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Abstract

Work implementing real-time snow ac-
cumulation methods allowing for dynamic
interactive scenes. Each object has it’s
own accumulation buffer attached in a
form of texture. Main idea is using occlu-
sion renders to determine surface exposure
to snow and then using programmable ge-
ometry shader to map from occlusion ren-
ders to the unique bound accumulation
buffers;

Keywords: real-time, snow,
accumulation, occlusion render, geometry
shader

Supervisor: Ing. Jaroslav Sloup

Abstrakt

Práce, jejíž cílem je implementovat me-
todu akumulace sněhu na dynamických
objektech v realném čase. Každý objekt
má svou akumulační texturu, ve které se
uchovává výška sněhu. Hlavní novou tech-
nikou představené v této metodě je použití
geometry shaderu.

Klíčová slova: realný čas, sníh,
akumulace, okluze, geometry shader
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Chapter 1

Introduction

Snow is a fascinating phenomenon that captivates our eyes due it’s unpre-
dictable behaviour and beauty. Creating beautiful sceneries by covering the
landscape, trees, buildings with layers of cold and soft blankets. Enjoying
winter time with our family or friends skiing, building snowmen and igloos
and much more.

Can we recreate it on the computer? What if we wanted to create a snow
covered scenery or an interactive world, like a videogame, ourselves? Inspired
by the infamous game, Red dead redemption 2 by Rockstar games, I’ve
decided to dive deeper into the world of computer generated snow.

First, we take a look at how snow behaves in the world. How snow form,
why it forms and how it eventually reaches the ground. We won’t go into
much detail, as that’s not our primary concern, but we need to understand
at least the very basics, mainly, how snow forms.

Then, we are going to take a look at existing methods of snow generation.
Understanding how others managed to create a working simulation will help
is in better understanding the actual topic as well as aid is implementation
of an existing method or even creating a brand new method.

The main focus of this paper is implementing and testing of an existing
method by D. T. Reynolds, S. D. Laycock & A. M. Day [3].

1 ctuthesis t1606152353
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Chapter 2

Snow as we know it

Before we dive deep into the secrets of computer generated snow, we have to
take a brief look at how snow behaves in the real world first. We won’t go
into much detail as the topic itself is very complex and most information is
outside of the scope of this work.

In this chapter, we lay out the requirements for snow, the different sizes
and shapes of snowflakes and other important properties. This chapter is
divided into two parts. In the first part, we look at how snow is created
and its journey to the ground and in the second part, we look at how snow
behaves when it eventually reaches its destination.

Of course, every method presented in this paper - including the one we will
be implementing - is a major simplification of all the different processes and
effects that happen in the real world. Many of them will even be completely
omitted. However, the goal will be to give a general overview in order to
understand many methods presented later this paper.

2.1 Snow in the air

This section describes the origin of snow up in the Earth’s atmosphere before
it reaches the ground. We will try to cover many of the conditions and factors
on which the size, shape and other properties of snow depend.
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2. Snow as we know it..................................
2.1.1 Precipitation

Precipitation is a term used for any form of water falling down to the ground
up from the atmosphere. It is one of the major components of the water
cycle. There are 4 main forms of precipitation - raindrops, ice pellets, hail
and snowflakes. Water vapor, in a cycle called evaporation, moves from the
Earth into the overlying atmosphere, then condenses into water droplets that
eventually fall down to the Earth - when they get heavy enough in a process
called coalescence. Coalescence occurs when smaller droplets merge together
into a bigger droplet or a droplet freezes onto an ice particle. Particles like
dust and smoke (so-called "condensation nuclei"), are crucial for precipitation,
as they provide enough surface area necessary for water vapor to condense
upon. Given the low temperatures up in the clouds, most rain begins as snow.

2.1.2 Snow and snow crystals

We can now finally define what snow is, where it first forms, how it grows
and how it’s very unique path to the ground affect the its overall shape and
properties.

But first, we have to clear out a common misconception. What is usually
referred to as a snowflake by the general public is, in reality, a snow crystal. In
other words, snow crystal is a single unique particle of ice, while snowflake is
a more general term that describes, for example, a collection of snow crystals
that collided together.

Formation of snow crystals

Snow crystals begin to form in altitudes where the temperature drops below
0°C as water vapor directly freezes onto a condensation nuclei. Important
thing to point out is that snow crystals are not frozen raindrops - these are
called sleets. The initial shape of a snow crystal is called a hexagonal prism
(insert figure), which can be flat, long, thin plate-like or anything in between.
It’s the angle between atoms in a water molecule, that dictates the shape
shall be hexagonal. A hexagonal prism consists of two basal facets ("top" and
bottom") and six prism facets ("sides"). The shape depends on which facets
grow faster. You get a column-like shape when the basal facets grow faster
and a flat crystal when the prism facets grow faster.

ctuthesis t1606152353 4



................................. 2.2. Snow on the ground

Snow crystal growth

After a single snow crystal forms it continues to grow as water vapor condenses
onto its surface. Corners of the prism attract more particles, hence they grow
faster, giving the snow crystal it’s usual hexagonal look as we know it. One
large snow crystal comprises of over a million of water droplets.

First person who ever tried to fully study snow crystals was Ukichiro
Nakaya, back in the 1940s. He published the infamous Nakaya diagram (see
Figure 2.1) which shows how temperature and the level of supersaturation
directly affect the final shape of a snow crystal.

Figure 2.1: The Nakaya diagram

2.2 Snow on the ground

The snow crystal’s journey ends, when it finally reaches the ground, forming
snow layers along with other crystals. The goal of this section is to give an
overview of how snow behaves when it finally reaches the ground and how we
can interact with it.

Snowpack consists of numerous individual snow layers each made of flakes
with same or similar properties. Snow changes immediately after it hits the
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2. Snow as we know it..................................
ground, deforming under various influences, like temperature, affecting it’s
overall properties.

2.2.1 Angle of repose

One of the most important aspects of snow stability. It’s an angle beyond
which a particular snow type is very likely to move, causing the snow to
change positions and shape. It also dictates what surfaces can hold snow.

2.2.2 Avalanches

An avalanche is a very fast flow of snow down a slope, such as a hill or
mountain. Avalanches can be set off spontaneously, by such factors as
increased precipitation or snow pack weakening, or by external means such
as humans, animals, and earthquakes.

Avalanches occur in two general forms, or their combinations, slab avalanches
made of tightly packed snow, triggered by a collapse of an underlying weak
snow layer and loose snow avalanches made of looser snow. After being set
off, avalanches usually accelerate rapidly and grow in mass and volume as
they capture more snow. If an avalanche moves fast enough, some of the
snow may mix with the air, forming a powder snow avalanche.

ctuthesis t1606152353 6



Chapter 3

Snow simulation methods

We now know how snow behaves in the real world. But how do we transform
this knowledge into an effective and working simulation method? As with
everything in computer science, the goal is to take a complex problem and
simplify it as much as possible while preserving the original idea. How to
achieve it?

There are numerous already existing methods that try to simulate snow
as realistically as possible. Of course, every situation is different and each
method is useful in a different scenario. Identifying the requirements in
each scenario is key for choosing or creating a correct method resulting in a
believable representation.

Some methods aim to provide a real time solution. This might be useful in
a dynamic environment, such as games, where the world changes constantly.
These methods are, most often than not, much less realistic than their static
counterparts - computation power is a big limitation requiring a very simplified
solution that allows us to simulate the snow in multiple frames per second.

Methods, that don’t care about real time use cases, are more realistic
because we don’t need to limit ourselves to just a few milliseconds - duration
of a frame. We can take advantage of much more complex algorithms and
techniques that may require minutes, or hours to fully complete. The usual
use case would be generation of a static scene with little to none moving
objects.
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3. Snow simulation methods ...............................
Actual techniques used vary greatly and it’s difficult to grasp all of them.

However, many of them take advantage of the same or similar algorithms or
techniques, but use them differently - from particles to GPU tessellation or
compute shaders.

Overall, there are two main approaches to snow modelling, physically and
non-physically based. In this chapter, we introduce and compare different
techniques used to simulate snow.

3.1 Non-physical approaches

Most, if not all, non-physical approaches are based on occlusion taking
advantage of techniques like shadow mapping, displacement mapping and
more.

3.1.1 Occlusion based methods

As in the real world, snow should not settle on a surface, that is not visible
from the direction of snow fall. In other words, if a surface is blocked by a
different object, it should not accumulate snow. The main idea behind an
occlusion based snow simulation is similar to shadow mapping. First, we
need to render the scene from the perspective of the source - an arbitrary
position from which snow falls. The result is a depth map which we can use
to determine if a given surface is visible from the direction of snow fall and
hence receive snow.

Ohlsson and Seipel

One of the methods utilizing occlusion was introduced by Ohlsson and Seipel
[[18]].

Snow coverage is calculated using accumulation prediction function split
into two parts. Utilization of occlusion happens in the second part, the
exposure function, which calculates how occluded the surface is. Everything
is done realtime, allowing for some degree of interactivity, but due to snow

ctuthesis t1606152353 8



................................. 3.2. Physical approaches

accumulation being recalculated every frame, should an object suddenly move
into occlusion, all of the accumulated snow would be lost instantly.

Performance wise, with a screen resolution of 600 x 600, in a scene consisting
of 16000 triangles the average frame rate achieved was around 13 frames per
second, making this method unacceptable in a very dynamic environment
like games.

Figure 3.1: The result of applying described method to a more complex object.

Related work

Other noteworthy occlusion based methods include [[19]], [[5]]. Method
proposed by Tokoi is also real-time, unfortunately giving even worse fps
performace.

3.2 Physical approaches

Physically based approaches aim to simulate snow in a more realistic manner,
focusing more on the geometry utilizing particle systems, height maps and
more.
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3. Snow simulation methods ...............................
3.2.1 Paul Fearing

Method that inspired many future works is a method proposed by Paul
Fearing in his dissertation [[4]]. Particles are shot towards the sky from
so-called launch sites in a snowflake simulating pattern - slightly varying its
direction to imitate flake flutter - and traced to determine the exposure to
falling snow.

Fearing was also the first to use polygonal meshes. To achieve greater level
of detail, mesh was dynamically subdivided using the Delaunay triangulation,
resulting in Veronoi diagram-like mesh subdivision, with each face having its
own particle launch site, allowing for a greater level of detail as each face
contains information about the accumulated snow.

This method overall is quite complex and not too easy to implement. The
computation takes a long time and the simulation needs to run to the very
end, consequently no build-up animation is possible. The result is completely
static scene with no interaction allowed. The method is also unsuitable for
real-time uses.

To illustrate this method’s complexity, simple scene containing a single
object, fire hydrant (see Figure 3.2), took about 15 minutes to finish.

Figure 3.2: Fire hyndrant with accumulated snow taken from Fearing’s paper[4]

ctuthesis t1606152353 10



................................. 3.2. Physical approaches

3.2.2 Others

A very interesting physically based method also takes advantage of particles,
however, unlike Fearing’s method of using them to trace the path to the sky,
the snow is actually comprised of numerous particles creating an interesting
effect [[16]]
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Chapter 4

Real-time accumulation of occlusion-based
snow

The main point of interest leading to this work was snow in video games. In
other words, I was looking for a method, that would allow us to simulate
realistic looking snow in an ever-changing environment, with an added bonus
of interactivity.

However, snow accumulation and interaction are two very complex topics
on their own, which makes it very difficult to focus on both of them at
the same time, while preserving the real-time requirements along with the
visual requirements. Best looking methods usually don’t work in real-time
and methods with the best interaction aren’t very visually striking. In the
end, we’ve settled for snow accumulation as the main focus and chosen an
interaction method that would be at least a bit usable in video games.

The method we are focusing on was proposed by D. T. Reynolds, S. D.
Laycock & A. M. Day [[3]] in The Visual computer during Mr. Reynolds’s
doctorate studies. The goal was to create a method that allows real-time
accumulation of snow in an ever-changing dynamic environment.

We have stumbled upon a few problems during the implementation of the
method, so I have reached out to Dr. Reynolds to see if he could help. Not
only did he send me his materials and source code, but he also scheduled a
meeting with me to answer any questions I might have. We could not have
finished this work if it was not for him.

13 ctuthesis t1606152353



4. Real-time accumulation of occlusion-based snow .....................
4.1 Overview

The method described here utilizes many known techniques, such as shadow
mapping, and modifies them to a certain extent to fit the needs. Each
object in the scene is attached a single 2D accumulation texture which stores
information about the snow height. First, the scene is rendered from the
snowfall direction to determine which surface is not occluded and should
receive snow. This information is then run through a single render pass
utilizing geometry shaders to map the information from the occlusion render
directly to all the appropriate accumulation textures. Snow stability and
techniques such as random noise, dilation, and Gaussian blur further enhance
detail and visual believability. Normal maps are calculated for each surface
and used alongside dynamic tesselation to add a very high amount of detail.
As this method focuses on real-time accumulation, no physics calculations
are involved.

The graph below illustrates the entire process from start to finish. Each
stage is explained in more detail in later sections.

Figure 4.1: Graph showing all of the different stages involved

ctuthesis t1606152353 14



................................. 4.2. Accumulation phase

4.2 Accumulation phase

The first step and arguably the most important one is snow accumulation.
The accumulation technique first proposed by the authors of this method
allows for a real-time, scalable, and dynamic scene. Although, as we will
explain in the later chapters, this doesn’t allow for a very complex scene with
many objects. One can take steps to achieve a higher scene complexity, but
that would mean sacrificing on quality.

4.2.1 Occlusion mapping

The first step is rendering the scene from the position of snow source. Tech-
niques described here are similar to deferred rendering or shadow mapping.
Both of these widely used techniques involve taking a camera and rendering
the whole scene from the light source position. In case of shadow mapping,
since we are commonly rendering a scene with an included directional light,
orthographic camera is of great use. The ouput of shadow mapping is a depth
map (occlusion map) which tells us if a specific fragment is visible from the
light’s position. Deffered rendering in this case saves useful data about each
visible object, such as their position, normals, color and so on.

Very similar approaches to those mentioned above are used in the proposed
technique. We used an orthographic camera to simulate a directional light
source in shadow mapping. This method is not too different. In a sense,
all flakes fall in the same direction parallel to each other - similar to how
light rays travel. This technique allows us to easily introduce strong wind
forces and flake-flutter into the scene. Flake-flutter is achieved by introducing
a minimal offset to the camera position and direction. Two RGBA color
textures are output - contrary to outputting depth information in standard
shadow mapping..

The first output texture stores the individual object’s integer ID and a
noise value. The ID is assigned to each object during it’s loading phase as a
pre-processing step. It’s used to correctly pinpoint the accumulation texture
of the object in question. The noise value is sampled from a Perlin noise
texture with a variable offset to introduce a certain amount of randomness to
the accumulation.

The second output contains an object’s minimum and maximum texture

15 ctuthesis t1606152353



4. Real-time accumulation of occlusion-based snow .....................
coordinates at the visible point. The built-in command used to sample the
texture for the minimum and maximum coordinates is interpolateAtOffset.
These unique texture coordinates are generated as part of a pre-processing
step during the actual creation of an object - in Blender, for example. What
is essential is that each face of an object has to be assigned precisely one
unique non-overlapping face in the UV map. Allowing overlapping faces
would mean two - or more - unrelated faces could receive the same amount of
snow which is not a desirable side effect. The saved coordinates are then used
to output the accumulation amount to a correct part of the accumulation
texture. These accumulation textures hold all the required information about
the snow height at each face of an object. Storing all the information in
textures allows for a dynamic moving scene, as the information is saved in
the map instead of being calculated at each frame from the beginning, for
example, during an object’s movement.

4.2.2 Accumulation mapping

With occlusion of the way, a separate render pass is run to process the occlusion
textures to map accumulation to its corresponding texture. The pass is run
for each pixel of an occlusion output, and while this might seem like a large
and expensive operation, no complex matrix transformations are required. It
consists of a simple pass-through vertex shader, a programmable geometry
shader to do the necessary transformations, and a fragment shader with
multiple render targets set to output each object’s accumulation information.
Very important to note is that blending has to be enabled for this stage to
work correctly.

The input for the render pass consists of individual quads, whose vertex
positions are set to arbitrary values and texture coordinates set to map each
pixel of the occlusion render. The generation of this "grid" is not a complex
problem and can easily be part of a pre-processing or an initialization step.
These quads are sent through the rest of the render pipeline to result in quads
covering one of the accumulation maps. The central part of this render pass is
a geometry shader that handles the necessary transformations. More details
can be found in the pseudocode below ((4.2.2)).

ctuthesis t1606152353 16



................................. 4.2. Accumulation phase

Vertex shader stage

Vertex shader here doesn’t do much. Its only job is to handle outputting the
provided information about the quad position so it can later be used in a
geometry shader.

Geometry shader stage

The geometry shader is set to accept a single triangle per all of the quads,
as triangle is the basic primitive a graphics pipeline is used to work with.
Input of a geometry shader is an array of values because the geometry shader
works with whole primitives rather than individual vertices. Provided texture
coordinates from the previous pipeline stage are used to sample both of the
occlusion textures in order to get the required information that is stored in
them. These values are then saved into 4-dimensional vectors to be used
later.

After getting the required information out of the occlusion maps, we can
start calculating where within the individual occlusion maps shall we output
information about the snow height. Once found, the triangle coordinates are
transformed to result in a triangle covering an area of an accumulation map.
More details may be found in the pseudocode below (4.2.2).

Fragment shader stage

Once the primitives with the correct coordinates are successfully transformed,
they are sent through pipeline into the fragment shader. This fragment
shader has multiple render targets which are the individual accumulation
maps attached. The shader determines the correct texture to render to by
an ID that is passed from the geometry shader. If blending wasn’t enabled
and set up correctly it would result in artifacts in places where individual
object’s UV coordinates overlap - leaving the area of one UV map empty.
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4. Real-time accumulation of occlusion-based snow .....................
Input: position, texcoord
Output: position, texcoord
Vertex Shader :

out : position← in : position
out : texcoord← in : texcoord

end

Input: position[3], texcoord[3]
Output: accumulation, texture_id
Geometry Shader:

ids← occlusion1[texcoord[0]]
mapping ← occlusion2[texcoord[0]]

vec2 minPoint← (map[0], map[1])
vec2 maxPoint← (map[2], map[3])

for i = 0; i < 3; do

if position[i].x < 0 then
glPosition.x← minPoint.x

end
else

glPosition.x← maxPoint.x
end

if position[i].y < 0 then
glPosition.x← minPoint.x

end
else

glPosition.y ← maxPoint.y
end

texture_id← ids[0]
accumulation← ids[1]

end
end

Input: accumulation, texture_id
Output: accumulation_buffers[8]
Fragment Shader:

accumulation_buffers[texture_id]← accumulation
end
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................................. 4.2. Accumulation phase

Figure 4.2: The result of the accumulation stage

4.2.3 Postprocessing

Now that all the accumulation information for our current frame has been
rendered to it’s corresponding buffer, we have to apply some more postpro-
cessing in order to make it more realistic and believable. All of the different
effects are of course their own separate render passes. This doesn’t hinder the
real-time performance even with high resolution occlusion and accumulation
textures, albeit on a good testing equipment.

Almost all of the below mentioned postprocessing effects are in the original
method. However, after further inspecting, I’ve decided to implement them
in a more advanced way than originally proposed and also add an entirely
new effect in order to enhance the overall results.
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4. Real-time accumulation of occlusion-based snow .....................
Gaussian blur

The first effect all of the accumulation maps go through is called Gaussian blur
[[9]]. All the rendered quads have very hard edges and look too monotonous.
Gaussian blur here is presented to introduce smoother edges and even transi-
tions between the colors of the shapes and the background of the texture -
which basically symbolizes zero accumulation.

As with many image processing methods, Gaussian blur too uses convolu-
tion [[10]] to process the image. A 5x5 kernel is used to process a every pixel
of each texture to result in a smooth and blurred image. Offsets and weights
are included below. [4.3]
offset = { 0.0, 1.0, 2.0, 3.0, 4.0 }
weights = { 0.2270270270, 0.1945945946, 0.1216216216, 0.0540540541, 0.0162162162 }

Figure 4.3: Accumulation map after applying Gaussian blur.[9]
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................................. 4.2. Accumulation phase

Dilation

Dilation is an effect the original method [[11]] does not include, but we’ve
decided to add (4.4). The original method, as previously seen on screenshots
of accumulation maps, creates margin of various sizes between individual
color quads, causing possible artifacts. By introducing dilation, these margins
can be significantly reduced, potentially reducing artifacts. Although, after
a bit of testing, we’ve noticed that dilating the textures is not always the
best idea. While it works nicely for uniform solid objects, problems arise for
non-uniform objects with spaces and holes in them, like a bench or a fence.
These spaces should result in a grid-like pattern on the underlying surfaces.
When we take a look at the accumulation textures, these holes are usually
about a pixel wide. Given this size, dilation will result in a non-zero value
in those spots. Being able to turn off dilation for certain objects might be a
good idea.

Dilation uses a method similar to convolution, in that it uses a convolution
matrix to do it’s calculations. For every pixel of each texture, we look at the
neighboring pixels in a defined area, determine which of the pixels has the
highest per-element value and use that to replace the value of the current
pixel. The area is defined in code, depending on the needs.

Increment

A render pass that doesn’t need much explaining is the increment pass. It
takes the values stored in the accumulation texture from the previous frame,
the values calculated in the current pass and simply adds them together,
resulting in over-time accumulated values. By making this a separate render
pass, we can utilize the countless number of cores present on the GPU and
greatly paralelize this algorithm, potentially finishing it in no time.

Normal maps

Lighting is one of the essential parts of any scene, as it also adds realism and
details. In order to calculate lighting, we have to know something called a
surface normal. A surface normal tells us which way the surface is facing.
This is crucial in lighting calculation because it allows us to determine if a
face is oriented towards the light or entirely in a different direction.
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4. Real-time accumulation of occlusion-based snow .....................

Figure 4.4: A dilated accumulation textures.

A commonly used technique utilizing normals is normal mapping, which
involves saving the information about surface normals in a 2D texture used
in lighting calculations. By changing the direction of per-surface normals
and hence the actual direction of a surface, we can simulate a high level of
detail without adding any geometry. Of course, the result will not be perfect,
and from a certain perspective, it’s going to be obvious what is going on, but
despite that, normal maps are perfect for adding very fine detail.

Snow accumulation de facto changes the slope of the surface and, as such,
causes the light to bounce off in a different direction. We can simulate this
behavior by using normal maps. Since we know the height of each surface,
we can use it to calculate the normal directions. Calculation of these normals
is not too complex, and as with many image processing algorithms, it uses a
convolution filter. This particular filter is called the Scharr filter ( [[17]] and
[14]). The X and Y values are calculated by adding the neighboring pixel
values, each multiplied by coefficients defined by the filter.
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................................. 4.2. Accumulation phase

Figure 4.5: The Scharr filter for X and Y. [17]

Figure 4.6: A sample normal map for a bench [14]
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4. Real-time accumulation of occlusion-based snow .....................
4.3 Stability

Just freely accumulating snow on visible surfaces isn’t enough to produce
visually believable, let alone realistic results (4.7). That is because snow
can’t just stick to any surface visible. Of course, under the correct conditions,
certain amount of snow can stick even to very steep surfaces or even create
bridge-like structures between two very close objects. However, taking into
account all of the physical properties and condition for that to happen is
impossible in case of a real-time simulation. The goal is to find a method that
is simple enough to allow for real-time use cases that also produces realistic
enough results. We have to ensure that the amount of snow retained by a
surface changes depending on it’s rotation and orientation (4.8).

This method simply introduces a falloff rate, at which the snow falls of a
certain surface. Objects are passed along with geometry information, such
as surface normals, in order to calculate the steepness - angle between the
normal and an up vector (vector pointing towards the sky). Snow height
at any point of the surface is determined by the equation below. The small
letter a stands for current accumulation, f is short for falloff rate and is
constrained: 1 ≥ f ≥ 0 . Normal vector is expressed as small n and is used
to calculate the angle between the surface and an up-vector y and m stands
for "maximum snow height".

result =
{

a− (a− (n ∗ y) ∗m) ∗ fr, if(a− (n ∗ y ∗m)) ≥ 0
0 otherwise

4.4 Dynamic tessellation

Since OpenGL version 4.X.X, developers can take advantage of a new Vertex
Processing stage- tesselation [[7]]. Tessellation involves taking a patch of
vertices and subdividing them into smaller primitives. Two new shader
stages are introduced, the optional TCS - Tessellation control shader - which
dictates how much tessellation should be performed, and the TES -Tessellation
evaluation shader - which takes in a tessellated patch and calculates new
per-vertex values. This allows us to dynamically create more geometric detail
where needed and further enhance realism.

Although tessellation itself doesn’t seem to affect performance all that
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................................. 4.4. Dynamic tessellation

Figure 4.7: Cottage with turned off snow stability

much [[8]], we still shouldn’t underestimate its effects. As stated in the [[8]]
article itself, the FPS might drop by almost 25% in case of a higher resolution.
That means we have to limit the amount of tessellation each object receives.

Not all objects in the scene might benefit from further subdividing their
mesh, either because it’s not able to hold that much snow or because it
already has enough geometric detail making tessellation obsolete. Distance
from the camera is also a very good point to consider when deciding how
much to tesselate an object or if to tessellate it at all.

Our implementation calculates the amount of tessellation depending on
the distance of an object from the main camera. The further away an object
is, the lower the tessellation setting. Tessellation can also be turned off by
passing a boolean value through a uniform object.

The distance of an object can be determined easily by looking at the z
coordinate in the View space. This value is then multiplied by a maximum
tessellation factor and clamped between the values 0 and 1. The resulting float
number represents the interpolation ratio between the maximum tessellation
allowed, which is 64, and the lowest - which depends on the patch primitive
type.
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4. Real-time accumulation of occlusion-based snow .....................

Figure 4.8: Cottage with turned on snow stability

The tessellation evaluation shader then handles the interpolation of all the
different input values, like vertex position, normals, tangents, and more. It
does that by transforming the corresponding coordinates using barycentric
coordinates provided by the built-in gl_TessCoord variable. It is also
where vertex displacement based on the snow height happens. An example
interpolation of a vertex position is shown in an equation below.

u = gl_TessCoord.x;
v = gl_TessCoord.y;
w = gl_TessCoord.z;

tesPosition = u ∗ inPosition[0] + v ∗ inPosition[1] + w ∗ inPosition[2];
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Chapter 5

Snow deformation

Since the goal of this thesis was to create a dynamic snow surface, along with
snow accumulation, at least a simple snow deformation method of the ground
had to be implemented. Even so, it’s of utmost importance to emphasize
that the main focus of this method was to implement accumulation. Due to
this fact, deformation doesn’t get much focus in this text.

Daniel Hanák introduced a good deformation method in his master’s thesis
[[6]]. It uses an orthographic camera to capture all the objects capable of
affecting the snow surface. The result of this capture is a heightmap that
is then used in other calculations to determine how much an object should
deform the surface.

The method implemented here is a major simplification of the method
proposed in the thesis. It simply captures all the deforming objects in question
from below using an orthographic camera, transforming them to View space
and finally outputting their distance value, which is transformed and clamped
to fit in the range from 0 to 1. The distance value is the fragment’s position’s
z coordinate. Each output value represents the amount of snow to be removed
from the ground’s surface at that location.

The process of applying the deformation is almost identical to the method
already described here [4.2.3]. In this case, the values are instead subtracted
from each other.
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5. Snow deformation...................................

Figure 5.1: Snow accumulating in spots previously deformed
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Chapter 6

Results

The last step is to test out the application. We have to take a closer look at
the results to determine how successful we were in implementing the method
and how useful it is in real-time environments.

6.1 Rendered scenes

One of the scenes shown in the original paper is a scene containing a bench.
I’ve tried my best to find a bench that is similar to the bench in the paper
to keep the comparison relatively fair. Then, I’ve imported the model into
Blender to fine tune the mesh. The goal was to fix topology, set smooth
shading, join meshes together etc. Doing these will result in a better looking
accumulation and tessellation.

Here are two screenshots, each depicting a different stage of accumulation.
I believe both of these pictures show the effects of normal mapping and also
dynamic tessellation. Tessellation is visible the most in the first picture, while
the second picture better shows the power of normal mapping, thanks to
which we can see a division between surfaces with and without snow (6.1).
You can see the backrest not accumulating much snow. That is due to it’s
rather steep angle which means the stability algorithm will mark the spots
for deletion.
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6. Results .......................................

Figure 6.1: Later stage of accumulation, showing the power of normal mapping
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................................... 6.1. Rendered scenes

Next are two images to compare our results against. The goal of this
method is, of course, to simulate the real world as closely as possible. To
determine how successful we were, we have to compare the results with a
photo from the real world (6.2). The second image (6.3) is a screenshot taken
from the original author’s paper to see how our implementation differs.

Figure 6.2: Real world bench [15]

Figure 6.3: Bench from the original method [3]

Compared to the original method, our bench has fewer noticeable artifacts
along the top of the bench. Overall, the accumulation also seems a bit
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6. Results .......................................
smoother - it looks as if the original scene used lower resolution textures.

The real-world example is almost impossible to achieve with this method
due to the absence of physics calculations. We would have to consider
uncountable factors to achieve a result similar to the example—the properties
of snow, the bench’s material composition, etcetera.

Figure 6.4: Another comparison with a real-life example. Mustang taken from
[[13]]

Another scene we have been testing this method on is a scene containing
just the ground and a giant lion head (6.5 and 6.6) with tessellation turned
on. The head itself contains more than a hundred thousand triangles. We
can see that this method works quite well, even on objects with higher levels
of complexity. Of course, the results are not perfect. Especially the diffuse
textures appear to be blurred - most probably due to the UV unwrapping.
Besides that, the results are more than satisfying. There do not appear to
be too many artifacts; tessellation and displacement produce a good-looking
mesh. Despite the high complexity, occlusion seems to be working well, and
even the tiniest potentially occluded spots do not seem to hold much snow.

The lion head is also perfect for showing why a good quality UV unwrapping
is an absolute necessity. This UV was produced by Blender’s built-in "Smart
UV Project" function. It split the mesh into countless little islands, where
each neighboring island may be from a completely different part of an object.
The consequence of this fact is illustrated by [6.7].

We cannot forget about testing scenes where snow does not fall precisely
from above. The first scene contains a bench and a car chassis (6.8). Snow
gets accumulated accurately; the right side of the car is entirely blank, with
just a few snowflakes floating astray - as expected. Islands without any
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................................... 6.1. Rendered scenes

Figure 6.5: Front view of the lion head [2]

Figure 6.6: Top view of the lion head [2]

accumulated snow were created due to wind direction, similar to how shadows
are created.

The image (6.9) shows a scene similar to the first one where the bench is

33 ctuthesis t1606152353



6. Results .......................................

Figure 6.7: Lion head with a bad UV unwrap

moved closer to the car. This was done to illustrate further that occlusion
works as expected. Although the top part of the bench seems to be accumu-
lating a small amount of snow, that is simply due to the fact that it is visible
from the snow source point of view.

One of the ways to control visual believability in computer graphics, for
example, in games, is to increase the texture resolution. It makes sense -
by increasing the resolution, we can dramatically increase the amount of
information we can store. Just for comparison, a 512px wide texture contains
262 144 pixels, 1024px texture has 1 048 576 pixels while a 2048px texture
contains a whopping 4 194 304 pixels!

While this might dramatically impact the overall visual quality and detail
in other areas, this method doesn’t gain much by drastically increasing the
texture resolution. We can see that clearly in the images below. The 512px
wide texture produces visible grid-like artifacts (6.10) that might hinder the
overall experience, but the differences between the 1024px (6.11) and 2048px
(6.12) are almost non-existent. It might seem that using the 1024px is the
ideal choice not only due to the visual quality. In the later section, we will
take a look at performance.
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Figure 6.8: Scene where snow falls from the side

Figure 6.9: As we can see, the bench accumulates snow only in the upper part
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6. Results .......................................

Figure 6.10: The artifacts present when using a 512px texture

Figure 6.11: Accumulation when using the 1024px texture
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.......................................6.2. Profiling

6.2 Profiling

While visuals are a crucial part of any snow simulation method - or any method
in computer graphics in general - we cannot forget about performance, even
more so when developing a method for real-time use cases. For that reason,
we’ve decided to test this method against multiple scenarios and compare the
results. All of the test were run on a computer with AMD Ryzen 7 5800H,
Nvidia GeForce RTX 3060 with 6 GB of VRAM and 32 GB of RAM.

We’ve created three scenes of varying complexity to test the method. The
tests consist of running each scene with different parameters, such as texture
resolution, in a special profiling environment (Nvidia NSIGHT [[12]]) - to get
information about the duration of each draw call. Each test case was being
run with varying texture resolutions - namely 512px, 1024px and 2048px.
The results we are interested in are: accumulation pass duration, duration of
individual support passes (blur, dilation, normal maps...), frames per second
and memory consumption.

We’ve begun our testing with a scene consisting of eight objects with a
very simple mesh - that means a mesh with a small number of triangles.

The second scene is a forest consisting of just two objects - the ground and
the forest mesh introduced in the previous chapter. Despite containing just
two distinct objects, the forest mesh alone has over 360 thousand triangles,
making it an ideal candidate to compare the previous case against. More on
that later.

And finally the third scene, where we took the second scene and added
six more objects. Each of these objects is a tree mesh extracted from the
forest mesh. This last test case is a defacto combination of the previous two,
making it ideal for pushing the method to its limits. [6.13]

The table below shows the results.
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6. Results .......................................
Texture res-
olution

Accumulation
pass

Support
pass FPS Memory con-

sumption
Scenario
1 512px 0.22ms 0.12ms 72fps 300MB

1024px 3.58ms 0.37ms 35fps 1100MB
2048px 42.68ms 1.39ms 4.9fps 3100MB

Scenario
2 512px 0.26ms 0.14ms 144fps 200MB

1024px 0.9ms 0.37ms
127fps
-
140fps

500MB

2048px 9.65ms 1.39ms 20fps 1150MB
Scenario
3 512px 0.23ms 0.12ms 75fps 400MB

1024px 2.33ms 0.37ms 36fps 1000MB
2048px 54.24ms 1.39ms 5fps 2900MB

Now an obvious question arises as to why tessellation does not play any
role in the testing? Although it adds quite a bit of fine detail and enhances
the overall visual experience, it’s not at the core of the method, and also,
the results are obvious. The more an object is tesselated, the longer it will
take to render. The main goal of this testing is to show that even without
tessellation, this method can slow down even a high-end computer.

One may ask, how is it possible that the stress-testing third scenario is
comparable to the first. Although not immediately apparent, the answer to
that question is simple. We have to realize that each support calculation is a
separate render pass. Although each pass might take just over 1ms, if you
multiply that number by about 40 - five render passes each doing calculations
on eight 2048px textures - you get a non-trivial render time. To illustrate
that better, if we multiply 1.37ms by 40, we get 52ms. A frame time of 52ms
equals roughly about 20 FPS! And if you add the time it takes to calculate
the accumulation maps, pass the data to the GPU or render the whole scene,
you get a high frame time.

We can see here that to achieve a stable framerate while maintaining good
visuals; the 1024px textures seem like the ideal choice. As we’ve seen in
our previous testing, the difference in visuals between 1024px and 2048px
textures is not very apparent. However, it may play a role if we unwrap
many objects onto a single texture. Even though 512px textures provide
the most significant boost in framerate, using them introduces noticeable
visual artifacts as previously seen (6.10). It can also be seen that the jump in
memory consumption is not as high between the 512px and 1024px texture
resolutions.
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We have decided not to include the deformation phase since it has little to
no effect on the final framerate.
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6. Results .......................................

Figure 6.12: Accumulation when using the 2048px texture

ctuthesis t1606152353 40



.......................................6.2. Profiling

Figure 6.13: Scene containing the maximum amount of objects per render target
along with a multi-mesh object containing many trees, unwrapped onto a single
texture
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Chapter 7

Conclusion

The main goal of this work was to do research on various methods of snow
accumulation and implement and build upon the method proposed by D.T
Reynolds [[3]]. We have stumbled upon many difficulties along the way, but
thanks to Dr. Reynold, we solved those difficulties and successfully finished
the application. It is fair to say that many algorithms that implement parts of
the original method, such as normal map generation, were upgraded, resulting
in, arguably, a better visual representation, as seen in the 6.3).

Next in line was snow deformation. Although, it was not the primary goal
of this work. Consequently, only a small section of this thesis focuses on it.
Despite not being the main focus, the result is good enough, and it fits the
whole application well.

Many examples of scenes were provided and tested for performance (6.1) ,
which clearly shows that the method is very usable in a real-time environment,
possibly even used in a simple game.
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Appendix B

Short tutorial on how to use the application

B.1 prerequisites

The application runs on 64-bits. In order to run the application, you have to
have certain libraries installed. These include: GLFW, ASSIMP (installation
instructions: [1]).The GLFW library should already be present in the solution
directory.

B.2 Before running the application

The scene is, by default, pre-loaded with the forest scene with tessellation
turned on by default. Each gameobject has a property called should_tesselate
that turns it on and off for each individual object.

To load a different "scene", please refer to the initGameObjects() function.
Although not very intuitive, you can define your own scene composition by
commenting out objects. One thing to note, only 8 objects can be present in
the gameObjects vector (the maximum number of render targets).

a) initTestTrees already adds 6 independent objects to the scene. b) by
allowing deformation ( initDeformationMap and DeformationPhase), you
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B. Short tutorial on how to use the application .......................
add another object into the scene

B.2.1 Movement

Movement is a classic WASD, where W is front, S is back, A is left and D is
right. You can look around the scene using your mouse.

B.2.2 Deforming

If you want to deform the surface of the ground in real time, just leave
the initDeformationMap and DeformationPhase functions uncommented.
Then, in the scene, just press the P key on your keayboard to switch between
camera movement and object movement.
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