
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Games and Graphics

Game Development Demos - Game Physics

Bachelor’s Thesis

Daniel Jǐŕık

Branch of study: Open Informatics
Supervisor: Doc. Ing. Jǐŕı Bittner, Ph.D.

Prague, May 2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492393Osobní číslo:DanielJméno:JiříkPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Dema pro výuku herního vývoje - herní fyzika

Název bakalářské práce anglicky:

Game Development Demos - Game Physics

Pokyny pro vypracování:
Zmapujte existující metody pro řešení fyzikální simulace v herních enginech. Vytipujte nejméně pět různých fyzikálních
problémů v oblasti dynamiky tuhých těles (např. kolize dvou těles, nakloněná rovina, odstředivá síla, apod.), na kterých
budete ilustrovat principy fyzikální simulace v herním enginu Unity.
Implementujte jednoduché výukové programy (dema), které budou přehledně ilustrovat vybrané fyzikální problémy a
způsob jejich simulace v enginu. Soustřeďte se na vizualizaci důležitých veličin simulovaného systému, která umožní
dobře pochopit interní princip fyzikální simulace. Vytvořené programy a jejich uživatelské rozhraní podrobte základnímu
uživatelskému testu a zakomponujte výsledky testu do upravené verze programů.

Seznam doporučené literatury:
[1] Millington, Ian. Game physics engine development. CRC Press, 2007.
[2] Parberry, Ian. Introduction to Game Physics with Box2D. CRC Press, 2017.
[3] Jason Gregory. Game Engine Architecture (3rd edition). CRC Press, 2018.
[4] Michelene T. H. Chi and RuthWylie. The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes,
Educational Psychologist, 49(4), 219–243, 2014.
[5] Papinčák, Marek. Zátěžové testy fyzikální simulace v herním enginu. Bakalářská práce, ČVUT FEL, 2018.
[6] Machovský, Štěpán. Sada výukových nástrojů pro kurz herního vývoje. Bakalářská práce, ČVUT FEL, 2020.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Jiří Bittner, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 20.05.2022Datum zadání bakalářské práce: 09.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration

I hereby declare I have written this Bachelor thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles for
writing an academic thesis. Moreover, I state that this thesis has neither been submitted nor
accepted for any other degree.

In Prague, May 2022

..
Daniel Jǐŕık

iii

Abstract

Physics is a common problem in current games. However, if you would have asked an average
player a simple question, how does the in-game physics work, he/she would probably have a
hard time finding the answer. Therefore, this thesis was created to help answer this question.
To achieve this, web pages were created which consist of 6 teaching demos. Demos have a
uniform, clear, intuitive UI and were tested by eleven users.

Keywords: Teaching demos, Physics engine, Game engine, Physics, Unity.

iv

Abstract

Fyzika je běžným problémem současných her. Pokud byste se však pr̊uměrného hráče zeptali
na jednoduchou otázku, jak vlastně ta fyzika ve hře funguje, odpověď by nejsṕı̌se hledal těžko.
S odpověd́ı na tuto otázku pomáhá tato bakalářská práce. Za t́ımto účelem byly vytvořeny
webové stránky, které se skládaj́ı ze 6 výukových dem. Dema maj́ı jednotné, jasné, intuitivńı
uživatelské rozhrańı a byly testovány jedenácti uživateli.

Keywords: Výuková dema, Fyzikálńı engine, Herńı engine, Fyzika, Unity.

v

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor Jǐŕı Bittner, associate
professor in the Department of Computer Graphics and Interaction, for the continuous support
and guidance. I would also like to thank my family and friends who helped me to accomplish
everything in time and gave me useful tips on how to improve my work further.

vi

List of Figures

1.1 G-Switch 3 [1] - Change of the direction of gravitational force. 1

2.1 Euler method illustration, si = position in current frame, si+1 = approximated
position in next frame, se = exact solution, the red line is the slope at the point
si of the green function, the length of the yellow dashed line is the error. 6

2.2 Moving boxes from left to right. The top box is run on 2 FPS and bottom box
is run on 3 FPS. 11

2.3 Types of colliders. 12
2.4 Mesh colliders. 13
2.5 Fixed Joint. Purple line indicates connection between the object and its anchor. 15
2.6 Hinge Joint. The object can rotate around the pre-defined axis. 15
2.7 Spring Joint. The purple line behaves like a rubber band with pre-defined pa-

rameters. 16
2.8 Character Joint. It is possible to limit rotation around each axis. Axis are

represented as orange arrows. 16
2.9 x0, y0 and x1, y1 are known points, x is a point we want to estimate a value for,

and y is the estimated value. 18
2.10 Temperature approximation - graphical visualization. 19

3.1 A panel with important parameters in Destructible Objects demo. 22
3.2 UI. 22
3.3 Lever demo. 23
3.4 The green cube’s force is larger and will overweight the red cube. 24
3.5 Seesaw illustration. 25
3.6 Conservation of Angular Momentum Demo. 25
3.7 Moving hands changes moment of inertia. 27
3.8 Tunneling Demo. 27
3.9 Undetected collision of a fast moving object. 29
3.10 The box is approaching the wall from the left. Despite a collision being registered,

the box still moves through the wall. 29
3.11 Collisions of Two Objects demo. 30
3.12 Collision. 31
3.13 Accuracy of collision. 31
3.14 Difference between the continuous speculative and the discrete collision detection

mode. 32
3.15 Solar System - Centripetal Force demo. 32
3.16 Destructible Objects demo. 35
3.17 Broken fixed joints are not visualized. 36
3.18 The visualization of a cup. 37

vii

List of Tables

3.1 Lever modifiable parameters. 24
3.2 Conservation of Angular Momentum modifiable parameters. 26
3.3 Tunneling modifiable parameters. 28
3.4 Collisions of two objects modifiable parameters. 31
3.5 Solar System modifiable parameters. 35
3.6 Destructible objects modifiable parameters. 37

4.1 General Questions. 39
4.2 Question No. 1 - Did you learn anything new from this demo? 40
4.3 Question No. 2 - Have you noticed any change in behaviour of selected objects

after adjusting given parameters? . 41
4.4 Question No. 3 - Is there anything interesting you came across or learned while

using this demo? . 42
4.5 Question No. 4 - Is there anything you would improve on this demo? 43
4.6 Question No. 5 - What was your overall experience with this demo? 44
4.7 Summarizing question No. 1 - What was your overall experience? 45
4.8 Summarizing question No. 2 - Did you find information button in each demo

helpful? . 45
4.9 Summarizing question No. 3 - Did you have any trouble using the user interface? 45
4.10 Summarizing question No. 4 - Have this set of demos gave you an overall view

on how physics in game engines work? . 45
4.11 Summarizing question No. 5 - Is there anything you would like to say about the

project? . 46

viii

Contents

Abstract iv

Abstract v

Acknowledgements vi

List of Figures vii

List of Tables viii

1 Introduction 1

2 Game Physics 3
2.1 Physics Engines . 3

2.1.1 Popular Physics Engines . 3
2.2 Physics Simulation . 4

2.2.1 Physics Step . 4
2.2.2 Types of numerical integration . 5

2.3 Unity Physics . 9
2.3.1 Rigidbody . 9
2.3.2 Force Modes . 10
2.3.3 Time in Unity . 10
2.3.4 Unity colliders . 12
2.3.5 Joints . 14
2.3.6 Collision Detection Modes . 16
2.3.7 Interpolation . 17

3 Physics Demos in Unity 21
3.1 User interface - UI . 21
3.2 Lever . 23
3.3 Conservation of Angular Movement . 25
3.4 Tunneling . 27
3.5 Collision of Two Objects . 30
3.6 Solar System - Centripetal Force . 32
3.7 Destructible Objects . 35

4 Results and Discussion 38
4.1 Testing the demos during the development . 38
4.2 User Test . 39

4.2.1 General information part . 39

ix

CONTENTS x

4.2.2 Separate demos part . 39
4.2.3 Final thoughts part . 44
4.2.4 Future changes . 46

5 Conclusion 48

Bibliography 50

A User manual 51

B DVD contents 52

Chapter 1

Introduction

Nowadays, there are continuously increasing demands on video games. Video games have to

be visually appealing, they have to have a unique storyline, good gameplay, interesting main

idea, realistic physics, and much more. Most of these qualities must be met for video games to

succeed.

I would like to focus on physics in video games. Video games can be made in 2D or 3D

and all of them might have different demands for physics. Some games try to have as realistic

physics as possible, others might want to alter the physics to achieve unique gameplay features.

For instance, the 2D game G-Switch 3 is a game where your character runs forward on a track

and dodges obstacles by changing the direction of gravitational force (see Figure 1.1).

(a) G-Switch 3 - gravitational force pointing
downwards.

(b) G-Switch 3 - gravitational force pointing
upwards.

Figure 1.1: G-Switch 3 [1] - Change of the direction of gravitational force.

Among things we can achieve with physics also belong different types of simulations. For

example, simulating the destruction of a building, visualizing water impact on the terrain,

examining an outcome of an avalanche, or creating ragdoll effects. There are many other

things we may achieve with physics. On the other hand, it is not always better to use physics

to simulate everything in our game. When physics is not implemented correctly, it can leave

1

CHAPTER 1. INTRODUCTION 2

a bad impression on a player. For example, it is usually better to use animation to move

your in-game 3D character rather than simulating the movement, because physically simulated

behavior is chaotic and unpredictable [2].

Realistic physics in large games might be computation-heavy. Because of that, game devel-

opers try to achieve the middle point between physics that is as close to reality as possible and

physics that is fast to compute.

There are many physics engines, which tackle physics in their way. For example, some of

the most well-known are PhysX, Havok, Box2D, and Bullet. These physics engines are usually

integrated into game engines. The majority of game engines use PhysX like Unreal Engine,

CryEngine, and Unity. Unity uses the PhysX engine for 3D physics and the Box2D engine for

2D physics. In this project, I decided to use the Unity engine to illustrate how game physics

in this engine is implemented.

Chapter 2

Game Physics

2.1 Physics Engines

A physics engine [3] is software that can simulate real-life physics in computer programs. How-

ever, these simulations are not one hundred percent accurate and serve as a precise approxima-

tion.

A physics engine can simulate all sorts of physics. For example, rigid body dynamics, fluid

dynamics, or soft body dynamics.

It is possible to divide physics engines into two groups. The first group is called real-time

and the second is high-precision. Real-time physics engines are less accurate than high-precision

physics engines, but they are not as computational heavy. Real-time physics engines are used

in software, typically in computer games, where the computation speed is more important than

precision. High-precision engines are typically used in science software or animated movies.

2.1.1 Popular Physics Engines

Box2D

Box2D [4] is a free open-sourced real-time physics engine written in C++. This engine is used

to simulate rigid body simulation in 2D software. For example, the well-known android game

Angry Birds was created with this engine. Unity uses Box2D for its 2D physics.

Bullet

Bullet [2] is a free open-sourced real-time physics engine that simulates rigid and soft body dy-

namics and collisions. Bullets’ soft body dynamics support simulations with cloth, deformable

objects, and ropes. For example, Google uses this engine for game development or virtual

reality.

3

CHAPTER 2. GAME PHYSICS 4

PhysX

PhysX [2] is a free, real-time multithreaded physics engine. The versions PhysX 4.1 and lower

are also open-source and their source codes can be accessed on GitHub. PhysX is developed

by Nvidia and is one of the most used physics engines today. Unity uses PhysX for 3D physics.

PhysX is supported on a wide range of platforms, for example on Microsoft Windows, macOS,

Linux, Playstation 4, Xbox One, iOS, or Android. This engine supports both rigid and soft

body dynamics. It also provides volumetric fluid simulation. PhysX can use GPGPU (General-

purpose computing on graphics processing unit). GPGPU is the use of a graphics processing

unit to compute tasks that would have normally been computed on a central processing unit

in order to get better performance.

VisSim

VisSim is a high-precision physics engine that simulates dynamics. It is used for creating virtual

dynamic systems.

2.2 Physics Simulation

Physics simulation [5] is used to simulate real-world physics problems. Physics simulation in

physics engines is divided into multiple steps. Physics engines compute final forces such as

velocity, acceleration, or torque.

2.2.1 Physics Step

In game engines, physics is usually calculated in a fixed amount of time per second. For

example, in Unity fixed delta time step is set to 0.02 by default. This means that the physics

step is calculated every 0.02 seconds, thus 50 times per second. Calculating physics for a fixed

amount of times per second results in deterministic outcomes, which stay the same regardless

of system performance.

The physics step may be divided into multiple parts. It begins with updating and applying

forces. To calculate the outcome of these forces, numerical integration is used. Numerical

integration is a method that enables computers to compute integrals. There are various types

of numerical integration, some of them are described here 2.2.2.

After numerical integration, collisions are solved. Collision detection is divided into two

parts – broad and narrow phases. The broad phase creates a BVH-boundary volume hierarchy.

This tree-like hierarchy of nodes contains objects that are most likely to collide. The broad

phase is fast and removes all non-possible collisions, although it may produce false-positive

CHAPTER 2. GAME PHYSICS 5

collisions that have to be tackled in the narrow phase. The narrow phase solves all possible

collisions, it is accurate but computationally expensive.

If there were not any collisions, the physics step may continue updating physics objects.

Otherwise, penalty forces must be applied and collisions calculated again.

2.2.2 Types of numerical integration

Numerical integration is a way that enables computers to compute definite integrals.

Numerical integration is also a great way to approximate the results of ordinary differential

equations. An ordinary differential equation is an equation including a function containing one

independent variable and the derivatives of this function. [2]

In physics engine we mostly want to calculate Equations of Motion [6]. These equations are

Newton’s second law

F⃗ = ma⃗

and Rotational force

M⃗ = Iα⃗

.

Differential equations of motion can sometimes be solved analytically. However, finding

an analytical solution to most physics differential equations is a hard task, thus closed-form

solution remains unknown. Furthermore, we can’t always predict positions and velocities with

closed-form solutions, because physics forces in our game may change over time. An example

of when a closed-form solution is suitable is when we want to predict a trajectory of an arrow,

that has been shot from a bow.

There are many methods of numerical integrations e.g., Verlet, Explicit Euler, Runge-Kutta

methods. Arguably the most widely used is the Verlet method. Euler is the easiest to imple-

ment. On the other hand, Runge-Kutta is complex but more precise in most cases.

Explicit Euler method

Explicit Euler is one of the simplest numerical integration methods [4]. In this method we

assume that velocity is constant during one frame and because of that, we are able to calculate

the position of an object in the next frame. It works like this:

si+1 = si + v(ti)∆t

CHAPTER 2. GAME PHYSICS 6

v(ti) velocity in current frame

si position in current frame

si+1 position in next frame

∆t duration of the frame

However, as we can see in Figure 2.1, the distance between the exact and approximated

solution is relatively large. For the larger time between each time step, this method can get

inaccurate.

Figure 2.1: Euler method illustration, si = position in current frame, si+1 = approximated
position in next frame, se = exact solution, the red line is the slope at the point si of the green
function, the length of the yellow dashed line is the error.

Verlet method

This method’s advantage is that it is easy to implement constraints like angles and lengths.

That means, the Verlet method is suitable for soft body dynamics like cloth or ragdoll physics.

[4]

Verlet method works like this. We know that position in next time step is equal to:

∆si+1 = vi∆t+
ai∆t2

2

We may substitute vi∆t for ∆si as it is good enough approximation:

∆si+1 = ∆si +
ai∆t2

2

and then because ∆si+1 = si+1 − si and ∆si = si − si−1 we may substitute further, leaving us

with

si+1 = 2si − si−1 +
ai∆t2

2

CHAPTER 2. GAME PHYSICS 7

ai acceleration

si position in current frame

si+1 position in next frame

si−1 position in previous frame

∆si distance between si and si−1

∆t duration of the frame

The final equation indicates that it is sufficient to know the only current and previous

positions, acceleration, and duration of the frame to calculate the next position.

Runge-Kutta method

Family of Runge-Kutta methods [7] use the Euler method approach multiple times on different

points and calculating the average value. To clarify, the Euler method is the first order Runge-

Kutta method.

I would like to introduce you the Runge-Kutta method of the fourth order (RK4). This

method’s initial parameters are any function dy
dt

= f(y, t) and initial value of y0 = y(t0). Both

y0 and t0 are known beforehand. The purpose is to approximate the value of the parameter y

based on the change of the parameter t. In the case of the equation of motion, we calculate

next position based on time where:

t0 initial time,

y0 is value of the function at initial time.

In order to calculate the value of y in next step, we need to set the step size h. The smaller

the step size the more accurate the approximation of the function:

yi+1 = yi +
1

6
h(k1 + 2k2 + 2k3 + k4)

ti+1 = ti + h

ti+1 time in next step,

yi+1 value of y in next step,

h step size.

However, in the first equations appear unknown parameters ki, i ∈ 1, 2, 3, 4 these are slopes

of the function calculated in different points:

k1 slope of the function at y0 and t0,

k2 slope of the function at mid point of y0 + k1,

k3 slope of the function at mid point of y0 + k2,

k4 slope of the function at end point of y0 + k3.

CHAPTER 2. GAME PHYSICS 8

Formulas to calculate ∀ki, i ∈ 0, 1, 2, 3, ...

k1 = f(yi, ti)

k2 = f(yi + k1
h

2
, ti +

h

2
)

k3 = f(yi + k2
h

2
, ti +

h

2
)

k4 = f(yi + k3h, ti + h)

Let me demonstrate it on simple equation f(y, t) = y2t. First, we set our initial value

y0 = 2, time t0 = 0 and step size h = 0.1

Now we need to calculate ∀ki, i ∈ 1, 2, 3, 4

k1 = f(2, 0) = 0

k2 = f(2 + 0
0.1

2
, 0 + h/2) = 0.2

k3 = f(2 +
1

5

0.1

2
, 0 + h/2) = 0.202005

k4 = f(2 + k3
1

10
, 0 + h)

.
= 0.408121006

Then we can calculate desired y1 like:

y1 = 2 +
1

6

1

10
(k1 + 2k2 + 2k3 + k4)

.
= 2.020202183

However, this is not an exact solution. If we want to find the correct answer, we must solve

this differential equation:
dy

dt
= y2t

To begin, we divide both sides with y2 and multiply with: dt

1

y2
dy = tdt

Then we integrate left side with respect to y and the right side with respect to t:∫
1

y2
dy =

∫
tdt ⇒ −1

y
=

t2

2
+ C

We may simplify the result further:

y = − 2

t2 + C

CHAPTER 2. GAME PHYSICS 9

Substitude our initial values of y0 and t0 to calculate C:

2 = − 2

02 + C
⇒ C = −1

Finally, we can compute the exact solution for y1:

y1 =
2

0.12 − 1
= 2.02020202

In this case, Runge-Kutta method’s error
.
= 0.00000008%. As we can see in this instance, the

error for one step is close to 0%.

2.3 Unity Physics

Unity [8] provides tools to handle physics. It has two built-in physics engines for that. The

first one is the Box2D physics engine 2.1.1 that handles 2D physics and the second one is the

PhysX physics engine 2.1.1 that deals with 3D physics. Additionally, it is possible to install

two physics engines for the Data-Oriented Technology Stack projects, the Unity physics engine,

and the Havok Physics engine. Data-Oriented Technology Stack consists of three main parts -

entity component system, C# job system, and burst compiler. The entity component system

declares how to organize your code, the C# job system is then able to run the application in

multiple threads by giving each thread ”jobs” to do, and finally, the burst compiler converts

those jobs into highly optimized machine code. All three components combined result in a

much better performance of your Unity project.

2.3.1 Rigidbody

The rigidbody is a solid body, whose particles retain the same distance between each other

during any motions of the body. Simply said, a rigidbody can not be deformed.

In Unity, the main component that is needed to bring life (physics) to objects is the rigidbody

component. After attaching rigidbody components to an object. The object is controlled by

forces. The default force that affects the rigidbody is gravity. Gravity has a default force that

can be modified in Unity settings.

Using an object with a rigidbody component as if it was not affected by forces, for example,

updating the object’s position by a fixed distance every physics step can be achieved by enabling

the rigidbody property Is Kinematic. By toggling this property on, the physics engine loses

control over the object’s behavior.

Having a lot of rigidbody components in your scene can be computationally heavy. This is

because, for every object, the physics step has to be done a fixed amount of times per second.

CHAPTER 2. GAME PHYSICS 10

The default is 50 times per second. This problem is partially solved by introducing sleep mode

to rigidbodies. After rigidbodies’ linear or rotational speed fall under a certain threshold,

rigidbodies go to sleep mode. In this mode, objects do not move until they are awakened. To

awake sleeping rigidbody component, the object has to be set in motion again. Sleep threshold

may be manually changed in Unity settings or script individually for each rigidbody component.

2.3.2 Force Modes

To move a rigidbody object, we add force to the object with the function AddForce(). This

function applies the size of the force in a direction of a chosen vector.

In Unity exists four modes [9] in which we may add force to a rigidbody. The purpose of

these modes is to change the velocity of a rigidbody. Every mode has its characteristics and is

used in different instances.

Force

This mode adds a continuous force physics step to a rigidbody along one second considering its

mass.

Acceleration

Acceleration is similar to force with only one difference, it does not take the rigidbody mass

into account.

Impulse

Impulse applies the force instantly in one physics step. The force is also changed based on the

rigidbody mass.

VelocityChange

As the name suggests, this mode changes velocity instantly in one physics step. Rigidbody

mass does not alter the size of the force.

2.3.3 Time in Unity

Time is an important part of any game engine. However, dealing with time is not an easy task.

How to measure time? Every motherboard has built-in system clocks which applications can

access through API. Thanks to these clocks, most game engines measure time between frames

to get a sense of time.

CHAPTER 2. GAME PHYSICS 11

Delta time

In Unity and many other game engines, we use deltaTime. Calling deltaTime in our script

returns a time that has passed between the previous and the current frame. To be more

precise, deltaTime is the number of seconds it took to process the previous frame. To calculate

the deltaTime’s value, Unity uses the system’s internal clock to get time at the beginning of

the previous frame and time at the start of the current frame. Subtracting these two values

yields deltaTime.

Nonetheless, applications created in game engines are made to be run on devices with

different hardware. Some hardware is faster than the other and performance can differ a lot on

each machine. This causes programs that run on better hardware to have smaller deltaTime

steps than programs that are run on old hardware. Is that a problem? For example, when we

move an in-game character by a fixed distance each second:

character.transform.position += V ector3.forward ∗ Time.deltaT ime;

Because of the multiplication by the deltaTime, this line of code in Unity moves a character in

direction of the Z-axis by one unit per second despite the hardware. The only difference that

might be noticeable on the screen on different hardware is the distance traveled between each

frame. On slower hardware with low frame rate distances are larger and can be seen with the

naked eye. To summarize, deltaTime ensures constant speed of our application regardless of

frames rate 2.2.

Figure 2.2: Moving boxes from left to right. The top box is run on 2 FPS and bottom box is
run on 3 FPS.

Fixed update

However, what if at the position at the time of 0.5 seconds were an obstacle 2.2? This might be

a problem, a slower hardware might not register collisions the same as faster hardware. This

CHAPTER 2. GAME PHYSICS 12

behavior produces non-deterministic results and may provide advantages or disadvantages in

various games.

Thankfully, there is a solution to this in Unity called fixed update. The fixed update ensures

that a code inside the fixed update function will be executed a fixed amount of times per second.

This guarantees us, that the code inside the fixed update function will act the same on different

devices. Inside this fixed update we should mainly put a code that deals with physics.

How does it work [10]? Suppose we have two time variables, a sum of passed delta times -

T and a sum of passed fixed delta times - FT . Both of these variables are initialized to zero.

At the beginning of the frame, Unity adds delta time to the T . Then Unity checks whether

FT < T . If yes, Unity proceeds to do a fixed update and add fixed delta time(0.02 is the

default in Unity) to FT . After that, check again if FT < T , if that is the case, do the fixed

update, add fixed delta time to FT again and repeat this process until FT > T .

2.3.4 Unity colliders

In Unity, objects might have a collider component attached [11]. This component wraps around

the object and registers collisions. Objects with any colliders and rigidbody attached react to

collisions. For example, crashing a car with both of these components into another object with

any collider moves the car based on the laws of physics and properties of the colliders.

Compound collider

Compound collider 2.3b is made from multiple primitive colliders to represent the shape of an

object as close as possible while maintaining low computational complexity. There are three

primitive colliders in Unity - box, sphere, and capsule collider 2.3a.

(a) From Left to Right - Box, Sphere, Capsule
Collider.

(b) Compound Collider made of five box col-
liders and one capsule collider [12].

Figure 2.3: Types of colliders.

CHAPTER 2. GAME PHYSICS 13

Mesh collider

When primitive or compound colliders are not enough to represent the complex shape of an

object, we may use a mesh collider. The shape of the collider is the same as the mesh of the

object.

There are two main reasons why mesh colliders shouldn’t be used very often. The first

reason is that mesh colliders don’t collide with each other. If we were to put a mesh collider

on every object in our project, we wouldn’t have any collisions registered. The second reason

is that calculating collisions for this collider is a computationally heavy task and using a lot of

them may cause significant performance drops.

However, to solve the first problem, we may set our mesh collider as convex. By doing so,

our object can collide with other objects that have mesh collider attached. On the other hand,

convex mesh colliders aren’t as accurate and when representing difficult shapes, the convexity

of the collider causes unwanted results, for example 2.4b.

(a) Convex mesh collider on a rock. (b) Inaccurate convex mesh collider.

Figure 2.4: Mesh colliders.

Static collider

A static collider serves as a collider that can be used on static objects. For instance, when we

have a firm wall in our project and we attach a collider to it, the collider is referenced as a

static collider. To summarize, a static collider is a collider on an object without a rigidbody

component.

Rigidbody colliders

If the object has a rigidbody component, the collider is called a dynamic collider. We use this

type of collider when we want to simulate real physics on our object.

CHAPTER 2. GAME PHYSICS 14

Kinematic rigidbody colliders

A collider attached to a rigidbody with IsKinematic property enabled is called a kinematic

rigidbody collider. For example, we may use it for an elevator in our game that is moved after

pressing a button.

Interaction of colliders

Not every overlap of colliders triggers collision events. To clarify, here is a table of registered

collisions between two types of colliders.

Registered collisions table

Rb collider Kinematic rb coll. Static collider

Rb collider ✓ ✓ ✓

Kinematic rb coll. ✓ ✗ ✗

Static collider ✓ ✗ ✗

Triggers

In some cases, we might want to detect when a collision would occur, rather than resolving

collisions normally. For this purpose, triggers are used. In Unity, we may check three states

- OnTriggerEnter, OnTriggerStay, and OnTriggerExit. OnTriggerEnter occurs on the physics

step when a collider, which has trigger property on, touches another collider. OnTriggerStay

executes every physics frame as long as these two colliders are overlapping and finally, OnTrig-

gerLeave is called once when these two colliders stop overlapping.

2.3.5 Joints

Joints in Unity serve as a connection component between two rigidbodies. Joints may also

connect a rigidbody with a fixed point in space (anchor) [13]. In Unity exist five types of joints

- character joint, configurable joint, fixed joint, hinge joint, and spring joint. All of these joints

can be broken when an excessive force or torque is applied to the connected objects. These

properties can be modified in joint properties.

Fixed joint

When connecting a rigidbody to another rigidbody or fixed point by a fixed joint. We restrict

the movement of the rigidbody to mimic the movement of the connected rigidbody or fixed

point. Fixed joints can be used to simulate destructible objects, or to keep a fixed distance

between connected objects.

CHAPTER 2. GAME PHYSICS 15

Figure 2.5: Fixed Joint. Purple line indicates connection between the object and its anchor.

Hinge joint

The hinge joint allows only one rotation around a chosen axis. This type of joint can be useful

to simulate doors, seesaws, and more.

Figure 2.6: Hinge Joint. The object can rotate around the pre-defined axis.

Spring joint

A spring joint is similar to a fixed joint except for the fact that the distance between connected

objects is not fixed and may stretch slightly when forces are applied. We can imagine it as if

the objects were connected by a rubber band.

CHAPTER 2. GAME PHYSICS 16

Figure 2.7: Spring Joint. The purple line behaves like a rubber band with pre-defined param-
eters.

Character joint

As the name suggests, this joint is used to simulate joints in the character’s body, like hips,

shoulders, knees.

Figure 2.8: Character Joint. It is possible to limit rotation around each axis. Axis are repre-
sented as orange arrows.

Configurable joint

This is the most configurable joint in Unity. Using this type of joint we can emulate every other

joint. This joint is used when we have very specific demands on the joint.

2.3.6 Collision Detection Modes

In Unity exist 4 collision detection modes [14]. Each of them has its pros and cons. We should

always use the most suitable mode for our objects. For example, when we have large, slowly

moving objects the majority of the time, a discrete collision system is sufficient.

CHAPTER 2. GAME PHYSICS 17

Discrete

Discrete is the fastest collision detection mode in unity. Using this mode may not detect colli-

sions of fast-moving objects. For example, a bullet can go through the wall without registering

any collisions.

Continuous

Continuous detection mode prevents objects with this detection mode to pass through other

objects with static colliders. Although it is still possible for these objects to pass through other

objects with continuous colliders.

Continuous dynamic

Continuous dynamic mode solves this problem and prevents two objects with continuous dy-

namic colliders to pass through each other. Nevertheless, it is still possible for continuous

dynamic colliders to pass through discrete colliders.

Continuous speculative

Continuous speculative mode collides with both static and dynamic objects. It is best to detect

collisions of spinning objects. However, collisions might be a little inaccurate.

2.3.7 Interpolation

Interpolation serves as a tool to find the approximate value in an interval for a parameter. In

other words, we use our knowledge of known discrete data points and estimate new data points

from it [15]. For example, in graphics, we use interpolation to create interpolation splines.

Interpolation splines are curves that pass through all control points.

Linear interpolation

Linear interpolation is a method of curve fitting with a first-degree polynomial. A first-degree

polynomial can be imagined as a straight line in the graph. The formula of a first-degree

polynomial is

p(x) = ax+ b

where a, b ∈ R ∧ a ̸= 0 How do we interpolate between two known points? Let the first point

be x0, y0 and the second one x1, y1. Thanks to these two points, we are able to estimate any

y(x) value where x ∈ (x0, x1). The formula to get unknown value y is as follows:

y1 − y0
x1 − x0

=
y − yo
x− x0

CHAPTER 2. GAME PHYSICS 18

This formula is based on the fact, that a straight line between two points has the same slope

value on its whole interval. Then we are able to compute y value

y = y0 + (x− x0)
y1 − y0
x1 − x0

We can visualize it as finding a point on a straight line between these two points 2.9

Figure 2.9: x0, y0 and x1, y1 are known points, x is a point we want to estimate a value for, and
y is the estimated value.

Suppose we have data on the average temperature on Monday and Wednesday and we

want to know the estimated temperature on Tuesday. The average temperature (y value) on

Monday was 10°C and on Wednesday 20°C. Tuesday is in-between these days, thus we can

assign numbers (x value) to each day as follows Monday = 0, Tuesday = 1, Wednesday = 2

and use the previous formula:

y = 10 + (1− 0)
20− 10

2− 0
= 15

According to linear interpolation, the average temperature on Tuesday was 15°C. Graphic

visualization of the previous example. 2.10

CHAPTER 2. GAME PHYSICS 19

Figure 2.10: Temperature approximation - graphical visualization.

Rigidbody interpolation

The rigidbody component has interpolation property. Interpolation is used when we need to

smooth out the movement of an object. For example, when we slow down the time in Unity.

We might not have enough physics steps and output can look jittery. When we run computer

games at high frames per second, physics that is run a small number of times per second might

be out of sync with rendered graphics and may cause the same jittery effect.

For this purpose, rigidbody components can be interpolated. Interpolation solves this ren-

dered graphics and physics out-of-sync problem. In Unity, we can interpolate or extrapolate.

The difference between these is that interpolating is always a little bit delayed but can be

smoother than extrapolation. Extrapolation predicts the position of the rigidbody based on

current velocity. However, it may produce artifacts. For instance, the fast-moving object can

seem to go through a wall for one frame and then move back to the previous position in the

next frame.

Unity Lerp

Lerp is an abbreviation for linear interpolation [16]. Lerp in Unity is used to smooth out

animations, move objects between two points on a line, and so on. This function takes 3

parameters - minimal value, maximal value, and interpolation point. The interpolation point

stands between 0 and 1. Thanks to this point, it is possible to calculate the value between

minimal and maximal value. We usually use the lerp function to interpolate vectors, scales,

CHAPTER 2. GAME PHYSICS 20

colors, rotations, and more. Using this method, we may create animations like a button that

is constantly getting bigger and smaller in a fixed period.

Chapter 3

Physics Demos in Unity

I decided to use Unity because it is easy to use, well-documented game engine. I divided my

project into scenes where every scene represents one physics problem. Interactivity is provided

through the user interface. Users can change multiple parameters to influence the outcome of

the simulation.

I created three physics teaching demos to demonstrate how some well-known physics prob-

lems in the real-world work in the Unity engine and three physics teaching demos that showcase

physics problems that are closely related to the game engine.

All demos can be tried online on a website [17] which I created as a part of my project.

3.1 User interface - UI

An important part of making teaching demos is to make a clear and intuitive user interface.

The user interface stands between the user and demos and provides communication between

them.

The template of the user interface is the same throughout all demos. Small layout changes

were made to maintain the desired functionality of all demos.

Every demo has a panel in the top left corner with the most important parameters that

the user should observe. For example, in the Destructible Objects demo the user should be

mainly paying attention to parameters as shown in 3.1. The only panel that is always the

same is the panel in the top right corner. This panel manages the state of simulation with

start/pause/restart buttons, hides UI, and also provides information about each demo 3.2a.

The last type of UI panel is a panel with parameters that users can modify. The number of

parameters vary and depend on the selected demo. For example, in Conservation of Angu-

lar Movement demo 3.2b, the user can tweak simulation values with the help of a Unity UI

component - slider.

21

CHAPTER 3. PHYSICS DEMOS IN UNITY 22

Figure 3.1: A panel with important parameters in Destructible Objects demo.

(a) A panel which manages the state of the
simulation. (b) A panel with parameters user can change.

Figure 3.2: UI.

CHAPTER 3. PHYSICS DEMOS IN UNITY 23

3.2 Lever

Figure 3.3: Lever demo.

The first demo represents a well-known physics problem lever. Levers can be used to lift heavy

objects at one end of the lever by applying small force over a larger distance at the other end

of the lever. Let me illustrate it on a seesaw 3.5. In the picture, forces F1 and F2 are not equal

and the green cube will fall. Suppose forces to be equal:

F1 = F2

substitute F1 = m1d1 ∧ F2 = m2d2

m1d1 = m2d2

solve for m1

m1 =
m2d2
d1

any cube with m, m > m1 will be able to lift the second cube if placed on first cube position

F1, F2 Forces of the cubes

m1,m2 Masses of the cubes

d1, d2 Distances of the cubes from the middle point

Demo Figure 3.3 contains a seesaw on which are green and red cubes. These cubes can be

moved left-right by using sliders. Cubes are connected to the seesaw with a fixed joint that is

CHAPTER 3. PHYSICS DEMOS IN UNITY 24

Modifiable parameters

Set the cube’s mass Set the position of the selected cube in KG

Move the cube Set the position of the selected cube

Table 3.1: Lever modifiable parameters.

impossible to break. In Unity, fixed joint properties break force and break torque are set to

infinity. The movement of the seesaw is simulated with a hinge joint which is also unbreakable.

The user can define the mass of the cube. Default mass is set to 1.

The green and red cube force label changes color accordingly to the expected output of

the simulation. When the green cube force is greater than the red cube force, the green cube

force label turns green and the expected output is that the green cube lifts the red cube 3.4.

When forces are too close to each other, the expected output might be inaccurate because of

the sleep threshold. The sleep threshold in Unity is a threshold below which Unity objects fall

into a sleep mode. That means Unity stops processing sleeping rigidbodies. In this demo, the

seesaw stops the motion and the output is the same as if the forces of each cube were equal

even though they are a little different.

Figure 3.4: The green cube’s force is larger and will overweight the red cube.

CHAPTER 3. PHYSICS DEMOS IN UNITY 25

Figure 3.5: Seesaw illustration.

3.3 Conservation of Angular Movement

Figure 3.6: Conservation of Angular Momentum Demo.

This demo simulates a less-known physics problem – conservation of angular momentum. An-

gular momentum [18] is vector quantity that describes an object in circular motion. It is

calculated as a product of moment of inertia and angular velocity.

L = Iω

CHAPTER 3. PHYSICS DEMOS IN UNITY 26

Modifiable parameters

Hands Position A slider to move the hands of the statue

Torque A slider to change the amount of torque applied to the statue

Table 3.2: Conservation of Angular Momentum modifiable parameters.

L Angular Momentum

I Moment of Inertia

ω Angular Velocity

Angular velocity is the speed at which an object rotates around the rotational axis and the

moment of inertia determines how much torque is needed to achieve particular angular ac-

celeration. The larger moment of inertia the more difficult it is to set the object in motion.

Furthermore, the larger the moment of inertia the harder it is to slow down the object. Objects

with the majority of the mass located further away from the rotational axis have a larger mo-

ment of inertia than objects that have the majority of the mass located close to the rotational

axis.

Because the angular momentum is conserved, by changing the moment of inertia, the angular

velocity is also changed to preserve angular momentum. This demo illustrates it in a simple

example Figure 3.6. The girl statue is rotating on the stone stand. Users can move statue’s

hands closer to or further away from the body and change default torque. When hands get

closer to the body, the moment of inertia gets lower, and thus the angular velocity must get

higher and the statue rotates faster.

When moving hands, rigidbody property - inertia tensor is changed. In Unity, the inertia

tensor determines only how much torque is needed in order to achieve a given angular accelera-

tion. A change of the inertia tensor does not have an immediate effect on the angular velocity.

To achieve realistic behavior while moving the hands of the statue, every physics frame, angular

velocity had to be set to zero and then torque had to be added as an impulse.

CHAPTER 3. PHYSICS DEMOS IN UNITY 27

(a) Moment of inertia is larger - mass of
hands is further from the axis of rotation.

(b) Moment of inertia is
smaller.

Figure 3.7: Moving hands changes moment of inertia.

3.4 Tunneling

Figure 3.8: Tunneling Demo.

This demo tackles the problem of the tunneling effect. The tunneling effect happens when a

collision is not registered where we would expect it to be detected. In games, it mostly happens

with fast-moving objects that collide with thin objects, for example, a bullet going through a

wall.

In Unity default collisions are handled discretely. That means in every physics frame all

objects with rigidbody colliders are checked for collisions with other objects. However, if physics

CHAPTER 3. PHYSICS DEMOS IN UNITY 28

Modifiable parameters

Mode Set the collision detection mode of the cube

Cube speed Set the velocity of the cube

Time speed Set the speed of time

Interpolation Toggle the interpolation of the cube

Presets Choose between multiple presets

Adjust physics Add more physics steps in relation to the time speed.

Table 3.3: Tunneling modifiable parameters.

frames are too far apart from each other, collisions might be missed entirely, as illustrated on

3.9.

The tunneling effect is mainly solved by introducing continuous collision detection. This

mode of collision detection calculates the time of impact to register collisions between frames.

There are four presets representing different problems in this demo. The first preset show-

cases the tunneling effect. The second one shows how the change of collision detection mode

fixes the problem of tunneling. The third preset illustrates the difference between rendering and

physics frequency when interpolation is turned on. The box moves into the wall because the

collision is not registered at the surface of the wall but inside of the wall. The last fourth preset

address the problem where a collision is registered but wrongly interpreted. This happens when

the pivot point of the box is inside the wall collider during the collision. Zero penalty forces

are applied, and the moving object passes through the wall as if no collision happened 3.10.

CHAPTER 3. PHYSICS DEMOS IN UNITY 29

(a) First frame. (b) Second frame.

Figure 3.9: Undetected collision of a fast moving object.

Figure 3.10: The box is approaching the wall from the left. Despite a collision being registered,
the box still moves through the wall.

CHAPTER 3. PHYSICS DEMOS IN UNITY 30

3.5 Collision of Two Objects

Figure 3.11: Collisions of Two Objects demo.

This demo focuses on collisions in Unity. The demo consists of two objects that can be changed

by the user into a cube, sphere, or capsule. In the middle is a sphere on which both objects are

shot at when the simulation is started.

By default, the simulation is paused when any collision occurs. At every collision, collision

points and normals are created 3.12. Black vectors are collision normals and the orange vector

is a velocity vector of the object. Collision normals are being used in order to calculate impulses

after a collision occurs.

Simulating at a normal time scale produces unrealistic collision contact points as can be

seen here 3.13. Inaccurate collision is the result of a large velocity of colliding objects combined

with a low amount of physics steps in a second 3.13a. However, by adding more physics steps

we can achieve a more precise collision 3.13b.

Turning the interpolation on may cause the same problems as in the tunneling demo. When

slowing down time objects will be seen as fluid on-screen. However, objects will sublime into

each other before a collision occurs because of the lack of physics steps.

Objects can be assigned different physics materials. Users can read its properties and ex-

periment with it. Every object can be given a different collision detection mode. However,

collision detection modes have little to no visible effect in the simulation apart from the con-

tinuous speculative mode which tends to detect collisions earlier and further apart from the

CHAPTER 3. PHYSICS DEMOS IN UNITY 31

Modifiable parameters

Material Physics material of the selected object

Collision detection Collision detection mode of the selected object

Object Select an object to simulate

Time scale Set time speed in percents

Interpolation Turn on/off interpolation of both objects

Adjust physics Add more physics steps concerning the time speed.

Rotate Rotate selected object

Slow motion Slow time shortly before collision

Aim object Change position of aim object

Pause on collision Simulation is paused at every collision

Table 3.4: Collisions of two objects modifiable parameters.

expected outcome. The illustration of the difference can be seen here 3.14

Figure 3.12: Collision.

(a) Inaccurate collision. (b) Accurate collision.

Figure 3.13: Accuracy of collision.

CHAPTER 3. PHYSICS DEMOS IN UNITY 32

(a) Speculative continuous detection. (b) Discrete detection.

Figure 3.14: Difference between the continuous speculative and the discrete collision detection
mode.

3.6 Solar System - Centripetal Force

Figure 3.15: Solar System - Centripetal Force demo.

In this demo, the user can observe our Solar System. The Solar System consists of eight planets

- Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

The Solar System is viewed from the top and can be zoomed in and out. The default speed

of simulation is that one second equals one day in the simulation. The scale of time can be

changed in the UI. The simulation keeps the track of the current day (the simulation starts

from day zero). Apart from the initial positions of planets and the size of the Sun (the Sun

CHAPTER 3. PHYSICS DEMOS IN UNITY 33

is 27.85 times scaled down), the simulation is realistic and real values from NASA [19] were

used. The size of the Sun was diminished in order for other planets to be visible. By clicking

on a planet, information in the top left corner about current speed, distance from the Sun and

centripetal force will be displayed.

Centripetal force is a force that makes a body follow a curved path [20]. Centripetal force

is always orthogonal to the velocity vector and is orientated towards the center of the curved

path. Centripetal force can be visualized in many ways. In the Solar system, the centripetal

force can be imagined as a string connecting the sun with other planets.

To create the simulation, it is possible to simply use the formula of gravitational force with

a given initial velocity and direction.

Formula of gravitational force:

F = G
m1 ∗m2

r2

G gravitational constant,

m1 mass of first celestial object,

m2 mass of second celestial object,

r distance between celestial objects.

We calculate the gravitational force between each pair of celestial objects and then at every

physics step, those forces are added to the velocities of celestial objects. To prevent all planets

from falling into the Sun at the beginning of the simulation, we have to give all Planets initial

velocities. One possibility is to give them initial force according to the ”circular orbit instant

velocity formula”:

V =
i∑

n=1

√
G ∗mi

r

V initial velocity,

G gravitational constant,

mi mass of ith celestial object,

r distance between ith celestial object and object we calculate V for.

This is everything that is needed to achieve an orbit around the Sun. However, this sim-

ulation is not realistic by any means. Even if real parameters such as mass, distances, size

are used, the orbit can be inaccurate due to imprecise physics calculations. Also, it would be

difficult to increase/decrease time speed. As in Unity, you can speed up the time only one

hundred times and in connection to the Solar System the maximal speed up is negligible. To

create a precise replica of our Solar System, it is better to use Keplerian elements and solve the

simulation analytically. By using this method, it is easier to change time speed and by using

real values from NASA [19] it is possible to make the simulation more realistic. The analytical

CHAPTER 3. PHYSICS DEMOS IN UNITY 34

approach advantage is that the planets will always stay on the correct orbits regardless of the

Unity engine settings.

First, it is necessary to calculate anomalies. Mean, eccentric and true anomalies are angular

parameters that give us information about the position of the orbiting object in an elliptic

orbit. Mean anomaly [21] is an angle between the orbits center and a point on a circle with a

radius of a semi-major axis. If the orbit was circular, the point would stand for the position of

the orbiting object. To calculate mean anomaly we use this formula:

M = M0 + n(t− t0)

M mean anomaly,

M0 mean anomaly at t0,

t0 reference time,

n mean angular motion,

where n is computed as:

n =

√
µ

a3

µ standard gravitational parameter,

a lenght of semi-major axis.

To calculate eccentric anomaly [22] we use formula:

M = E − esinE

M mean anomaly,

E eccentric anomaly,

e eccentricity.

This equation cannot be directly solved for E and root-finding algorithm had to be used. In

this case Newton’s method. After computing eccentric anomaly, we can finally compute true

anomaly [23]:

v = 2arctan

(√
1 + e

1− e
tan

E

2

)

v true anomaly,

E eccentric anomaly,

e eccentricity,

and distance of the orbiting object to the Sun [22]

r = a(1− ecosE)

CHAPTER 3. PHYSICS DEMOS IN UNITY 35

Modifiable parameters

Zoom Zoom closer to or further from the Sun

Time Speed Set the scale of time

Click on a planet Display information about the selected planet

Table 3.5: Solar System modifiable parameters.

r distance,

E eccentric anomaly,

e eccentricity.

After this, we can calculate the final position of planets [24] in relation to time. Other elements

that are needed to ensure realistic simulation consist of semi-major axis, eccentricity, inclination,

the longitude of ascending node, and argument of periapsis. Factual values were used based on

NASA observations [19].

3.7 Destructible Objects

Figure 3.16: Destructible Objects demo.

This demo Figure 3.16 represents a way in which destructible objects in Unity can be created.

Users can choose the left and the right objects (Cup, Chair, Table). Every object is created

from fragments that are connected with fixed joints. Fixed joints work as an invisible firm line

CHAPTER 3. PHYSICS DEMOS IN UNITY 36

between two objects that keep their position towards each other the same. Fixed joint connec-

tions can be destroyed by applying higher force than the force set in fixed joints’ properties.

The default break force between these joints is set to fifty but it can be altered through the

input field separately for the left and the right object.

Fixed joint connections are visualized with random colored lines 3.18a. These lines render

as long as the connection between two objects isn’t destroyed and visualization is toggled on

3.17. Fragments are visualized in a way that every fragment has random color 3.18b. It is also

possible to toggle on/off this visualization.

For each object, the user can decide whether the rigidbody of the object is interpolated

or not. When interpolating objects have fluid movement even when time is slowed. On the

other hand, checking the interpolation option does not make the movement of visualized lines

between shards fluid, because interpolation in Unity is only possible on objects that have

rigidbody component attached to them.

Users can control the speed of time by moving the TimeScale slider. For instance, 100%

is normal time, 200% is two times faster and 50% is two times slower. The option to adjust

physics will make every movement of objects and visualized lines fluid, but the outcome of the

simulation will be different for different time scales. This is because in Unity fixed delta time

interval is not affected by the time scale and by adjusting fixed delta time manually, we add

more physics steps to make every movement fluid and by doing so we increase the number of

physics calculations and that makes the outcome non-deterministic for different time scales.

(a) Semi-broken cup without visualization. (b) Semi-broken cup with visualization.

Figure 3.17: Broken fixed joints are not visualized.

CHAPTER 3. PHYSICS DEMOS IN UNITY 37

Modifiable parameters

Adjust physics Add more physics steps in relation to the time speed.

Time Speed Set time speed in percent

Interpolation Turn on/off interpolation of selected object

Rotate Rotate selected object

Break force
and the connected fragment

The force needed to break a connection between a joint

Mass Set mass of each fragment of the selected object

Visualize joints
(between fixed joints)

Visualize connections between shards

Visualize shards Visualize each fragment of object with a different color

Texture Change the texture of the selected object

Object Select a type of the object to be destroyed

Joints per fragment
is one fragment connected to

Number that indicates how many other fragments

Table 3.6: Destructible objects modifiable parameters.

(a) Visualized fixed joints of the cup. (b) Visualized fragments of the cup.

Figure 3.18: The visualization of a cup.

Chapter 4

Results and Discussion

This chapter will discuss a questionnaire that collected feedback on the user experience of the

demos.

Demos were implemented in the Unity version 2021.2.13f1. Demos were built using WebGL

and uploaded online to the website [17].

Demos were internally tested in Unity editor by me on a laptop with the GPU - GTX 1650

and the CPU - Intel Core i5–9300H

The questionnaire respondents tested all the demos on their computers and the internet

browser they selected.

4.1 Testing the demos during the development

The questionnaire was not the only interaction between users and the developer during the

time of the making of this project. The progress was continuously discussed with the thesis’s

supervisor or with my friends and family.

Some of the properties and features that were in previous versions of the project, but were

later changed, based on the discussion with users, consist of different background, lightning,

parameters, or readability of the UI.

The background in demos was initially made out of wood. Point lights and spotlights were

illuminating the scene. However, the light combined with the material made it difficult to see

the functionality of the demos and had to be changed.

In breakable objects, different textures of objects and the option to add more connections

between fragments were added.

38

CHAPTER 4. RESULTS AND DISCUSSION 39

4.2 User Test

To collect user feedback on teaching demos, a questionnaire on Google Forms was created.

At the beginning of the questionnaire, fifteen participants were requested to try out every

demo online [17] After that, they were asked to answer the following questions of each part

of the questionnaire. The questionnaire consisted of three parts. Overall, eleven out of fifteen

participants filled out the questionnaire and in the upcoming section, their answers will be

discussed.

4.2.1 General information part

General Questions

Question Yes No

Are you familliar with technologies? 6 5

Are you familiar with programming? 1 10

Are you interested in physics? 4 7

Do you have an idea how physics-engines work 3 8

Do you have any previous experience with educational tools? 5 6

Have you heard of Unity game engine before? 6 5

Table 4.1: General Questions.

In this part, yes/no questions, that can be seen in the table 4.1, were asked to get a general

idea about respondents.

Based on answers provided by respondents. We may see that the majority of them are not

familiar with programming. Only one respondent out of eleven is familiar with programming.

This is important to bear in mind in the next parts of the questionnaire as respondents might

have general knowledge about physics, technologies, or Unity. However, they lack the general

idea of how are the demos tackled in the code.

4.2.2 Separate demos part

General questions were followed by questions that were specifically aimed at each physics demo.

To be able to compare all the demos effectively, five identical questions for each demo were

asked. Questions were not required and thus the number of respondents on demos sometimes

differs.

CHAPTER 4. RESULTS AND DISCUSSION 40

Question I.

Did you learn anything new from this demo?

Demo Yes No

Destructible Objects 9 1

Collisions of Two Objects 8 2

Tunneling 6 4

Conservation of Angular Momentum 6 4

Lever 5 6

Solar System 10 1

Table 4.2: Question No. 1 - Did you learn anything new from this demo?

Answers, that can be seen in the table 4.2, turned out as expected regarding respondents’

knowledge. Respondents learned more from demos that tackled physics problems in game

engines and less from demos that dealt with common real world physics problems.

However, there were two exceptions, namely Tunneling and Solar System demos. Many

respondents did not learn anything new from the tunneling demo, which was surprising to me

as it is a problem about something that the majority of people not interested in game physics

not know. Even though the basic functionality of the Solar System is known by the majority

of people, in-depth understanding is not and that might have been the reason why ten out of

eleven respondents learned something new.

CHAPTER 4. RESULTS AND DISCUSSION 41

Question II.

after adjusting given parameters? (If yes, write below)

Have you noticed any change in behaviour of selected objects

Demo Yes No Feedback

Destructible Objects 9 1 7

Collisions of Two Objects 8 2 6

Tunneling 6 4 4

Conservation of Angular Momentum 6 4 5

Lever 5 6 5

Solar System 10 1 5

Table 4.3: Question No. 2 - Have you noticed any change in behaviour of selected objects after
adjusting given parameters?

The second question was a yes/no type question with the possibility of describing the answer

in detail. The feedback in the table 4.3 is the number of respondents that answered yes and

also provided feedback in a form of a text answer.

In Destructible objects, respondents often noticed the connection between the durability of

the objects and the break force of fixed joints.

As for the collision of two objects demo, one respondent said: ”Behaviour depends a lot on

the object’s shape and material” or another said: ”If I rotate, the object gets a big rotation

after the impact, it’s dense”. Both of these answers imply that respondents tend to notice

changes after making only slight adjustments to parameters.

In the tunneling demo, users noticed the difference in collision detection modes and adjusted

physics. For example, one respondent said: ”Turning on adjustable physics made object move

far more smoothly, collision detection mode made the biggest difference”, followed by another

respondent saying: ”Adjusted physics and continuous/discrete mode have a big impact on

behavior at the time of the wall collision”

Regarding the demo of Conservation of Angular Momentum, users observed the change in

the speed of the rotation when adjusting the angle of the statue’s hands. One respondent

concisely said: ”Speed of the rotation”.

In the lever demo, respondents were mostly aware of the change of the force based on the

distance from the middle point of the seesaw.

Finally, in the Solar System demo, users noticed the change in the speed of the simulation

when adjusting the time parameter.

CHAPTER 4. RESULTS AND DISCUSSION 42

Question III.

Is there anything interesting you came across or learned while using this demo?

Demo Feedback

Destructible Objects 8

Collisions of Two Objects 4

Tunneling 6

Conservation of Angular Momentum 6

Lever 4

Solar System 6

Table 4.4: Question No. 3 - Is there anything interesting you came across or learned while
using this demo?

In this question 4.4, respondents were asked to provide feedback on anything interesting they

came across while trying the demos. Most respondents gave a feedback on the first demo. For

example, one user said: ”It’s fascinating, that every destruction happens a bit differently, even

though the same parameters are in use.” Which is an excellent observation of inconsistency in

Unity physics.

Concerning the Tunneling demo, one respondent said: ”How much difference collision detec-

tion modes can make. They decide, whether the object goes through or not.” Which is exactly

what the demo was supposed to show and explain.

As for the Solar System demo, respondents mostly said that it was interesting to find out

real values of the speed of planets. For instance, one respondent said: ”It was interesting

comparing the speed of movement of different planets, comparing those in the inner part of the

solar system to the outer planets. I really loved the function of clicking on each planet to show

more information about its speed, etc.”

CHAPTER 4. RESULTS AND DISCUSSION 43

Question IV.

Is there anything you would improve on this demo?

Demo Yes No Responses

Destructible Objects 7 2 9

Collisions of Two Objects 7 2 9

Tunneling 5 3 8

Conservation of Angular Momentum 3 4 7

Lever 3 2 5

Solar System 5 2 7

Table 4.5: Question No. 4 - Is there anything you would improve on this demo?

This open-ended question 4.5 collected more responses than the other open-ended questions.

Probably because a lot of answers were simply stating: ”No”.

As for the first demo, one respondent said: ”Parameters range and better explanation of

their meaning.” Where parameters range is a reasonable observation. Because, for example,

when a mass parameter is set to a high number it is hard to estimate the value of other

parameters that would affect the simulation.

In the collisions of two objects demo, one user suggested: ”I would like to be able to change

the initial speed/force of objects” and another user said: ”When a collision is detected I would

appreciate some kind of camera function, which lets you take look at the result from different

angles.” Both are good catches that could be implemented in future versions to amplify the

user experience.

As for the Lever demo, one participant recommended adding a second wall: ”Second wall

and the option to change parameters after crossing the first one”.

An interesting piece of advice regarding the lever demo was: ”Make it possible to move

cubes by writing numbers” Which would be a reasonable addition as moving cubes via sliders

isn’t as accurate as giving cubes fixed positions.

CHAPTER 4. RESULTS AND DISCUSSION 44

Question V.

What was your overall experience with this demo?

Demo Excellent
exp.

Exceeds
Avg.

exp.

Below

improv.

of major

In need

Objects

Destructible
5 4 2 0 0

Two Objects

Collisions of
7 1 3 0 0

Tunneling 5 3 2 1 0

Momentum

of Angular

Conservation

6 3 2 0 0

Lever 4 5 2 0 0

Solar System 10 0 1 0 0

Table 4.6: Question No. 5 - What was your overall experience with this demo?

This table 4.6 represents the number of respondents that rated their overall experience with

particular demos. Users could choose from options - Excellent, Exceeds expectations, Average,

Below average, In need of major improvements.

Overall, none answers would propose major improvements to the demos and there was only

one participant who had below-average experience with the Tunneling demo.

All in all, the most uninteresting demos to respondents were the Tunneling and the Lever

demos. Probably because the Tunneling demo was not providing many adjustable parameters

and the Lever is a well-known physics problem that they already knew.

The most liked demo was the Solar System. Ten out of eleven participants found the

experience excellent. Presumably, the simulation was straightforward, intuitive, and visually

appealing.

4.2.3 Final thoughts part

At the end of the questionnaire, respondents were asked five summarizing questions.

CHAPTER 4. RESULTS AND DISCUSSION 45

What was your overall experience?

Excellent
exp.

Exceeds
Avg.

exp.

Below

improv.

of major

In need

7 4 0 0 0

Table 4.7: Summarizing question No. 1 - What was your overall experience?

Overall, every respondent was satisfied with the demos. As can be seen in the table 4.7,

seven out of eleven found it excellent and the rest had their expectations exceeded.

Did you find information button in each demo helpful?

Yes No

11 0

Table 4.8: Summarizing question No. 2 - Did you find information button in each demo helpful?

This was the only question 4.8 in the questionnaire where the answer was unanimous that

the information button was helpful for every respondent.

Did you have any trouble using the user interface?

Yes No

3 8

Table 4.9: Summarizing question No. 3 - Did you have any trouble using the user interface?

Most of the respondents were not having trouble using the user interface 4.9. However,

some users had problems with the full-screen mode.

Have this set of demos gave you an overall view on how physics in game engines work?

Yes No

10 1

Table 4.10: Summarizing question No. 4 - Have this set of demos gave you an overall view on
how physics in game engines work?

This question had 5 possible answers, although three of them began with yes and the

remaining two with no, the table 4.10 reduces the answers to yes and no. Six respondents said

CHAPTER 4. RESULTS AND DISCUSSION 46

that they understand most of the demos, but there are things, which they don’t apprehend.

Two answered that they have got a basic understanding of physics in game engines. The other

two participants said that they understand in-depth, how physics works in every demo. Only

one person stated that demos were entertaining, but he/she didn’t get any understanding of

physics in game engines.

To wrap up, 10 participants said that they got some level of understanding and only one

did not.

Is there anything you would like to say about the project?

Responses

7

Table 4.11: Summarizing question No. 5 - Is there anything you would like to say about the
project?

As a final question 4.11, respondents were asked if there is anything they would like to

mention about the project.

Some of the responses clearly outline the experience with the demos: ”It simply and clearly

shows some relatively complex physical principles”, ”It’s nice that in Unity is possible to create

such interesting simulations, definitely continue with more projects!”, ”It was quite fun going

through each of the demos and playing around with the parameters, etc. Thank you!”

4.2.4 Future changes

Regarding the six already existing demos, the Tunneling demo could also showcase collisions

between two dynamic objects. In the destructible objects demo, objects could be rotated by

mouse drag.

The most important changes prompted by the users in the questionnaire were the change

in the range of parameters and different camera modes.

Concerning the range of parameters. There could be fixed ranges for certain parameters as

it might not always be intuitive for everyone, for instance in the Destructible Objects demo

3.16, setting the break force to a high number makes other parameters have a little to no effect.

Also creating multiple presets (similar to presets in the Tunneling demo 3.8) in more demos

could be a possibility.

As for the camera modes, one option could be a free camera mode. The free camera could

give better angles to examine the properties of each demo. For example, in the Collisions of

Two Objects demo 3.11, users could see the collision from different angles and distances to get

a better understanding of the internal work. In the Solar System demo 3.15 the free camera

CHAPTER 4. RESULTS AND DISCUSSION 47

could help to understand how spacious is the Solar System in reality.

Other possible future changes were also already discussed here 4.2.2

Chapter 5

Conclusion

In the first part of this thesis, I introduced readers to popular physics engines and explained

briefly how they work. Then I talked about how is numerical integration used and its function.

Afterward, I presented basic parts of Unity physics.

In the second part, I described in-depth the purpose and function of each demo. In the last

chapter, I discussed the results of the user questionnaire.

To conclude, six unique demos were made. These demos target a broad audience to help

them understand some of the basic physical concepts in Unity. I tried to shed some light on

basic concepts of how physics engines work and I also described basic concepts of physics in

Unity.

The first three demos represent common physics problems. These simulations indicate

that real-world physics can be replicated in game engines. However, they might not always

be accurate. The other three demos show a little bit more about collisions which are very

important in today’s video games.

In the end, this work might be used as an educational tool to teach basic concepts of physics,

or it can serve as a closer look at Unity physics for curious users.

48

Bibliography

[1] G-switch 3, serious games, https://www.seriusgames.com/G- Switch3.html, last

accessed on 04/24/22.

[2] J. Gregory, Game engine architecture. AK Peters/CRC Press, 2018.

[3] Physics engine, https://en.wikipedia.org/wiki/Physics_engine, last accessed on

04/16/22.

[4] I. Parberry, Introduction to Game Physics with Box2D. CRC Press, 2013.

[5] How does a physics engine work?, https://www.haroldserrano.com/blog/how-a-

physics-engine-works-an-overview, last accessed on 01/14/22.

[6] Algorithms in game engine development, https://www.haroldserrano.com/blog/

algorithms-in-game-engine-development, last accessed on 04/11/22.

[7] Runge-kutta method, https://www.haroldserrano.com/blog/visualizing- the-

runge-kutta-method, last accessed on 04/09/22.

[8] Unity, https://docs.unity3d.com/Manual/PhysicsSection.html, last accessed on

01/14/22.

[9] Force modes, https://docs.unity3d.com/ScriptReference/ForceMode.html, last

accessed on 04/10/22.

[10] How to use fixed update in unity, https://gamedevbeginner.com/how-to-use-fixed-

update-in-unity/, last accessed on 04/11/22.

[11] Colliders, https://docs.unity3d.com/Manual/CollidersOverview.html, last ac-

cessed on 04/10/22.

[12] Amy character model, https://www.mixamo.com/?page=1&type=Character, last

accessed on 04/10/22.

[13] Unity joint types, https://docs.unity3d.com/Manual/Joints.html, last accessed on

04/11/22.

[14] Collision detection modes, https://docs.unity3d.com/ScriptReference/Rigidbody-

collisionDetectionMode.html, last accessed on 04/11/22.

49

https://www.seriusgames.com/G-Switch3.html
https://en.wikipedia.org/wiki/Physics_engine
https://www.haroldserrano.com/blog/how-a-physics-engine-works-an-overview
https://www.haroldserrano.com/blog/how-a-physics-engine-works-an-overview
https://www.haroldserrano.com/blog/algorithms-in-game-engine-development
https://www.haroldserrano.com/blog/algorithms-in-game-engine-development
https://www.haroldserrano.com/blog/visualizing-the-runge-kutta-method
https://www.haroldserrano.com/blog/visualizing-the-runge-kutta-method
https://docs.unity3d.com/Manual/PhysicsSection.html
https://docs.unity3d.com/ScriptReference/ForceMode.html
https://gamedevbeginner.com/how-to-use-fixed-update-in-unity/
https://gamedevbeginner.com/how-to-use-fixed-update-in-unity/
https://docs.unity3d.com/Manual/CollidersOverview.html
https://www.mixamo.com/?page=1&type=Character
https://docs.unity3d.com/Manual/Joints.html
https://docs.unity3d.com/ScriptReference/Rigidbody-collisionDetectionMode.html
https://docs.unity3d.com/ScriptReference/Rigidbody-collisionDetectionMode.html

BIBLIOGRAPHY 50

[15] Interpolation, https://www.britannica.com/science/interpolation, last accessed

on 04/11/22.

[16] Unity interpolation, https://gamedevbeginner.com/the-right-way-to-lerp-in-

unity-with-examples/, last accessed on 04/11/22.

[17] Web pages with teaching demos, https://dcgi.fel.cvut.cz/home/bittner/demos/

PhysicsDemos/, last accessed on 04/11/22.

[18] Angular momentum, https://www.britannica.com/science/angular-momentum, last

accessed on 04/13/22.

[19] Planet fact sheet, https://nssdc.gsfc.nasa.gov/planetary/factsheet/, last ac-

cessed on 04/16/22.

[20] Centripetal force, https://www.khanacademy.org/science/physics/centripetal-

force-and-gravitation/centripetal-forces/a/what-is-centripetal-force, last

accessed on 01/14/22.

[21] Mean anomaly, http://www.csun.edu/~hcmth017/master/node14.html, last accessed

on 04/16/22.

[22] Eccentric anomaly, https://mathworld.wolfram.com/EccentricAnomaly.html, last

accessed on 04/16/22.

[23] True anomaly, https://en.wikipedia.org/wiki/True_anomaly, last accessed on

04/16/22.

[24] I. P. Williams and N. Thomas, Solar and Extra-Solar Planetary Systems: Lectures Held

at the Astrophysics School XI Organized by the European Astrophysics Doctoral Network

(EADN) in The Burren, Ballyvaughn, Ireland, 7–18 September 1998. Springer Science &

Business Media, 2001, vol. 577.

https://www.britannica.com/science/interpolation
https://gamedevbeginner.com/the-right-way-to-lerp-in-unity-with-examples/
https://gamedevbeginner.com/the-right-way-to-lerp-in-unity-with-examples/
https://dcgi.fel.cvut.cz/home/bittner/demos/PhysicsDemos/
https://dcgi.fel.cvut.cz/home/bittner/demos/PhysicsDemos/
https://www.britannica.com/science/angular-momentum
https://nssdc.gsfc.nasa.gov/planetary/factsheet/
https://www.khanacademy.org/science/physics/centripetal-force-and-gravitation/centripetal-forces/a/what-is-centripetal-force
https://www.khanacademy.org/science/physics/centripetal-force-and-gravitation/centripetal-forces/a/what-is-centripetal-force
http://www.csun.edu/~hcmth017/master/node14.html
https://mathworld.wolfram.com/EccentricAnomaly.html
https://en.wikipedia.org/wiki/True_anomaly

Appendix A

User manual

The project can be tried online on web pages that were created simultaneously with the project

https://dcgi.fel.cvut.cz/home/bittner/demos/PhysicsDemos/

There are six different demos on this web page. By clicking on the demo’s name you will get

to the page with detailed information about the demo and with the ”Try it yourself” button.

This button starts the selected demo. To get the best user experience, the demos should be

run in full-screen mode and ideally on a display with 1920x1080 resolution.

Demos were built using WebGL. Although the demos may run on mobile devices with

android or iOS, they are not fully supported and may not work properly. To get the best user

experience it is recommended to use a computer with Windows OS and one of these browsers

- Chrome, Firefox, Internet Explorer, Opera, or Safari.

Information on how to use all the demos can be found on the web pages or in the information

button in each demo.

51

https://dcgi.fel.cvut.cz/home/bittner/demos/PhysicsDemos/

Appendix B

DVD contents

Contents of the enclosed DVD are stored in this manner:

• readme.txt

– Description of the DVD content.

– The link to download the source code of the Unity project.

– The link to the web pages.

• unity scripts.zip

– Extracted scripts from the Unity project.

• imgs.zip

– Six FullHD images of the demos.

• web pages.zip

– Zip with the source code of the web pages.

52

	Abstract
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Game Physics
	Physics Engines
	Popular Physics Engines

	Physics Simulation
	Physics Step
	Types of numerical integration

	Unity Physics
	Rigidbody
	Force Modes
	Time in Unity
	Unity colliders
	Joints
	Collision Detection Modes
	Interpolation

	Physics Demos in Unity
	User interface - UI
	Lever
	Conservation of Angular Movement
	Tunneling
	Collision of Two Objects
	Solar System - Centripetal Force
	Destructible Objects

	Results and Discussion
	Testing the demos during the development
	User Test
	General information part
	Separate demos part
	Final thoughts part
	Future changes

	Conclusion
	Bibliography
	User manual
	DVD contents

