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Abstract

The main goal of this diploma thesis was
to design and implement a system that
can detect, classify and track the float-
ing debris on the water surface. Methods
based on deep learning were proposed and
implemented for the detection and clas-
sification of floating debris. A fast and
computationally not demanding method,
which was able to track multiple objects
on the water surface, was proposed and
implemented. Dataset was collected for
the training and evaluation of the deep
learning models. The dataset was also
used to create videos for the evaluation of
the tracking method. At the end of the
thesis, we present and discuss the experi-
ments and results. We proposed a detec-
tion model, suitable for implementation
with the multi-object tracking method on
the real hardware of the UAV.

Keywords: unmanned aerial vehicles
(UAV), floating debris, object detection,
multi-object tracking

Supervisor:
rer. nat.

doc. Ing. Martin Saska, Dr.

iv

Abstrakt

Hlavnym cielom tejto diplomovej prace
bolo navrhnit a implementovat systém,
ktory dokaze detekovaft, klasifikovat a sle-
dovat plavajici odpad na vodnej hladine.
Na detekciu a klasifikaciu plavajuceho od-
padu boli navrhnuté a implementované
viaceré metody, ktorych zaklad bol v hl-
bokom uceni. Navrhnuta a implemento-
vand bola rychla a vypocetne nenaro¢na
metdda, ktord zvlada sledovat viacero ob-
jektov na vodnej hladine. Pre natrénova-
nie a vyhodnotenie modelov so zdkladom
v hlbokom uceni bol nazbierany dataset.
Dataset sa vyuzil aj na vytvorenie videi,
ktoré boli neskor pouzité k vyhodnoteniu
sledovacej metody. V zavere nasej prace
prindsame prehlad o prevedenych expe-
rimentoch a diskusiu o ich vysledkoch,
na zaklade ktorych sme navrhli detekény
model, ktory je vhodny na pouzitie so sle-
dovacou metédou pri implementacii na
realny dron.

Klicova slova: bezpilotné lietadlé,
odpad na vode, detekcia objektov,
sledovanie objektov
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Chapter 1

Introduction

One of the most important resources for living on our planet is water. Millions
of tons of trash are thrown into the oceans, seas and rivers every year. This
results in polluted waters and finding animals bodies filled with debris. In
particular, about 8 millions items of debris are thrown to water environment
every day [I]. According to United Nations world water development report,
around 3.5 million people die from water infections [2]. Removing and
monitoring marine debris has been one of the biggest environmental challenges
in the past years. Most of the marine debris monitoring and collecting is
performed via boat surveys, which is time and cost demanding and also the
human error can occur.

Research and development in computer science and robotic fields have
risen in recent years. This gave us the opportunity to automate most of the
tasks also in monitoring and removing marine debris. It offers to perform
surveys in a maritime environment with less search time, lower cost of
expeditions, increased accuracy and human error-free results. Autonomous
robotic vessel platforms for detecting and collecting debris on small water
bodies were deployed [3]. These platforms can autonomously navigate in a
riverine environment, detect and collect debris.

Nowadays unmanned aerial vehicles (UAVs), also called drones, gained
popularity. They are used to tackle also marine environment challenges with
relatively low price and easy deployment. UAVs give us a flexible platform
to carry out cameras and sensors for monitoring marine debris [4]. We can
detect and classify small objects, which can be unseen by the human eye with
using deep learning approaches from images collected by UAVs [5].
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1. Introduction

B 1.1 Motivation and problem definition

Our motivation is to contribute to tackle the global problem with floating
marine debris using UAVs. This thesis is a part of a project to develop UAVs
capable of removing floating marine debris from the water. The main idea is
that UAVs will fly above water and search for floating marine debris. Detected
debris will be classified into the most common marine debris categories, which
can be found in the marine environment, such as plastic bottles, plastic bags,
food packaging etc. [6]. After the detection of floating debris, UAV will start
tracking the detected and classified objects. Information about the position
of tracked floating debris will be used for grasping it from water.

Our part of the overall solution is focusing on proposing and implementing
the detection-tracking system, which can run in real-time. In order to achieve
our goal, we need to choose the right payload, which consists of cameras
and sensors. The reason is to manage the UAV to be able to sense and see
surrounding floating debris.

Our task can be divided into two subtasks. The first subtask will tackle
the detection and classification part. For this subtask, we will propose
deep learning methods, which will be able to successfully detect and classify
floating debris. To use modern deep learning methods, we need to create a
dataset for training the models. For a dataset collection we need to choose a
camera, which can be able to take pictures of floating debris with a frame
rate of 30 frames per second (FPS) and higher. The camera will be mounted
perpendicular to the water surface.

Another useful information available during dataset collection is the flight
altitude. This information will later be important to determine from which
altitute our models can successfully detect and classify the floating debris.

We chose to classify three most common marine debris categories, which are
plastic menu boxes, plastic bags and plastic bottles. Collection of dataset will
be on the water surface without obstacles, that can overlap floating debris.

The second subtask will tackle the visual multi-object tracking of detected
floating debris on the water surface. We will propose a method that will be
able to track multiple objects and will not add the computational load to
the hardware of the UAV to maintain real-time performance, since the deep
learning methods that will be used for detection and classification subtask
are computational demanding.



1.2. Thesis outline

. 1.2 Thesis outline

In the beggining we explore related work to our problem.

Next we present our proposed methods for solving each of the subtasks. Then
we describe the process of creating the dataset with the examples of collected
images, which will be then used for experimentation with proposed methods.
After the implementation of the proposed methods and performing experi-
ments on our datasets, we will present the achieved results and comparisons.
Finally we will conclude and discuss the results and possible limitations of
the proposed system.






Chapter 2

Related work

In this chapter, we present related work to two main subtasks of our detection-
tracking system, found in the available literature. First part is dedicated to
object detection and classification of floating debris on the water surface. We
explore which methods and cameras are being used nowadays for tackling
this problem.

The second part describes methods for visual object tracking.

B2 Object detection and classification on the
water surface

Object detection of floating debris on the water surface is a challenging task.
Floating objects can be partially submerged. Some objects can fully sink
under the water and later resurface due to the waves. Plastic bags can often
change their shape that vary in time, as they float on the water surface. The
water surface can also reflect the sun and the sky. Large waves can also
produce foam, which can add unwanted noise and confuse the object detector

.

Thanks to the recent development in machine learning, especially in subfield
of deep learning. These methods started to get more attention in the last
years. Most of the object detection and classification tasks are build on deep
learning methods, such as convolutional neural networks.

For the static monitoring of floating debris in the city canals cameras mounted
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2. Related work

on the bridge construction are used. In [7] state of the art deep learning
models are used and compared with adjusted attention layer for focusing on
smaller objects. Other example is shown in [8], where they explore an object
detection based on convolutional neural networks and generalization of using
trained model in other locations with the same environment. Focus is also
given on counting the detected objects and comparation of the model with
the human counting. According to [9] deep learning methods are also used in
detection and counting of floating debris in a river.

Exhaustive study was gathered on detection and classification in riverine
environment [I0]. Study explored the use of deep learning model YOLOv4 for
object detection of 5 classes. These classes were composed of plastic bottles,
bags, styrofoam, aluminium cans and plastic containers. During the training,
the image augmentations are applied to original dataset for its expansion.
Results show different metrics for evaluation of applied deep learning model
on detection of floating debris.

In maritime environment object classification was explored using convolutional
neural network named VGG16. High accuracy of classification was observed
on 3 classes, which were plastic bottles, straws and buckets [11].

For the monitoring of objects on a large water surfaces, Zhang et al. [12]
used unmanned surface vehicle (USV). USVs have application mainly in civil
and military missions. These vehicles need to be aware of their surroundings
for completing their tasks without collisons. USV is equiped with camera
mounted on its construction. Visual-based approach is used with deep learning
method. Experiments on changing the model architecture proved more mined
hidden information and better feature extraction, which resulted in overall
better network precision. Real-time detection performance is shown also with
high detection results. K-Means clustering algorithm is used to select right
anchor boxes, which deep learning model uses for bounding the objects.

Autonomous robots, which are moving on a water surface, are also engaged
in the issue of collecting floating debris from water surfaces. In [I3] they
present small capture robot, which moves on water surface and collects
floating water debris. The main focus was on a real-time object detection
and classification. A binocular camera is used for capturing the surounding
environment. In this case, state of the art deep learning model YOLOv3
is used with modifications. Modifications are focused on making the model
faster. Instead of model having three scale detection, two scale detection is
presented. This modification makes model less computationally demanding.
Results are showing 54 FPS for detection of object with high precision for
three main classes, which were plastic bottles, bags and styrofoam.

Another autonomous robot was deployed and tested in real environment.
Pi Cam is used to capture images. Object detection is performed by deep
learning model which has lighter architecture then original model, which leads
to less computational demand on resources [3]. The main target of detection
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2.1. Object detection and classification on the water surface

were plastic bottles.

UAVs are attracting the attention of researchers in recent years, thanks
to their broad utilization. In maritime environment, UAVs are mostly used
as the assistance in search and rescue (SAR) missons. In these missions, the
time and accuracy are very crucial. In [I4] they present autonomous UAV,
which is used in SAR missions and is equiped with thermal camera. Proposed
deep learning method, called Faster R-CNN, can detect people from different
altitudes in images taken by the thermal camera.

UAVs are also equiped with RGB cameras for detecting small targets. Com-
parison of the detection of small targets between human and SSD deep
learning model was examined [5]. Deep learning model can detect targets
faster then human eye by 17 seconds. Strategy behind sucessfull detection
was in splitting the high resolution video with 4K quality to small images
and enhancing the contrast of each image for better detection. The model
was detecting targets in every small image. After performing detection in
small images, these images were formed into original high resolution image
with detected targets.

In a real-time search and rescue operations, target detection speed and ac-
curacy must be balanced. Especially in UAV this balance is bound to flight
altitude. More area can be searched and detected with the higher altitude, on
the other hand more precisely can objects be detected with smaller altitude
[15].

UAVs are starting to being used in monitoring of floating marine debris
and water surface objects. Plastic bottles, plastic bags, drifting wood and
plastic trays were detected by state of the art deep learning model deployed
on UAV hardware in real-time [4]. Different altitudes for object detection
were observed and best altitudes for sufficient object detection were under
30 m. Visible light camera is used for capturing the images. Properties and
future of including IR camera is discussed.

Interesting system which consists of three main modules was developed. First
module is focused on autonomously changing the battery of UAV, which
landed on docking station. Second module has in charge the communication
between modules. The last module is performing monitoring of water surface
and its main target is to detect floating debris. Object detection is performed
in real-time and modified deep learning model is used [16].

Another study by Zhang et al. [I7] compared deep learning models for object
detection on water surface. New layer for mining more features from input
images improved detection of smaller objects and increased the accuracy of
YOLOvV3 model. Improved model had the highest accuracy, in comparison
with other models on custom dataset. Images were taken by RGB camera
mounted perpendicular to the water surface. Custom dataset consists of sand
dredges, aquatic plants, fishing boats, green algae and reeds. Dataset was
also expanded by performing image augmentations as rotation, brightness
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2. Related work

augmentation and mirroring.

22 Object tracking

B 2.2.1 Object tracking on the water surface

Complex and fast changing marine environment makes tracking of floating
objects on water surface more difficult, than tracking objects on land. Water
surface waves can partially submerge tracking objects. Waves can fastly
change object’s velocity and direction, thus correlation between frames can be
disturbed. Sun light can be reflected from floating objects and water, which
can cause the overlook of the object by the tracking system.

In the recent years most of the research of object tracking on water surface
was targeting tracking single and multiple vessels due to deployment of USVs.
USVs need to have information about the position of other vessels in their
surrounding for safety navigation. Duarte et al. [18] focused their research
on detecting and tracking multiple vessels by so called tracking by detection
method. They took a deep learning approach for object detector and tracker.
Transfer learning was used to train detection model YOLOV4 and tracking
model DeepSORT for a specific task in marine environment. Selected models
were able to succesfully overcome challenges in maritime environment such as
fog, exposure issues, waves and they were able to detect and track multiple
vessels.

In [I9] single object tracking method is presented. They used well known
single object tracking algorithm called Siamese network with modified subnet-
work with multi-RPNs. Advantage of using visual cameras instead of radars
and thermal cameras is explored. Visual cameras do not have high energy
demand on the system and they are less expensive then other mentioned
sensors. They also can provide high details of object, which is in the task
of object tracking highly demanded, especially in the use of deep learning
based methods. Results of the comparison show, that modified Siamese
network outperforms four compared single object trackers (SOT). Limitations
of the proposed method are in the need of large dataset and in challenging
performance of a tracker in harsh weather conditions.

One of the most problematic situation in object tracking is when other
object occlude desired tracked object. Problem of occlusion was tackled by
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2.2. Object tracking

Chen et al. [20]. The use of kernelized correlation filter (KCF) is proposed
for tracking ships and extracting their trajectories. On top of the KCF
curve fitting model is implemented for adjusting deviated ship trajectory
caused by occlusion. Due to high percentage of collisions between ships and
bridges, caused by human error as stated in [21], automatization of processes
like detection and tracking on board of the ships are deployed. Multitarget
tracking framework based on tracking by detection is developed. Framework
can track multiple vessels under occlusion and can reidentify them, which
reduces ID switches between tracked objects. Motion of surrounding vessels is
predicted with GRU recurrent neural network based on historical motion data
of target vessels. Another part of the framework is data association method,
which considers short and long term cues. ID switches are being tackled
by ship reidentification method which is responsible of deciding, whether
the vessel from previous video frame is also present in the current frame.
Performed experiments on the framework show real-time performance and
robustness. As the results from detector are crucial for tracking by detection
paradigm, performance of YOLOv3, SSD300 and Faster R-CNN were studied.
Tracking of multiscale ship was studied in [22]. They presented the method
composed of target tracking algorithm and re-detection algorithm. Proposed
method can run in real-time and can tackle occlusion, blur and deformation
of tracked object.

Use of the UAVs in maritime surveillance system for helping vessels to
change direction in time, to avoid collisions is shown in [23]. Detection of
objects on water surface is done by using deep learning model YOLOv5. Multi
object tracking algorithm SORT is used like a filter for removing false positive
detections, which enables to lower confidence threshold. Using a combination
of visual camera and thermal camera is shown to provide added value to
object detection. Thermal camera can deal with sunlight reflection and low
illumination. Size of objects and overall input resolution of deep learning
detection model have effect on system detection performance. Experiments
with different variants of YOLOv5 model are performed. Another study on
maritime surveillance, especially detecting and tracking sharks was conducted
[24]. Study is focusing on how to remove human in the loop and centralised
system architectures by implementing object detection and tracking on UAV
hardware. Four object detection models and six tracking algorithms are
compared. Making proposed system efficient, structural similarity index is
proposed. It measures tracking confidence and frame similarity, thus overall
system is balanced between detecting new objects and tracking existing
objects.



2. Related work

B 2.2.2 Object tracking from UAV on land

Most research on object tracking from UAVs is gathered on land. The main
reason is that UAVs have nowdays more application on land in border patrol,
search and rescue operations after disasters, surveillance and more. In [25]
multiple object tracking by leading paradigm is explored. YOLOv3 and
RetinaNet are responsible for the creation, update and cancellation of created
tracks. RetinaNet can successfully detect objects from higher height than
YOLO. DeepSORT tracking algorithm is used. With his ability to extract
features of tracked objects by CNN, re-identification of objects is possible.
ID switches are also reduced, thanks to the re-identification. Performance of
the proposed system is explored on the VisDrone benchmark and compared
with three more tracking algorithms, including base model of DeepSORT
algorithm. Comparation shows that proposed system has better tracking
accuracy than other compared algorithms.

More demand is put on UAVs in terms of execution of actions depending
on captured data, which is crucial for autonomous UAVs. Nousi et al. [20]
explore implementation of state of the art detection and tracking algorithm
on board of the UAV. Single stage detectors are used for their computation
efficiency. For achieving much faster tracking, they develop the multithreaded
KCF and SiamFClite algorithm. First mentioned is based on well known KCF
tracking algorithm. With every obtained frame, three threads are running in
parallel and every thread is responsible for different scale factor of the region
of interest. Latter one is based on SiamFC tracking algorithm. To make the
algorithm perform faster, depth factor a € (0, 1] is introduced. By this depth
factor, number of filters in layers of siamese network are multiplied. This
makes network lighter in terms of computational demand. Detection-tracking
system is implemented in ROS environment. Speed and accuracy of detection
and tracking algorithms are performed on different datasets. Another study of
detection and tracking system implemented onboard of the UAV uses JPDA
with YOLO algorithm [27]. Proposed algorithm is detection free and it has a
low demand on computational resources. The algorithm do not use image
information, but with well chosen parameters it can get performance of state
of the art tracking algorithms on benchmark dataset. Tracking algorithm can
handle detection lose for a short time caused by occlusion or missed detection
by object detection model. The bottleneck of proposed algorithm is that
UAV motion is unmodeled inside the dynamic model. In comparison with
models on top of the chart, 20% drop in performance on MOTA benchmark
was observed, but processing speed was higher.

Experiments of following the walking person by UAV in outdoor environ-
ment were gathered [28]. New visual tracking algorithm is developed, which
improves classic KCF by introducing scale adaptive algorithm. Introduced
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improvement can deal with changing size of tracked object. Comparison
between three more algorithms shows, that proposed algorithm do not have
high computational demand, which is suitable for implementation on UAV
hardware. Interesting approach of applying deep neural network for detection
and tracking of objects is shown in [29]. The main area of application was
city environment, where the objects are moving along limited trajectories and
thus can be easily predicted. YOLOv4eff is used as an object detector and
doubled LSTM as an object tracker. Doubled LSTM track objects based on
their trajectories. Comparison between similar object trackers are showing
that proposed method has higher tracking precision and accuracy.

Shen et al. [30] deployed first Siamese tracker on UAV embedded system,
due to presented guideline for reducing computational requirements of the
network. The main idea behind the guideline is reducing the dimension of
feature space by every consecutive layer output in network being smaller than
dimension of input. They reduced demand on computational resources of well
known feature extractor AlexNet by 59.4% with remained tracker accuracy.
Introduced anchor free tracking head also removes number of computations.
Proposed Siamese tracker can tackle different sizes of tracked object and
partial occlusion. Comparison with state of the art Siamese trackers on
benchmark datasets is performed and shows that lightened Siamese network
can perform without loss of comparable tracking performance.

Multiple object tracking algorithm, which solves error detections and ID
switches caused by missed detections or rapid camera motion is presented
[31]. Optical flow network deals with rapid camera motion and it is used
for an estimation of motion of two consecutive frames and predicting the
position of tracked object. Reduction of false matches is done by cascade
matching strategy with use of intersection over union (IoU) and deep features
extracted by residual network. Optical flow network is also used as an
auxiliary tracker in cases when the tracklet is interrupted. Faster version of
the tracking algorithm does not use optical flow for each frame, thus faster
tracking can be achieved with comparable accuracy. Speed estimation of
moving objects on the ground from UAYV is tackled by using tracking by
detection method. Tracking algorithm called discriminative correlation filter
with CSRT is used with added properties [32]. One of the properties is
feature-based image alignment, which is responsible of obtaining appropriate
tracked object location. UAV is moving platform and it is important to
measure similarity between frames. Similarity is measured by algorithm
called structural similarity index measurement, which measures similarity
between actual frame and frame where the object was detected. Detection
part of the proposed method is performed in the case, where the computed
similarity threshold is lower than set value. Performing detection only in
these cases leads to lowering computation demand on hardware. The main
bottleneck of the algorithm is occlusion. Comparison between static and
moving drone shows that difference in speed estimation is only 1%.
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Another study of detection and tracking system onboard of the UAV was

done in [33]. DeepSORT was used as the tracking algorithm. Importance
of training deep metric with large enough dataset is highlighted. Person re-
identification dataset consisted of more than one milion images of pedestrians.
By using graph neural network object tracking can be tackled as shown in
[34]. In the proposed method object detection and association are combined
into single model. Centerpoint is used as anchor free object detector and
extractor of re-identification features. Association between objects across
frames is done in graph network. Extracted features and bounding boxes are
passed into graph convolution association. Re-identification features show
their importance in maintaning ID of the track under the influence of heavy
occlusion. In comparison between tracking algorithms on UAVDT benchmark
shows, that tracking accuracy, precision and ID switches of proposed method
are improved and algorithm achieved state of the art results.
Exhaustive survey describing recent development in deep learning object
detection and tracking was conducted [35]. Nowdays multiple object tracking
is based on tracking by detection paradigm. Recent state of the art tracking
methods are compared on four benchmark datasets. The use of infrared, mul-
tispectral and hyperspectral sensors can provide complementary information
and make object detection and tracking performance more precise.
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Chapter 3

Proposed solution

B 31 System design

These days, seas and oceans are full of various debris. Autonomous vehicles
with vision system able to detect, classify and track the floating debris are
needed.

Our main goal is to propose and develop a detection-tracking system, which
will be responsible for detection, classification and tracking of the floating
debris on water surface. Developed system will be one of the main components
of the whole grasping system of the UAV. Since we decided to use nowdays
leading paradigm for multi-object tracking in videos, which is tracking by
detection, the well performing object detection method is necessary.

Our solution is composed of two parts. First part solves a detection and
classification problem. Second part is responsible for multi-object tracking of
detected floating debris. In the Figure [3.1] we can see the proposed design of
the system.

| t [ -.\-. Tracked
npu - floating
images Detections _ debris
Multi-object
tracking

Figure 3.1: Design of the detection-tracking system.

The UAV will be flying above water. Images will be captured by camera
mounted on the UAV. The camera will be able to capture images with frame
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3. Proposed solution

rate of 30 FPS and higher. Developed system will be using images captured
by camera as an input to the object detection and classification part. Our
system will be able to classify floating debris to three categories, which are
plastic menu boxes, plastic bottles and plastic bags. Modern methods based
on deep learning will be used in this part. Proposed methods, which are
suitable to fulfill this task, will be described in this chapter.

As we can see from the system design, object tracking algorithm will be

placed on top of the object detection and classification part of our system.
Tracking algorithm will be responsible for tracking the detected floating debris.
Information about the position and class of detected debris in captured data
will be later used to navigate the UAV on top of the debris and grasping it
from the water.
The method which can be able to track multiple objects will be proposed and
described in this chapter. Emphasis will be put on a method that will not add
more computational load on hardware besides deep learning model responsible
for detection and classification. This is due to future implementation of our
detection-tracking system on embedded hardware of the UAV.

B 3.2 Detection and classification of floating debris

In this section, we will present the description of our solution for tackling
the first part of our detection-tracking system, which is object detection and
classification. Our system must be capable to determine the position of the
floating debris on water surface in image and subsequently identify its class
correctly, which is a complex and challenging task. We will describe two
methods based on deep learning, which will be used to detect and classify
floating debris.

For tackling this challenging task, we can not use the algorithms, which
are using features defined by user. Firstly, because we can not cover all the
properties of our complex problem with its occuring challenges. Another
problem with user defined features is a time exhausting procees of creating
and selecting features. Therefore we need to search for methods, that can be
teached to extract features automatically from the domain, where they are
applied. This leads us to machine learning field.

With the recent development in the machine learning field, especially in
a subfield of deep learning, we propose to use deep learning models for this
challenging task. Deep learning models can learn to extract the usefull
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3.2. Detection and classification of floating debris

features automatically. We need to have a lot of data in the input to the
deep learning models. Input data are used to teach ’train’ the models. The
foundation of deep learning models, which are being used nowdays for object
detection and classification are convolutional neural networks (CNN’s) [36].
CNN’s are composed of convolutional layers, pooling layers, non-linearity
layers and fully-connected layers. They are named by the linear mathematical
operation between matrices called convolution. Function of CNN is shown in
the Figure (3.2l

Figure 3.2: Function of CNN [37].

Our solution for tackling a problem of detection and classification of floating
debris is based on modern deep learning models. First deep learning model,
which we decided to use, is a well known model named YOLO (You only
look once)-v3 [38]. Proposed deep learning model is result of a further
improvement of YOLO baseline multi-class detection model. YOLOv3 is fully
convolutional model, as its predecessors, which means that it consists only
from convolutional layers. Name of the model came from the fact, that the
deep learning model take the whole image in the input and pass it through
the CNN only once. In the output we have predictions of bounding boxes
offsets, classes and objectness score. YOLOv3 belongs to category of one
stage detectors. One stage detectors are faster than two stage detectors. Two
stage detectors are using two networks for obtaining the detections. One
network is responsible for region proposal, which determine the position of
object and the other network is responsible for the detection.

YOLOv3 model uses a network called Darknet 53 for the feature extractor,
which contains 53 convolutional layers. Feature extractor consists of 1x1
and 3x3 convolutions, which are used with skip connections, which are
significant for residual networks. Darknet53 is faster than ResNets and the
performance stays comparable. On the top of the feature extraction network,
more convolutional layers are added. YOLOvV3 is detecting objects on three
different scales. First detection scale is on convolutional layer number 82, the
second is on the layer 94 and the last detection scale is on 106. Each output
of the detection scales is divided into N x N grid cells. Three anchor boxes,
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3. Proposed solution

also called priors, with different sizes are assigned to each detection scale.
Predictions of bounding box offsets, objectness score and classes for every
assigned prior are predicted for each cell. Objectness score expresses how
well the bounding box overlap the ground truth object. Predicted bounding
boxes offsets are offsets to priors. Architecture of YOLOv3 can be seen in
Figure 3.3\

oc e
1
Detection Layer m Scale 2
B ¥ 94 Stride: 16
Upsampling Layer Vit

e Further Layers

e
106 Stride: B

YOLO v3 network Architecture

Figure 3.3: Architecture of YOLOv3 model [39)].

Four bounding box offsets are predicted for each of the anchor box. These
offsets are t,,t,,t,,t,. Using offsets instead of absolute values can help
eliminating unstable gradients. The equations show computation of final
bouding box position, where ¢, and ¢, are offsets of the cell from left corner
of the image and anchor box has width and height p,,, pp.

by = o(ty) + cu

b, =o(t,) +c
Y ( y) ty (31)

by = pwe™

by, = pre™

Sum of squared error loss is used to measure accuracy of predicted bounding
box coordinates. Ground truth value can be computed from the inversion of

equations (3.1}

Classes, that bounding box may contain, are predicted by using independent
logistic classifiers and binary cross entropy is used for the training.
In YOLOV3 only one prior is assigned to each ground truth object. Objectness
score of the bounding box is computed by logistic regression instead of softmax,
which was used in older versions of the model. Value of the objectness score
should be 1, when prior overlaps ground truth object more than any other prior.
Overlap between prior and ground truth object is computed by intersection
over union (IoU). The principle of IoU is shown in the Figure
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3.2. Detection and classification of floating debris

Figure 3.4: Principle of IoU [40].

YOLOV3 is fast deep learning model suitable for applications, where real-
time detection and classification is needed. We can observe a huge drop of
performance with increased IoU threshold. This indicates that model has
problem with perfect fit of predicted bounding boxes and ground truth boxes.
Small objects can be detected more precisely than in previous models, due to
introduction of mutli-scale predictions.

Implementation of the YOLOv3 model, which we proposed to use in the
detection and classification part with its variants was used from [4I]. Train,
test and inference scripts with computation of processing speed were available.
Our datasets that we created for training the detection models were in VOC
format. Creation and annotation process of dataset is described in chapter 4
with more details. We needed to transform the coordinates of annotated
objects from VOC to YOLO format. Equations [3.2| show, how to convert
VOC format of dataset to YOLO format, where b.,, b., are center coordinates
of bounding box and b,,, by, are width and height of bounding box respectively
in YOLO format. Bounding box in VOC format is represeneted by top
left coordinates of bounding box b b and bottom right coordinates

b b
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3. Proposed solution

Second deep learning based method, which we propose to use for tackling
the object detection and classification of floating debris problem, is Single
Shot MultiBox Detector (SSD) [42]. SSD uses single network for detection
and classification similar to YOLOv3. Therefore, it belongs to category of one
stage detectors. Proposed deep learning model uses information from feature
maps with different resolutions. In comparison with two stage detectors, SSD
eliminates regional proposal and feature resampling stage. This elimination
of extra steps can remove computational overhead and thus making model
faster. Performance of the model in terms of accuracy is comparable to the
two stage detectors. Proposed model is anchor/prior based, which means
that output consists of predictions of bouding box offsets to priors and class
predictions.

SSD is fully convolutional network, it consists of three parts. We chose to use

SSD300 with input resolution of 300x300. Reason is that lower resolution will
be faster and difference in performance of higher resolution which is 512x512
is only ~ 2%. First part of the model serves as a backbone and it produces
low level feature maps. Well known model, which has high performance on
image classification task called VGG16 [43] pretrained on ImageNet is used.
Use of high performance pretrained model as feature extractor can help with
faster training and it can capture the basic information from image. Small
adjustments to the model needs to be done before applying it as backbone.
Convolutional layers remain, but layers responsible for classification are
removed and replaced by the convolutional layers.
Another part of the model architecture are auxiliary layers added on top of the
backbone network. Added convolutional layers provide more features maps
and they decrease in size, which enables multi scale detection. Architecture
of SSD is shown in Figure 3.5/

Figure 3.5: Architecture of the SSD model [44].

Object in the image can have many shapes and sizes, therefore we need
to discretize the space of potential object occurences. We use priors for the
discretization. Priors are used to approximate the shape of bounding box
predictions and their size is precalculated. Different possible locations of
object in image are tackled by placing priors into every cell in the feature
map. Every feature map will have priors with different aspect ratios. Total
number of priors defined in the model SSD300 is 8732.
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3.2. Detection and classification of floating debris

Priors are starting point for predictions of bouding boxes. The goal of
the model in terms of predicting locations of bounding boxes is to predict
deviation between prior and the bounding box. Equations 3.3 [45] express
computation of deviation between prior and bounding box in center-size
coordinates. Where c,,c,, w, h are coordinates of ground truth bounding
box and &, ¢, w, h are coordinates of the prior. Offsets are normalized by
dimension of the prior.

Co — Cyp
Gex = ~ )
w
e — &
oy = ny y’
(3.3)
gw:log< )7

To obtain predictions of the offsets and scores for classes for each prior,
two convolutional layers are needed for each feature map. This is considered
as a third part of the model network. Kernel with size 3x3 is used in both
cases. Four filters are used to encode offsets. To encode scores for the classes,
there should be the same amount of filters as number of classes we want to
predict. Kernels are placed on each of the cell of the feature map.

In SSD we determine overlap between predicted bouding boxes and ground
truth bounding boxes with IoU [3.4] similar to YOLOv3. Predicted bounding
boxes with overlap greater than 0.5 are considered as positive matches,
the other as negative matches. During the training, hard negative mining
technique is used to tackle the inbalance between positive and negative
matches. In hard negative mining negative matches are sorted by highest
confidence loss. After sorting, we choose the negative matches with ratio 3:1
at most between negative and positive matches.

In terms of performance, SSD can localize objects more precisely than
compared two stage detector. Robustness of the model to different sizes
and shapes of objects come from using multiple feature maps. Lack of
performance is seen with smaller objects. Problem related to performance of
model with different objects sizes can be partially solved by introducing data
augmentations. Introduced data augmentations for tackling different sizes
of objects are zoom in and zoom out augmentations. Not only detection of
different sizes of objects is improved, but also accuracy of whole detection
performance is increased.

For the SSD detection model based on deep learning, we used the imple-
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3. Proposed solution

mentation available on [45]. We developed script, which is able to use SSD
model for detection and classification of floating debris from video source.
Within the developed script, measure of FPS is also implemented. For the
evaluating the classification ability of our proposed model, implementation of
multi-class confusion matrix [46] was needed. As an confusion matrix class,
implementation from [47] was implemented to evaluation code of the SSD
model.

B 33 Tracking of floating debris

For the grasping of floating debris from water surface we need to detect and
also track the floating objects. With the help of tracking, we can later extract
the position of tracked objects and plan the path for the UAV to remove
them from water. In this section, our solution for solving the challenge
of visual multi-object tracking of floating debris on water surface will be
presented. Our motivation was to propose method, which can be able to
track multiple objects and do not add more computational load to our first
part of detection-tracking system, which is based on deep learning. This is
due to making our detection-tracking system suitable for the implementation
on the UAV hardware. Proposed method does not need to have ability to
deal with long term occlusions, since the UAV will fly on top of the floating
debris.

Method, which we propose for multi-object visual tracking is Simple online
and real-time tracking (SORT) [48]. It is lighter version of DeepSORT
[49]. Method is based on nowdays used tracking by detection paradigm.
Performance of this type of methods strongly depends on the detections
in the input. If the detector can not provide accurate detections, tracking
algorithms also fails in performance. So with change of the detector for
more accurate one, we can observe improvement of the tracking performance.
SORT algorithm claims to be 20x faster than other state of the art tracking
algorithms and runs on 260 FPS. During the development, the main focus was
on the speed of the algorithm. The reason behind this is that the algorithms
used in autonomous vehicles and robotis need to perform fast and in real-time.
Proposed method belongs to category of online trackers. Online trackers do
not have detections from future frames like offline trackers. They use only
informations obtained from previous and current frame for adjusting the
tracking. Proposed algorithm consists of three parts. First part is dealing
with motion estimation of targets and propagating their position to the next
frame. Another part tackles the data association between new detections and
tracked targets. Last part is responsible of managing the life span of trackers.
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3.3. Tracking of floating debris

Input to the SORT algorithm are bounding boxes from detector. Size and
position of bounding boxes are only used for motion estimation and data
association. Estimation model uses the information from bounding boxes to
propagate their position to the next frame. Constant linear velocity model is
used for approximating the displacement of tracked targets between frames.
State of the each target is modeled by horizontal and vertical pixel location,
scale, aspect ratio and derivations of the first three mentioned. Tracked target
state is updated by associated bounding box and velocity is solved optimally
with help of Kalman filter. Linear velocity model is used, when no bounding
boxes are associated with tracked targets.

In data association part of the proposed alghorithm, new detections are
matched with tracked targets. Tracked targets bounding boxes are predicted
to current frame. Assignment cost matrix is determined by computing IoU 3.4
between each bounding box comming from detector and predicted bounding
boxes in current frame. IoU,,;, threshold is used to accept assignments that
are above the set threshold. For the optimal assigment, Hungarian algorithm
is used. Experiments showed that the problem with short term occlusions
can be tackled by data association part.

Life span of the tracked objects are handled in third part of the alghorithm.

Tracking algorithm assigns the unique identity to each tracked target. Pro-
posed algorithm can not handle cases when the object leaves the frame and
re-enter after a few number of frames. This lacking ability is also called
re-identification. Therefore if the object leaves the frame, this unique identity
is destroyed. Each bounding box from detector with less overlap than IoUn;n
to targets bounding boxes is considered as new target. New target tracker is
initialized with the size and position of its bounding box and zero velocity.
The velocity component covariance of this new tracker is assigned with high
values. Threshold ming;;s which express how many assignments to the new
tracked target needs to be accepted from detections before considering tracker
as true positive is introduced. Another T7,,s threshold is presented. If the
trackers are not matched with detections for T7,s frames, then tracker is
terminated. If the high T7,s threshold is set, unbounded localization error
due to incorected trackers can be observed.
Every presented threshold in proposed method needs to be experimentally
tuned to specific application. SORT algorithm was evaluated on MOT
benchmark dataset where videos with moving and static camera are used.
Experiments show that proposed method can be compared in performance
also with offline methods. A balanced trade off between speed and accuracy
can be observed.

We created scripts that implement SORT algorithm for tracking the floating
debris on water surface with each of the proposed detection models. These
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3. Proposed solution

detection models provide detections in form of bounding boxes and classes
of detected floating debris to the input of the SORT algorithm. Authors of
the SORT made its implementation available for further research [50]. We
modified the code that every tracker is able to store the information about
class of the tracked target. We used tool available on [51] for the evaluation
of the tracking pipeline. We can see the pseudocode [1] of the SORT algorithm
below.

Algorithm 1: Pseudo code for tracking of floating debris in video.

Input: Video
Output: Tracked floating debris on water surface in video
1 Initialization of deep learning model used for detection;
2 Initialization of SORT tracking algorithm (ZoUin, TLost, Minpits);
3 while Frames available do
4 Read current frame;
Obtain detections with classes from detection model;
if number of detected objects > 0 then
‘ Update SORT algorithm with new detections;
else
‘ Update SORT algorithm with empty detections;
10 end if
11 end while

© ® 9 o O«
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Chapter 4

Dataset

Over the last few years, the saying that the data has a value of gold, expanded
in the machine learning community. Every machine learning and deep learning
approach needs to have a large amount of data on the input. Input data
are used for training and evaluating the performance of the models. The
more different data we have, the more accurate and robust can our models
be. In this chapter we present our custom dataset of floating debris on water
surface, which we collected from river and pond. We had two main reasons
for collecting our dataset. The first reason was a lack of annotated datasets
of floating debris taken from UAV available online. Secondly we wanted to
bring the added value to the research community.

B 4.1 Data split and acquisition

The foundation of every computer vision deep learning based approach are
images and videos. Our dataset consists of images collected in different
weather conditions, day times and water conditions. First collection of the
dataset was performed in sunny weather without wind on the pond. Sun
was directly over the water and that brings challenges to the dataset, which
will be discussed later. Another dataset was gathered in partially cloudy and
windy weather on the river.

Floating debris objects consisted of three classes, which were plastic menu
boxes, plastic bottles and plastic bags. To prevent sinking of the debris, every
piece was tied up to tiny rope in a random order. Every rope from dataset
collected on the pond was tied also with the pier. Ropes from the river dataset
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4. Dataset

were not tied to anything, therefore images are without a specific distractor,
like pier which is visible in images in previous mentioned dataset. We were
trying to arrrange the floating debris as groups and also as individual objects,
because in real maritime environment floating debris also occurs in this form.

Datasets were gathered by using UAV equiped with two cameras facing
down. UAV that was used for collection of datasets is shown on Figures [4.1],
4.2l and 4.3l First camera used for collection of a dataset was Intel RealSense
d435i with frame rate of 30 FPS. Another camera, which we used, was Basler
dart with frame rate of 60 FPS. Each of the photo captures zero or more
floating debris objects. Images from first dataset collection was captured by
Intel RealSense camera with resolution of 1280x720. Dataset from the river
consists of images taken by Basler dart camera with resolution of 1600x1200.

Figure 4.1: Image capturing Intel RealSense camera mounted on the UAV.

Figure 4.2: UAV used for collection of datasets.
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4.1. Data split and acquisition

Figure 4.3: Image capturing Basler dart camera mounted on the UAV.

Images were split into Train, Test 1 and Test 2 datasets. Train and Test
1 datasets consist of images from dataset, which was collected on the pond.
The difference between Train and Test 1 datasets was in adding new floating
debris and the order of tied objects to the rope differs. Test 2 dataset consists
of images collected only from Basler dart camera. These images were captured
on the river and they are considered as more difficult than images from Test 1
dataset. Examples of the images from the datasets can be seen on the Figure
4.4l

Figure 4.4: Train images - top row, Test 1 images - middle row, Test 2 images -
bottom row.
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Every image from train and test datasets had to be annotated. For the

image annotation process, we used a tool called Labellmg [52] to draw bound-
ing boxes around floating debris and assign one from three classes to them.
Annotations are in VOC format and they are represeneted by top left coordi-
nates of bounding box and bottom right coordinates.
From each of the test datasets, we created the video by using FFmpeg [53]
tool. Video was annotated by CVAT [54] annotation tool, which produced
annotations in MOT format. Each floating debris object in video was anno-
tated by one class called floating debris. We applied a rule, that every object
with visibility less than 50% in the image, will not be annotated. This rule
was applied to annotation of images and videos.

. 4.2 Statistics of dataset

Recorded files which were selected to serve as training and testing datasets
consisted of totally 36 000 frames. UAV flight altitude during the data
collection was 1.7m - 5.4m from the take off point. From the files for Train
and Test 1 dataset, we extracted every 10th frame. For the Test 2 dataset we
extracted every 15th frame from recorded files. After extraction of frames,
we manually removed the frames, which did not contain floating debris. The
rest of extracted frames were annnotated. Videos in our custom dataset were
created from files that were used to create test datasets. From the raw frames
collected from the river, we created Test 2 video with use and annotation of
every 3rd frame. All frames from Test 1 dataset collected on the pond were
used for video creation.

Total number of extracted frames in our dataset can be seen in the Table
4.1

Train Test1 Test2
number of frames 1104 319 320
Testl video Test2 video
number of frames 4572 7812

Table 4.1: Number of annotated frames used in the datasets and Test videos.

In the table 4.2/ we can see the number of objects per class in every dataset.

Menu boxes Plastic bags Plastic Bottles Total objects in dataset

train 963 991 944 2498
testl 254 186 343 783
test2 142 300 412 854

Table 4.2: Statistics of objects per class in each dataset.
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4.3. Challenges in dataset

Distribution of labeled objects per frame is shown in Figure 4.5

Figure 4.5: Statistics of labeled objects per frame.

B a3 Challenges in dataset

Since the nature is unpredictable, many challenges of gathering datasets
in real world conditions can arise. Size and shape of floating objects are
changing over time. First challenge that we observed during collection of
our custom datasets were overexposed images. Overexposure was caused by
strong reflection of light from the water surface. That may cause the missed
detection of floating debris. Another problem emerged with the changes in
shape of plastic bags. When the wind was present, plastic bag expanded
in its size. On the other hand , when the bag was calmly floating on water
surface, due to water flow the size shrunk. During the presence of wind, small
waves appeared and caused the light floating debris to submerge and resurface
later. Water started to fill the plastic menu boxes when they were present
in a water for a long time. Filled menu boxes with water were submerged
by half of their size. When the UAV was flying under 3.5 meters, changes in
motion and shapes of floating debris were observed due to wind caused by
the rotors. From the high UAV flying altitude objects, which were in clusters,
visually appeared like one floating object. Another case when the floating
debris appeared like one object, was when the strong reflection from the menu
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box was present near other floating debris. Changes in the size and shape
of the floating objects were observed, when the UAV tilted during the flight.
Examples of the images containing the challenges in the dataset can be seen
on the Figure 4.6

Figure 4.6: Top left image shows overexposure. Top right image shows change
in the shape of plastic bag. Bottom left image shows captured image when drone
is tilted. Bottom right image shows more objects appearing as one.
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Chapter 5

Experiments and Results

In this chapter we will present experiments and results. Experiments were
performed on proposed detection models based on deep learning and proposed
tracking algorithm. First we show experiments on each of the detection
model separately. Then we experiment with the proposed tracking algorithm
implemented with each of the detection model. Results from the performed
experiments will be analyzed. After the analysis of the results, we will propose
combination of detection model with tracking algorithm, which will be the
most accurate and fast enough, based on our experiments.

Experiments on the detection models based on deep learning consist of two
parts. First part is dedicated to experimentation with hyperparameters of
the model during the training stage, for example learning rate, optimizer,
number of epochs and so on.

Another part was dedicated to experiment with confidence score of the model
and IoU thresholds. Confidence score can tell us, how is model confident with
the provided detection. In other words, how is model sure that the object is
on the predicted place. In order to not waste the energy consumption of the
UAV, we need to send it only on places, where we are sure that the floating
debris is present. If we send the UAV on the place with no floating debris,
the energy will be wasted. IoU can tell us, how accurate can model detect
the floating debris. In other words, how big is overlap between ground truth
object on the image and predicted bounding box. We wanted our models to
be at least 50% confident and have an overlap between ground truth objects
at least 50%. We explored combinations of confidence and IoU thresholds of
50% and 75%.

Another experiments dedicated to initialization of proposed tracking algorithm
were performed. Speed will be measured in each of the before mentioned
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experiments in FPS. All the experimnets were performed on hardware with
NVIDIA GeForce GTX 1050 graphic card.

Our detection models were not trained from scratch. For the training,
technique called transfer learning [55] was used. Used technique allows to
apply learned informations from previous training in similar domain to the
new specific domain. In our case it means to first iniliaze feature extractor
with pretrained weights on ImageNet like in SSD model case or iniliaze whole
model like YOLOv3. After initilization of weights, we need to train the
model by number of epochs to learn domain specific informations. This
type of training is also called fine tuning. With the use of transfer learning,
training time to new domain can be shortened and also smaller dataset
is needed. Proposed models will be evaluated by mean average precision
(mAP) metric [56] and multi class confusion matrix will be constructed, to
get more information about classification task of our models [46]. Evaluation
of tracking algorithm implemented on top of the detection models will be
evaluated by the classic MOT metric [57].

SORT tracking algorithm had parameters that needed to be initilized.
After experimentation with the parameters we set the IoU,,;, threshold
to 50%. Minimum hits parameter, which is responsible of counting the
association between detections and new created trackers, is set to 2. Last
parameter that needed to be initialized was T, parameter and it was set to
1. This parameter is responsible of checking for how long is tracker without
correction. Value 1 was set to prevent the unbounded localization error.
Tracking algorithm was tested on Test 1 and Test 2 videos.

B 5.1 SSD model

First proposed detection model was SSD. Final model was trained for 10 000
iterations with batch size of 16. For the optimizer, stochastic gradient descent
was used with initial learning rate of 0.001, momentum 0.9 and weight decay
of 0.0005. Learning rate was decayed after 7 000 and 9 000 iterations by
multiplier of 0.1.

During the training stage, we used data augmentations applied to training
data. These augmentations help to extend the dataset with new and different
examples of images. Another benefit of data augmentations is an improvement
of the model performance and robustness. Augmentations that we used were
random horizontal flip, zoom in and zoom out operations and photometric
distorstions. Distortions consisted of changing the image contrast, saturation,
hue and brightness in random order.
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During the testing stage, the model was initialized to keep top 200 detections.
Value for IoU threshold in Non Maximum Suppression was set to 0.45.

In the table 5.1, we can see that the model achieves best mAP of 84%
and 33.9% in Test 1 and Test 2 dataset respectivelly by confidence score
and IoU thresholds set to 50%. The second highest achieved mAP is with
increased threshold of confidence score to 75% with remaining IoU threshold.
For the Test 2 dataset we can see significant drop in performance of the model.
Model was not robust enough to adapt on new data. Test 2 dataset had
many challenges, like varying shapes of floating debris due to waves, different
color of water and different exposure. We can observe that class menu box
had the highest AP among all presented classes in Test 1 dataset with all
combinations of thresholds. In the Test 2 dataset menu box achieved also
the highest AP among all classes, except the thresholds of confidence and
IoU set to 50%, where plastic bottle class achieved the highest AP. Difference
between datasets is also in the AP of class plastic bag which had the lowest
AP in Test 2 dataset in comparison with Test 1 dataset. This was caused by
mentioned challenges in the dataset.

Test 1 dataset

Conf / IoU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.75
Menu box AP 0.905 0.811 0.815 0.811
Plastic bag AP 0.894 0.791 0.807 0.712
Plastic bottle AP 0.720 0.585 0.631 0.509
mAP 0.840 0.729 0.751 0.677
Test 2 dataset
Conf / ToU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.50
Menu box AP 0.381 0.307 0.324 0.307
Plastic bag AP 0.232 0.089 0.163 0.089
Plastic bottle AP 0.403 0.198 0.259 0.151
mAP 0.339 0.198 0.249 0.182

Table 5.1: Evaluation of SSD model on test datasets.

By construction of confusion matrices we can have more information about
classification ability of our models. Confusion matrices on the Figures |5.1
and 5.2 were constructed with confidence and IoU thresholds set to 50%,
which corresponds to the highest obtained mAP on the both test datasets.
Plastic bottle class was classified without any misclassification between target
classes, but had the highest count of missed detections in both test datasets.
Menu box class had the lowest count of false positive detections in both
datasets.
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Figure 5.1: Confusion matrix SSD Test 1 dataset.

Figure 5.2: Confusion matrix SSD Test 2 dataset.

Experiments with SORT tracking algorithm on top of the SSD detection
model were gathered. During evaluation of tracking algorithm was detection
model initilized to keep top 200 detections. IoU thresholds for Non Maximum
Suppression was set to 45% and confidence threshold was set to 50%.

In the Table [5.2] we can see results from testing the tracking algorithm using
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detections from SSD detection model. We can see significant drop of the
MOTA in the Test 2 video. Since the SORT tracking algorithm is highly
dependent on detection model performance, observed drop in MOTA is due
to low performance of SSD model. IDSw increased almost three times in Test
2 video. MT decreased and high increase was observed with ML trajectories.
MOTP remained almost the same with deacrease of only 4%.

MOTA MOTP MT PT ML Frag IDSw
Test 1 video  69.76 78.16 34 25 3 259 176

MOTA MOTP MT PT ML Frag IDSw
Test 2 video  26.46 74.73 4 44 58 412 476

Table 5.2: Evaluations of SORT using detections from the SSD model.

B 5.2 YOLOv3 model

Another detection model based on deep learning, which we proposed was
YOLOv3. Final model which we decided to use was trained for 30 epochs.
Image size that we used for training was 416x416. Stochastic gradient descent
was used as optimizer with initial learning rate of 0.01. Momentum of the
optimizer was set to 0.937 and weight decay to 0.0005. During the training 3
warm up epochs were used with warm up momentum of 0.8 and learning rate
0.1. Data augmentations, which we used to expand the training data examples,
consisted of HSV hue and saturation, image rotation and translation was used
with image scale and shear. More about augmentation and hyperparameters
details can be found in the files, which are part of the appendix.

In the table 5.3 we can see that the model achieves best mAP of 96.4% and
70.2% in Test 1 and Test 2 dataset respectivelly by confidence score and IoU
thresholds set to 50%. The second highest achieved mAP is with increasing
threshold of ToU to 75% with remaining confidence threshold. For the Test
2 dataset, we can see that the model can adapt to new data better than
SSD model. We can observe that class menu box had the highest AP among
all presented classes in Test 1 dataset with all combinations of thresholds.
Plastic bottle has the highest AP among all classes in the Test 2 dataset,
except the combinations of confidence and IoU threshold both set to 75%
where plastic bag achieves the highest AP. We can see that between the lowest
and highest thresholds combinations there is only 3.5% drop in performance
in case of Test 1 dataset and 5% drop in case of Test 2 dataset. Plastic bag
has the lowest AP with almost all combinations of thresholds. In comparison
with SSD model, increase in mAP by 12.4% and 36.3% in Test 1 and Test 2
datasets are observed.
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Test 1 dataset

Conf / ToU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.75
Menu box AP 0.990 0.988 0.989 0.986
Plastic bag AP 0.922 0.914 0.860 0.852
Plastic bottle AP 0.979 0.960 0.963 0.949
mAP 0.964 0.954 0.937 0.929
Test 2 dataset
Conf / IoU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.75
Menu box AP 0.646 0.646 0.611 0.611
Plastic bag AP 0.590 0.550 0.541 0.803
Plastic bottle AP 0.870 0.822 0.841 0.541
mAP 0.702 0.673 0.664 0.652

Table 5.3: Evaluation od YOLOv3 model on test datasets.

After evaluation of mAP of the YOLOv3 detection model, we created
confusion matrices to obtain more detailed information about classification
ability of the model. Confusion matrices on the Figures 5.3 and [5.4] were
constructed with confidence and IoU thresholds set to 50%, which coresponds
to the highest obtained mAP on the both test datasets. As we can see that
menu box class had no missed detections in the Test 1 dataset. Plastic bag
class had the lowest count of false positive detections among all classes in
the both test datasets. No misclassification between plastic bottle and target
classes in Test 2 dataset was observed, same as in the SSD model case but
with lower count of missed detections.

Figure 5.3: Confusion matrix for YOLOv3 Test 1 dataset.
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Figure 5.4: Confusion matrix for YOLOv3 Test 2 dataset.

Experiments with SORT algorithm on top of the YOLOv3 detection model
were performed. YOLOv3 parameters for inference were set same as in the
SSD model case. In the table [5.4 we can observe the drop of the MOTA by
33% between Test 1 and Test 2 video. The drop is not as high as it was in the
case of SSD model. When SSD model was used to provide detections, drop
in MOTA was almost 45%. In case of Test 1 video ID switches lowered by
half in comparison with using SSD model as a base detector. ML are lowered
also by half and significant increase of number MT tracks in Test 2 video is
shown, if the detections from YOLOv3 are used.

MOTA MOTP MT PT ML Frag IDSw
Test 1 video  85.08 81.06 48 12 2 152 84

MOTA MOTP MT PT ML Frag IDSw
Test 2 video  52.70 79.93 33 51 22 511 414

Table 5.4: Evaluations of SORT using detections from the YOLOv3 model.

B 53 YOLOv3-Tiny model

Another model that we used for the experiments was YOLOv3-Tiny. YOLOv3-
Tiny is lighter version of the YOLOv3 model. Model has less convolutional
layers and it detects objects only on 2 scales, thus can be faster but less
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accurate. Experimenting with hyperparameters during the training, YOLOv3-
Tiny has the same configuration of hyperparameters as YOLOv3. Same type
of augmentations with different values on the traing set is used and more
details can be found in the files which are part of the appendix.

In the table 5.5 we can observe that the model achieves best mAP of
94.5% and 61.8% in Test1 and Test2 respectivelly by confidence score and IoU
thresholds set to 50%. Difference between YOLOv3 model is in the second
highest mAP, which is achieved for increasing the confidence threshold to
75% with remaining IoU threshold. We can observe that the adaptation of
the model to Test 2 dataset is better than SSD model by almost 30%. In Test
1 dataset plastic bag has the second highest AP in comparison with YOLOv3,
where plastic bag had the lowest AP among all classes. Plastic bottle has
highest AP among all classes in Test 2 dataset like in YOLOv3, but the
difference in exception where another class achieves higher AP is in menu box
class instead of plastic bag class, where the confidence and IoU thresholds
are set to 50% and 75% instead of 75% and 75%. In case of YOLOv3-Tiny,
plastic bag achieved the lowest AP in Test 2 dataset.

Test 1 dataset

Conf / IoU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.75
Menu box AP 0.977 0.959 0.972 0.955
Plastic bag AP 0.975 0.800 0.881 0.744
Plastic bottle AP 0.882 0.729 0.766 0.669
mAP 0.945 0.829 0.873 0.789
Test 2 dataset
Conf / ToU 0.50 / 0.50 0.50 / 0.75 0.75 / 0.50 0.75 / 0.75
Menu box AP 0.591 0.560 0.503 0.503
Plastic bag AP 0.504 0.337 0.477 0.385
Plastic bottle AP 0.760 0.526 0.706 0.539
mAP 0.618 0.474 0.562 0.476

Table 5.5: Evaluation od YOLOv3-Tiny model on test datasets.

Confusion matrices on the Figures [5.5/and [5.6| were constructed also in
the case of YOLOvV3-Tiny evaluation and they were constructed with the
combination of thresholds corresponding to the highest mAP. From the figures
we can observe that there is no class with any misclassifications comapred
to the previous cases with SSD and YOLOv3 models. In comparison with
YOLOv3 model, menu box has the lowest count of false positive detections
in both test datasets.
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5.3. YOLOv3-Tiny model

Figure 5.5: Confusion matrix YOLOv3-Tiny Test 1 dataset.

Figure 5.6: Confusion matrix YOLOv3-Tiny Test 2 dataset.

Experiments with SORT algorithm on top of the YOLOv3-Tiny was also
performed. All parameters were set as in the case of YOLOv3 model. In
the table 5.6/ drop in the MOTA by 30% between Test 1 and Test 2 video
can be observed. Number of fragmentations of trackers by missed detection
is significantly higher than in case, where the detections are provided from
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YOLOv3 model. Number of ML is lower by half and significant increase in
count of MT tracks is observed in comparison with SORT algorithm on top
of SSD detection model in Test 2 video.

MOTA MOTP MT PT ML Frag IDSw
Test 1 video 75.09 77.632 39 16 7 208 138

MOTA MOTP MT PT ML Frag IDSw
Test 2 video 44.153 75.203 19 62 25 720 586

Table 5.6: Evaluation of SORT algorithm with detections provided from the
YOLOv3-Tiny model.

B 54 Experiments with Lidar

Although only the camera is mentioned in the assignment of this thesis,
we performed small experiments with lidar. The main idea of these small
experiments, was to find out, if the mounted lidar on the UAV can sense
the floating debris. In [58], the usage of lidar for sensing the ice-floes was
explored. The goal was to develop hazard warning and avoidance system
for ships. Their experimental setting consisted of plastic polygons, which
simulated the floating ice-floes in experimental water tank. They observed
that laser reflections came only from plastic polygons.

We performed small experiments with the Ouster OS0-128 Lidar. Laser
wavelength was 865nm. Lidar, which was used in [58] had laser wavelength
of 905nm. Both of these lasers operate in infrared spectrum. In the Figure
5.7, we can see how the Ouster was mounted on the drone. This drone was
also used for a collection of datasets. Flight altitude of UAV was 1.5. - 7 m.

Figure 5.7: Image capturing lidar mounted on the UAV.
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Lidar can bring complementary information that can improve the detection
of floating debris on water surface. Lidar can help to detect floating objects,
even in cases where detectors based on deep learning can fail. Since the
lidar depth readings are independent on the lighting conditions of water
surface, they can detect the floating debris, where the reflection of light is
high. Results from our performed experiments are in the next figures.

Figure 5.8: Image capturing floating debris.

Figure 5.9: Lidar data corresponding to Figure /5.8
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Figure 5.10: Image capturing floating debris.

Figure 5.11: Lidar data corresponding to Figure
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Figure 5.12: Image capturing floating debris.

Figure 5.13: Lidar data corresponding to Figure
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Figure 5.14: Object detection that failed to detect floating debris, where the
reflection of light from the water surface was high. Flight altitude was ~ 7 m.

Performed experiments showed that lidar mounted on the UAV can sense
the floating debris on water surface. Lidar was able to sense small waves
created by rotors of the UAV, when the flight altitude was low. These small
waves created a noise in the data. The output from the YOLOv3 model is
shown in the Figure |5.14. The model failed to detect floating debris in places,
where was high reflection of light from water surface. Flight altitude of the
UAV capturing this image was ~ 7m. In the Figure [5.13 we can see the
lidar data capturing the same scene where the detection of model failed. The
floating debris is sensed by lidar in the place of high reflection of light. This
shows that the lidar can provide complementary information in detecting the
floating debris, where the object detection models based on deep learning fail.

B 55 Summary

We will summarize our results from evaluation of detection models based
on deep learning and tracking algorithm method in this section. Since our
detection-tracking system will be used on board of the UAV, speed of the
system is important. We evaluated the speed of the each method in terms of
how fast can they process frames per second (FPS).

In the Table [5.7 we can see the evaluation of speed of each model separately
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and with implemented tracker on top of them. First thing that we can observe
is that there is difference in FPS comparing performance of the methods
on Test 1 and Test 2 dataset. This is due to Test 2 dataset having higher
resolution.

Proposed SSD model has the lowest FPS in comparison with YOLOv3 and
YOLOv3-Tiny models. The fastest performing model is YOLOv3-Tiny model
with processing 76 FPS for Test 1 dataset and 63 FPS for Test 2 dataset.
YOLOvV3-Tiny has also the biggest difference in FPS between the two test
datasets. If we consider real-time performance of 30 FPS, suitable models
will be: YOLOv3-Tiny, which achieves real-time performance and YOLOv3,
which achieves almost real-time performance.

Our proposed tracking algorithm aimed to not add computational load to
the hardware of the system. In the table we can see that proposed SORT
tracking algorithm implemented with the detection models runs on same FPS
like detection models without implemented tracking.

T1-D T2-D Ti1-DT T2-DT
SSD 10 FPS 6 FPS 10 FPS 6 FPS
YOLOv3 28 FPS 22 FPS 28 FPS 22 FPS
YOLOv3-Tiny 76 FPS 63 FPS 76 FPS 63 FPS

Table 5.7: Speed evaluation of proposed methods. D - Detection only
DT - Detection with tracker.

In the Table 5.8 we have a summary of the highest mAP from both test
datasets that the models achieved in our evaluation.

Test 1 dataset

Menu box AP Plastic bag AP Plastic bottle AP mAP

SSD 0.905 0.894 0.720 0.840
YOLOv3 0.990 0.922 0.979 0.964
YOLOvV3-Tiny 0.977 0.975 0.882 0.945

Test 2 dataset

Menu box AP Plastic bag AP  Plastic bottle AP mAP

SSD 0.381 0.232 0.403 0.339
YOLOv3 0.646 0.590 0.870 0.702
YOLOv3-Tiny 0.591 0.504 0.760 0.618

Table 5.8: Summary of top achieved mAP for each of the proposed model on
both test datasets.

Every proposed detection model achieved the highest mAP with a com-
bination of confidence and IoU thresholds set to 50%. SSD model achieved
the overall lowest mAP in comparison with the YOLO models. Especially,
we can see the significant drop in mAP for the SSD model in Test 2 dataset
which is 50.1%. This shows that model was not robust enough to adapt to
the new data. The lowest drop between test datasets was achieved by the
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YOLOv3 model. In the table we can see that the menu box class had the
highest AP in Test 1 dataset. The plastic bottle had the highest AP in Test
2 dataset, on the other hand plastic bag obtained the lowest AP among all
classes in the Test 2 dataset.

In the next figures, we show examples of the outputs from detection models,

which were used in the experiments. In the Figure |5.15 we can see the output
from the SSD and YOLOv3 model respectively on the overexposed image.
YOLOv3 model was able to detect the object, which was missed by the SSD
but with an incorrect class. In the Figure [5.16| we can see successful detection
with correct classes by the YOLOv3 model.
The correct detections by SSD and YOLOv3 model respectively can be
observed in the Figure 5.17. All the objects were detected with correct classes,
even with the distractor in the form of the pier. In the Figure |5.18| there
are three correctly detected objects, which are plastic bottle, plastic bag and
menu box. The output is from the YOLOv3 model.

Comparison between detections from the YOLOv3-Tiny and YOLOv3
model are shown in the Figure [5.191 YOLOv3-Tiny falsely detected a plastic
bottle in the place where the wooden branch was present. In the Figure [5.20
we can see that YOLOv3 was not able to detect correctly the floating debris
from the height ~ 7m. The model also missed the detection of a cluster in the
place, where the high reflection of light from the water surface was present.
Incorrect detection of a visible cluster is also observed, when the menu box
with plastic bottle was detected and classified as plastic bottle. Challenges
that occured in the datasets are more discussed in the |chapter 4.

SSD model achieved mAP of 84% in the Test 1 dataset and the output of

correct detections and classificiations can be seen in the figure [5.21. In the
Test 2 dataset, the SSD model performed the worst in mAP among all exper-
imented models. Comparison between detections of SSD and YOLOv3-Tiny
model in Test 2 image example is shown in the figure [5.22. SSD model was
not able to detect any of the plastic bottles presented in the image, where
the lighter version of YOLOv3 performed well with detection and correct
classification of all plastic bottles.
In the Figure [5.23] there are shown incorrect detections from YOLOv3 and
YOLOv3-Tiny models respectively. The Test 2 dataset was more challenging
than Test 1 dataset. The biggest problem was in the detection and classifica-
tion of plastic bags. We can see that YOLOv3 correctly detected menu boxes,
but instead of detection and classification of plastic bag, plastic bottle was
detected. YOLOv3-Tiny detected menu boxes but misclassified them with
plastic bags. The present plastic bag was not detected.
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Figure 5.15: Comparison between SSD and YOLOv3 model.

Figure 5.16: Detection by YOLOv3 model.
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Figure 5.17: Correct detections by SSD and YOLOv3 models.

Figure 5.18: Correct detections by YOLOv3 model.
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Figure 5.19: Comparison between YOLOv3-Tiny and YOLOv3 model.

Figure 5.20: Failed detection by YOLOv3 model in image captured from ~ 7m.
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Figure 5.21: Correct detections by SSD model.

Figure 5.22: Comparison between SSD and YOLOv3-Tiny model.
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Figure 5.23: Comparison between YOLOv3 and YOLOv3-Tiny model.

Since the SORT tracking algorithm is based on tracking by detection
paradigm, its performance is highly dependent on detection model perfor-
mance. The highest multi-object tracking accuracy (MOTA) was achieved
with detections provided by the YOLOv3 model on both test videos since
the model achieved the highest mAP among all experimented models. The
lowest count of Frags and ID switches was also observed with the YOLOv3
model. The second best performance was achieved with detections provided
by the YOLOv3-Tiny model. In the performance measurement, it was shown
that SORT does not add more computational load on hardware.

Our small experiments showed that lidar can sense the floating debris on
the water surface. Lidar can provide complementary information to the task
of detection of the floating debris, where the detection models fail. Noise in
lidar data is observed when the rotors from UAV create small waves.
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Chapter 6

Discussion

In this chapter we will discuss our goal of this thesis and propose the combi-
nation of detection and tracking model, which can be implemented on board
of the UAV.

In this thesis we wanted to develop a detection-tracking system that can be
implemented on board of the UAV for detection, classification and tracking
of floating debris on the water surface, which can run in real-time. The
detection and classification part of the proposed system is based on a deep
learning model. The deep learning based model was used because it can learn
and construct features of complex environments autonomously. We chose to
classify three classes of most common floating debris, which are menu boxes,
plastic bags and plastic bottles.

Main goal of choosing the tracking method was the abiltity to track multiple
objects on the water surface and to not add computational load on top of an
already computational demanding detection model.

We experimented with three detection models, which were SSD, YOLOv3
and YOLOv3-Tiny. Models were evaluated on 2 test datasets. Test 2 dataset
was considered as more challenging as mentioned in |chapter 4.

We experimented with hyperparameters and data augmentations during the
training phase of detection models. Evaluation of the detection models after
training shows, that the trained models can successfully detect and classify
floating debris on the water surface. Experiments with choosing different
thresholds of confidence score and IoU were gathered. These experiments
were gathered because we wanted to know, how the models are confident
and precise with their detections after training. If the models cannot provide
sufficient detections of floating debris and we will send the UAV on unprecise
location, this will be a waste of energy and the flight time of the UAV will

o1



6. Discussion

decrease.

SORT was proposed to be used for the multi-object tracking algorithm.
Since the proposed method is based on tracking by detection paradigm,
detections from detection models are needed on its input. The proposed
algorithm was able to successfully track multiple objects on water surface. The
performance of the SORT is dependent on the performance of the detection
models. Methods based on machine or deep learning can add computational
load on hardware. The proposed method can be suitable for implementation
on detection models, since the proposed method is not based on either of
them.

Results from the evaluation of detection models on test datasets show that

the YOLOv3 achieved the highest mAP on both test datasets. Achieved
mAP was 96.4% and 70.2% for Test 1 and Test 2 dataset respectively with
confidence and IoU thresholds set both to 50%. SSD model achieved the
lowest mAP on both of the test datasets. If we wanted to use the confidence
threshold of 75%, YOLO models will be suitable. The drop of the mAP was
in case of YOLOv3 model ~ 6% and in the case of YOLOv3-Tiny ~ 3%
in the challenging dataset. We observed a significant drop in performance
of the SSD model on Test 2 dataset. This drop shows that the model was
not robust enough to perform well on the new data in comparison with the
YOLO models.
Another important property that we evaluated, was the speed of the model
with and without implemented tracking algorithm. The fastest performing
model in both test datasets was the YOLOv3-Tiny model, which achieved 76
FPS and 63 FPS. The drop in speed was caused by the higher resolution of
images in Test 2 dataset. YOLOv3 achieved almost real-time performance.

In the evaluation of the SORT tracking algorithm implemented on top
of the detection models, achieved highest MOTA and MOTP was with the
YOLOV3 combination, since SORT is highly dependent on the performance
of the detection model. The lowest number of identity switches and highest
number of MT targets were also obtained with the YOLOv3 used as the
detection model. SORT showed up to be suitable for implementation on
board of the UAV, because after implementation to the detection-tracking
pipeline FPS remained unchanged.

We propose to use a combination of YOLOv3 and SORT as a tracking
algorithm in detection-tracking system. YOLOv3 achieved the highest mAP
among all proposed detection and classification models and speed in terms of
FPS was almost real-time. With the sufficient hardware [33] on the board of
the UAV it can run in real-time. If the UAV hardware will not be sufficient,
we propose to use a lighter version of YOLOv3, which is YOLOv3-Tiny. The
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SORT tracking algorithm is able to track floating debris on the water surface
and will not add computational load and performance will improve with a
better detection model.

Small experiments with the lidar showed its ability to sense the floating
debris on the water surface and to provide complementary information to the
detection task. Lidar was able to detect objects, where the detection models
based on deep learning failed. Noise in data was observed when the UAV had
low flight altitude and rotors created small waves on the water surface.
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Chapter 7

Conclusion and future work

Our thesis dealt with the problem of detection and tracking floating debris on
the water surface. The main goal of this thesis was to propose and implement
a detection-tracking system, which can be able to detect, classify and track
floating debris on the water surface. We wanted to classify three classes of
most common marine debris, which were menu boxes, plastic bags and plastic
bottles.

We tackled the problem of detection and classification with methods based

on deep learning. These methods were used, because they can automatically
learn to extract useful features from complex tasks. Deep learning methods
need to have a lot of data on their input. Since we have not found any dataset
with the UAV images of floating debris, we created our own custom. Dataset
consisted of data collected from pond and river with different properties and
challenges, which we described in [chapter 4l Collected images were selected
and annotated.
Three detection models based on deep learning were proposed. These models
were SSD, YOLOv3 and YOLOv3-Tiny. Proposed models were evaluated
with different confidence and IoU thresholds on two test datasets. Test 2
dataset was considered as more challenging. YOLOv3 achieved the highest
mAP 96.4% and 70.2% on Test 1 and Test 2 dataset respectively, among all
models with confidence and Tou thresholds set both to 50%. YOLOv3 also
achieved almost real-time performance with 28 FPS and 22 FPS on Test 1
and Test 2 dataset. The fastest performing detection model with 76 FPS and
63 FPS on Test 1 and Test 2 dataset was YOLOv3-Tiny, which achieved the
second highest mAP on both test datasets.
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Tracking was tackled with the SORT tracking algorithm. Method can track
multiple objects on the water surface and is based on the tracking by detection
paradigm. Inputs to the algorithm are detections, which consist of bounding
box coordinates, score and class from the detection model. We created our
own annotated dataset for evaluation, which is described in chapter 4. The
evaluation showed that the algorithm is highly dependent on the performance
of the detection model. SORT performed well with the YOLOv3 model
achieving MOTA of 85.1% and 52.7% on Test 1 and Test 2 video. The highest
number of mostly tracked objects with the lowest number of identity switches
was achieved. Evaluation of speed of the system showed that SORT does
not add computational load to already computational demanding detection
model based on deep learning.

We proposed to use a combination of YOLOv3 and SORT as a tracking
algorithm to be implemented on UAV with sufficient hardware. This com-
bination achieved the highest results in our evaluations and can run almost
in real-time. When the hardware will not be sufficient, implementation of
YOLOv3-Tiny with SORT is suggested.

Since the main sensor for the detection-tracking system in our assignment
was a camera, small experiments with lidar were gathered. Experiments
showed potential usage of the lidar providing complementary information
to the detection task. Lidar was able to detect objects, where the proposed
detection models failed.

Our thesis presents the first step in the new area of research in the Multi-
robot Systems team at CTU in Prague, focused on the complex system of
removing floating debris from water surface by UAVs. The most important
part of the future work will be to implement and test the proposed system
on the real UAV.

Collection of new data from different localities will be needed for the improve-
ment of detection models performance. The detection task can be improved
with the creation of sensor fusion with the lidar data.
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Appendix A

CD content

Thesis - folder contains the diploma thesis in pdf file

Evaluation_ Tracker - tool for evaluation of the tracking algorithm SORT

SSD_ pytorch - codes for the training, testing and inference of the SSD model

YoloV3_ pytorch - codes for the training, testing and inference of the YOLO models

Table A.1: Directories on the CD.
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