentation of both
positive and negative samples, shown in pink, consistently outperform all
of the other variants and achieve the lowest standard deviation between folds.
Values of the saved time metric and the standard deviation between folds are
shown in Table 4.11. It should be noted that the comparison is not entirely
fair. Models trained with Poisson augmentation of only positive samples were
trained for a total of 200 epochs, while the other models were trained for 150
epochs.

56

....................... 4.5. Influence of Difficult Samples on the Metric

The standard procedure for determining whether to collect additional data
is to generate a learning curve, showing the relation of the primary metric
with the amount of data used for training. The resulting curve is then
extrapolated to predict the effect of adding more data. The typical learning
curve of machine learning models is shown in Figure 4.19.

The goal of the experiment is to investigate in what portion of the typical
learning curve is the provided dataset.

Setup. To generate the learning curve, ResNet-50 models were trained using
the standard training procedure described in Section 3.4.2, i.e., using the
Nesterov variant of the SGD optimizer with. learning rate: α = 10−3,.momentum: η = 0.9,. learning rate decay: γ = 0.33 every 50 epochs,. total training epochs: 150,. batch size: b = 10,. loss function: binary cross entropy.
The models were trained using 11-fold cross-validation with an image scale
of 70% and the training, test, and validation splits of 80, 10, and 10%,
respectively. The models were trained with a reduced amount of data, using
only 25%, 50%, or 75% of the whole dataset. Each training epoch performed
an identical number of optimization steps, regardless of the dataset size. This
was achieved by possibly sampling images multiple times in a single epoch.

Result. The resulting saved time metric curves are shown in Figure 4.20. The
learning curve is shown in Figure 4.21. The performance is steeply improving
with additional data, and extrapolating the curve suggests that further
improvements can be expected when more training samples are collected, i.e.,
the dataset can be expected to currently reside within the green or the blue
region shown in Figure 4.19.

4.5 Influence of Difficult Samples on the Metric

Motivation & Goal. As the operating point of the models is required to
reside at a true positive rate higher than 99% and the dataset contains a
relatively small number of samples, it is reasonable to assume that a small
number of positive samples can significantly impact the saved time metric. A
curve was constructed to decide whether that is the case, which shows how the
saved time metric changes when positive images that are often misclassified
as negative are removed from the dataset.

Setup. Each image in the dataset was assigned a score obtained as the
mean over predictions of models that did not observe the image during
training, i.e., the image was in the test split of the fold. Formally, given
classifiers fk : X → R and their corresponding test sets Tk = {(xk,i, yk,i) ∈

57

4. Experiments & Results.................................

No

Data Low

Amount Large

Amount Infinite

Data

Amount of Available Data

0

20

40

60

80

100

R
el

at
iv

e
P

ef
or

m
an

ce
M

et
ri

c
[%

]

Insufficient
Data

Ideal
Amount

Diminishing
Returns

Model Peformance

Figure 4.19: The typical learning curve of a machine learning model. When the
amount of available data is low, adding more data results in large improvements
in the model performance. At a certain point, however, additional samples
yield no improvement in the performance, or the improvement is not worth the
investment (diminishing returns).

0.7 0.8 0.9 1.0

True Positive Rate

0.70

0.75

0.80

0.85

0.90

0.95

S
av

ed
T

im
e

Training Dataset Size

25% 50% 75% 100%

Figure 4.20: Saved time metric for ResNet-50 models trained on 11-fold grayscale
images with reduced size of the training dataset. Increasing the size of the dataset
improves the saved time metric. The corresponding learning curve is shown
in Figure 4.21. Note that the curve for 100% of the dataset may not precisely
match the curve displayed in the results of other experiments where the metric
is evaluated for 30 folds.

58

....................... 4.5. Influence of Difficult Samples on the Metric

0 25 50 75 100

Dataset Size [%]

0.0

0.2

0.4

0.6

0.8
S

av
ed

T
im

e

Sensitivity

0.98 0.99 0.995

Figure 4.21: Learning curve displaying the saved time metric for ResNet-
50 models trained on 11-fold grayscale images. The transparent area marks
±1 standard deviation between folds. The standard deviation is high but de-
creases with additional data. The performance is steeply improving with addi-
tional data, and the curve suggests that diminishing returns are not present with
the available amount of data.

X × {+1, −1} | i = 1, . . . , nk}, we assign a score F (x) to each image x as

F (x) =

∑
{i|x∈Ti}

fi(x)∑
{i|x∈Ti}

1 . (4.2)

The folds of the dataset were constructed as described in Section 3.6. Each
image was therefore present in the test split of exactly three folds, i.e., three
ResNet-50 models computed the score for each image. Images with low scores
are likely to be classified as negative. Consequently, the models struggle
to detect the contaminants in positive images with a low F (x) score, i.e.,
detecting the contaminant is difficult. We refer to such positive samples as
difficult samples.

The saved time metric was computed for all the models while continuously
removing the positive sample with the lowest score, i.e., the most difficult
positive sample. Ideally, the difficult samples would be removed, and the
models retrained on the resulting dataset. This approach is, however, excep-
tionally computationally intensive. Therefore the images were only removed
from the test set while evaluating the saved time metric.

Formally, the aforementioned samples form a dataset D = P ∪ N, where
P = {(xi, yi) ∈ X × {+1} | i = 1, . . . , nP} are the positive samples and

59

4. Experiments & Results.................................
N = {(xi, yi) ∈ X × {−1} | i = 1, . . . , nN} are the negative samples. We
define a set of positive samples ordered by the score F (x) as

PF = {(xi, yi) ∈ X × {+1} | i = 1, . . . , n ; F (xi) < F (xi+1)}, (4.3)

and define PF
j ⊆ PF as the subset of PF with the j positive samples with the

lowest F (x) score removed

PF
j = {(xi, yi) ∈ X × {+1} | i = j + 1, . . . , n ; F (xi) < F (xi+1)}. (4.4)

Finally, we define a reduced dataset Dj ⊆ D as Dj = PF
j ∪ N. Then, for each

classifier fk and a corresponding test set Tk = {(xi, yi) ∈ X × {+1, −1} | i =
1, . . . , m}, we compute the empirical estimate of the saved time metric for
the model on a reduced test set Tk ∩ Dj . The average performance of the
models ST over all folds was computed as described in Section 3.13.

With slight abuse of notation, we can denote by STj the average perfor-
mance of models evaluated on a reduced dataset Dj . We plot the curve

{(j, STj) | j = 1, . . . , n}. (4.5)

Result. The result is shown in Figure 4.22. As the most difficult samples
are removed, making the detection task easier, the value of the saved time
metric expectedly increases. The saved time metric remains constant for the
sensitivity of 98% while removing the three most difficult positive samples.
On the other hand, for a sensitivity of 99.5%, removing the three most difficult
positive samples causes the metric to change by over 10%, suggesting that
the value of the saved time metric for a very high sensitivity can be largely
affected by a small number of images, confirming the hypothesis. The metric’s
value for lower sensitivities, such as 98%, should therefore be a better choice
for comparing models.

An identical experiment was conducted for EfficientNet-B2 and for an
ensemble of different model architectures. Result of the experiment is shown
in Figure 4.23. The saved time metric of the ensemble of models does not
significantly change when the most difficult positive samples are removed,
even for high values of true positive rate. This suggests that the ensemble of
models produces more robust predictions and is more resistant to changes in
the dataset.

4.6 Inference Time

Motivation & Goal. As described in Section 3.6.3, the inference time of
a model is critical for its large-scale deployment, especially when a single
slide can produce several thousand images when swept by an automated slide
scanner. Furthermore, the inference time of an ensemble grows linearly with
the number of models contained in the ensemble.

This experiment should therefore answer: (i) what is the throughput of each
model, and (ii) is specialized hardware required for laboratory deployment.

60

....................................4.6. Inference Time

100 101 102

Number of Removed Positive Samples

0.60

0.65

0.70

0.75

0.80

0.85

0.90
S

av
ed

T
im

e

Sensitivity

0.95 0.98 0.99 0.995

Figure 4.22: Volatility of the saved time metric of the baseline ResNet-50
model for high sensitivity values. Removing the most difficult positive samples
drastically changes the value of the saved time metric for high sensitivity values
such as 99.5%, suggesting that the metric is volatile for high sensitivities, and
models should be compared on the metric for lower sensitivities, e.g., 98%.

Setup. Only the forward pass of the models was measured. Thus the time
consumed by reading and transferring the data to the processing device was not
considered. To measure the inference time (i) synchronous execution of CPU
and GPU was forced, (ii) the GPU was warmed-up by artificial computations,
and (iii) the forward pass time was measured by torch.cuda.Event timers.
The measurements were carried out for all samples in the dataset and were
repeated fifty times for each sample. All measurements were performed on a
single NVIDIA GeForce GTX 1080 Ti GPU.

Result. We measure the time for the case when (i) a single image is processed
by the GPU at a time, result shown in Figure 4.24, and for the case when
(ii) multiple images are processed simultaneously in a batch, result shown in
Figure 4.25.

Throughput of the models ranges between 20 and 65 images per second. All
models contained within the ensembles, see Section 4.2.2, achieve a throughput
of approximately λ ≈ 40 images per second. The ensemble, composed of five
models, should therefore achieve throughput of at least λensemble ≈ 8 images
per second.

The number of images obtained from a single slide depends on the scanned
area and the desired magnification. Typically, the number can range from a
hundred images to several thousand. With the conservative assumption that

61

4. Experiments & Results.................................

100 101 102

Number of Removed Positive Samples

0.6

0.7

0.8

0.9

S
av

ed
T

im
e

Sensitivity: 0.98

100 101 102

Number of Removed Positive Samples

0.6

0.7

0.8

0.9

S
av

ed
T

im
e

Sensitivity: 0.99

100 101 102

Number of Removed Positive Samples

0.6

0.7

0.8

0.9

S
av

ed
T

im
e

Sensitivity: 0.995

Model

ResNet-50 EfficientNet-B2 Ensemble

Figure 4.23: Volatility of the saved time metric. Comparison of the ensemble of
model architectures, baseline ResNet-50, and the best architecture EfficientNet-
B2. An ensemble was created for each of the 30 folds of the dataset independently
and was composed of a single (i) baseline ResNet-50, (ii) ResNet-50x1-V2,
(iii) EfficientNet-B2, (iv) EfficientNet-V2-S, and (v) ViT-B-32. The saved time
metric of the ensemble does not significantly change when the most difficult
positive samples are removed. Note that the score F (x) marking difficulty of
images was constructed for each model independently, as images that are difficult
for the ResNet-50 models may not be difficult for the EfficientNet-B2 models or
the ensemble.

62

....................................4.6. Inference Time

each slide produces 2500 images of dimensions similar to the training dataset,
a single model would be able to produce the classification in under a minute.
The classification process can be started before the entire scan is finished; the
computation should, therefore, not pose a bottleneck to the automation.

A more accurate estimate would require specifications of a particular slide
scanner. However, the presented results should allow the medical facility to
make an educated decision when selecting a slide scanner for the automation.

10 20 30 40 50 60

Inference Time [ms]

0

2

P
ro

b
ab

il
it

y
D

en
si

ty

Model

ResNet-50

ResNet-50-V2

ViT-Base-32

EfficientNet-B0

EfficientNet-B1

EfficientNet-B2

EfficientNet-B3

EfficientNet-B4

EfficientNet-V2-S

Figure 4.24: Inference time measurement of models when processing a single
sample. The probability densities displayed were obtained empirically by mea-
suring the time required to compute a model’s forward pass. The measurements
were carried out for all samples in the dataset and were repeated 50 times for
each sample. The mean of the inference time, as well as the standard deviation,
for all models, are shown in Table 4.12.

Model Mean [ms] St. Dev. [ms]

EfficientNet-B0 20.036 1.674
ResNet-50 26.747 0.727
ViT-B-32 27.852 0.535
EfficientNet-B1 28.485 1.878
EfficientNet-B2 29.575 1.789
ResNet-50-V2 32.367 0.772
EfficientNet-V2-S 35.313 2.907
EfficientNet-B3 37.598 1.317
EfficientNet-B4 50.219 1.432

Table 4.12: Inference time measurement of models when processing a single
sample. The measurements were carried out for all samples in the dataset and
were repeated 50 times for each sample.

63

4. Experiments & Results.................................

R
es

N
et

-5
0

R
es

N
et

-5
0-

V
2

V
iT

-B
as

e-
32

E
ffi

ci
en

tN
et

-B
0

E
ffi

ci
en

tN
et

-B
1

E
ffi

ci
en

tN
et

-B
2

E
ffi

ci
en

tN
et

-B
3

E
ffi

ci
en

tN
et

-B
4

E
ffi

ci
en

tN
et

-V
2-

S

0
10
20
30
40
50
60
70

T
h

ro
u

gh
tp

u
t

[I
m
a
g
e
s

s
]

Figure 4.25: Throughput of models when utilizing optimal batch-size on a single
NVIDIA GeForce GTX 1080 Ti GPU. According to the results, the inference
time should not be a bottleneck in the automated process.

4.7 Human-Machine Comparison

Motivation & Goal. This experiment attempts to provide answers to two
questions: (i) how does the model performance compare against expert-level
humans, and (ii) how does the model’s performance compare to that of
inexperienced humans? Some tasks are simple for humans but extremely
difficult for machines. This is partly due to humans’ ability to apply their
current knowledge to newly introduced problems. Thus, if non-expert knowl-
edge transfers well to detecting microscopic fungi, a human with a lower
qualification level could serve as a substitute for the automated model.

The outcome of the experiment should either: (i) increase the confidence
in the model predictions, or (ii) demonstrate that the performance is not
satisfactory.

Setup. A human-machine comparison was set up to see if the model’s
performance was sufficient. From the dataset, 100 positive and 100 negative
images were chosen at random. The images were then shown to expert
microbiologists who routinely detect microscopic fungi and yeast in clinical
samples. They were prompted to classify the images as either positive
or negative. A group of amateurs in the field of microbiology was also
shown the images after a brief training session that included a showcase of
20 representative positive and 20 negative samples. The task was verbally
explained, and special attention was given to showcasing the specific structures
of the contaminants.

Result. The saved time metric values achieved by the participants and the
models are shown in Figure 4.26. The performance is also compared on a
ROC curve shown in Figure 4.28.

64

..............................4.7. Human-Machine Comparison

All expert microbiologists perform similarly, achieving a true positive rate
of 89%, 89%, 90% and 94% with a saved time of 91.1%, 91.1%, 89.2% and
90.6% respectively. The experts achieve values of the saved time at the
theoretical upper bound, i.e., the experts achieve a false positive rate of
FPR ≈ 0. It should be noted that the presented task is significantly different
from the standard operating procedure of the experts. In the usual setting,
the expert is presented with an entire slide and can freely move between
portions of the slide and search for the contaminant. In this experiment, the
view is locked, and the expert is presented with a single image.

The novice humans perform significantly worse than the automated model.
They either (i) achieve an insufficient true positive rate, or (ii) achieve
sufficient true positive rate, but with a low value of the saved time metric.
This suggests that generic knowledge does not transfer well to the task.

The ensemble of models is able to perform at the same level or a better
level than the expert humans. This result, although obtained only on the
limited set of 200 images, suggests that the model performs sufficiently.

0.6 0.7 0.8 0.9 1.0

True Positive Rate

0.0

0.2

0.4

0.6

0.8

S
av

ed
T

im
e

ResNet-50

EfficientNet-B2

Ensemble

Novice

Expert

Upper Bound

Figure 4.26: Comparison of human-machine performance on the saved time
metric. The comparison was created for a randomly selected set of 100 positive
and 100 negative samples. Medical experts perform significantly better than
novices, who are outperformed by the automated model by a significant margin.
Detail of the human expert performance is shown in Figure 4.27.

65

4. Experiments & Results.................................

0.875 0.900 0.925 0.950 0.975 1.000

True Positive Rate

0.80

0.82

0.84

0.86

0.88

0.90

0.92

S
av

ed
T

im
e ResNet-50

EfficientNet-B2

Ensemble

Expert

Upper Bound

Figure 4.27: Comparison of human-machine performance on the saved time
metric. The figure shows zoomed region, which contains the expert human
results. In contrast to performance on the entire dataset, shown in Figure 4.8,
the ResNet-50 architecture performs better than EfficientNet-B2 for the used
test set. The ensemble, when predicting the classification of a sample, uses
only predictions of models which did not observe the sample during training,
i.e., models trained on folds, where the image was in the test set. Each image
was present in the test set three times. Therefore, the ensemble always con-
tains three instances of each of (i) ResNet-50, (ii) EfficientNet-B2, (iii) ViT-B-32,
(iv) EfficientNet-V2-S, (v) ResNet-50-V2, a total of 15 models. The ensemble’s
output was constructed as the average of the component outputs.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e ResNet-50

EfficientNet-B2

Ensemble

Novice

Expert

Random Classifier

0.00 0.05
0.85

0.90

0.95

1.00

Figure 4.28: Human-machine performance comparison on the ROC curve.

66

Chapter 5
Discussion

Severe infections caused by filamentous fungi and yeast are sporadic but se-
vere; therefore, patients with risk factors are regularly screened. Consequently,
a large number of slides, the majority of which do not contain yeast or fila-
mentous fungi, must be carefully examined and classified by a human expert.
This thesis aims to investigate the possibility of using deep neural networks
to either completely replace the human operator or to significantly simplify
their work by filtering out samples that are clearly negative and presenting
the operator with only samples suspected of containing the contaminant.

The results indicate that the task can be tackled by employing an ensemble
of convolutional neural networks, Section 4.2.2. The developed model consis-
tently performs on par or better than a human expert, see Section 4.7, and if
deployed, should reduce the amount of manual labor by approximately 85%
when operating at a true positive rate of 99%. This result is surprising, as
the method was trained with annotations on the image level, i.e., the network
was not instructed on which parts of the image are responsible for the classi-
fication. Nonetheless, the models successfully learned to classify the images,
indicating that the annotations are sufficient. However, this claim is based
on the results on the limited dataset, for which optimal pre-processing and
data augmentation techniques were identified experimentally in Section 4.1.
Therefore, performance on other datasets may be worse, and the models may
require additional fine-tuning. In Section 4.4 it was shown that collecting
additional data would further improve performance. Domain-specific data
augmentation techniques were therefore proposed to alleviate the data scarcity
and were employed with promising results, shown in Section 4.3.

Various deep learning models were trained, and their performance was
evaluated. Model architectures introduced in recent years, such as the Vision
Transformers, were outperformed by state-of-the-art convolutional neural
networks, implying that the intrinsic biases of CNNs continue to be beneficial
for tasks with a small downstream dataset, Section 4.2.1.

The overall findings are in accordance with previous research, where convolu-
tional networks were successfully used to identify bacteria, [Smith et al., 2018],
protozoa, [Mathison et al., 2020], and fungi, [Zieliński et al., 2020], in micro-
scopic images. We show that the method can successfully be applied to
fluorescent microscopy and that the computational complexity should not

67

5. Discussion
pose a bottleneck to the automation, Section 4.6.

Limitations

The study has several limitations. First, as mentioned previously, the results
were obtained on a small dataset of 1244 images. Second, the models were
trained and evaluated on images collected using a microscope designed for
manual examinations. The models, however, are ultimately to be used with
an automated slide scanner. Third, due to hardware limitations, only model
architectures of limited size were trained and evaluated. The hardware also
limited the training procedure; for example, training could only be done with
batches of 10 samples. Fourth, the models were trained and evaluated on
downscaled images converted to grayscale. However, it is possible that better
performance could be attained with higher resolution, colored images.

Future Research

There are three major research topics arising from the thesis that could be
addressed in the future. First, the thesis focused on the model’s performance
on the available dataset. However, in the future, the model must be evaluated
and potentially re-trained on data collected by an automated slide scanner.

Second, the thesis focused on the binary classification of a single image.
However, when using an automated slide scanner, the number of images
obtained from a single slide typically ranges from a hundred images to several
thousand. Therefore, a methodology for aggregating classifications of the
images to produce a classification of the entire slide must be developed.

Third, the effects of the novel data augmentations were evaluated with
promising results when using Poisson augmentation of both (i) the positive
samples, and (ii) the negative samples. The localization of the contaminant
for positive samples was obtained by thresholding the images, a process
specific to fluorescent microscopy. However, the localization was performed
using Grad-CAM, [Selvaraju et al., 2017], for negative samples, a general
method applicable to a wide range of datasets. It, therefore, remains to be
explored whether (i) the positive samples can be successfully augmented using
Grad-CAM instead of thresholding, and whether (ii) the augmentation is
beneficial for a general detection task.

68

Chapter 6
Conclusion

In this work, we have presented the theoretical background for detecting
filamentous fungi and yeast in microscopic images by deep neural networks.
The thesis provides an intermediate step toward creating an automated
system that would simplify the work of human operators. We trained state-
of-the-art networks and demonstrated that the method achieves performance
comparable with expert-level humans, despite the fact that annotations were
only provided at the image level. We further showed that deployment of the
model would significantly reduce the amount of manual labor associated with
routine screenings for filamentous fungi and yeast.

69

70

Bibliography

[Aakash Saboo and Wang, 2021] Aakash Saboo, Prashnna K. Gyawali, A. S.
M. S. N. J. and Wang, L. (2021). Latent-optimization based disease-aware
image editing for medical image augmentation.

[Ali et al., 2020] Ali, F., El-Sappagh, S., Islam, S. R., Kwak, D., Ali, A.,
Imran, M., and Kwak, K.-S. (2020). A smart healthcare monitoring system
for heart disease prediction based on ensemble deep learning and feature
fusion. Information Fusion, 63:208–222.

[Dosovitskiy et al., 2021] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale. ArXiv,
abs/2010.11929.

[Du et al., 2022] Du, X., Wang, Z., Cai, M., and Li, Y. (2022). Vos: Learning
what you don’t know by virtual outlier synthesis.

[Fong and Vedaldi, 2019] Fong, R. and Vedaldi, A. (2019). Occlusions for
effective data augmentation in image classification.

[Frid-Adar et al., 2018] Frid-Adar, M., Diamant, I., Klang, E., Amitai, M.,
Goldberger, J., and Greenspan, H. (2018). GAN-based synthetic medi-
cal image augmentation for increased CNN performance in liver lesion
classification. Neurocomputing, 321:321–331.

[Gao et al., 2021] Gao, W., Li, M., Wu, R., Du, W., Zhang, S., Yin, S.,
Chen, Z., and Huang, H. (2021). The design and application of an auto-
mated microscope developed based on deep learning for fungal detection
in dermatology. Mycoses, 64(3):245–251.

[Garcia et al., 2021] Garcia, E., Kundu, I., Kelly, M., and Soles, R. (2021).
The American Society for Clinical Pathology 2020 Vacancy Survey of
Medical Laboratories in the United States. American Journal of Clinical
Pathology. aqab197.

71

[George, 2010] George, E. (2010). Occupational Hazard for Pathologists:
Microscope Use and Musculoskeletal Disorders. American Journal of
Clinical Pathology, 133(4):543–548.

[Goodfellow et al., 2014] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).
Explaining and harnessing adversarial examples.

[He et al., 2016a] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep
residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778.

[He et al., 2016b] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity
mappings in deep residual networks.

[ITU, 2011] ITU (2011). Recommendation itu-r bt.601-7 studio encoding
parameters of digital television for standard 4:3 and wide-screen 16:9 aspect
ratios bt series broadcasting service (television).

[Kokhlikyan et al., 2020] Kokhlikyan, N., Miglani, V., Martin, M., Wang, E.,
Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan,
S., and Reblitz-Richardson, O. (2020). Captum: A unified and generic
model interpretability library for pytorch.

[Kolesnikov et al., 2020] Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J.,
Yung, J., Gelly, S., and Houlsby, N. (2020). Big transfer (bit): General
visual representation learning. In ECCV.

[Koziarski et al., 2021] Koziarski, M., Cyganek, B., Olborski, B., Antosz,
Z., Żydak, M., Kwolek, B., Wąsowicz, P., Bukała, A., Swadźba, J., and
Sitkowski, P. (2021). Diagset: a dataset for prostate cancer histopathologi-
cal image classification.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). Imagenet classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc.

[Lai and Yu, 2021] Lai, C.-C. and Yu, W.-L. (2021). Covid-19 associated
with pulmonary aspergillosis: A literature review. Journal of Microbiology,
Immunology and Infection, 54(1):46–53.

[Mathison et al., 2020] Mathison, B. A., Kohan, J. L., Walker, J. F., Smith,
R. B., Ardon, O., Couturier, M. R., and Pritt, B. S. (2020). Detec-
tion of intestinal protozoa in trichrome-stained stool specimens by use of
a deep convolutional neural network. Journal of Clinical Microbiology,
58(6):e02053–19.

[Paplhám, 2020] Paplhám, J. (2020). Convolutional neural networks with
local context masks.

72

[Pérez et al., 2003] Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson
image editing. ACM Trans. Graph., 22(3):313–318.

[Pham et al., 2021] Pham, H., Xie, Q., Dai, Z., and Le, Q. V. (2021). Meta
pseudo labels. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11552–11563.

[Rotemberg et al., 2020] Rotemberg, V., Kurtansky, Betz-Stablein, Caffery,
Chousakos, Codella, Combalia, Dusza, Guitera, and Gutman. (2020). A
patient-centric dataset of images and metadata for identifying melanomas
using clinical context.

[Selvaraju et al., 2017] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam,
R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from
deep networks via gradient-based localization. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 618–626.

[Smith et al., 2018] Smith, K. P., Kang, A. D., Kirby, J. E., and Bourbeau,
P. (2018). Automated interpretation of blood culture gram stains by use
of a deep convolutional neural network. Journal of Clinical Microbiology,
56(3):e01521–17.

[Stokes and Anderson, 1996] Stokes, M. and Anderson, M. (1996). A stan-
dard default color space for the internet - srgb.

[Szegedy et al., 2015] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. (2015). Rethinking the inception architecture for computer
vision.

[Tan and Le, 2019] Tan, M. and Le, Q. (2019). EfficientNet: Rethinking
model scaling for convolutional neural networks. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 6105–6114. PMLR.

[Tan and Le, 2021] Tan, M. and Le, Q. V. (2021). Efficientnetv2: Smaller
models and faster training. ArXiv, abs/2104.00298.

[Tolstikhin et al., 2021] Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer,
L., Zhai, X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J., Lucic,
M., and Dosovitskiy, A. (2021). Mlp-mixer: An all-mlp architecture for
vision. ArXiv, abs/2105.01601.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention
is all you need.

[Wang et al., 2017] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and
Summers, R. M. (2017). Chestx-ray8: Hospital-scale chest x-ray database
and benchmarks on weakly-supervised classification and localization of

73

common thorax diseases. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[Wei et al., 2017] Wei, Y., Feng, J., Liang, X., Cheng, M.-M., Zhao, Y., and
Yan, S. (2017). Object region mining with adversarial erasing: A simple
classification to semantic segmentation approach.

[Xie et al., 2020] Xie, Q., Hovy, E. H., Luong, M.-T., and Le, Q. V. (2020).
Self-training with noisy student improves imagenet classification. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10684–10695.

[Yen et al., 1995] Yen, J.-C., Chang, F.-J., and Chang, S. (1995). A new
criterion for automatic multilevel thresholding. IEEE Transactions on
Image Processing, 4(3):370–378.

[Yun et al., 2019] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. (2019). Cutmix: Regularization strategy to train strong classifiers with
localizable features.

[Zhang et al., 2017] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. (2017). mixup: Beyond empirical risk minimization.

[Zieliński et al., 2017] Zieliński, B., Plichta, A., Misztal, K., Spurek, P.,
Brzychczy-Włoch, M., and Ochońska, D. (2017). Deep learning approach
to bacterial colony classification. PLOS ONE, 12(9):1–14.

[Zieliński et al., 2020] Zieliński, B., Sroka-Oleksiak, A., Rymarczyk, D.,
Piekarczyk, A., and Brzychczy-Włoch, M. (2020). Deep learning approach
to describe and classify fungi microscopic images. PLOS ONE, 15(6):1–16.

74

Acronyms

BiT Big-Transfer, [Kolesnikov et al., 2020]. 20

CNN Convolutional Neural Network. 1, 2, 5–9, 19, 23, 39, 67

DNA Deoxyribonucleic acid. 8

FPR False positive rate. 16, 28, 29, 52, 54

LR Learning rate. 19, 20

MLP Multi-layer perceptron. 6, 40, 41

SGD Stochastic gradient descent. 19, 20, 32, 34–37, 40, 47, 49, 52, 55, 57

ST Saved time. 16, 17

SVM Support vector machine. 8, 9

TPR True positive rate. 16, 17, 28, 29, 32, 43, 50, 52, 54

ViT Vision Transformer. 6, 19, 40, 43–45, 62, 63, 66

75

76

Glossary

Automated slide scanner Machine for automated slide imaging, produc-
ing high-resolution microscopic images without manual labor. 1, 7,
8

Fluorescent stain Staining method that uses fluorescent dye which binds
to certain tissue components and will fluoresce upon irradiation with
ultraviolet or violet-blue light. The staining process is non-specific, as a
multitude of structures binds the dye. 2

Gram stain Staining method for differentiating between types of bacteria.
Color is added to the sample then washed off. Bacteria with a thicker
cell wall preserve the color even after washing. Such bacteria are called
gram-positive. Bacteria that do not preserve the coloring are called
gram-negative and are often recolored with a different color, to be easily
identifiable under a microscope. 2

Slide A small, thin, flat rectangular piece of glass for mounting samples for
microscopic study. 1, 12

Trichrome stain Staining method that uses acid dyes in conjunction with a
polyacid for tinting tissues in contrasting colors. The increased contrast
allows for easier detection of features in microscopy. 2, 8

77

78

Appendix A
Pretrained Model Weights

Model Weights

ResNet-18 https://download.pytorch.org/models/
resnet18-f37072fd.pth

ResNet-50 https://download.pytorch.org/models/
resnet50-0676ba61.pth

ResNet-50x1-V2 https://storage.googleapis.com/bit_models/
BiT-M-R50x1-ILSVRC2012.npz

EfficientNet-B0 https://github.com/rwightman/pytorch-image-models/
releases/download/v0.1-weights/tf_efficientnet_b0_
aa-827b6e33.pth

EfficientNet-B1 https://github.com/rwightman/pytorch-image-models/
releases/download/v0.1-weights/tf_efficientnet_b1_
aa-ea7a6ee0.pth

EfficientNet-B2 https://github.com/rwightman/pytorch-image-models/
releases/download/v0.1-weights/tf_efficientnet_b2_
aa-60c94f97.pth

EfficientNet-V2-S https://github.com/rwightman/pytorch-image-models/
releases/download/v0.1-effv2-weights/tf_
efficientnetv2_s_21k-6337ad01.pth

ViT-B-32-224 https://storage.googleapis.com/vit_models/augreg/
B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.
0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz

ViT-B-32-384 https://storage.googleapis.com/vit_models/augreg/B_
32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.
0--imagenet2012-steps_20k-lr_0.03-res_384.npz

Table A.1: Pretrained model weights.

79

https://download.pytorch.org/models/resnet18-f37072fd.pth
https://download.pytorch.org/models/resnet18-f37072fd.pth
https://download.pytorch.org/models/resnet50-0676ba61.pth
https://download.pytorch.org/models/resnet50-0676ba61.pth
https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz
https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz
https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz

80

Appendix B
Module List

Included below is a list of modules used for all of the experiments. The order
is identical to the order in which the modules were loaded...1. GCCcore/8.3.0..2. binutils/2.32-GCCcore-

8.3.0..3. GCC/8.3.0..4. CUDA/10.1.243..5. gcccuda/2019b..6. zlib/1.2.11-GCCcore-8.3.0..7. numactl/2.0.12-GCCcore-
8.3.0..8. XZ/5.2.4-GCCcore-8.3.0..9. libxml2/2.9.9-GCCcore-
8.3.0...10. libpciaccess/0.14-GCCcore-
8.3.0...11. hwloc/1.11.12-GCCcore-
8.3.0...12. OpenMPI/3.1.4-gcccuda-
2019b...13. OpenBLAS/0.3.7-GCC-8.3.0...14. gompic/2019b...15. FFTW/3.3.8-gompic-2019b...16. ScaLAPACK/2.0.2-gompic-
2019b...17. fosscuda/2019b...18. bzip2/1.0.8-GCCcore-8.3.0...19. ncurses/6.1-GCCcore-8.3.0

...20. libreadline/8.0-GCCcore-
8.3.0...21. Tcl/8.6.9-GCCcore-8.3.0...22. SQLite/3.29.0-GCCcore-
8.3.0...23. GMP/6.1.2-GCCcore-8.3.0...24. libffi/3.2.1-GCCcore-
8.3.0...25. Python/3.7.4-GCCcore-
8.3.0...26. SciPy-bundle/2019.10-
fosscuda-2019b-Python-
3.7.4...27. libyaml/0.2.2-GCCcore-
8.3.0...28. PyYAML/5.1.2-GCCcore-
8.3.0...29. MPFR/4.0.2-GCCcore-8.3.0...30. NASM/2.14.02-GCCcore-
8.3.0...31. x264/20190925-GCCcore-
8.3.0...32. LAME/3.100-GCCcore-8.3.0...33. x265/3.2-GCCcore-8.3.0...34. expat/2.2.7-GCCcore-8.3.0...35. libpng/1.6.37-GCCcore-
8.3.0...36. util-linux/2.34-GCCcore-
8.3.0

81

...37. fontconfig/2.13.1-GCCcore-
8.3.0...38. X11/20190717-GCCcore-
8.3.0...39. FriBidi/1.0.5-GCCcore-
8.3.0...40. FFmpeg/4.2.1-GCCcore-
8.3.0...41. gflags/2.2.2-GCCcore-
8.3.0...42. libunwind/1.3.1-GCCcore-
8.3.0...43. glog/0.4.0-GCCcore-8.3.0...44. libjpeg-turbo/2.0.3-GCCcore-
8.3.0...45. LibTIFF/4.0.10-GCCcore-
8.3.0...46. Pillow/6.2.1-GCCcore-
8.3.0...47. cuDNN/7.6.4.38-gcccuda-
2019b...48. NCCL/2.4.8-gcccuda-2019b...49. JasPer/2.0.14-GCCcore-
8.3.0...50. Java/11.0.2...51. ant/1.10.7-Java-11...52. gettext/0.20.1-GCCcore-
8.3.0...53. PCRE/8.43-GCCcore-8.3.0...54. GLib/2.62.0-GCCcore-8.3.0...55. ATK/2.32.0-GCCcore-8.3.0...56. DBus/1.13.12-GCCcore-
8.3.0...57. at-spi2-core/2.32.0-GCCcore-
8.3.0...58. at-spi2-atk/2.32.0-GCCcore-
8.3.0...59. Gdk-Pixbuf/2.38.1-GCCcore-
8.3.0

...60. pixman/0.38.0-GCCcore-
8.3.0...61. cairo/1.16.0-GCCcore-
8.3.0...62. ICU/64.2-GCCcore-8.3.0...63. HarfBuzz/2.6.4-GCCcore-
8.3.0...64. Pango/1.44.7-GCCcore-
8.3.0...65. nettle/3.5.1-GCCcore-
8.3.0...66. libdrm/2.4.99-GCCcore-
8.3.0...67. LLVM/9.0.0-GCCcore-8.3.0...68. Mesa/19.1.7-GCCcore-8.3.0...69. libepoxy/1.5.3-GCCcore-
8.3.0...70. GTK+/3.24.12-GCCcore-
8.3.0...71. OpenCV/3.4.8...72. freetype/2.10.1-GCCcore-
8.3.0...73. Pillow-SIMD/6.0.x.post0-
GCCcore-8.3.0...74. Ninja/1.9.0-GCCcore-8.3.0...75. protobuf/3.10.0-GCCcore-
8.3.0...76. protobuf-python/3.10.0-
fosscuda-2019b-Python-
3.7.4...77. pybind11/2.4.3-GCCcore-
8.3.0-Python-3.7.4...78. typing-extensions/3.7.4.3-
GCCcore-8.3.0-Python-
3.7.4...79. magma/2.5.4-fosscuda-
2019b...80. PyTorch/1.8.0-fosscuda-
2019b-Python-3.7.4...81. torchvision/0.9

82

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474482Personal ID number:Paplhám JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Detection of Microscopic Fungi and Yeast in Clinical Samples

Master’s thesis title in Czech:

Detekce mikroskopických hub v klinickém materiálu

Guidelines:

Infections caused by microscopic fungi and yeast occur rarely, however, they can cause serious health problems. For this
reason, patients with risky factors undergo regular screening. A suitable method for the detection of fungi and yeast is
based on fluorescence microscopy. At present, the microscopic images are examined manually by a trained specialist.
The goal of this thesis is to explore the possibility of using deep neural networks to either replace the human operator
completely or to significantly facilitate his work.

Bibliography / sources:

[1] B.Zielinksi at al. Deep learning approach to describe and classify fungi microscopic images. PLoS ONE 15(6), 2020.
[2] W. Gao et al. The design and application of an automated microscope developed based on deep learning for fungal
detection in dermatology. Mycoses, 64(3):245-251. 2020.

Name and workplace of master’s thesis supervisor:

Ing. Vojtěch Franc, Ph.D. Machine Learning FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 07.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vojtěch Franc, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

	Introduction
	The State-of-the-art
	Deep Learning for Image Classification
	Model Architectures
	Data Augmentation

	Relevant Medical Applications
	Prior Research
	Summary

	Methods
	Dataset
	Classification
	Metrics
	Saved Time Metric

	Implementation Details
	Models
	Optimizer Settings
	Data Augmentation

	Domain-Specific Augmentation
	Positive Sample Augmentation
	Negative Sample Augmentation

	Evaluation Protocol
	K-Fold Construction
	Saved Time Metric
	Inference Time

	Experiments & Results
	Baseline Development
	Image Scale
	Effects of Data Augmentation
	Transfer Learning
	Freezing Layers
	Image Color Space
	Performance of the Baseline Model

	Model Architecture Search
	Alternative Architectures
	Ensemble of Multiple Architectures

	Domain-Specific Augmentations
	Poisson Augmentation of Fluorescent Stained Positive Samples
	Blur Augmentation of Positive Samples with Localization Map
	Poisson Augmentation of Negative Samples with Localization Map
	Poisson Augmentation of Negative & Positive Samples

	Learning Curve
	Influence of Difficult Samples on the Metric
	Inference Time
	Human-Machine Comparison

	Discussion
	Conclusion
	Bibliography
	Acronyms
	Glossary
	Pretrained Model Weights
	Module List
	Project Specification

