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Abstract

2D—-3D reconstruction is the process of
creating a volume from a set of 2D im-
ages. This reconstruction process results
in an estimation of the unknown inten-
sity values of all the individual volume
elements. The estimation is done by pro-
cessing the original 2D images and uti-
lizing the information that can be found
in them.

The goal of this thesis is to de-
velop a method to create a 3D
model of the carotid artery from 2D
in-vitro ultrasound images without their
positional information. The carotid artery
was scanned in two orthogonal directions,
which resulted in the artery’s transver-
sal and longitudinal 2D slices. These two
sets of slices are used in the reconstruction
process to first create two separate vol-
umes. These volume estimations are then
improved and fused into a final 3D estima-
tion. Registration is used in several steps
of the proposed method to compensate for
the lack of information about the slices’
position.

The proposed method is tested on both
real and artificially created data. The re-
sult of this thesis is a 3D visualization of
the created volume.

Keywords: registration, ultrasound,
medical imaging
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Abstrakt

2D-3D rekonstrukce je proces tvorby ob-
jemu z 2D obrazkl. Vysledkem rekon-
strukéniho procesu je ohad neznidmgych
intenzit jednotlivych elementi vytvare-
ného objemu. Tento odhad je uskutecnén
zpracovanim puvodnich 2D obrazki a vy-
uzitim informaci, které se v nich nachéazi.

Cilem této prace je vypracovat metodu
pro vytvoreni 3D modelu karotidy z 2D
in-vitro ultrazvukovych obrazkt bez in-
formace o pozici. Karotida byla nasni-
mana ze dvou ortogonalnich smért. Vy-
sledkem tohoto sniméni jsou jeji transver-
zalni a longitudindlni fezy. Tyto fezy jsou
v rekonstrukci pouzity nejprve k vytvoreni
dvou samostatnych objemi. Tyto odhady
objemu jsou poté vylepsSeny a je z nich
vytvoren findlni 3D odhad. Registrace je
pouzita v nékolika krocich navrhované me-
tody pro kompenzaci chybéjici informace
o pozici jednotlivych fezt.

Pouzitd metoda je vyzkousena na uméle
vytvorenych i redlnych datech. Vysledkem
prace je 3D vizualizace vytvoreného ob-
jemu.

Kli¢ova slova: registrace, ultrazvuk,
lékarské zobrazovani

Pteklad nazvu: Rekonstrukce 3D
obrazu karotidy z 2D in-vitro
ultrazvukovych snimkt
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Chapter 1

Introduction

Carotid arteries are two arteries located on the side of the neck. Their function
is to supply the head and neck area with oxygen. The arteries in the dataset
used in this project may contain arterial plaque, a buildup of calcium and fat
on the inner arterial walls. As this buildup grows, it causes a disease called
atherosclerosis (Figure |1.1). This disease results in hardened and narrow
arteries, through which blood passage is more complicated. The brain is the
most crucial organ that carotid arteries supply. When the blockage caused
by atherosclerosis becomes too severe, it can lead to stroke [IJ.

Creating a 3D model from 2D slices of this diseased area can fully capture
the state of the illness and better visualize the affected tissue. One 3D model
also provides an efficient visualization method in comparison with a set of
several 2D slices that were used to create the model. This visualization
could better show the artery blockage location created by atherosclerosis.
With better visualization and more information about the diseased area, this
location and the severity of the illness could be estimated more accurately.

. 1.1 Task definition

The goal of this project is to create a 3D volume from 2D ultrasound images of
the carotid artery. The studied object was scanned in-vitro in two orthogonal
directions, which resulted in its transversal and longitudinal slices. The slices’
positions were not acquired during the scanning process, so they have to be
estimated in the reconstruction process. The 3D volume should be computed
using pixel values of the individual slices and the slices’ estimated position in
space. The proposed method should be evaluated both on real and artificially
created data. The final volume representing the original scanned object should
be visualized in 3D.



1. Introduction

Carotid
Bifurcation

Carotid Bulb

Figure 1.1: Carotid arteries affected by atherosclerosis. The image shows the
left and right common (CCA) carotid arteries, which split into the internal (ICA)
and external (ECA) carotid arteries. Taken from [2].

. 1.2 Thesis structure

® In Chapter [2], the in-vitro data is presented, and the creation of artificial
data is described.

® In Chapter 3], a theoretical background about ultrasound imaging and
the 2D-3D reconstruction process is given.

® [n Chapter 4], the proposed solution is described.

® In Chapter |5, the results of the proposed method are summarised.



Chapter 2

Data

Data used in this project is in the form of 2D images. There is no information
about the mutual position of the slices, only their order and the direction
in which they cut the artery is known. The missing positional information
makes volume reconstruction more difficult but not impossible. Every set
of images contains data captured in two directions. This information can
be used in the reconstruction process to make the resulting volume more
accurate. For this project, both real and artificially created data was used.
The image positions in space were estimated and used to create a 3D volume.
How the images can be positioned in space is shown in Figure 2.2l

z z

T Y

x €T fl

Figure 2.1: How a transversal slice (left) and a longitudinal slice (right) can be
positioned in space. A slice’s position can be described by the plane the slice
lies in, and the slice’s corner point.

B 21 Data Analysis

The in-vitro images were taken freehand by an ultrasound device with no
position sensor. Dataset from each patient contains images from two orthogo-
nal capturing directions. One direction creates transversal images, and the
other creates longitudinal images. One example from each capturing direction
is shown in Figure 2.2 The green triangles on the right side of the images
shown in Figure 2.2 represent the captured distance of 22 mm. They are 151
pixels apart. This gives the ratio of approximately 0.15 mm/pixel.

3



2. Data

Figure 2.3: Example of an image before and after cropping

Every image is composed of 800 x 556 pixels, which corresponds to the
captured area of approximately 120 mm x 83 mm. After cropping the images,
to acquire only the important part of the image, they are 580 x 446 pixels
large. An example of a cropped image is shown in Figure [2.3]

There are 138 sets of images in total, each set corresponding to one patient.
Every set contains around 20-30 images. The approximate scanning distance
between two neighboring longitudinal images is 20 mm. The distance between
two neighboring transversal images is approximately 6 mm.

Where to find the ultrasound images is described in Appendix (Al

B 2.2 Artificial Data

3D reconstruction of the real data can only be evaluated visually because the
true 3D shape of the arteries shown in the images is not known. I created
artificial data to test the used method and quantify its results.

The artificial artery is represented by a tube with a changing diameter
and a plate beneath it. The tube lies in a uniform grid of 300 x 300 x 600
voxels, it is shown in Figure 2.4L Its outer diameter ranges from 171 pixels to
235 pixels, and its inner diameter ranges from 83 to 149 pixels. Both these
diameters monotonically decrease throughout the volume.

Images from two perpendicular directions were created from this model,
slicing the artificial artery in the same way it is done in the real data. This
resulted in two sets of slices, one longitudinal and the other transversal.

4



2.2. Artificial Data

Examples of these slices are shown in Figure [2.5| and how the volume can
be cut is shown in Figure The resulting transversal slices are 300 x 300
pixels large, and the longitudinal slices are 300 x 600 pixels large.

Figure 2.4: Examples of artificial slices.

Figure 2.5: Examples of artificial data in space.

////W | {4\

Figure 2.6: Visualisation of how the volume can be cut, creating artificial
transversal (left) and longitudinal (right) slices.






Chapter 3

Background

This chapter contains background relating to ultrasound image acquisition,
the process of image registration, and 2D-3D reconstruction.

B 3.1 Uitrasound imaging

Ultrasound images are created by an ultrasound device. This device contains
piezoelectric material, which produces a sound wave when an electric field
is applied to it. Ultrasound devices use sound waves with frequencies above
20 kHz. These frequencies are above the threshold of human hearing. In the
scanning process, the created sound wave is reflected from the boundary of
two tissues with different acoustic resistance [3]. The reflected wave is then
registered and processed by the device. The ultrasonic beam is swept, and
the received signal is used to construct the resulting grayscale image [3].

2D ultrasound shows only the cross-section of the examined area, but
there are ultrasound devices that can generate a 3D model, usually from a
series of 2D slices [4]. There are different scanning methods for 3D volume
reconstruction. These methods are 2D array scanning, mechanical scanning,
tracked freehand scanning, and untracked freehand scanning [4]. 2D array
scanning uses a 2D array of piezo crystals to create a pyramidal volume.
In mechanical scanning, the ultrasound probe is moved by a machine, and
freehand scanning is done using a hand-held probe. How the images for 3D
reconstruction are acquired by 2D array scanning and freehand scanning is
shown in Figure [3.3|

The freehand scanning method creates a series of 2D ultrasound images,
usually by moving the device in one direction. In the tracked system, there is
a tracking sensor attached to the ultrasound probe. This tracking sensor gives
information about its position and orientation. The sensor can be electromag-
netic, acoustic, or optical [5]. Untracked freehand scanning is done without
any information about the probe’s position. Freehand untracked devices are
the most portable 3D ultrasound systems because of their simplicity, but the
resulting 3D volume quality can be affected by an inconsistent scanning rate

7



3. Background

transducer

scans

Figure 3.1: Image acquisition for 3D reconstruction. Steerable 2D array scanning
(left) obtains multiple slices at once. Freehand scanning (right) results in a series
of slices taken one after another. Taken and edited from [6] and [4].

or a changing angle [4].

. 3.2 How to reconstruct a 3D volume from
ultrasound slices

A 3D reconstruction method takes 2D ultrasound data and uses these images
to approximate 3D volume data. There are several methods of 2D-3D
reconstruction. Some are dependent on the information about the position
of the ultrasound device, which can only be acquired by a position sensor in
the scanning process [4]. When the information about the slice position is
not known, the data found in the images can be used to approximate their
mutual position in 3D space. If the object is scanned from multiple directions,
it can help with better slice localization [7]. But 3D volume reconstruction is
possible even with slices acquired only from one scanning direction [§].

B 3.3 How the scanning process affects
reconstruction quality

The quality of a reconstructed 3D volume is dependent on the capturing
process. In the case when the slices are acquired by a hand-held probe, the
distances between slices can vary. The angle between the ultrasound device
and the captured object can also change, which results in slices that have
varying angles to their neighboring slices. Sometimes the slices can even
intersect, for example, when the object is scanned densely and the capturing
angle changes rapidly. On the other hand, when the object is scanned too
sparsely, there is not enough information to create an accurate 3D model of
the original object.

If the ultrasound device also moves in any other direction but the scanning
direction, it results in a change of the object’s position in the image. These

8



3.4. 2D-3D Reconstruction methods

changes in position can be compensated by image registration (see Section
4.3).

Images acquired with ultrasound also contain a lot of noise and artifacts,
for example, acoustic shadowing, speckle noise, and refraction [4]. These
unwanted phenomena can make ultrasound image processing more challenging.
Creating an accurate 3D reconstruction can also be made more difficult by
tissue deformation, which can occur in the capturing process [9].

. 3.4 2D-3D Reconstruction methods

2D-3D reconstruction methods can be divided into three groups by their
approaches to the problem. There are pixel-based methods, voxel-based
methods, and function-based methods [4]. All these methods take a series
of images and compute values in a 3D volume. This volume contains the
estimation of the scanned area.

B 3.4.1 Pixel-based methods

Pixel-based methods consist of two steps, a bin-filling step and a hole-filling
step [4]. In the bin-filling step, the algorithm goes through every pixel of
every image and uses these pixels’ values to fill the array of volume elements
(voxels) [4]. The elements of the 3D array which were not assigned any value
in the first step are computed in the hole-filling step [9].

If the position and orientation information is known from data acquisition,
this information is used to determine the map function between the 2D ultra-
sound image coordinates and the 3D volume coordinates [10]. A transform
T of image coordinates (u,v) is defined by a matrix A € R3*? and a vector
t € R3, which assign 3D coordinates (z,y,z) to coordinates (u,v) as

Zj = A (Z) +i (3.1)

An example of a method for the bin-filling step is the nearest-neighbor
method. In this method, each pixel’s value is used to fill the nearest voxel [9].
In the case where multiple pixels correspond to one voxel, their average is
computed [9].

After processing every image in the first step, there can still be some empty
voxels. There can be a method that assigns values to these elements of the
3D grid, but not all voxels need to be assigned a value [I1].

In the hole-filling step, values of the empty voxels can be averaged based
on the values of the surrounding voxels [9]. An average of a voxel can be

9



3. Background

computed from a surrounding grid of (21 + 1)3 voxels as

1 l l l

Y V(w+iy+j,z+k), (3.2)
TUVA0) = j=—1 k=1

V(z,y,2) =

where n(y4g) is the number of surrounding non-zero voxels and V' is the
volume filled in the bin-filling step. This computation is done only for the
voxels which have some surrounding non-empty voxels that can be averaged.
If there are still some missing voxel values after this averaging step, the size of
the surrounding grid can be increased, and the missing values can be averaged
from the original values in this larger surrounding grid [9]. Another option for
filling the empty voxels is by interpolation between the two closest non-zero
voxels [11].

B 3.4.2 Voxel-based methods

In voxel-based methods, the whole 3D grid is traversed, and the value for
each voxel is computed from the 2D images [I1]. This approach results in a
grid with no empty voxels, so there is no need for a bin-filling step.

Voxels’ values can either be assigned directly from one pixel, as in the voxel-
nearest neighbor algorithm or from multiple pixels, as in the distance-weighted
method.

In the voxel-nearest neighbor method, the nearest pixel is found by calcu-
lating a normal from the computed voxel to each input image. The shortest
normal gives the closest image, and the pixel’s value closest to the normal is
assigned to the voxel [I1]. If the distance of the voxel to the closest pixel is
too large, this method generates large reconstruction artifacts [12].

A normal of an image is computed from the point-normal plane equation.
The normal vector is computed as

(nla na, 713) = (x(rt) s Y2(rt) Z(rt)) X (w(up)v Y(up)> Z(up))v (33)

where (Z(4), Y(rt)> 2(rt)) 18 @ vector that defines the step to move one pixel
right in the image and (2 (up), Y(up)s Z(up)) 13 @ vector that defines the step to
move one pixel up in the image [13].

The point from the lower-left corner of the image (7., ¥y(c), 2(c)) can be
chosen to complete the point-normal equation:

n1(z — 2(e)) +n2(y — Y(e)) +n3(2 — 2()) = 0. (3.4)
This equation can be rewritten as
nT + N2Y + N3z = N1T(c) + N2Y(c) + N32(c)s (3.5)

or
niz + noy + n3z = b. (3.6)

10



3.4. 2D-3D Reconstruction methods

The distance of the plane form the calculated voxel’s coordinates (zy, Yy, zy)
is then computed as

1Ty + NoYy + N32y — b
\/n% + n% + n%

The closest point (xp,yp, zp) to the calculated voxel (x4, Yy, 2») is then com-
puted as

d:

(3.7)

($p7ypvzp) = (xvyyvazv) +d- (u17u27u3)7 (38)
where (uq,us,us) is the normalized normal vector of the image pointing away
from the computed voxel [13]. Then the closest point value is bilinearly
interpolated by the four enclosing pixels. Bilinear interpolation in the slice’s
plane at coordinates (z,3’) is computed as

9(a,y") =wupg(u,v) + Wupr0g9(u+1,0)+

+ Wy p+19(w, v + 1) + Wyt p19(w+ 1,0+ 1) (3:9)
where
Wy = (u+1—2) (v+1-1v), (3.10)
Wyy1e = (' —u)(v+1—-y), (3.11)
Wypt1 = (u+1—2")(y —v), (3.12)
Wut1,o41 = (2" —u)(y' —v), (3.13)

are the weights of the surrounding pixels’ values, considering that the pixels
are one unit apart [14].

Values in a uniform grid between two known slices can also be calculated
with linear interpolation [I1] or by transformation interpolation, which uses
the original pixel values and a transformation between the interpolated slices
(see Section 4.4.2). If the slices constructing a volume V' are parallel to each
other, then the value of V' at (x,y, z) between two known values V (xg,y, 2)
and V' (z1,y, z) can be linearly interpolated as

V(‘Tla y,Z) B V(xovya Z))
Ir1 — X0 '

Vi(w.9.2) = Vio.2) + (o = a0) (3.14)

for a case when the interpolation is done in the z-axis. Linear interpolation
between two parallel slices is shown in Figure 3.2.

Another type of voxel-based method uses distance-weighing [9]. In the
distance-weighted algorithm, a resulting voxel value W (x,y, z) is computed

from n values as
n

W(l‘,y, Z) = Zwl 'W(xiayiyzi)v (315)
i=1

where
1

d((l"h Yi, Zi)7 (ZL‘, Y, Z))
are the weights of the contributing voxels, computed from their distance from
the resulting voxel. The resulting volume can be too smoothed, and some
information can be lost in the reconstruction process because averaging is
used in the distance-weighting method [4].

w; =

(3.16)
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3. Background

z

(IO> Y, Z)

Figure 3.2: Linear interpolation in the z-axis between two known points
V(xo,y,2) and V(x1,y, 2) of two parallel slices.

R

Figure 3.3: Interpolation with a function visualized along one dimension. The
full lines with points represent the original images and their pixels. A function
(represented by a curve) through these points is estimated. Then it is evaluated
at regular intervals, and the computed values are assigned to the correct voxels.
The evaluated points are represented by x-marks. Taken from [I1].

B 3.4.3 Function-based methods

In function-based methods, the voxel values are calculated from a function,
for example, a polynomial or a radial basis function [9]. In these methods,
a function is chosen to pass through the pixels of the input data. Then it
is evaluated at regular intervals to determine the values in the 3D grid [11].
Because of measurement errors, such as tissue motion, the chosen function can
only approximate the pixel data and does not need to pass exactly through
them [9].

Sometimes the data from the images can be divided into segments to reduce
the required number of computations. Then the data is used to compute the
approximation for that segment. These segments can overlap to create smooth
connections [I1]. One of the disadvantages of function-based methods is their
high computational requirements. On the other hand, they can produce
high-quality 3D volumes [4].

12



3.5. Registration

B 35 Registration

When there are two images of the same object or a scene, it can be useful to
find the mapping function that relates image coordinates in the two images
corresponding to the same physical point. This can also be done for two
volumes representing the same object or an image and a volume. Registration
can be formulated as an optimization problem that finds a transformation
T that minimizes the dissimilarity measure of these two images or volumes.
The result of this transformation is that for every point in one image, the
corresponding point in the second image is found [I4]. For the elements of a
fixed image or volume f(Z) and the elements of a moving image or volume
g9(Z), where ¥ are the coordinate vectors in two or three dimensions, the
coordinate transformation is described by the following equation:

T = arg min J (f(2), 9(T'(7))) (3.17)

where J is a dissimilarity measure [I5] [16].

In our case, minimizing the dissimilarity measure of two objects with regis-
tration can be used to solve the issue of non-existent positional information
about the images. The problem to solve is not knowing the mutual position
of the slices captured in one direction. Another problem is not knowing the
transversal and longitudinal slices’ mutual position.

B 3.5.1 Image registration

Image registration is a process in which a transformation between the coor-
dinate systems of two images is found [I6]. This transformation is used to
align these images.

A transformation 7" of coordinates Z of the moving image ¢ creates trans-
formed coordinates /. A similarity measure J computes how well the trans-
formed moving image ¢(7'(Z)) and the fixed image f(Z) match each other.
An example of a similarity measure is a normalized cross-correlation function

[17], defined as

Za: Zy(f(xvy) B 7)(9(T(I)y)) B 97)

Ve By (F(@,y) = )2/ 5, (9(T (@, ) — 97)%,
(3.18)
where f, g7 are the average values of the fixed and the moving image.

J(f(z,y),9(T(z,y)))

An example of a dissimilarity measure is the square of the difference of
image intensity, defined as

J(f(@,9),9(T(x,9)) = D> (fl2,y) — 9(T(x,y)))>. (3.19)
Ty

The optimization of the similarity function is the role of the optimizer.
Gradient descent [I8] is an example of an optimizer, which finds a function’s

13
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pixels fitness value

¢
ixel .

e (S

Transform

parameters
pixels points

Figure 3.4: Registration process. The chosen metric compares the similarity of
the moving image and the fixed image. The moving image’s transform is then
found by iteratively finding the local minimum of the metric. The interpolator
then computes the pixel values at the desired points, so the images can be
compared again. Taken from [19].

local minimum. One step of the gradient descent algorithm with parameters
f and learning rate y is computed as

Oni1 = 0, — YV J(6), (3.20)

where 6 are parameters defining the transformation 7.

After applying the transformation, the transformed image must be resam-
pled because the values in the transformed coordinates do not need to be
known. These values are computed by an interpolator. The whole image
registration process is shown in Figure |3.4

B 3.5.2 Stopping criteria for the gradient descent optimizer

The chosen optimizer works iteratively, and its criteria determine the number
of iterations that will be performed. The following parameters define the
gradient descent optimizer:

B Learning rate — a multiplicative factor applied on the gradient of the
measure.

® Minimum step size — the step size is the difference between the values
of two consecutive iterations. The registration is stopped when this
difference is smaller than the predefined minimum step size.

® Gradient magnitude tolerance — determines the minimal computed
gradient magnitude. When the gradient magnitude is smaller than the
defined tolerance, the iteration process is stopped.

® Number of iterations — the maximum number of iterations the registra-
tion goes through. [19]
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3.5. Registration

Figure 3.5: Two corresponding cross-sections of the created volumes (longitudinal
on the left and transversal on the right). The transversal cross-section looks
pixelated because of interpolation.

B 3.5.3 Mutual information

Mutual information can be used as a similarity measure for volume regis-
tration. This measure can even be used for volumes of different modalities,
for example, one volume being created by magnetic resonance (MT) and
another by computer tomography (CT) [20]. Our longitudinal and transversal
volumes are of the same modality, both made from ultrasound images, but
the corresponding volume elements can have different intensity values because
the slices were captured at different times and from different angles (Figure
3.5).

Mutual information makes a similarity measure I defined as
I(U,Vr) = HU) + H(Vr) — H(U, V), (3.21)

where U and V are the original compared volumes and V7 was created from V'
by transforming the coordinates of V' with 7', and H is entropy [20]. Mutual
information is computed from histograms of the studied volumes [20)].

B 3.5.4 Multi-resolution registration

Multi-resolution registration can be used to improve the speed, accuracy,
and robustness of the volume registration process. The principle of multi-
resolution lies in creating volume pyramids that consist of scaled-down versions
of the registered volumes (Figure [3.6). In multi-resolution registration, the
registration is first performed with the volumes at the coarsest resolution.
The transform parameters determined by the registration are then used to
initialize the registration at the next finer level. This is repeated until the
finest level of image resolution is reached [19].
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Figure 3.6: Representation of multi-resolution registration. The registered
objects are subsampled at various rates, and the subsampled versions are used
at different registration levels. Taken from [19].
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Chapter 4
Methods

This chapter describes the full process of 2D-3D reconstruction. Technical
details of the implementation can be found in Appendix [Al

B a1 Proposed volume reconstruction method

The proposed method can be described by the following steps:

B Use image registration to separately align all the images in the transversal
image set and the longitudinal image set. Do this to compensate for the
unwanted movements of the scanning probe, which cause a change of the
object’s position in individual slices (Section .

B8 Create two volumes, one from longitudinal slices and the other from
transversal slices (Section |4.4).

® Find and apply the transformation between the two created volumes.
This results in the first estimation of the transversal and longitudinal
slices’ mutual position (Section 4.5)).

® Improve the estimation of the slices’ position by repeating these steps:

Register the longitudinal slices in the transversal volume, update
their coordinates and create a new longitudinal volume from these
transformed slices.

Register the transversal slices in the longitudinal volume, update
their coordinates and create a new transversal volume from these
transformed slices (Section 4.6)).

® Create a final volume from both sets of slices with their updated position

in space (Section [4.7).

The whole process is represented in Figure 4.1

17



4. Methods

g@ -

3) (4)

Figure 4.1: The proposed method. In part (1), images are registered. In part
(2), two volumes are created from the registered images, these volumes are then
registered and their mutual transformations are found. The volumes are then
transformed. In part (3), slices are registered in the transformed volumes. In
part (4), the final volume is created.

B a2 Preprocessing

Images corresponding to one patient had to be manually separated into two
groups, longitudinal images and transversal images. In the first part of the
3D volume reconstruction, these two sets of images are handled separately
to create two volumes. Where to find these separated images is written in
Appendix [Al

B a3 Registration of a series of images

The scanning device did not move in a perfectly straight line during the
scanning process, which resulted in the change of the object’s position in
every image. One image can be chosen as a fixed image, and the rest of the
images can be shifted and rotated to compensate for some of the scanning
device’s unwanted movement.

The image in the middle of the series is used as a fixed image in the
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4.3. Registration of a series of images

Figure 4.2: Example of the registration process of a series of images. The grey
image represents the chosen fixed image which will not be transformed.

registration process to minimize the distance between the fixed image and
any other moving image. The registration is done gradually by finding a
rigid transformation (a transformation composed of rotation and translation)
between each pair of neighboring images. To align the image that neighbors
with the middle image, only the transformation between these two images
needs to be applied. Every following image is transformed by composing all
the transformations between the currently transformed image and the middle
image.

Let us consider a series of n images fo, ..., fn—1, and let k = (n — 1)/2 be
the index of the chosen fixed image in the middle of the series. The rigid 2D
transformations between the coordinate systems are found with registration
as

T‘iJr = argm,%x J(fl-i-l(xvy)vfl(T(xvy))) (41)

for the images preceding the chosen fixed image. And
T‘ii = arngaX J(fzfl(xvy)vfl(T(mvy))) (42)

for the images following the chosen fixed image, where J is the cross-correlation
function. The preceding images are transformed as

fitz.y) = filT;F o Tiy o0 Ty (2, y)). (4.3)
And the following images are transformed as

fitwy) = T o Tizy 00 Ty (2, ). (4.4)

B 4.3.1 Image registration results

Image registration is done for every pair of images with the SimpleI TK library,
using a gradient descent optimizer and the following parameters: learning
rate=1, minimal gradient magitude step=0.001, number of iterations=100,
gradient tolerance=0.0005. Cross-correlation was used as a metric and a
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4. Methods

Figure 4.3: Transversal images before (top row) and after (bottom row) image
registration. The green image is the chosen middle fixed image that is not being
transformed. The pink image is the moving image.

=-—/

Figure 4.4: Transversal images before (top row) and after (bottom row) image
registration. All images contain two neighboring images.

linear interpolator was used for resampling. The usual time for registering
and transforming all the images is about one minute.

Figures 4.3| and 4.5 show how the images were aligned with the middle
fixed image. Figures 4.4 and |4.6| show the alignment of several neighboring
images.

Tables |4.1| and 4.2 contain the mean absolute differences for image pixel
values of neighboring transversal and longitudinal images before and after the
registration process. Values for every image pair decrease after registration.
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4.3. Registration of a series of images

image indexes before after

0,1 31.97  7.10
1,2 26.85  7.72
2,3 1419 855
3.4 19.75  6.25
4,5 25.12  12.66
5,6 20.21  12.52
6,7 16.22  9.63
7,8 26.81  8.56
8,9 954  17.69
9,10 1489  8.39
10,11 943  8.42
11,12 29.00  8.20
12,13 20.94  7.39
13,14 19.89  5.76
14,15 26.35  5.35
total sum 311.16  124.19

Table 4.1: Mean absolute difference between two neighboring transversal images
before and after registration.

Figure 4.5: Longitudinal images before (top row) and after (bottom row) image
registration. The green image is the chosen middle fixed image that is not being
transformed. The pink image is the moving image.
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4. Methods

Figure 4.6: Longitudinal images before (top row) and after (bottom row) image
registration. All images contain two neighboring images.

image indexes before after

0,1 10.76 10.16
1,2 18.92 16.28
2,3 13.70 9.47
3, 4 11.55 6.94
4,5 16.60 14.26
5, 6 12.70 12.44
6, 7 25.43 21.40
7,8 22.99 11.18
8,9 19.70 18.28
9,10 19.77 9.26
total sum 172.12  129.67

Table 4.2: Mean absolute difference between two neighboring longitudinal images
before and after registration.
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4.4. Volume creation

. 4.4 \Volume creation

One volume is created from longitudinal images and another is created from
transversal images. The process of making one volume goes as follows:

® Assume that the ultrasound slices corrected by registration are spaced
evenly and parallel to each other. They fill a 3D uniform grid at regular
intervals. The rest of the slices creating this grid have unknown values.

® Create a 3D uniform grid of the size NxHxW, where N is the total
number of known and unknown slices, H is the height of the images, and
W is their width.

8 Compute the positions of the known slices in the grid.

® Fill the grid with the known slices at their positions and calculate the
values of the unknown slices between them.

B 4.4.1 The distance between two slices and the first
estimation of slices’ position

The distance between two known slices is measured in the number of missing
slices between them. One assumption made for simplification of the first
estimation is that the first slice in one set is positioned at the first voxel of
the slices in the other set. Every following slice is shifted by a multiple of the
distance between two slices.

The distance between two transversal slices is estimated in a way to create
a volume of a depth that is close to the width of the longitudinal images.
To reach this goal, the total number of missing transversal slices V¢
computed as

is

miss

Ni....=W,— N, (4.5)

where W is the width of the longitudinal images and NN; is the number of
known transversal slices. The number of all missing transversal slices Ny,
is also computed as

Nipioo = di - (Ny — 1), (4.6)

where d; is the number of missing slices between two known slices and Ny is
the number of all known transversal slices.

The number of missing slices between two known slices d; is then computed
from 4.5/ and 4.6 as
Ntmiss _ I/I/l — Nt

d, = — .
PN, 1 N -1

(4.7)

For the longitudinal volume, the depth should be close to the artery
diameter because the longitudinal images slice the artery from one edge to
the other. The number of all missing longitudinal slices IV, is computed as

miss

Nipiss = di - (N = 1), (4.8)

miss
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4. Methods

z

Figure 4.7: The first estimation of slices’ position. The first slice is at the origin,
and every following slice is shifted by the estimated distance. The image on the
left shows this for transversal slices and the image on the right for longitudinal
slices.

where d; is the number of missing slices between two known slices and /V; is the
number of all known longitudinal slices. The number of missing longitudinal
slices Ny, ... is also computed as

Ny =d, — Ny, (4'9)

miss

where d, is the diameter of the artery in pixels and N; is the total number of
longitudinal slices. The number of missing longitudinal slices d; is computed

from 4.8 and 4.9] as
Nlmiss _ da B Nl

dy = - .
TN -1 N -1

(4.10)

With this information about the number of missing slices, the slices can be
put into 3D space. For the transversal volume, the first slice in the series is
put at the origin. Then the next slice is shifted by d; + 1 on the x-axis, to fit
dy number of slices between them. This shift is then done for every following
slice. The same is done for the longitudinal slices, but the slices are put into
the space rotated by 90° around the z-axis. This means that they are being
shifted on the y axis by d; + 1. So the i-th transversal slice u; passes through
the point

Ty = (i (d¢ +1),0,0). (4.11)

These points are found for each transversal slice ug, ..., un,—1.

And the j-th longitudinal slice v; passes through the point
f(]) = (0,] . (dl + 1),0). (4.12)

These points are found for each slice v, ...,vn,—1.

How all slices are put in 3D space is shown in Figure 4.7,

B 4.4.2 Interpolation

Two methods of interpolation were implemented and tested. The comparison
of these two method is made in Section [4.6.1l The first method is piecewise

24



4.4. Volume creation

linear interpolation described in Section [3.4.2| and the second method is
transformation interpolation.

Transformation interpolation between two slices f,, f is done with the use
of a transformation Ty, which was found by registering these images, using f,
as the fixed image and f; as the moving image. This means that Ty is found
as

Ty = axgmin J(fo(®), f,(T(®))), (4.13)
where J is a dissimilarity measure.

Ty is defined by its parameters . Every new constructed slice fi.,.fy
between f, and f; is made by transforming one of the two original slices by a
transformation Ty, which is created from parameters p and Af.

The particular transformation Tj, is an identity for some parameters 6.
For these parameters, it holds that

Ty, (Z) = 7. (4.14)

Parameters A6 are used to linearly change parameters 6 into parameters 6.
They satisfy the equation

d
> Ag=90 (4.15)
i=1
A j-th slice in the first half of the interpolated volume is constructed as

fi = 1a(Ty; (7)), (4.16)

where the parameters 6 of Tp, are computed as

j
0; =00 — > _ A6 (4.17)

=1

Slices in the second half of the interpolated volume are constructed as

fi = fo(Ty, (%)), (4.18)
where 6; is computed as
d—j+1
0, =060+ > A6 (4.19)
i=1

If the used transform Ty is a similarity transform, it is represented by a
translation in two directions in the image plane (z, yo), rotation angle around
the center of the image «, and a scaling factor . The identity parameters 6y
for this transform are:

a=0 (4.20)
xro = 0 (4.21)
yo =0 (4.22)
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Figure 4.8: The process of filling the voxels between two known slices. In (1),
the similarity transform between the two slices is found. In (2) and (3), the
transform parameters are used to create the slices that fill the empty voxels.
This results in a filled 3D array shown in (4).

y=1 (4.23)
and parameters Af are:

(]
Aa = = 4.24
a=7 (4.24)
Ag =20 (4.25)

d
Ay=2 (4.26)

d

v—1

How these parameters are used in the creation of the unknown images is
represented in Figure |4.8

B 45 Volume registration

The relative position of the two created volumes needs to be found to align
the corresponding voxels. This is done with 3D Euler registration using
the SimpleITK library [2I]. This registration uses the Euler transform,
whose parameters are rotation around a fixed center and translation in three
dimensions.

The transversal volume U is used as the fixed volume and the longitudinal
volume V is used as the moving volume. The center of mass of V is then
used as the center of rotation to better align the two volumes before the
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4.6. Improving the estimation of slices’ position

registration is started. The vector between the two centers of mass is then
passed as the initial translation of the transform.

The found transform 7" can then be used to align the voxels of V' with the
corresponding voxels of U. The inverse transform 7! to the transform T
can be used align the voxels of U with the corresponding voxels of V.

The elements of the transformed volumes Ur and Vp can be computed
from the elements of U and V as

Ur(3) = U(T(@)) (4.28)

Vr(Z) = V(T HZ)). (4.29)

These transformed volumes are then used in the process of improving the
slices’ position.

B a6 Improving the estimation of slices’ position

The improvement of slices’ positions is made only for mutual slice distances.
Mutual angles between two slices from one scanning direction will not be
updated. Only the angle between the longitudinal and transversal slices will
change. This mutual angle is acquired in the volume registration process,
and it is given by the mutual angle of the two constructed volumes. If the
mutual angles of the slices from one scanning direction were also changed, it
might further improve the reconstruction quality.

The position of the i-th transversal slice u; from the first estimation is:

where d; is the number of missing slices between two known transversal slices.
The position of the j-th longitudinal slice v; before slice registration is:

Z(j = (0,5 - (d; +1),0), (4.31)

where d; is the number of missing slices between two known longitudinal
slices.

In the improvement process, the y coordinate of transversal slices will
be updated, and the = coordinate of longitudinal slices will be updated.
New volumes U’, V' will then be constructed from slices ug, ug, ..., un,—1 and
V0, V2, ..., UN,—1, as is described in |4.4.2, but the slices’ updated positions will
be used. These positions are:

for transversal slices. And
7 = (0,y1,.,0) (4.33)
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for longitudinal slices.

The coordinates zr; and yr; are found with registration using a translation
transformation. The coordinate x, belonging to a slice u; is found by using
a thin slice from the volume U which surrounds the slice u;. This approach
is slower than registering only the images in the volumes because it involves
more elements, but the precomputed volume part, which surrounds the
known image, contains more information about the shape of the area and its
estimated surrounding.

The slice is chosen as to surround the updated image by a quarter of the
precomputed image distance d on both sides, this creates a slice of a depth
d/2. This thin slice is then registered in the transformed volume V7, and
the coordinate at the center of the slice in the z-axis is considered the new
coordinate of the image u;. A similar thing is done for the longitudinal slices
v, ..., UN,—1, Which are registered in the volume Ur, and their y coordinate is
then updated.

Mutual information is used as a similarity metric. Only two iterations
of slice registration are done in the proposed method because of high time
requirements of registering every slice. If the number of iterations was
increased, it could lead to improvement in reconstruction quality.

After all the positions are updated, new volumes are created, the coordinate
update is then repeated.

B 4.6.1 Results of slice coordinate update

Both registration of slices in volume and volume registration were done
with mutual information as the similarity measure and a gradient descent
optimizer with the maximum of 20 iterations in slice registration and 30
iterations in volume registration. A learning rate of 0.1 was used. Thirty
histogram bins were used for the computation of mutual information, which
was computed from 2 % of randomly selected elements to reduce the time
needed for computation. The registration was computed at three levels of
resolution. At the first level the volume was reduced by a factor of 4 and
at the second level a factor of 2. 3D Euler transformation is used in volume
registration and translation is used in slice registration. The usual time for
two iterations of the coordinate update is 15-20 minutes.

Table 4.3 contains mutual information of the transversal and longitudinal
volumes during the reconstruction process. The first value is computed
before slice registration, and the second value is computed for volumes that
were constructed from slices with their updated positions. The mutual
information was computed for several volumes with a different number of
original transversal and longitudinal slices. The computation is done with
the MattesMutuallnformation metric implemented in the SimpleITK library
[21]. Mutual information is greater on average for volumes created with linear
interpolation. Linear interpolation was chosen in the final implementation
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4.6. Improving the estimation of slices’ position

based on these results.

The quality of artificial volumes is computed from their signal to noise
ratio (SNR) defined as

2
Zaj Zy Zz O(x’yv Z) )’ (434)

Z:c Zy Zz(O(xa Y, Z) - W(.Z’, Y, Z))2

where O is the original volume and W is its reconstruction. The artificial slices
in the experiments were chosen to have different mutual distances. These
sets of slices were created manually by picking slices that are approximately
the same distance apart.

The SNR values are computed in Tables [4.5 and 4.6| for different numbers
of used slices. The proposed method struggles to improve this value in cases
with a small number of original slices in the case of linear interpolation.

number of known slices

slice id (transversal+longitudinal) A 72 05 R
100027 16 + 11 0.183 0.222
105520 16 4+ 12 0.223 0.276
128207 13+ 12 0.192 0.224
137930 20+ 9 0.027 0.154
159463 1149 0.186 0.306
160177 11+9 0.149 0.229
252957 1249 0.149 0.287
496029 19+ 11 0.074 0.151
559832 124+ 10 0.155 0.208
587463 12 + 10 0.155 0.189
646157 174+ 8 0.336 0.347
794335 24 + 10 0.157 0.229
855886 12 4+ 10 0.271 0.264
955148 9412 0.331 0.347

Table 4.3: Mutual information (MI) of the transversal and longitudinal volumes
before and after two iterations of slice registration, using MI as the registration
similarity measure and Transformation interpolation between slices. Computed
for several volumes (higher value of MI is better).
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number of known slices

slice id T e MI before MI after
100027 16 + 11 0.227 0.316
105520 16 + 12 0.231 0.350
128207 13 +12 0.249 0.268
137930 20+9 0.205 0.281
159463 11+9 0.299 0.356
160177 11+9 0.197 0.311
252957 1249 0.278 0.283
496029 119 = 111 0.160 0.218
559832 12 +10 0.197 0.257
587463 12 +10 0.251 0.261
646157 1748 0.375 0.350
794335 24+10 0.233 0.223
855886 12 +10 0.309 0.333
955148 9+ 12 0.381 0.398

Table 4.4: Mutual information (MI) of the transversal and longitudinal volumes
before and after two iterations of slice registration, using MI as the registration
similarity measure and Linear interpolation between slices. Computed for several
volumes (higher value of MI is better).

number of slices

(transversal+longitudinal) SNR before SNR after

14 + 13 9.45 10.10
14 +11 9.87 10.08
13 +10 9.97 10.69
10+9 8.08 10.11
9+8 10.01 10.01

Table 4.5: Signal to noise ratio (SNR) computed for volumes created from
a different number of artificial slices. Trasformation interpolation was used
for volume creation. SNR is computed before and after two iterations of slice
registraion.

number of slices

(transversal+longitudinal) SNR before  SNR after

14 + 13 9.93 9.95
14 +11 8.52 10.47
13 + 10 10.27 10.37
1049 9.01 8.69
9+8 9.36 9.01

Table 4.6: Signal to noise ratio (SNR) computed for volumes created from a
different number of artificial slices. Linear interpolation was used for volume
creation. SNR is computed before and after two iterations of slice registraion.
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4.7. Fusing two volumes into one

B a7 Fusing two volumes into one

The resulting volume is computed from the transversal and longitudinal
volumes by summing the elements at the corresponding coordinates. The
weight of a resulting element W (x,y, ) is determined by its inverse distance
to the nearest known slice and is computed from U and V as

wy - U(:’Ua y,Z) +wy - V(xaya Z)

W(x,y,z) = ——

: (4.35)

where U(z,y,z) and V(z,y,2) were acquired with interpolation, and the
weights w are computed as
1

wy = , 4.36
v d((xaywz)y(xUs,yUsyzUs)) ( )

1
d((l’, Y, Z)a (xV& Yvs, ZVs))’

where d((z,y, 2), (zus, Yyus, 2us)) and d((x,y, 2), (xvs, yvs, 2vs) are distances
from the nearest known original tranverse and longitudinal slices. This dis-
tance is computed as the number of voxels separating the currently computed
voxel and the nearest known slice.

(4.37)

wy =

The actual computation of the final volume is done by separately computing
the transversal volume weights and the longitudinal weights. Because the
transform between these two volumes is known, the weights can then be
applied at the correct coordinates.

. 4.8 Results

Linear interpolation is used in the final implementation because it gives
better volume reconstruction results. The result of running the script, which
contains the implementation of the proposed method, is shown in Figure [4.9.
It is a window containing a created 3D isosurface on the left side and three
orthogonal slices of the volume on the right side. The value at which the
surface is shown can be changed by a slider at the top of the window. The
slices on the right side can be moved to a different position by dragging them
with the mouse cursor. Both the volume and the slices can be rotated to view
the result from any direction.

Some examples of the generated volumes are shown in Figures |4.10, 4.11,
4.12, 4.13], and 4.14.

Reconstructed artificial volumes are shown in Figures [4.15] [4.16, and [4.17.
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Figure 4.9: The output of the script which implements the proposed method.

Figure 4.10: An example of a reconstructed volume and its cross section.

Figure 4.11: An example of a reconstructed volume and its cross section.
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4.8. Results

Figure 4.12: An example of a reconstructed volume.

Figure 4.13: An example of slices taken from a reconstructed volume.

[

Figure 4.14: An example of slices taken from a reconstructed volume.

Figure 4.15: Artificial volume recreated from 12 transversal and 9 longitudinal
slices(using transformation interpolation).
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Figure 4.16: Artificial volume recreated from 13 transversal and 11 longitudinal
slices(using linear interpolation).

Figure 4.17: Reconstructed artificial volume slices. The first row shows the
original volume, the second row the reconstruction and the third row their
absolute difference. The artificial volume was created from 12 transversal and 9
longitudinal slices (using transformation interpolation).
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Chapter 5

Conclusions

The aim of this thesis was to create a 3D volume from 2D ultrasound images of
the carotid artery. There is no information about the position of the images, so
a method of estimating the slices’ position in 3D space had to be implemented
before the volume reconstruction itself. The process of determining the slices’
positions was made easier by the fact that the studied object, the carotid
artery, was scanned in two directions. Both sets of slices were first used to
create two separate volumes, and with the help of registration, a final volume
was computed. The resulting visualization shows how the transversal and
longitudinal slices intersect each other and gives an estimate of the original
volume’s shape.

Some assumptions were made during the reconstruction process because
they simplified the implemented methods and reduced the computation
times. The volume reconstruction could be made more accurate if these
simplifications were omitted. For example, only one coordinate was updated
in the computation of the slices’ positions. The mutual angles of slices
scanned in one direction also were not updated, only the mutual angles
between the transversal and longitudinal slice sets were changed. Some
improvements could be made if the unchanged parameters were changed in
the reconstruction process. More iterations of slice registration should also
improve the reconstruction quality.

Some of the input datasets include too few slices (below 20 in total) or
contain images with many artifacts. Unfortunately, the proposed method
cannot reliably reconstruct a volume from these images.
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Appendix A

Implementation details

The proposed method was implemented in Python 3.9 [22]. The implementa-
tion can be found on GitLabE The GitLab repository contains the following
directories:

B data: contains a few sets of slices, which can be used to create a 3D
volume

® image_ manipulation: contains functions that work with 2D images
B registration: contains registration algorithms

8 volume__manipulation: contains functions that work with 3D arrays

Some data is included in the GitLab project, but more in-vitro images can
be found on Google DriveEL or downloaded using an account in the CMP
Unix network?!

The libraries used in the project can be found in table

Library Usage
SimplelTK [21] registration, transformations
scipy [23] some computations
numpy [24] manipulation of arrays
PyVista [25] visualisation of volumes
Pillow [26], OpenCV [27] image manipulation

Table A.1: Libraries used in the project.

Thttps: //gitlab.fel.cvut.cz/kvasomal/bakalarska_pracel

https://drive.google.com/drive/folders/1Vh4d1S3hPiq-GXgxg1VDI5Vw3fit7xhR?-|
the images are located in the /datagrid/Medical/ArteryPlaque/2018 10 1 hist us
directory
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A. Implementation details

The implemented algorithm can be run by the script run.py. The runtime
is around 20-30 minutes, depending on the number of images. Detailed
information about running the script can be found in the README.md
file.
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