Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Human tracking using computer vision with
a data output

Vilém Jonak

Supervisor: MgA. Vojtéch Leischner
2022

ii

EvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

-

G

PFijmeni: Jonak Jméno: Vilém Osobni Eislo: 491942
Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/Gstav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Specializace: Pocitacové hry a grafika

UDAJE K BAKALARSKE PRACI

Nazev bakalarské prace:

Trekovani lidi pomoci poéitacového vidéni s datovym vystupem

Nazev bakalafské prace anglicky:

Human tracking using computer vision with a data output

Pokyny pro vypracovani:

The thesis aims to design and create a spatial audio interface in the real world. The student will do this
using human tracking and will augment the spatial audio application Trick the Ear (Leischner, 2021). The
users will wear headsets while they move in the designated area. There will be objects in this area
representing the virtual audio sources. As the user moves in the area, his audio mix changes according to
his position to these virtual audio sources.

The student will be solving these tasks:

[1 Research on computer vision approaches for human tracking and on suitable camera types.

[Select appropriate methods to determine the user’s position in the area

[1 Propose also a solution to a problematical tracking of humans from the top view with a

minimizing mismatch rate.

[1 Create a mobile application that will continuously

o display the scene with the user’s position and the position of the audio sources

visualized as a 2D interface,

o send the user a proper audio mix to the headset,

o notify the user if the tracking or sending of the audio failed.

[1 Use Processing IDE with JAVA language for implementation.

[1 Test the application and the interface with human participants of different heights and looks and

o measure the tracking accuracy for 10 users.

o Determine the dependency of tracking accuracy on an increasing number of participants.

Define the limitations of the application as well as the optimal state (with how many participants will the
system be able to give them a pleasant experience)

Seznam doporucené literatury:

[1] Akpan, I., Marshall, P., Bird, J., & Harrison, D. (2013). Exploring the effects of space and place on
engagement with an interactive installation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '13). Association for Computing Machinery, New York, NY,
USA, 2213-2222. doi:https://doi.org/10.1145/2470654.2481306

[2] Leischner, V. (2021). Trick The Ear. Retrieved from https://tricktheear.eu/

[3] Trifonova, A., Jaccheri, L., & Bergaust, K. (2008). Software engineering issues in interactive
installation art. Trondheim, Norway. Retrieved from
https://www.inderscienceonline.com/doi/abs/10.1504/IJART.2008.019882?fbclid=IwAR1QiZle5e
nqfvCODZN5tIfJLTJgUh4njaBmWr45070RP_uvK5uvoxmgfos

[4] Veeramani, B., Raymond, J., & Chanda, P. (2018). DeepSort: deep convolutional networks for
sorting haploid maize seeds. BMC Bioinformatics 19. doi:https://doi.org/10.1186/s12859-
0182267-2

CVUT-CZ-ZBP-2015.1 Stranalz?2 © CVUT v Praze, Design: CVUT v Praze, VIC

-
Jméno a pracovisté vedouci(ho) bakalarské prace:

Mgr. art. Vojtéch Leischner katedra pocitacové grafiky a interakce FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:

Datum zadani bakalarské prace: 16.02.2022 Termin odevzdani bakalarské prace: 20.05.2022
Platnost zadani bakalarské prace: 19.02.2024

Mgr. art. Vojtéch Leischner podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

G

ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to express my deepest thanks
to MgA. Vojtéch Leischner for his guid-
ance, patience, and helpful suggestions. A
special thanks goes to Ing. Roman Berka,
Ph.D., and his approval to test my work at
the Institue of Intermedia at FEE CTU.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 8, 2022

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 8. kvétna 2022

Abstract

We have developed an interactive installa-
tion where our program tracks people with
a camera mounted on the ceiling and cre-
ates an appropriate spatial audio mix for
their headphones. The spatial mix is ren-
dered with the Resonance Audio engine[l].
The main problem that we needed to solve
was to remember detected listener posi-
tions, so if the detection fails and loses
track of them and then again finds them,
their identity would not change. Minimiz-
ing this mismatch rate is crucial for the
correct function of the whole installation.
Human detection and tracking is a shared
computer vision task. Many solutions ex-
ist that are appropriate for particular use
cases. We needed to solve how to track
people from the top view, assign them an
id, and remember them with the given
id. We decided to use the convolutional
neural network YOLOv4 (You Only Look
Once) for people detection in the frame
received from a camera and the DeepSort
algorithm for tracking. YOLO is trying
to predict bounding boxes alongside the
class probabilities for these boxes. It is
a single neural network [2]. This paper’s
objective is not to create a tracking algo-
rithm but to decide which one will suit
our use case, extend it and implement it
properly. We have verified that our ap-
plication is viable for multiple use cases
with user testing. For example, it might
be suitable in gallery settings or silent
concerts in public spaces.

Keywords: spatial audio, human
tracking, computer vision, YOLO,
DeepSort, Resonance Audio

Supervisor: MgA. Vojtéch Leischner
Karlovo namésti 13,
12000 Praha 2

vi

Abstrakt

Vyvinuli jsme interaktivni instalaci pro
trackovani lidi
stropu a nasledné vytvoreni odpovidaji-
ciho prostorového audia v jejich sluchat-
kach. Prostorovy mix je renderovan po-
moci Resonance Audio enginu[I]. Hlavni
problém, ktery jsme fesili, bylo zapama-
tovavani si detekovaného posluchace tak,
aby pokud detekce selze, ztrati posluchace,
a po chvili jej znovu objevi, se jeho iden-
tita neménila. Minimalizace této chyby
je zasadni pro spravné fungovani celé in-
stalace. Detekce lidi a jejich trackovani
je sdilena problematika pocitacového vi-
déni. Existuje proto mnoho feseni, hodici
se vzdy na konkrétni pripad. Potfebovali
jsme vyTesit jak trackovat lidi shora, pri-
radit jim identifikdtor a ten si spole¢né s
nimi zapamatovat. Rozhodli jsme se pro
pouziti konvolu¢ni neuralni sité¢ YOLOv4
pro detekci lidi z obrazu prijatého z ka-
mery a DeepSort algoritmus pro tracko-
vani. YOLO se snazi predpovidat ohrani-
Cujici oblast spolecné s tridnimi pravdeé-
podobnostmi pro tyto oblasti. Je to sa-
mostatna neuralni sit[2]. Cil této préace
neni vytvoreni trackovaciho algoritu, ale
vybér toho nejvhodnéjsiho a jeho spravna
implementace a rozsiteni. Testovanim s
uzivateli jsme potvrdili, Ze nase aplikace
najde uplatnéni ve vice prostiredich. Na-
priklad by se dala vyuzit v galeriich nebo
na silent disco koncertech.

kamerou zavéSenou u

KliCova slova: prostorové audio,
trackovani lidi, pocitacové vidéni, YOLO,
DeepSort, Resonance Audio

Pteklad nazvu: Trackovani lidi pomoci
pocitacového vidéni s datovym vystupem

Contents

1 Introduction 1
2 Review 3
2.1 State of the Art Tracking
Algorithms.
2.1.1 Region-Convolutional Neural
Network (R-CNN)

2.1.2 YOLO and SSD Comparsion .
2.1.3 Differences Between YOLO
Versions, 4
2.1.4 DeepSort
2.1.5 Blob Tracking
2.2 Resonance Audio 5
2.3 Camera Systems 6
231RGB Camera............... 6l
2.3.2 IR Cameras ([
2.3.3 Depth Detection Cameras
3 Implementation 9
3.1 Camera Stream................)
311 0pen CV
3.1.2UDP 10
3.2 Tracking Mechanism
3.2.1 Neural Network Setup
3.2.2 Image Perspective

Transformation................
3.2.3 Tracking
3.3 Coordinate Stream
3.3.1 Used Communication
Protocols
3.3.2 Initial Calibration.......... [14]
3.3.3 Audio Rendering
3.3.4 Unsuccessful Tracking
4 Testing

4.1 Scenarios and Research Questions
4.1.1 Testing Scenarios with

Participants
4.1.2 Research Interviews with
Participants
5 Future Improvements 23
5.1 Hardware
5.1.1 Raspberry Pi..............
512Camera............oo.....
5.1.3 PC Hardware.............. 24]
5.2 Implementation
5.3 Environment 24]

vii

6 Conclusion

Bibliography

xR

Figures
3.1 Raspberry Pi 3B+ and Camera

module V2.1 9
3.2 Tracked user and the computed
coordinate that is sent to server .. [12

3.3 Basic look of the web interface
before calibrating
3.4 Look of the web interface when the

user is calibrated 15

4.1 Participants right after

calibration. 18|
4.3 Users bounced off each other and
their ids switched 19

4.4 Users are exchanging objects . ..

viii

Chapter 1

Introduction

The recent years introduced us to the trend called "silent disco," which
is becoming more popular every year [3]. A silent disco is an approach
where visitors of a concert hear the music only in their headphones. With
broadcast directly from the performer’s output mix, there is no need for
PA<Y, and the concert can remain silent. The possibility of experiencing live
music performance without any disturbing effects inspired us to push this
interaction even further.

This trend is famous for implementing a solution that is not disturbing to
the nearby inhabitants and the listeners. Everyone can adjust the volume
and converse with other participants quickly after putting their headphones
off.

However, with this approach, the user loses the feeling of music propagating
through the space from a single point which is a significant disadvantage.
The static audio the user hears in their headphones during these concerts is
flat as it lacks the natural reverb and repercussions. This non-natural sound
is one of the primary deficiencies compared to regular live performances.

In our previous work [4], we tried to control the position of audio sources
around the listener using a haptic interface. It inspired us to try an inverse
approach - control the audio of multiple listeners moving around a stationary
virtual audio source, and create an interactive installation. The listener’s
audio mix in his headphones would be affected by his movements around
static virtual audio sources. A similar effect can be achieved using a VR
headset. The developer can implement virtual audio sources with specific
properties, and the user will hear them in his headset accordingly. However,
this approach needs special equipment that is usually very expensive. Users
are limited to staying in a virtual reality environment, which means they
would not see other people. Therefore, it is not an ideal solution to this
problem.

The goal was to create this installation accessible for anyone without any
uncommon devices. The listeners would not need anything more than a
mobile phone and headphones. The installation would consist only of a web
camera, optionally Raspberry Pi for better performance and control, and a
reasonably strong computer.

!Public Address System - equipment for making the sound louder in a public place[36]

1. Introduction

A setting like this is suitable also as an interactive installation in a museum.
It will attract the user’s attention to a specific place or work as a substitute
for usual commented tours. For example, a painting could be an audio source
representing information about the exhibit. Alternatively, it could augment
the silent disco concert where the user will experience the performance with
better immersion.

Chapter 2

Review

B 2.1 State of the Art Tracking Algorithms

Our first step in choosing the suitable methods for tracking people was to
choose the tracking algorithm. We need to track the people accurately in
real-time from a camera stream. The neural networks are rapidly developing,
and many of them can solve this problem. The following chapter will discuss
the advantages and disadvantages of a few neural networks between which
we were deciding.

B 2.1.1 Region-Convolutional Neural Network (R-CNN)

Region-Convolutional Neural Network appeared in 2014 due to stagnating
neural network research. It beat that time’s best results on PASCAL VOC
2012 by 30%. The idea was to modify the CNN (Convolutional Neural
Network). Three modules create together the R-CNN. Firstly, it generates
region proposals that are class-independent. These create the set of candidates
for the detector. Secondly, a large CNN gets a feature vector with a fixed
length from each region. Last module consist of a set of linear SVMﬂ
which are class-independent[24]. However, even with many improvements
like Fast R-CNN and Faster R-CNN, this method was obsolete with different
approaches called YOLO and (You Only Look Once) and SSD (Single Shot
Multi-Box Detector)[25].

Bl 2.1.2 YOLO and SSD Comparsion

The main idea for creating YOLO was to detect objects in real-time. Firstly
introduced in 2016 as YOLOv1, it made the detection of objects a regression
problem for separating bounding boxes of the detected objects. The bounding
boxes and their class probabilities are predicted in a single evaluation, making
YOLO a single neural network. Since version 1, much newer upgraded versions
were introduced. The real-time detection was optimized with the One-Staged
Detection model implemented in YOLOv4[26].

!Support vector machines [35]

2. Review

On the other hand, we were considering the use of SSD. This algorithm
detects objects with the deep neural network. The SSD considers the shape
of objects to make the detection more precise. With the values generated for
each category object in a bounding box, the algorithm gives us another fast
One-Staged detection neural network.

We decided to choose the YOLOv4 over SSD because it has better perfor-
mance and is more accurate. A notable fact is that the choice of a dataset
for training affects the performance[26]. The YOLO we used is trained on
the COCO dataset[29]. COCO offers object segmentation and recognition of
80 classes[31]. It is essential for us that the dataset consists of RGB images.
That was one of the main reasons we decided to use an RGB camera, which
we will explain in section [2.3.1

B 2.1.3 Differences Between YOLO Versions

Nowadays, the first two versions of YOLO are considered obsolete, and the
newest versions are v3 (2018), v4 (March 2020), and v5 (May 2020). All
mentioned networks output set of bounding boxes and classes. With a proper
dataset and fast GPU, their accuracy can reach 98% in real-time[27]. The
new thing about v5 is that it relies on Python language. Its predecessors
used C. In this work [28], the best results were achieved with a YOLOv4
with tiny model. However, this work [29] shows that the YOLOv5] is more
accurate and slightly slower than YOLOv4 and YOLOv3. That means it
depends highly on the use case and the dataset used.

All of the mentioned YOLO versions can be used with different trained
models. The models differ in size and the number of layers, making them
run faster for the cost of accuracy. For example, the YOLOv3 and v4 have
normal and tiny models. The YOLOvV5 comes in v5s/m/1/x[28] variants. It
gives the user choice of non-programmable optimization for his application.
Choosing correctly between a "fast and less accurate" or" slow and highly
accurate" solution is crucial for a particular use case.

B 2.1.4 DeepSort

We decided to use the YOLOv4 with tiny model as it appeared to suit
our use case the most. Our solution uses an approach where the DeepSort
algorithm accompanies the YOLOv4. It tracks objects using their motion and
appearance by comparing the last and current frame and the detected objects
in them[30]. It helps us remember the ids of the detected persons correctly
by tracking people’s movements. We have an object detector (YOLOv4) and
an object tracker (DeepSort) to detect and remember persons with their ids.

B 2.1.5 Blob Tracking

One of the well-known tracking algorithms is blob tracking. Usually, the
objects are tracked by comparing color or light differences between frames with
correlation or the color histogram. It typically uses background subtraction to

4

2.2. Resonance Audio

make the tracking more robust. Pixels that are close enough are considered one
blob accordingly to specified rules. Realize that the background subtraction
approach is only possible if the camera is stationary|[33].

Because this approach is straightforward and well documented caused us to
think of it at first. However, for our use case, blob tracking has a significant
disadvantage. When two blobs, in our case, people, happen to be touching
each other, the blobs merge into one. They split after the people move far
from each other. That must never happen, as we instantly lose the reference
to that person and cannot send the audio to the proper user. We can avoid
it by counting the probable trajectory from previous frames. However, if
two persons walk toward each other and stand still for a while during a
conversation, this approach would not have any effect. That is why blob
tracking is not suitable for our purpose and why we had to choose a different
tracking algorithm|[33].

. 2.2 Resonance Audio

Resonance Audio is an SDK (Software Development Kit) for spatial audio
with high fidelity at scale. AR, VR game developments, and video are all fields
using it, as well as spatial audio players for augmenting music experience[32].
Supported platforms are Unity, Unreal, FMOD, Wwise, Web, Digital Audio
Workstation (DAW), Android, and iOS. It is designed for simulating the
spatial behavior of sound. That makes the software an ideal choice for our
installation.

The physical sound environment is very complex, with many variables.
Sound bounces off the surfaces, can be absorbed, and every person has a
subjective perception of it. The fact that humans have two ears helps them
determine the location of the sound source.

The interaural time difference (ITD) is the difference between the wave’s
arrival between the left and the right ear. That helps people localize the
horizontal position of low frequencies. This perception is relative. That means
the time difference grows with the distance from the source[5].

To determine the horizontal location of high frequencies, people cannot
use ITD. They use the interaural level difference (ILD) instead. That works
similarly to I'TD, but perceived is the difference between the sound volume
between the left and the right ear[5].

Finding the elevation level of the sound source works in a slightly different
way. The changes in frequency or so-called spectral effects help people find
the vertical position of the source. The wave is reflected in our ears differently
depending on the direction from which the wave came. That, together with
perceiving the changes in frequencies, is used to help us determine the vertical
position[5].

The Resonance Audio simulates this reality using Head-Related Transfer
Functions (HRTF) for credible spatial sound effects. HRTF is described as
the ratio between two Fourier transforms. One of the signals on the listener’s
eardrum and one at the center of the listener’s head with them absent[6].

5

2. Review

B 23 cCamera Systems

Another long talk during our preparations was about what camera would
be ideal to use. We decided between a standard RGB camera, IR (Infrared)
camera, and a stereo camera. Every system has advantages and disadvantages,
and we needed to choose the one that would suit our problem. The neural
network we have chosen, YOLOv4 with DeepSort, has a model trained with
an RGB camera. The idea of having an installation that is not expensive
and does not require much special equipment convinced us to use an RGB
camera, which is ideal for the tracking mechanism we have chosen.

B 23.1 RGB Camera

RGB camera is a system known probably to everyone reading this paper.
It appears in every smartphone, every web camera, and many other places.
RGB Cameras are not hardware-specific, making them "plug and play" and
do not need any additional complex setup or calibration.

They acquire an image using the CMOS chip [7] which is a part of a sensor
that creates an RGB frame as a result. As mentioned above, the advantages
are availability and easy usage. The camera’s price can vary depending on
the field of view and the camera’s resolution.

There are also some disadvantages which create inconveniences in our
installation. The main disadvantage is that RGB cameras need stable light
conditions to show the images properly. Not only stable, but the light has
to be intense to make the neural network track robustly. We will describe
how problems with light conditions during testing confused the tracking
mechanism in chapter [4.

B 23.2 IR Cameras

The IR camera can either track the thermal heat of users or can track infrared
light, which is an invisible specter to people. It will solve the problem of
RGB cameras with light conditions.

The possibility of tracking IR markers is common for determining the
pose of VR controllers. That is usually done by a camera in the headset,
which tracks IR LEDs on the controllers [§]. We could determine the position
of a person, but the problem is that we would not have any possibility to
remember the IDs of these persons. It could be done similarly to our solution,
which would defy the advantage of the IR system. The IR markers also need
to be implemented on the headsets, and possible occlusions could appear,
causing the person to be lost.

A different approach is to emit an IR light to the scene using an IR
illuminator. Surveillance cameras use that to capture video during nighttime.
These cameras often have an internal illuminator created by many IR LEDs
around the eye of the camera, which illuminates the space with, for humans,
invisible light. Using night-vision cameras like these would create a solution

6

2.3. Camera Systems

invulnerable to sudden light changes or streams of light directed into the eye
of the camera. However, the main disadvantage is that this system could not
be used outdoors during the daytime as the sun emits a lot of IR light, and
the camera vision would be washed out.

Il 2.3.3 Depth Detection Cameras

Stereo RGB cameras are a solution for achieving depth perception. The
system is inspired by how people use their eyes to perceive depth. It counts
the depth from the frames of two cameras, knowing the distance between
them and determining how far the object is.

The main disadvantages are the high computational demand of the al-
gorithms counting the pixel differences between frames and the need for
illumination (same as RGB Cameras). The lack of proper lighting conditions
or the lack of textures will make the system less accurate[9]. The accuracy of
the system decreases with increasing distance[L0].

Knowing the depth of the objects, we could detect people by tracking the
highest object, which would be the head of the user. Possible glitches could
appear in the edge case if the person bends or gets very close to another. The
stereo cameras have high computation demand and more complex calibration
than RGB cameras. Another solution to determining the depth in the frame
is depth cameras. However, these systems usually have a limited field of
view and maximum distance for which they work properly. For example, the
Kinect v2 and newer Azure Kinect DK have small maximum operating ranges.
Kinect v2 4.5m[11] and Azure Kinect 5.46m for resolution 320x288p[12].

Chapter 3

Implementation

. 3.1 Camera Stream

We decided to use Raspberry Pi Camera module V2.1 for our experiments.
Compared to standard web cameras, it has a more stable capture performance
and has properties modifiable with Raspberry Pi libraries. Even though the
Pi Camera gives us the possibility to capture video stream in 720p resolution
on 60 FPS [13], we were not able to achieve a stable framerate when we were
sending frames of this resolution.

Raspberry Pi 3B+, which we used in our setup, comes with 1GB RAM and
with 1.4 GHz 64-bit quad-core ARM Cortex-A53 CPU [14]. That gives us
enough strength to capture and send a video stream in 640x480p resolution.
It is the highest possible resolution we were able to stream in real-time with
a reasonable 60 FPS without any, or rare, image tearing or corruption. We
confirmed that when we set up the environment for development and observed
the quality of the stream affected by the resolution.

% Pope |

’ coortoe, R
R P

*

Figure 3.1: Raspberry Pi 3B+ and Camera module V2.1

3. Implementation

B 3.1.1 OpenCV

OpenCV is an open-source computer vision library suited for video capture
and image processing on Raspberry Pi[15]. We use the latest version, 4.5.5.
The library offers us a straightforward method of capturing an image from a
camera. That is afterwards decoded as .jpg format image. Before sending the
packet, we parse the image as a byte array. Chunks of size 2'6-64 bytes are
then used as packets for UDP. The subtraction of 64 bytes prevents the UDP
from frame overflow. Fragments of the code that performs these actions:

MAX = 2%x*16
MAX_IMG = MAX - 64

compressed = cv2.imencode(’.jpg’, img) [1].tobytes()
count = math.ceil(len(compressed)/(self.MAX_IMG))
array_start = 0
while count:
array_end = min(size, array_start + self.MAX_IMG)
self.s.sendto(struct.pack("B", count) +
compressed [array_start:array_end], (self.addr, self.port))
array_start = array_end
count -= 1

B 3.1.2 UDP

User Datagram Protocol (UDP) is a mechanism based on packet-switching
in a computer communication using Internet Protocol (IP)[16]. The idea is
to offer the possibility to send messages to other programs with the lowest
possible need for protocol management. The main difference between UDP
and TCP (Transmission Control Protocol) is that the UDP is not as reliable
but is a faster protocol. Redundancy or successful reaching of the destination
is not guaranteed, which results in higher stability and speed of the protocol.
If the application needs a reliable transmission, rely on the TCP[I7]. In our
solution, the speed of the stream is crucial, so we chose to use the UDP.

We connect the Raspberry Pi with a PC via Ethernet cable and local
network for even more excellent stability in our solution. Raspberry Pi
has integrated 2.4GHz, and 5GHz IEEE 802.11.b/g/n/ac wireless LAN [13],
but during experiments, we encountered occasional connection drops when
using the wireless connection. We send the packets to the IP address of our
computer’s ethernet network interface controller. The computer receives the
data on the same IP address.

B 3.2 Tracking Mechanism

We face the problem of tracking people from the top. After the research
described in chapter [2, we decided to use a tracking mechanism implemented
with YOLOv4, DeepSort, and TensorFlow[I8]. The YOLOv4 neural network

10

3.2. Tracking Mechanism

dataset obtains more types of objects—for example, cars. What we want
to track is passed to the detection method as a parameter. Precisely as an
array of strings representing the classes. So we add to our list only the string
"person." There are 80 classes that the neural network will recognize[31]. We
need to keep in mind that we also need to perform perspective projection
with the received frame. That is because we need to have linear distances
between all points in the frame to avoid glitches when rendering spatial audio.

B 3.2.1 Neural Network Setup

We can run the neural network on a CPU or GPU. GPU has a complex setup
and architecture limitations. On the other hand, the CPU has computational
limitations. We need to set up the CUDA toolkit when using the GPU
variant. That limits us to use only NVIDIA graphic cards. In our PC, we
have GeForce GTX 750Ti, which gives us performance comparable with the
CPU of our PC, which is Intel Xeon W-2125 4.00GHz.

Our algorithm finds objects using YOLOv4 and then tracks their position
using Deepsort. We downloaded a pre-trained model for YOLOv4[18]. For
faster performance, we can use the tiny model, which is less accurate and
more storage efficient, which results in a better performance of the program.
We convert this model into the corresponding TensorFlow model used in the
detection program with python script.

B 3.2.2 Image Perspective Transformation

Our script runs in an infinite loop. In each iteration, it receives a frame from
our camera stream described in section 3.1l After the image decoding, we
need to perform a perspective transformation to ensure that the frame has
uniform distances between points to track people’s movement reliably. The
OpenCV library offers us a very effective and straightforward way to do this.

First, we need to find 4 points in our source scene. These points will
represent the borders of the output screen. As we are testing this installation
at the Institute of Intermedia (IIM) at CTU [19], I have chosen these points
as follows:

1. The bottom left is the left corner of the camera FOV.
2. The bottom right is the right corner of the camera FOV.
3. The upper left is the corner of the dance floor installed in IIM

4. The upper right is at the intersection of the dance floor and the camera
field of view.

The upper points can be seen at figure |3.2 as pink and white dot respectively.

We need another four points representing borders into which we want
to fit our trimmed source frame. In our case, these will be corners of the
640x480p frame. These two arrays of points are passed to the OpenCV method
getPerspective Transform() [34] which will return a 3x3 transformation matrix.

11

3. Implementation

Next, we call the method warpPerspective() [34] with our source image,
the transformation matrix, and the resolution of the destination image as
parameters.

Finally, this function returns a transformed image [34]. Image as this is
ready to be used in the tracking algorithm. The algorithm uses the TensorFlow
library to find the objects described above in our array.

B 3.2.3 Tracking

If we want to detect, for example, people and cars, we need to modify the
array as mentioned above. The recognized objects set up in the array are then
put into the Deepsort tracker, which returns a list of tracker class instances
with appropriate ids. It gives us the tracked object as a bounding box of it.
So we get coordinates of the upper left and bottom right corner in the form
of the python tuple together with a unique id. We added the computation
of coordinates of the tracked person’s centroid. That was achieved easily by
using the coordinates of the corners as follows

m) = [(l +71)/2, (I2 + 12) /2], (3.1)

where 1 is the top left corner and r is the bottom right corner, which results
in following

person—2 — 344 163

(a) : The rectangle is created by the output of the YOLOv4 and
DeepSort. The dot at the centre of it is computed centroid, which
represents the coordinates, that are sent to the server and used to
render the spatial audio.

Figure 3.2: Tracked user and the computed coordinate that is sent to server

We store the m and a unique id into an instance of a class if an instance
holding the same id does not already exist. In that case, we update the

12

3.2. Tracking Mechanism

coordinates with an interpolation mechanism, which will be described in
detail later on.

It is inevitable to encounter situations where the camera stream loses the
frame, we lose sight of a person because of occlusion, for example, or the
tracking mechanism is confused and cannot recognize a person it did recognize
in the previous frame. After the first experiments, the neural network with
tiny model proved its quality at re-recognizing lost persons. If we start
tracking a person and mark it with id 1, lose the person for a few seconds,
and then the person reappears, the YOLOv4 with #iny model and DeepSort
will very probably give them the same id. So we try not to forget the person’s
last known location by storing it as a value of the class instance. According
to initial setup tests, we found out that the offset of 3 seconds works best -
in most cases, it gives the lost person the same id it had before it was lost.

Another encountered issue was that after finding a person that was lost
recently, the tracked location "jumped" from the last known position to the new
one. That would appear as an uncomfortable and unrealistic audio glitch in
the final spatial mix. We used the same approach as in our previous work[4],
where the same problem appeared. To solve this we are using smoothed
interpolation between previous and new position. The interpolation update
function looks like this:

def update(self, newLocation):

#acceleration is based on the distance between last known
and current position

acceleration = vp.vector(newLocation[0] - self.coord[0],
newLocation[1] - self.coord[1], 0)

#’norm’ values are values scaled to the size of the frame

normNewTarget = vp.vector(newLocation[0]/480,
newlLocation[1]/640, 0)

normCoord = vp.vector(self.coord[0]/480, self.coord[1]/640,
0)

normDist = calc_distance(normNewTarget, normCoord)

#Here I do some minimal distance offset
if sqrt((self.coord[0] - newLocation[0])**2+(self.coord[1] -
newLocation[1])**2) < 10:
#self.coord = newLocation
return
else:
#I change the magnitude of the acceleration according to
the size of the distance
acceleration.mag = 1 + 2*(normDist#*20)
velocity = acceleration
#I returned ’moved’ coordinates of last know position
self.coord = (int(self.coord[0] + velocity.x),
int(self.coord[1] + velocity.y))

We use the coordinates described in our wupdate() function to create an

13

3. Implementation

appropriate spatial audio mix. This approach performs a smooth interpolation
from the last known position to the currently tracked position. The neural
network can return slightly different results in each frame if the person is
standing still (we speak about a few pixels). We added the minimal offset
to the update function. If the new location changes by less than 10 pixels,
we do not perform any update. Otherwise, the tracked point would oscillate
around the tracked person even if they were standing still.

. 3.3 Coordinate Stream

Our problem with receiving is that our strategy sends all detected coordinates
to every device. So we must determine which are the correct coordinates on
the JavaScript application side. We are adding heuristics to help minimize
the mismatch rate of choosing the correct coordinates. We will describe that
in this section.

B 3.3.1 Used Communication Protocols

We stream coordinates locally using Open Sound Control (OSC) protocol
to a Processing[20] script and from there to a proxy server using WebSocket
protocol. We do so for two reasons. The main reason is to perform a simple
conversion between OSC and WebSocket. Our server script is in JavaScript,
and it does not natively support OSC. We also did not find any simple way
to use WebSocket in python without making it a parallel application. We
decided to create a proxy script in Processing. It accepts the OSC packet,
parses it as a string, and sends as a WebSocket packet to our proxy server.
The other reason is readability. This wasy the python tracking script can
only contain logic maintaining the neural networks and camera stream.

OSC is mostly described as a protocol. However, it does not implement
error handling, negotiation, or processing schematics. A better way to
describe the OSC is to describe it as a content format. The other formats
are, for example, XML or JSON. Initially, the OSC was implemented for
communication between sound synthesizers but found much broader usability.
It can be sent via UDP/IP, Ethernet, USB, or Bluetooth but has to be
received with another OSC parser|[21].

The WebSocket Protocol enables a form of two-way communication starting
with a handshake. It is based on the TCP protocol, and HTTP servers
interpret the handshake. The WebSocket protocol is a single modified TCP
connection used in both directions. This approach avoids using HTTP as a
bidirectional communication. As HT'TP was not implemented to have such a
function, using it so would create a variety of problems[22].

B 3.3.2 Initial Calibration

When a user wants to connect to the application for the first time, calibration
needs to be done. The user repeats the exact calibration when the neural

14

3.3. Coordinate Stream

network loses them and cannot find them again in time. The calibration is
controlled by the user via the web application, which informs them about
success eventually.

Welcome!

Your ID is: #
N Use headphones.
Static position of a source -
Calibration position IE‘
Your position -[&]

L ‘

Calibrate

Click for calibration

Figure 3.3: Basic look of the web interface before calibrating

First the user needs to stand in the designated calibration area. This area
is a circle marked on the floor. The program knows this calibration area as
an exact point but checks for any coordinates in a circular vicinity. When the
user is in place and presses "Calibrate" button in the app, the label changes to
"Calibrating" and the button becomes disabled. During a 5 seconds timeout,
the script checks received coordinates and look for one whose distance from
the calibration point is less than our offset. If it finds none, or if there are
some other coordinates in the vicinity, the calibration will be unsuccessful,
and the user shall try it again.

Welcome!

Your ID is: 94

N Use headphones.
Static position of a source - [#]

Calibration position E .

Your position - @
Calibrated

You are receiveing correct (hopefully xd) spatial audio mix

Figure 3.4: Look of the web interface when the user is calibrated

B 3.3.3 Audio Rendering

If the calibration is successful, the program remembers the id associated with
that coordinates, and the user will start receiving audio. The app contains
a typical play/pause button if the user wants to stop the audio but not the
stream. The audio stream will be rendered using the spatial audio engine

15

3. Implementation

Resonance Audio. It is initialized with the size of the room, materials from
which it consists, and the audio source’s coordinates. This setup affects
the rendering mechanism accordingly with the real-time received listener
coordinates.

The web application visualizes the room, which appears as a rectangle with
three icons. These represent the stationary audio source, calibration point,
and the listener’s corresponding position in the scene. This visualization is
handy for checking if the listener receives coordinates corresponding to his
position in the scene. The icon of the calibration point is there to help the
user avoid it, if possible, to prevent other users from experiencing unsuccessful
calibration.

B 3.3.4 Unsuccessful Tracking

If the web application receives negative coordinates, the tracking mechanism
has lost the user from sight for a longer time. If that happens, the app’s
state returns to "Not Calibrated," which appears on the screen to inform the
listener. During this time, the user hears audio with their last known position
coordinates, and they should go to the calibration point and calibrate them
accordingly to |3.3.2.

However, sometimes the tracking mechanism loses the person only for a
short time and then assigns it a different id. When this happens, we have an
opportunity to prevent the user from the need of re-calibration. We achieve
this with a simple heuristic. By remembering the coordinates from the last
frame, we can decide if some newly received coordinates with another id could
be our coordinates only with a mismatched id. We use a similar approach
we have done in the calibration process. If, for example, our last received
coordinates were [43, 50|, and then the negative coordinate is received, we
look into the pack of all received coordinates for all ids. If there are some
close to our last known position, e.g. [46, 48], we check if there is no one in
the vicinity. If so, we decide that these coordinates are ours and update the
id. If not, we cannot assure that we choose correctly, and the user needs to
do the calibration again.

16

Chapter 4
Testing

As noted later in section [5.1.2], our testing space, which is a trapezoid with a
surface taking up to around 16.165m?, is suitable maximally for three people.
That gives us approximately 5.3 square meters per person. How this could
be improved is described in chapter |5 The testing took place at IIM, and
three contestants participated. It aimed to measure the occurrence of the
tracking algorithm errors that lead to the need for re-calibration. Also, it
should help us determine which users’ behavior creates those errors most
often and receive the overall feedback of the users on the whole installation
in the form of discrete interviews after the testing itself.

. 4.1 Scenarios and Research Questions

We decided to try three different scenarios of the users’ behavior. Each
should point to different yet expected cases that could happen when using
our installation. We executed the first scenario twice. Once for measuring
errors during the user testing, then without the video render to measure the
FPS of the application. Users received brief instructions on how the web
application works. We told them how to calibrate themselves and that any
other relevant information or instruction is displayed in the web application.
The three scenarios were:

1. Users are slowly walking, trying to avoid direct contact with other users
and observing the behavior of the application.

® this scenario would represent usage in a museum exposition

2. Users are passing each other very closely and occasionally body hitting
each other.

® this scenario would represent a silent disco production

3. Users are passing each other closely and are exchanging object (like bags)
between each other.

17

4. Testing

B 4.1.1 Testing Scenarios with Participants

Our three participants were of different appearances and heights. Let us call
them user T, user M and user V. User V measures 193cm; User T measures
179cm; M has 169cm. All of the participants did not know the purpose
of the application. Acquainted only with the instructions describing the
application’s user interface, and no expertise on computer vision or spatial
audio, they should offer a non-biased review.

B Testing Scenario 1

The aim of scenario one was to test if the application is usable in an envi-
ronment with slow movement and without collisions with other users. Such
conditions represent art expositions, which is one of the possible usages of our
installations as described in chapter Il The DeepSort lost sight of a user four
times because of occlusions. However, it found them in under three seconds
(which is our timeout) and assigned them the correct id, so there was no need
for re-calibration.

person—1 — 173 140

person—2 — 31|11 295

(a) : We can see user V with ID 5 successfully finishing the calibration.

Figure 4.1: Participants right after calibration.

The measurement lasted for one minute and forty-five seconds. All the
participants calibrated in 30 seconds without encountering any problems and
without the need for assistance. During scenario one, no errors appeared, and
no user had to re-calibrate.

B Testing Scenario 2

In scenario 2, we were trying to simulate an environment similar to the silent
disco environment. Users had instructions to pass each other very closely and
collide their bodies with other users on occasion.

18

4.1. Scenarios and Research Questions

B At 0:30 of the test, participant T with id 13 and participant M with
id 15 walked toward each other. Their bodies collided and then went
back. The DeepSort switched their ids and created an error. Users were
immediately aware of that thanks to our visualization displayed in the
web application, left the scene, and at 0:40, headed for the re-calibration.
T successfully calibrates with id 22.

parsor:)—}id— 275 196 _person—13 — 241 204 _

= 12 person—13 2286 210
\
A PR Y
\ ‘ -

(a) : T and M closing (b) : T and M hits each (c) : T’s and M’s ids
to each other other switched

Figure 4.3: Users bounced off each other and their ids switched

B At 1:09, M re-calibrated and received id 25 for just one second after the
successful calibration. After that, DeepSort incorrectly changed M’s id
to 27. However, our algorithm noticed this, and because no other user
was around, and M had not gone away, it updated M’s id to 27. The
error was intercepted, and there was no need for re-calibration.

B At 1:50, M and V bounced off each other; ids switched; they needed to
undergo the re-calibration.

B 2:01 M tries to re-calibrate. The same situation as at 1:09 happened,
and the DeepSort switched the id right after the successful calibration.
However, M walked away fast this time, and the update was unsuccessful.
The error was not intercepted and M needed to undergo the re-calibration.

B At 2:30 the testing ended.

The measurement lasted for two and a half minutes. During this scenario,
no one was lost for a time longer than our offset (three seconds), the id was
changed by the DeepSort twice—our algorithm intercepted it once, and the
ids of two users switched twice. There were five needs for the re-calibration.

B Testing Scenario 3

The final scenario tested unordinary interactions between users. We wanted
the users to exchange some visible objects with each other. As users V and
M had bags with them, we decided to use their bags. T used a headphones
case as the object. During the test, users were walking with bags on their
backs, and at some time, they took their bag in hand and exchanged it for a
nearby user’s bag or the headphones case.

B At 0:29 V, T, and M have all been successfully calibrated.

19

4. Testing

B At 0:58, M and T approached each other and started the process of
exchanging their objects. During that, M occluded T, and the detection
algorithm lost T for a while. However, this lasted only 2 seconds. Closely
after the T was spotted again, its id changed from 14 to 16. Our algorithm
successfully intercepted that situation.

B erson—1
PESOR=IHS12922" 249 195 5 -
- person=16/— 114 221

R
|

(a) : Tand M areclose (b) : T changes id to 16 (c) : T’s id changes

to each other and ex- again. Beginning of the
change their objects change between M and
\%

Figure 4.4: Users are exchanging objects

B At 1:09, T’s the DeepSort changed T’s id again. Now back from 16 to
14. Again, our algorithm intercepted this error successfully.

B 1:33 and T exchanged bag with V without any problems or occlusions.
B 1:45 Testing ended.

The final scenario lasted one minute and forty-five seconds and proved that
most errors occur when users’ bodies collide. During scenario 3, our algorithm
successfully intercepted two occurrences of incorrect change of user ids, and
there was no need for re-calibration.

B Measuring Performance in Scenario 1

We repeated the first scenario with three users and measured the FPS. We
did not render any video, disabled control output prints, and concentrated
the computer’s performance only on the tracking algorithm. With a setting
like this, the resulted FPS were 17.3 at peak and 14.1 at minimum. The total
average during the 2-minute long run was 16.37 FPS. The performance was
unaffected by the number of people in the scene. However, we could do the
measurement only with three people, and the difference between detecting
1 or 3 people is inconsiderable. We repeated the measurement twice, and
the values above are the minimum, the maximum, and the average of both
runs. Measuring the regular model was not accounted for in the test, as the
implementation was developed for using the tiny model. However, the regular
model was running at 6FPS with video render during the experiments.

B 4.1.2 Research Interviews with Participants

We interviewed the participants discretely and separately so their answers
would not affect other users’ thoughts and bias them. The research survey

20

4.1. Scenarios and Research Questions

consists of 4 subjects with a few subquestions as follows:
® User Interface of the Web Application

RQ1.1: Was the interface comprehensible?

RQ1.2: Did the visual representation of yourself helped you
with orientation?

RQ1.3: How long did it take to realize your position was
switched with other user?

RQ1.4: Do you think you will remember the controls of the
application?

® Spatial Audio

RQ2.1: How did you hear the audio during movements?
RQ2.2: Did you notice any glitches in the audio?

® Calibration

RQ3.1: Was the process of calibration intuitive?

RQ3.2: Was the text feedback together with the visual represen-
tation enough to inform you about the need of re-calibration?

RQ3.3: Did the text feedback and the visualisation help you
during your calibration?

8 Overall Experience

RQ/.1: Was the experience enjoyable?

RQ4.2: Can you imagine any practical or art usages of the
installation?

RQ4.3: What do you think would make the application more
enjoyable?

B Result of the Interviews

® User Interface of the Web Application
All of the users found the interface easy-to-use, comprehensible,
and agreed that the visualization of their position helped them
with orientation in the space. Every user is sure that they
remember the controls and instructions very well, and they
will be able to use the application in the future without any
further instructions.

21

4. Testing

® Spatial Audio

T and V noticed that the audio changes accordingly to their
position to the sound source icon in the web application. V
described it followingly:

"I heard changes in volume and pan between left
and right speaker. When standing at the upper right
corner of the scene, I have heard most of the audio
coming out of my left speaker."

On the other hand, M did not glimpse the feeling of spatial
effect but heard changes accordingly to their position. M and
T noticed no glitches. V noticed one:

"When I stood exactly in the middle, in front of the
audio source, and made a step to any side, there was
a sudden jump in the audio change."

The Resonance Audio engine probably creates this effect.

® Calibration

All users agreed that after the entry instructions described
where the calibration point is and how to calibrate properly,
and with the text feedback, the calibration process was intu-
itive and easy to remember. They also agreed that the text
and visual feedback were enough to inform them about the
error and that they needed to re-calibrate. V added:

"The wvisual feedback could be even magnified by
changing the color of the button from blue to red,
for example, when we need to re-calibrate”

® Overall Experience

Everyone agreed, that they enjoyed the application, and that
it needs little improvements in preventing the need of re-
calibration, when bodies of users collide. M and T mentioned
the possible usage in a silent disco production, assuming the
IR camera will be used. M and V agreed, that the installations
would find best usage as interactive art exposition, making
the exhibits "talking", for example. V added, that them can
imagine, that the application could somehow complement
AR glasses. Their ideas for making the application more
enjoyable differed. T stated, that the application is nice, and
needs to make the tracking more robust. M would prefer the
possibility to choose their own song and their own icon in the
web interface. M also stated, that the quality of the sound
could be improved. V would like to see other users in the
interface, or to choose which of the other users hey want to
see—possibility to form parties of friends.

22

Chapter 5

Future Improvements

After the testing sessions with participants, we observed where our application
could be improved. As the application acted robustly during the experiments,
the major problem - the mismatch rate of assigning the ids correctly - could
be even lowered with more complex heuristics. A better choice of hardware
would also be a great benefit to the application’s usability.

. 5.1 Hardware

Bl 5.1.1 Raspberry Pi

Our first deficiency starts right with the camera stream. We could not
maintain better stream performance than sending 640x480p frames without
corruption. The exchange of the Raspberry Pi 3B+ for the newer Raspberry
Pi 4 would be beneficial. The newer model is better in every aspect of the
computer. The Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz CPU, which is installed in the Raspberry Pi 4, offers a slightly
bigger clock rate than the older model (which has 1.4GHz)[23]. The difference
between the RAMs of these two models is significant. However, RAM should
not be the bottleneck of the problem of sending a live video stream.

B 5.1.2 Camera

After installing the Raspberry Pi with a camera in the IIM, we encountered
a problem with the camera’s field of view. The Camera Module V2.1 we
use has a focal length of 3.04 mm, a horizontal field of view of 62.2 degrees,
and a vertical field of view of 48.8 degrees. It hangs at the ceiling of 1IM,
which is about 6.5 meters high and points under an angle of 30 degrees.
This setup and the perspective transformation of the frame discussed in the
section |3.2.2| creates such a frame that maximally, three people can use the
installation comfortably. The view problem could be improved by choosing a
more extensive field of view camera and placing it higher.

We want to try the IR camera in the future. IR camera would make this
installment invulnerable to direct light-rays, and the installation would not

23

5. Future Improvements

need consistent light conditions. These factors would move our application
to fit the requirements for silent disco production even more.

B 5.1.3 PC Hardware

The biggest bottleneck of our application is the main PC. The Nvidia GeForce
GTX 750ti is an older graphics card that can run the tracking script at 16FPS
when using a pre-trained tiny model. The regular model is running at 6FPS.
Vojtéch Leischner stated that he tried the algorithm on his Nvidia RTX 3080
and reached 60FPS with the regular model. A better GPU would improve
overall performance and make the application more robust because we could
use the regular model with a reasonable frame rate.

B 52 Implementation

The testing showed that the calibration, the way we designed it, is intuitive,
and people can undergo it mostly correctly. Although, a very welcomed
improvement would be the usage of QR codes. The idea is that instead of
pressing a button in the web application, the user would scan a QR code (on
the ground, for example). The benefits of this approach are that they do not
need to write a wi-fi password and the IP address of the server PC to their
browser manually.

The heuristic we designed proved can solve the problem for which it was
developed correctly in most cases. Nevertheless, another heuristic that would
solve the switching of two users’ ids would make the application even more
robust and lower the mismatch rate and the number of needs for re-calibration
to the minimum.

. 5.3 Environment

During the tests in IIM, we encountered a problem with lighting. IIM is a
space designed for theater-like performances and has multiple strong lights.
They create many shadows, which appear to confuse neural network detection.
The regular model sometimes detected the shadow as a person. When we set
up the lights, so the image would not be overexposed, the detecting gave the
best results. A tip from Mr. Berka, the head of the IIM, also warned us that
the carpet on the floor behaves like a static and can affect the accuracy of
the detection algorithm.

Another experienced problem, which is more problematic, is the color
difference between the background (which means the floor of the scene) and
the user’s clothes. If they match, the algorithm works much worse, and
the rate of losing the user’s sight, for a time longer than the offset, rises
drastically.

24

Chapter 6

Conclusion

We created an installation giving a user possibility to experience a real-time
interactive augmentation of the audio. A museum exhibition is a most fitting
scenario for problem-free usage. The application has to be improved to
augment the silent disco music production and give people a new way to
enjoy live music.

We used YOLOv4 neural network for detection and Deepsort for tracking
the users. The neural network infers people’s position from a Raspberry
Pi camera video stream sent by UDP. The program then sends the tracked
coordinates to a JavaScript application. Users control web application to
self-calibrate and play or pause rendered spatial audio and get visual feedback
on their position in the scene.

The tests proved that our applications’ user interface is easy to learn, and
no test users had any problem understanding it. The visualization, which
represented the user’s position in real-time, helped them significantly.

Neural network faults create the only inconsistencies. These need to be
improved in the future by creating more robust heuristics solving all the cases
in which the detection algorithm can make mistakes, or switching to different
means of tracking.

25

26

1]

2]

Bibliography

Resonance Audio, Resonance Audio (2018), https://resonance-
audio.github.io/resonance-audio/

M. I. H. Azhar, F. H. K. Zaman, N. M. Tahir and H. Hashim, "People
Tracking System Using DeepSORT," 2020 10th IEEE International Con-
ference on Control System, Computing and Engineering (ICCSCE), 2020,
pp. 137-141, doi: 10.1109/ICCSCE50387.2020.9204956.

Silent Disco: A Popular Trend that Has Been Out For Years, (2022), The
Silent Disco Company, https://thesilentdiscocompany.co.uk/blog/silent-
disco-history/

GitHub repository, vilijonak /Bachelor-thesis/Semester
Work, (2021) https://github.com/vilijonak /Bachelor-
thesis/tree/main/Semester%20Work

Resonance Audio, Resonance Audio - Fundamental
Concepts, https://resonance-audio.github.io/resonance-

audio/discover/concepts.html

D. Y. N. Zotkin, J. Hwang, R. Duraiswaini and L. S. Davis, "HRTF per-
sonalization using anthropometric measurements," 2003 IEEE Workshop

on Applications of Signal Processing to Audio and Acoustics (IEEE Cat.
No.03TH8684), 2003, pp. 157-160, doi: 10.1109/ASPAA.2003.1285855.

CMOS (Complemenary Metal Oxide Semiconductor) Definiton,
TechTerms.com (2017) https://techterms.com/definition/cmos

Tracking Technology Explained: LED Matching, Oculus For Developers
(2019), https://developer.oculus.com/blog/tracking-technology-explained-
led-matching/

Stereo Vision for 3D Machine Vision Applications, ClearView Imaging
(2021), https://www.clearview-imaging.com/en/blog/stereo-vision-for-3d-
machine-vision-applications

[10] E. DANDIL and K. K. CEVIK, "Computer Vision Based Distance

Measurement System using Stereo Camera View," 2019 3rd International

27

6. Conclusion

Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), 2019, pp. 1-4, doi: 10.1109/ISMSIT.2019.8932817.

[11] Microsoft Kinect v2 3D-Camera, FAPS - Institute for Fac-
tory Automation and Production Systems, Julian Sefiner, M. Sc.,
https://www.faps.fau.eu/ausbio/microsoft-kinect-v2-3d-camera/

[12] Azure Kinect DK hardware specification, Microsoft Docs
(2021), https://docs.microsoft.com/en-us/azure/kinect-dk /hardware-
specification

[13] Raspberry Pi Documentation: Raspberry Hardware, Raspberry Pi (2022),
https://www.raspberrypi.com/documentation/computers/raspberry-
pi.html

[14] Raspberry Pi Documentation: = Camera, Raspberry Pi (2022),
https://www.raspberrypi.com/documentation/accessories /camera.html

[15] OpenCV: OpenCV modules, Doxygen, 2021,
https://docs.opencv.org/4.5.5/

[16] Postel, Jon. "User datagram protocol." (1980).

[17] Xylomenos, George, and George C. Polyzos. "TCP and UDP performance
over a wireless LAN." IEEE INFOCOM’99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. The Future is Now
(Cat. No. 99CH36320). Vol. 2. IEEE, 1999.

[18] GitHub Repository, theAIGuysCode/yolov4-Deepsort: Object track-
ing implemented with YOLOv4, DeepSort, and Tensorflow (2020),
https://github.com/theAIGuysCode/yolov4-deepsort

[19] Bittner, Jiri, and Jiri Zara. "DCGI Laboratories at CTU Prague."

[20] Reference / Processing.org, Fry, Ben and Reas, Casey (2004),
https://processing.org/reference

[21] Freed, Adrian, and Andrew Schmeder. "Features and Future of Open
Sound Control version 1.1 for NIME." NIME. Vol. 4. No. 06. 2009.

[22] Fette, Ian, and Alexey Melnikov. "The websocket protocol." (2011).

[23] The MagPi Magazine, Raspberry Pi 4 vs Raspberry Pi 3B+ - The MagPi
magazine, (2020), https://magpi.raspberrypi.com/articles/raspberry-pi-4-
vs-raspberry-pi-3b-plus

[24] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detec-
tion and semantic segmentation." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014.

28

6. Conclusion

[25] M. Noman, V. Stankovic and A. Tawfik, "Object Detection Techniques:
Overview and Performance Comparison," 2019 IEEE International Sym-
posium on Signal Processing and Information Technology (ISSPIT), 2019,
pp. 1-5, doi: 10.1109/ISSPI1T47144.2019.9001879.

[26] M. R. Fairuzi and F. Y. Zulkifli, "Performance Analysis of YOLOv4
and SSD Mobilenet V2 for Foreign Object Debris (FOD) Detec-
tion at Airport Runway Using Custom Dataset," 2021 17th Interna-
tional Conference on Quality in Research (QIR): International Sympo-
sium on Electrical and Computer Engineering, 2021, pp. 11-16, doi:
10.1109/QIR54354.2021.9716186.

[27] C.Kumar B., R. Punitha and Mohana, "YOLOv3 and YOLOv4: Multiple
Object Detection for Surveillance Applications," 2020 Third International
Conference on Smart Systems and Inventive Technology (ICSSIT), 2020,
pp. 1316-1321, doi: 10.1109/ICSSIT48917.2020.9214094.

[28] Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F.
Automatic Bunch Detection in White Grape Varieties Using YOLOvV3,
YOLOv4, and YOLOv5 Deep Learning Algorithms. Agronomy 2022, 12,
319. https://doi.org/10.3390/agronomy 12020319

[29] Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5
for Autonomous Landing Spot Detection in Faulty UAVs. Sensors 2022,
22, 464. https://doi.org/10.3390/s22020464

[30] Guo, Xiaotong, et al. "Behavior monitoring model of kitchen staff based
on YOLOvVS5] and DeepSort techniques." MATEC Web of Conferences.
Vol. 355. EDP Sciences, 2022.

[31]] COCO - Common Objects in Context, COCO (2021),
https://cocodataset.org/#home

[32] Leischner, Vojtéch, and Zdenék Mikovec. "Spatial audio music player for
web."

[33] M. Isard and J. MacCormick, "BraMBLe: a Bayesian multiple-blob
tracker," Proceedings Eighth IEEE International Conference on Computer
Vision. ICCV 2001, 2001, pp. 34-41 vol.2, doi: 10.1109/ICCV.2001.937594.

[34] OpenCV: Geometric Image Transformations,
OpenCV: Open Source Computer Vision (2022),
https://docs.opencv.org/4.x/da/d54/group___imgproc___ transform.html

[35] Matas, Jiri and Ondrej Drbohlav. Support Vector
Machines, Czech Technical University, Prague (2018),
https://cw.fel.cvut.cz/b211/__media/courses/b4b33rpz/pr_07_svm_ 2018.pdf

[36] Cambridge Dictionary, Cambridge University Press (2022),
https://dictionary.cambridge.org/dictionary /english /public-address-
system

29

	Introduction
	Review
	State of the Art Tracking Algorithms
	Region-Convolutional Neural Network (R-CNN)
	YOLO and SSD Comparsion
	Differences Between YOLO Versions
	DeepSort
	Blob Tracking

	Resonance Audio
	Camera Systems
	RGB Camera
	IR Cameras
	Depth Detection Cameras

	Implementation
	Camera Stream
	Open CV
	UDP

	Tracking Mechanism
	Neural Network Setup
	Image Perspective Transformation
	Tracking

	Coordinate Stream
	Used Communication Protocols
	Initial Calibration
	Audio Rendering
	Unsuccessful Tracking

	Testing
	Scenarios and Research Questions
	Testing Scenarios with Participants
	Research Interviews with Participants

	Future Improvements
	Hardware
	Raspberry Pi
	Camera
	PC Hardware

	Implementation
	Environment

	Conclusion
	Bibliography

