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Abstract

This thesis proposes an application for
real-time cognitive load detection from
the ECG signal using convolutional neural
networks and a microcontroller. Two net-
work architectures are proposed and sta-
tistically evaluated. The neural networks
were proposed in Python with TensorFlow,
and the application was developed for the
STM32F303RE microcontroller in C lan-
guage with development tools from STMi-
croelectronics. The application also con-
tains a method for detecting R-peaks and
computing several parameters from the
ECG signal. A PC application that re-
ceives and visualizes the results sent from
the microcontroller was also developed.
The proposed solution is evaluated and
compared to existing research.
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microcontrollers
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Abstrakt

Tato prace se zabyva ndvrhem a imple-
mentaci aplikace pro mikrokontrolér pro
detekci kognitivni zatéze na zakladé ana-
Iyzy EKG signalu v redlném case. Pro ana-
Iyzu EKG signélu byly vyuzity konvolu¢ni
neuronové sité. Na zdkladé experimenti
byly vybrany dvé architektury neurono-
vych siti. Neuronové sité byly navrzeny v
Pythonu, ale samotnd aplikace pro mik-
rokontrolér STM32F303RE je vytvorena
v programovacim jazyce C za pomoci na-
stroji od STMicroelectronics. Aplikace
obsahuje také metodu pro detekci R kmitt
a vypocet nékolika parametri z EKG sig-
nalu. Soucasti prace je také aplikace na
pocitaci, ktera prijimé a graficky zobra-
zuje vysledky z mikrokontroléru. Presnost
navrzeného reseni je statisticky vyhodno-
cena a porovhana s existujicim vyzkumem
v této oblasti.

Klicova slova: detekce kongitivni
zatéze, konvoluéni neuronové sité, EKG,
strojové uceni na mikrokontrolérech,
mikrokontroléry

P¥eklad nazvu: Softwarova aplikace
pro real time analyzu EKG signélu s
vyuzitim Al ¢ipu
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Chapter 1

Introduction

. 1.1 Motivation

If there is something that every one of us does every day, it is processing
information. Thus, if we could measure the effectiveness of that, it would be
most beneficial in many applications. There is a paper from 1988 [2], which
describes a parameter, called the cognitive load, that relates to our ability to
process information. Being able to measure the cognitive load in real-time
reliably is applicable in various fields ranging from education and tutoring to

smart medical and healthcare diagnostics or human-machine interactions.

. 1.2 Problem formulation

The idea behind the cognitive load theory is quite simple. There is working
memory and long-term memory. When we are overwhelmed with too many
perceptions, working memory cannot process all the information, the cognitive

load is high, and the effectiveness of processing information is reduced.

Several physiological signals and parameters can be used to determine the
state of cognitive load. In this work, we will use the ECG signal for this
purpose, as research suggests that the cognitive load can be quite accurately
determined from it. [6] [9]

Now how to compute the cognitive load. There are several machine learning
methods suitable for this task. However, this work aims to classify cognitive

load on a microcontroller, so we will be using neural networks, as there are
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software libraries suitable for compressing them and implementing them on

embedded devices.

In this paper, [14] data is collected by a wrist-worn sensor and sent to the
cloud, where a powerful machine learning model determines the state of the
cognitive load. While this works, it would be far more practical to perform
on-site classification directly on the embedded device and thus eliminate
the need to send the data elsewhere, saving time and energy needed in the

process.

This is something that an emerging branch of machine learning called tiny
machine learning could help solve. Tiny machine learning is trying to port
complex machine learning models to mobile and embedded devices, where
they can run with minimal power and yet be able to compute various difficult

problems.

Using a microcontroller means that the final solution will be lightweight
and portable, as microchips are small and can be integrated into a device
that fits in a pocket. However, this also creates several difficulties that need
to be dealt with. One downside is that the big and powerful machine learning
models usually require much computational power. However, our model
must be fast and light because microcontrollers have limited computational
power and memory. In recent years, there has been much research into model
architectures that have performance similar to the large machine learning
models. Yet, they are small enough, so it is feasible to use them in mobile
and embedded applications. [44][45]

Now, we will set goals for the practical part of this thesis. Firstly, we need
to prepare the collected ECG data for training and testing. Secondly, it will be
necessary to experiment with various designs to find a light, fast, and precise
architecture we can employ on a microcontroller. Thirdly, we need to create
a communication pipeline so that the microcontroller can correctly process a
continuous stream of data and output the computed results. Furthermore, we
need to analyze the results statistically to determine whether our proposed

method is effective.
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Chapter 2

Cognitive load

B2 Cogpnitive load theory

Cogpnitive load theory comes from the late 1980s [2]. It puts the success in
learning and problem solving into context with the amount of effort and
resources invested in the process. Resources in this context refer to attention,

decisions, working memory load, or task-related knowledge.

Long-term memory, much like in computers, in human cognition, there is
a structure for storing the large amounts of information we come in contact

with. This structure is called long-term memory.

Working memory is a memory segment we have for processing new infor-
mation. Compared to long-term memory, it is quite limited both in capacity
and time. [4]

The basis for it is that we primarily learn by acquiring schema, and in
the future, we know what actions to choose because we have the schema for
it. Cognitive load theory describes the correlation between the effectiveness
of schema acquisition and current cognitive load. Imposing high levels of
cognitive load is not very effective for learning, the reason being that human
working memory is limited, and if we overload it with too many perceptions,

there are not enough resources left for schema acquisition. [2]

When we are close to the limit of our working memory capacity, we enter
what we would call a state of high cognitive load. This state is typically

associated with stimuli that require a lot of mental efforts, such as calculations,
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presentations, and memorization. On the other hand, we have a low cognitive
load state. This state is associated with tasks that require minimal mental

effort. For example, resting or tasks that are highly automatized.

Several attributes contribute to the generation of cognitive load. The
difficulty of the materials generates an intrinsic load, and extraneous load
is generated by the design of the instruction and materials. And lastly, the
germane load is the amount of mental effort invested. [[3] p.1] Apart from
these, another critical attribute is prior knowledge of the subject. These
knowledge patterns are referred to as schemas. Possessing relevant schemas
decreases the intrinsic load. For example, a math professor will have a lower
cognitive load than your average first-year university student when doing

calculus. [I]

B 22 Measuring cognitive load

The traditional approach uses self-rated subjective measures such as question-
naires. [5] These methods provide insight into individual perceptions and the
mental state of the subject. However, they are not suitable for the real-time

classification of cognitive load.

There is considerable evidence that the changes in mental state are reflected
in the state of the whole body [12]. So a more recent approach is to measure
various physiological signals to try and classify their cognitive load with the
help of some machine learning or statistical techniques. Although we can use
a range of signals to detect cognitive load, not all are suitable for real-time
detection in embedded devices. We need the signals we want to use for
classification in embedded devices to have several properties. Ideally, they
must be easily and reliably measurable with a cheap sensor at skin contact.
This thesis aims to predict the cognitive load state from the ECG signal,
so we will mostly focus on cardiovascular measures. These are discussed in
more detail in |4.1.3l Besides the ECG, some other signals we could use for
this purpose are the GSR (galvanic skin response), eye activity, and skin

temperature. [12]

State-of-the-art methods reach around 97% in classification accuracy.
[12][13] Highly accurate methods usually use multiple signals, which in-

creases the information collected, and it is more reliable than using only one

6



2.3. Cognitive load influence

measure. [I3] However, using various signals also increases the complexity of
the application, and some, like the EEG, are hard to measure with wearable
devices. The best method we could find that used only ECG reached 90%

accuracy. [13]

B 23 Cognitive load influence

Increased cognitive load has been linked to decreased performance in learning
and memorization [2][I]. It also influences decision-making. According to [42]
it leads to poorer performance in arithmetic tasks, increases the reluctance
to take risks, and the anchoring effect. These findings suggest that increased

cognitive load hinders the ability to make decisions.






Chapter 3

Microcontroller

The embedded device used for this work was the STM32F303RET6 Nucleo-64

board. This board was lent to me for this thesis as a part of the assignment.

For our application to work correctly, we need to run it on a board that
can handle it. This creates several requirements for choosing the board. We
need a large enough Flash memory to fit the code and all the libraries. We
also need a big enough RAM for storing all the buffers used for the ECG
signal and the parameters for the neural network. Also, since we are using
the X-Cube-AI package [20], we need a compatible processor. The chosen
board satisfies all of these while still being a mid-range board and thus not

overly expensive.

STM32 is a series of 32-bit microcontrollers from STMicroelectronics. Each
board consists of several parts. The main components are the processor
core, SRAM, flash memory, debugging interface, and various peripherals
such as UART, ADC, etc. This chapter will cover the parts of the board
that our application uses so that the reader can understand the necessary

microcontroller features to grasp how the software application works.

B 3.1 Nucleo STM32F303RE

STM32F303RE is a mid-range, affordable board. Its main features are the
Arm Cortex-M4 core processor running at 72 MHz, 512 Kbytes of Flash
memory, and 80 Kbytes of SRAM, which is divided into two segments, one
of which is 64 Kbytes of SRAM and the other is 16 Kbytes of CCM SRAM

9



3. Microcontroller

(core coupled memory ram). The purpose of this is that the code can be
placed in the CCM SRAM, which is faster compared to when the code is
executed from flash memory. Data are then placed into the standard SRAM.

This configuration can lead to a performance increase in some cases. [I8][19]
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Figure 3.1: STM32F303RET6 Nucleo-64 board

B 3.1.1 Universal Synchronous/Asynchronous
Receiver/Transmitter

The Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
is one of the peripherals integrated on the Nucleo board. It is used for
serial communication over a wire. It is composed of a TX, a wire used for
sending, RX, which is used for receiving, and common ground. Synchronous
communication requires one endpoint of the communication to provide a clock
signal. Asynchronous communication does not require the clock signal, but
both endpoints must use the same baud rate (transfer speed). STM32 USART
/ UART peripherals can be configured to operate in both synchronous and
asynchronous modes. The application for this thesis uses the asynchronous

one.

10



3.2. Development enviroment & programming the board

The default value for the UART communication line is HIGH. The start of
a message is indicated by a start bit, which makes the signal go LOW. After
the start-bit, there are 8 bits with information and, depending on the setting,
also 1 parity bit, which serves as a control mechanism to check whether the
message is received correctly. At the end of the message, there is a stop-bit
whose value is HIGH. Only 8-bit values can be sent over UART. That means
that in order to send a number, each digit has to be sent as a text character

and has to be correctly interpreted and reconstructed by the receiver. [17]

B 3.1.2 Direct memory access

Direct memory access (DMA) is a digital logic element in the hardware
architecture, and its purpose is to handle memory transfers. Without DMA,
if we want to write or read some data into or from memory, it is necessary to
run the instructions for it by the processor. And when the data are received
continuously, a large number of interrupts are fired from the peripherals. This
puts a load on the processor that slows it down, and it can even make it miss
some instructions. Using DMA for this purpose significantly increases the
application’s execution speed. Because while DMA handles data transfer, the
processor can execute other instructions. In our case, the DMA fills the input
buffer with the data from the USART while the processor runs the neural

network in parallel.

B 32 Development enviroment & programming the
board

The development environment used to program the microcontroller was
STM32CubelDE. It contains a variety of tools in one IDE and all the necessary

software needed to create applications for various STM boards and processors.

If we look at the board 3.1, we can see two regions. The right part is
the nucleo itself, and the left part contains the ST-LINK. ST-LINK is a
debugger and programmer for STM8 and STM32 microcontrollers. Using
STM32CUBEIDE and ST-LINK, we can easily flash the program into the
microcontroller. It also provides access to the onboard debugger, so it is
possible to debug the application in real-time. Some handy debugging tools

are the possibility to see the contents of individual buffers and variables or

11



3. Microcontroller

the amount of flash memory and RAM used. It is also connected to the board
peripherals, so one USB-mini cable is used for the communication between

the board and the PC and for programming the board.

There is also the CubeMX, which is a graphical tool that allows the user
to configure peripherals with a graphical user interface. It also generates the

initialization code for the peripherals.

B 3.2.1 Hardware abstraction layer

Microcontrollers are controlled by writing bits into their registers. While
this can be done manually and allows precise control of the microcontroller,
writing such code is also tedious and slow. The HAL library provides functions
that can perform complex tasks, such as sending data through the USART
or blinking a LED, with a few function calls. It also makes the code portable
between different microcontrollers. The disadvantage of this is that the code

can be suboptimal in performance at the cost of portability.

B 3.2.2 STM X-Cube-Al

STM X-Cube-Al [20] is a package integrated into STM32CubeMX that allows
easy implementation of machine learning models on microcontrollers. It
contains a graphical user interface that allows the user to load the neural
network into the microcontroller and analyze it. The analysis shows the
architecture and all the buffers of the neural network. It also shows the RAM
and FLASH memory that the model requires. It is also possible to run the
model with random numbers or input provided to check if it is executed safely.
This evaluation can be run on both the PC and the board.

It provides support for models exported from a variety of deep learning
frameworks, such as TensorFlow Lite, PyTorch, or MATLAB. There are two
runtimes available for the TensorFlow Lite models. One is the open-source
TensorFlow Lite for Microcontrollers runtime, and the other is the proprietary
STM32Cube.Al runtime. Although using proprietary software can sometimes
create problems with compatibility, the STM32Cube.Al runtime seems to
have better performance and more straightforward implementation, so that is
what I used in the end. It also offers a tool for model compression. However,

our models were already quantized, so we did not make any use of this.

12



Chapter 4

Data and preprocessing

B 4.1 Electrocardiogram (ECG)

Bl 4.1.1 Heart anatomy

The heart is an organ that pumps blood through the body. It is composed of

four chambers, two atriums, and two ventricles.

Frontal plane

through heart Arch of aorta

Bachman’s bundle
Sinoatrial
(SA) node
Anterior interodal

Atrioventricular
(AV) node

Middle internodal
Posterior internodal

Left atrium

Atrioventricular (AV)
bundle (bundle of His)

Left ventricle

Right and left bundle
branches

Right atrium
Right ventricle

Purkinje fibers

Anterior view of frontal section

Figure 4.1: Schema of hearts anatomy, source [33]

The unoxygenated blood from the body flows from the inferior and superior

vena cava, then through the right atrium and right ventricle. Finally, it is

13



4. Data and preprocessing

pumped into the pulmonary arteries and the lungs. It flows through the
pulmonary veins back into the heart, enters the left atrium and the left

ventricle, and then is pumped into the body through the aorta.

B 4.1.2 ECG generation

The heart is composed of cardiac muscle cells, and like all muscle cells, they
are controlled by a system of nerves. ECG is an electrical signal that describes
the activity of these nerves. The signal begins in the sinoatrial (SA) node,
where it causes the right atrium to contract. This denotes the P wave on
the ECG graph. Then the signal passes from the atria into the ventricles
through the atrioventricular (AV) node, and the ventricles fill with blood.
This corresponds to the flat line between the P wave and the QRS complex.
Then the signal passes through the bundle of His and into the bundle branches.
Which causes the contraction of the ventricles, and the contraction of the
ventricles creates the QRS complex. After that, the repolarization of the
ventricles occurs, shown as the T wave. Then the atria are filled with blood,

and the cycle begins again.

PR 5 © 8T
Segment © Segment

QT

Interval

Figure 4.2: ECG, source: [32]
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4.1. Electrocardiogram (ECG)

B 4.1.3 Cognitive load influence on ECG

In order to estimate whether ECG can be used to classify the state of
cognitive load, it is meaningful first to analyze the signal and determine
whether cognitive load influences some statistical parameters. If it does, then
there is a strong possibility that our machine learning models can learn some

patterns and correctly classify the signal.

Heart rate is a measure that has been proven to be quite sensitive to
cognitive load. [I2] Another metric that seems sensitive is the absolute mean
deviation of the ECG, which is similar to the standard deviation but is more
resistant to outliers. [41] This research used RR intervals and statistical
features extracted from them to classify low or high cognitive load with an
accuracy between 0.80-0.85. [9] Heart rate variability has also been linked to
the identification of cognitive load. [8] [11]. Another ECG segment positively
correlated with cognitive load is the QT interval. [I1]

This shows that changes in ECG are highly correlated with cognitive load,
and thus ECG analysis is a suitable method to determine the state of cognitive
load.

B 4.1.4 Sampling frequency

If one term connects all aspects of this work, it is optimization. Thus,
exploring the minimal valid sampling frequency that still carries enough
information for classification makes sense. The lower the amount of data fed
into the network, the lighter the network, the faster the inference. But too
little information may lead to underfitting, meaning that the model will be

unable to learn any patterns in the data.

From the basics of signal processing, the Nyquist-Shannon theorem states
that we need to sample with at least two times the frequency of its fastest
component fs > 2- B to record a signal without aliasing. With this in mind,
the next question is what are the critical frequencies in the ECG signal that

carry the information our model will need for its predictions.

Kohler [31] found that the QRS complex is composed of frequencies between
10 and 25 Hz. However, for this application, other frequencies are also of

interest. The main components of the ECG signal, including T and P waves,

15



4. Data and preprocessing

are composed of frequencies that range between 1 and 50 Hz.[30] This is also

evident from the spectrum graph. 4.7

This research [29] states that 250 Hz is suitable for both time and frequency
analysis, 100 Hz is acceptable for time-domain analysis, and 50 Hz is not
suitable for either. Contrary to this, another research cites 50 Hz as a
reasonable sampling rate for some purposes [10]. With this in mind, we ran
experiments for 250, 100, and 50 Hz. Higher sampling frequencies are also
used in practice. Using them for this work is not desired as 10 seconds of
ECG signal sampled at 500 Hz would amount to 10 - 500 = 5000 samples.
And 5000 floating-point numbers require 5000 - 4 = 20 kilobytes out of the 64
kB of available RAM for the input tensor.

B 4.1.5 ECG window length

Another input signal parameter that we can set is the window length. The
hypothesis was that longer signal windows provide more features the model

can learn, and thus, the classification accuracy should be better. [6.3

However, using a longer signal window than needed is impractical in
embedded devices, as it consumes a significant amount of memory. A 30-
second long ECG signal sampled at 100 Hz totals to 30 - 100 = 3000 numbers
which in float format take 3000 - 4 = 12 kilobytes of memory, so 18.75 % of
RAM is consumed just for the input buffer. A larger input buffer also results
in a more complex neural network that takes more memory and is slower.
6.3 A real-time detection application using longer windows also means that
we must compute on a moving window with overlap to get predictions more

often, which adds yet more complexity.

So we need to find a good compromise between a too short signal win-
dow that does not carry enough information and an unnecessarily long one.
Another parameter that puts requirements on the window length is the com-
putation of statistical parameters. The window must be long enough to
capture several beats to provide a valid estimation of heart rate and other
statistical measures. Based on available research [27], 10 seconds seemed like
an excellent primary candidate for the window length, so the experiments

were based around that.
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4.2. Preprocessing techniques

B a2 Preprocessing techniques

B Scaling

The scale of real-world data can vary. This can cause several adverse effects
during the training process of our model.[26] To give an example from this
work, look at the following figure, which depicts two different ECG signals

from 2 datasets.
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—0.50
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time[s]

Figure 4.3: Not scaled

We can see that the data are on different scales. This can lead to poor
generalization when feeding new data to the model, which is on a different
scale. Another problem that occurs during the training process is that input
with large values will shift the model weights a lot, but input with very small
values will shift them very little [36]. We also found that scaling the data
led to lower quantization errors during compression. The Light CNN model
experienced a drop of 4 % without normalized data but 0 % with normalized
data, the same holds for the MobileNet3 model. Also, the validation accuracy

tended to oscillate a lot during training without normalization.

According to this formula, Min-max scales the input data to a range from

0 to 1. [37]
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4. Data and preprocessing

x — min(x)

Lscaled =

(4.1)

maz(x) — min(z)

Now let us look at the same two signals, but this time with min-max
scaling.

0.6

ECG signall-]

0.4 1

time[s]

Figure 4.4: Scaled with min-max scaling

Both signals are now scaled to the same range and thus more suitable for
training the model, as having all the input data on the same scale is more
suitable for the gradient descent algorithm. [36]

Min-max scaling is suitable for use here because it is computationally cheap,
as searching the array for min and max values is of linear complexity, and
in the constrained environment of an embedded device, it is good to save

computation time when possible.

B Standardization

Another common technique for scaling data is to standardize them. This
technique modifies the data so that the resulting distribution has a mean of
zero and standard deviation of one. This again helps with training the neural
network. [36] It is computed with this equation, where p is the mean of the
vector x and sigma is the standard derivation of vector x.
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x —
Tstandard = o K (42)

B 4.2.1 Common noises in ECG

Filtering is needed because some unwanted noise almost always corrupts
real-world data. Noise in signals is expected, the sensor picks up some other
signal that gets mixed up with the signal we want to measure, and thus, we
end up with a noisy signal. If we can determine the frequency of the noise, it
can be removed with a frequency filter that suppresses the noise but allows
the valuable parts of the signal to pass. Here we describe several frequent
causes of noise in the ECG signal and how to remove them. As a motivation

for this section, let us look at a comparison of a raw ECG signal.

ECG signal [-]

time [s]

Figure 4.5: Raw ECG signal

And a filtered one.
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Figure 4.6: Filtered ECG signal

To identify the frequencies present in the signal, we can use the Fourier
transformation, which transforms the signal from the time domain into the

frequency domain. Here is a plot for our two samples.
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Figure 4.7: ECG spectrum, upper: raw, lower: filtered
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We notice two significant sections in the unfiltered signal, present as peaks
on the upper spectrum graph. The large one at zero is the DC component,
and the small frequencies around it are the baseline wander/drift. This refers
to a slow-moving component in the ECG that results in the signal periodically
drifting up and down. It is most commonly caused by breathing, slow
movements of the patient, or electro-chemical reactions where the electrodes
touch the skin. The frequency of these components is usually between 0.05
and 0.5 Hz [40], which is much lower than the frequencies at which we find
the essential parts of the signal, so it is possible to filter these components
out with a high-pass filter without losing critical information. A common
choice for the cutoff frequency is 0.5-1 Hz. (The one used for the graph was a
fifth-order Butterworth high-pass with a cutoff frequency of 0.5 Hz.)

The second prominent noise is the mains hum. These are the two peaks at
50 Hz on the spectrum graph. This noise originates from the electrical grid,
and its frequency will be 50 or 60 Hz, depending on the country. It can be
removed with a band-stop or low-pass filter of corresponding frequency. (The
one used for the graph was an eighth-order Chebyshev low-pass with epsilon
equal to one.) With band-stop, it is necessary to filter the correct frequency,

or we can use a low-pass with a cutoff around 40-45 Hz and filter them both.

Besides these, we can also have other noises, for example, from the contrac-
tion of other muscles. The frequencies in these types of noise overlap with
the ones in the ECG signal, and filtering them is more complicated; however,

they are also less common, so filtering them is not strictly necessary.

B 43 EcCG filtering

Now that we know at what frequencies noises occur in the ECG signal, we
need to remove them. For this purpose, we use filters. These can be analog
ones implemented in the sensor or digital ones implemented in code on the
microcontroller. We will use IIR (infinite impulse response) digital filters,

which we will describe now.

A general IIR filter is described with the following equation [60]:

M N
yln] = brxln — k] = > apy[n — K] (4.3)
k=0 k=1
Where the output y[n| depends both on the value of the input and on the
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4. Data and preprocessing

scaled and shifted values of the previous outputs y[n — k]. If we apply z-
transform and rearrange the equation, we can express the transfer function
of the IIR filter as the ratio of 2 polynomials. [60]

. E%:o bpz " _Y(2)
Z]kvzo apz=k X(2)

And now we will look at the characteristics of two famous filter types.

H(z) (4.4)

Hl Butterworth

This is the transfer function of a Butterworth filter, where 2. represents the

cutoff frequency and N is the filter order.

H(Q)| = ! (4.5)
1+ (Q/202

Butterworth filter has the smallest gain out of all the common IIR filter
designs but has one big advantage. Its response is perfectly flat in the
passband. [60]

G Butterworth
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Figure 4.8: Gain of a Butterworth filter [54]

B Chebyshev type |

The transfer function of a type I Chebyshev filter looks like this.

()| = — (46)
V1 + e T3OQ/Q)
Ty (x) = cos(N- cos™(z)) (4.7)
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Chebysheyv filter has a ripple in the passband, which can damage the signal;
however, it also has a bigger gain, which results in a smaller transfer band

and better attenuation of higher frequencies. [60]
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Figure 4.9: Gain of a Chebyshev filter [54]

B Zero phase filtering

One disadvantage of IIR filters is that they do not have a linear phase response.
This can be fixed with zero-phase filtering with the following algorithm. We
filter the signal, flip it in time, filter again, and flip it back. Now we have a

filter with a linear phase; however, with twice the computational complexity.

. 4.4 Datasets

The first step in creating a machine learning model is to collect the data we
want to train the model on. This section will describe three datasets I used

for training models for this thesis.

B 44.1 WESAD

WESAD (WEarable Stress and Affect Detection) is a publicly available
dataset consisting of data from 15 subjects. The exclusion criteria for this
study were pregnancy, heavy smoking, mental disorders, and chronic and
cardiovascular diseases, and the mean age was 27.5 +/- 2.4 years, with 12

subjects being male and 3 female.
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4. Data and preprocessing

It contains data for blood volume pulse, electrocardiogram, electrodermal
activity, electromyogram, respiration, body temperature, and three-axis ac-
celeration. Data were measured using a chest sensor and also a wrist-worn
sensor. The ECG signal, which is of interest for this thesis, was measured
with a RespiBAN Professional chest device with a sample rate of 700 Hz with
a standard three-point ECG. Although this dataset is primarily meant for

stress detection, it is also suitable for cognitive load detection.

The signals were recorded for three classes, baseline, stress, and amusement.
Out of which, we used the baseline and stress class for this work. The baseline
condition consisted of subjects relaxing while sitting or reading a magazine.
Stress conditions consisted of public speaking and mental arithmetic tasks,
which are tasks known to reliably cause cognitive load. [I5] To help determine
the labels of the data, subjective self-reports were also collected after each

measurement. [16]

B 4.42 CLAS

CLAS (A Database for Cognitive Load, Affect and Stress Recognition) is a
multimodal data set consisting of electrocardiography (ECG), plethysmogra-
phy (PPG), electrodermal activity (EDA), and accelerometer data. There
are data from 62 subjects in this dataset, 45 were men and 17 were women.
Fifty-eight of these subjects were between 20 and 27 years old, and the

remaining subjects were older.

This data set aims to improve human-machine interaction and offers data
recorded during various tasks for the automatic classification of emotional and
mental states. ECG data were recorded with the Shimmer3d ECG Unit with
a sample rate of 256 Hz and a resolution of 16 bits per sample. Data were
recorded during several different tasks. The data we used for the cognitive
load class were recorded under three different stimuli, math problems, Stroop
test, and logic problems. We used the baseline data for the negative class,
which were recorded when there were no stimuli. The dataset paper achieved
a precision of 78.2 % on high/low concentration classification with an SVM
classifier using the combination of ECG and GSR signals. [25]
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4.4. Datasets

B 4.4.3 BIOMECH

We call this dataset BIOMECH because it was kindly provided to me by
the Laboratory of Biomechanics and assistive technologies at the Faculty of
Biomedical Engineering of the Czech Technical University. The BIOMECH
dataset is the smallest of the three datasets, with only five subjects. It
contains data for two classes, the baseline and the high cognitive load. The
high cognitive load was induced with the Stroop test. The signal was sampled
at 500 Hz.

Because this dataset is much smaller than the other two datasets, it also
functions as a control dataset. A good model should have similar performance
across all three datasets. If the model performs well on the bigger dataset
but fails on the small one, it indicates that the features learned by the model

are not generally applicable to different data.
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Chapter 5

Designing a neural network

. 5.1 Neural network fundamentals

Artificial neural networks have received a lot of attention in the last 25 years.
They represent a complex function that receives an input and outputs an
output. The strengths of neural networks are that they are capable of parallel
distributed processing, which speeds up the computation, they are capable of
nonlinear mapping, and they learn through training, which makes them able

to adapt to many different problems.

B Single neuron

The fundamental building block of neural networks is a single neuron. This
function attempts to mimic biological neurons. It has many inputs and one
output. A single neuron is composed of a perceptron which is a linear, binary
classifier that multiplies each input x; by weight w; and scales the product
by a bias b (representing the activation threshold). The other part of a single
neuron is a non-linear activation function that maps the perceptron activation

to an output. The equation for the output comes out as. [34]

y(t) =1 (i W;L; — b) (5.1)
i=1
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Iy
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Figure 5.1: Schema for one neuron [34]

B Deep neural networks

If a simple neuron mimics the function of a human neuron, then deep neural
networks aim to simulate the brain’s nervous system. Deep neural networks
are made up of layers. The most straightforward layers are formed of neurons
like Such layers are called dense layers.

There are two main types of ANN. The first one is the feedforward network.
Here, the network is composed of layers. Each layer receives an input tensor
and maps it into an output tensor which is passed to the next layer until
the end of the network is reached. All models used in this work are of this
type. The second is a recursive or feedback network. In these, the outputs
can flow backward in the network, becoming inputs for neurons in the same

or previous layers. [34]

B 5.2 Learning of neural networks

At first, the weights are initialized randomly. Then an input is passed to the
network, which maps to some output. The loss function then calculates how
different the network output is from the desired value, returning small values
for correct and large values for wrong predictions. The learning process is
then formulated as an optimization problem that minimizes the loss function

across all training samples by updating the weights and biases of the network.
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5.3. Convolutional neural networks

The output y of a network with input x can be described as:

g =a" (WL oYWl o}(W! - x))) [34] (5.2)

Where W! denotes the weights and biases in each layer, a denotes the
activations and the index. The backpropagation algorithm calculates the

derivatives of weights and activations layer by layer with the chain rule.

OL(y—19) OL(y—4g) oy oyl=' oytt oyt |
W — o5 DL T oyE 2 o gwW! [34] (5.3)

And the network is trained with a gradient descent algorithm that updates

the weights and biases like this, where v represents the learning rate.

wl—wi k=9 34] (5.4)

. 5.3 Convolutional neural networks

Convolutional neural networks are inspired by biological structures of the
visual system. They are popular in computer vision and image recognition
because they perform exceptionally well with image data. This ability comes
from the convolutional and pooling layers that extract patterns from the
data. This section aims to give an overview of the commonly used layers in

convolutional neural networks.

I Convolution

Let us look at the structure of the most significant block in a CNN, and that
is the convolutional layer. There is an input signal, often an image or other
tensor data. In our case, it is a one-dimensional tensor with an ECG signal.
This input is then convoluted with the learned convolutional filter, and the

output of this operation is called a feature map.

This layer has several parameters that we can set, including the size of

the convolutional kernel, the stride, which is how many samples we move the
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5. Designing a neural network

filter in each step, and the number of filters. On the image, we have a 9x1x1
input tensor, 3x1x2 filters, and a 7x1x2 feature map. The filter size is three,

there are two filters, and the stride is one.

ésm

Figure 5.2: Convolution

| ] axixt

B Separable convolution

Separable convolution is a particular convolutional layer designed to compute
the result with fewer operations, thus speeding up the computation. This
makes them suitable for use in environments with limited resources; for

example, they are used in the MobileNets models [44].

The concept comes from matrix factorization. From linear algebra, we
know that if we can, for example, factor a matrix A € R3*3 into B € R3*!
and C € R™3 and then calculate the dot product as X - B - C, the result
will be the same as if we calculated it as X - A. To multiply X and A, nine

multiplications are needed. However, for X - B - C, it is only six.

However, not all matrices can be factorized. For this reason, another
approach is used, called depthwise separable convolution. This method
consists of two steps. The first is the depthwise convolution, where the
convolution filter acts separately on all the input channels. The second is the
pointwise convolution, which uses 1 x 1 filters to compute the final feature

map by convoluting the channels. [39]

xd

Normal convolution takes an input tensor L; € RF*wixdi and applies
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5.3. Convolutional neural networks

a convolutional filter K € RFxkxdixd;

to produce an output tensor L; €
Rhrixwixd; This operation has a computational cost of hi - w; - d; - dj - k- k.
With depthwise separable convolution, the cost is only: h;-w;-d; (k2 +d;) with

minimal reduction in accuracy. This provides a speed-up of 8 to 9 times[44].

B Pooling

Besides convolution, other crucial parts of CNN are the pooling layers. These
are placed after feature maps, and they downsample the feature map and
extract useful information from it. This condenses the information and makes
the networks smaller and faster. Like the convolutional layer, a moving filter
computes the output. We specify the size, stride, and type of the pooling filter.
There exists max-pooling, which takes the largest value from the filtering
window, and average-polling, which takes the arithmetic average of these

values.

B Activations

Activations are placed after convolutional or dense layers. Their purpose is to
map the layer activation with a nonlinear function, and the function decides
whether the neuron is "activated" or not. An activation function must be
continuously differentiable for the backpropagation algorithm to work. There
are many activation functions, but ReLU (rectified linear unit) is the most
widely used (it is not differentiable at 0, but this does not create problems.)
It looks like this

f(z) = max(0,x) (5.5)

performs well in many cases and is currently very popular. It is also used as
a building block for more advanced activation functions. For example, the

hard-swish (HS) non-linearity

ReLUg(z + 3)

@) =1 6 (5.6)

Which is used in the MobileNetV3 [45]. ReLUs is similar to normal ReLU,
but it is capped at 6.
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ReLUg = min(maz(x,0),6) (5.7)

Another common activation functions is the sigmoid activation function.

flz) = (5-8)

Sigmoid works well for binary classification because it is bounded to an
interval [0, 1]. For this reason, it can be used as the final activation in binary

classification, outputting 0 for a negative and 1 for a positive class. [34]

Hl Batch norm

The importance of normalizing input data before we feed it to the network has
already been discussed in the preprocessing section. Batch norm is added to
the network as another layer, and it is used to normalize data between layers.
Like normalizing the input data, batch normalization helps the convergence of
gradient descent by normalizing each feature map. There is some discussion
on whether it is better to place it before or after the activation layer. We
tested both on the Light CNN model, and it performed better when placed

before activation. [30]

B 54 Compression

Model compression techniques are an essential part of this work. As a
motivation, here is an uncompressed neural network (Light CNN model, 100
Hz, 10-second window, this analysis was done by the STM32 X-Cube-Al
tool.)

Complexity 575371 MACC
Flash size | 46.19 kB (out of 512 kB present)
RAM 51.91 kB (out of 64 kB present)

Table 5.1: Uncompressed model size

And the same neural network but now fully compressed.
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Complexity 559980 MACC
Flash size | 12.07 kB (out of 512 kB present)
RAM 16.66 kB (out of 64 kB present)

Table 5.2: Compressed model size

We can observe a 3.8-times reduction in flash size and a 4.3-times reduction
in RAM usage from these figures. For this model, this makes a difference
between an unusable model, which takes 81 % of RAM, not leaving enough
memory for other parts of the application, and a compressed model, which
takes only 25 % of RAM. So, in this case, compression is not only helpful but

also necessary.

The goal of compression is to reduce the size and increase the speed of the
model with minimal effects on its performance. Here, we will describe two

techniques used for this purpose.

B 5.4.1 Weight pruning

Neural networks are usually very large with a large number of weights. The
idea behind pruning is that some of these weights learned are of small values
and, as a result, do not influence the network’s decision as much. We can
remove these weights without significantly damaging the performance of the
network. The pruned network with fewer weights is not only smaller but
also faster because, with fewer weights, the number of operations needed for
inference is reduced. The TensorFlow documentation [43] states that this
can compress the model size up to 6x with minimal losses of accuracy. A
recommended approach is to first pre-train the whole model first and then
use pruning, and after that, fine-tune the pruned model with normal training.
[35]

B 5.4.2 Quantization

Quantization is a well-known compression technique. One use for it is image
compression, where it is used to reduce the number of bits used for color
representation, decreasing size but also resolution. It has a similar use for
the compression of neural networks. Where it is used to reduce the size of

the weights and computations from 32 bits to 8 bits, this provides several
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benefits. First, the most obvious one, 8 bits, is four times less memory than
32 bits, so quantized networks take less space. Another one is speed. With
less memory access and simpler computations, the inference time decreases.
Easier computations also imply a reduction in energy consumption, which

means prolonged battery life in embedded devices.

The idea of 8-bit quantization is to map the 32-bit floating-point tensors

into tensors composed of 8-bit values multiplied by a scale factor.

T =5y Tg_pit = T3a_pir [24] (5.9)

This approximation, of course, introduces some errors in the calculations.
This error is called quantization noise. Two primary causes of quantization
noise are rounding and clipping errors, and they depend on the ¢in and gnaq
values. The rounding error arises from the weights being rounded further from
their original value and increases with the difference between ¢, and gmaz-
The clipping error comes from weights with values outside the quantization
bounds being quantized to the ¢maz Or Gmin value. [24] In our case, we
found the error to range from 0 to 5 % loss of accuracy, which is very much

acceptable compared to the benefits it brings.
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Figure 5.3: Quantization errors
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data

There are two options for using quantization. One is the post-training
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quantization, which takes place after the model is trained. This is faster and
easier to code. However, it hinders the model accuracy more. The other
method is quantization-aware training, which happens during training and
is better for model accuracy. We opted for post-training quantization, as
it is simpler. Also, our models did not experience any significant drop in
accuracy from quantization, so we decided that there was not much benefit
to gain from using quantization-aware training. Our implementation of post-
training quantization is adapted from the official TensorFlow tutorial and the

quantization documentation.[23]

. 5.5 Evaluation metrics

To evaluate the performance of our model and understand its behavior, we
employ several statistical metrics. First, we test the model on data reserved
for testing and count all the possible combinations between the ground truths

and predictions.
TP: true positives, samples correctly classified as positive
TN: true negatives, samples correctly classified as negative
FP: false positives, negative samples misclassified as positive
FN: false negatives, positive samples misclassified as negative

These values are often displayed in a confusion matrix for visualization

purposes, and we can also compute several other parameters from them.
Accuracy

How good the model is at predicting the correct classes.

TN+TP
TN+TP+ FN+ FP

Accuracy = (5.11)

Sensitivity (Recall)

How good the model is at identifying positive samples. The lower it is, the

bigger the chance the model will mistake a positive sample for a negative one.
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TP

Senszthty = m

(5.12)

Specificity

How good the model is at identifying negative samples. Analogous to

sensitivity.

TN

(5.13)
Precision

The rate of true positive prediction to all positive predictions can be seen

as a measure of the quality of positive predictions.

TP
Precision = m (514)

F-score

F score is another measure of test accuracy calculated from the precision

and sensitivity.

Precision - Sensitivity

Fscore =2 - (5.15)

Precision + Sensitivity
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Chapter 6

Experiments and evaluation

B 6.1 Proposed architectures

B Light CNN

The first model tested was a custom convolutional neural network. We spent
a significant amount of time tuning the optimal number of layers, the number
and size of convolutional kernels, and various other parameters. The resulting

network is this one.
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1 »
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- layer,
g Separable conv Decision
Separable conv mm_k“ neuron,
Separable conv block torss sigmoid
block filters=16 kernel size = 4 activatin
filters=16 kernel size = 24 po:::::::i:e‘- ,
Conv block kernel size = 24 strides = 2 - =
filters = 8 strides = 2 pooling size = 3
input  kernel size = 32 Pooling size =3 size = 1
tensor strides = 3 size =1
pooling size = 3

size =1

Figure 6.1: Light CNN
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It contains two types of blocks, the convolutional and the separable con-
volutional. The convolutional block is composed of 4 layers in the following
order, 1D convolution (with the number of filters, the size of filters, and the
filter stride), batch normalization, the ReLU activation function, and 1D
MaxPooling (with pool size and stride). The separable convolution blocks are
similar, but instead of regular convolution, they use the separable convolution,
and instead of max pooling, they use average pooling. Also, after the last
separable convolution block, there is a 0.3 dropout, then the feature map is

flattened and connected to the final neuron with sigmoid activation.

Even though it is generally less accurate than the more advanced mobile

net model, it holds one advantage over it. It takes less RAM.

B MobileNet-Tiny

MobileNet has 3 versions, V1, V2 and V3. Out of these, the V3 version is
the newest one with the best performance. The V3 paper [45] presents two
models, MobileNetV3-Large and MobileNetV3-Small. Because they are aimed
at mobile devices, these models are still too large for the microcontroller. In

this work, we scaled down the smaller V3 model, and the resulting architecture
is dubbed the MobileNetV3-Tiny.

Compared to the MobileNetV3-Small, the MobileNetV3-Tiny has a lower

number of bottleneck layers and a lower number of filters in each layer.

Conv 1D  Bottleneck Convolution Global
Input/Output Blok block HS non-lienarity 1D Average
Pooling

Figure 6.2: MobileNetV3-Tiny architecture
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MobileNetV3-Tiny layers

Conv 1D block: filters 8, kernel sz 3, stride 3, pooling sz 3, nl HS
Bottleneck: filters 8, kernel sz 3, width 8, stride 2, squeeze True, nl HS
Bottleneck: filters 10, kernel sz 3, width 16, stride 2, squeeze False, nl HS
Bottleneck: filters 10, kernel sz 3, width 32, stride 1, squeeze False, nl HS
Bottleneck: filters 12, kernel sz 5, width 64, stride 1, squeeze True, nl HS
Conv 1D block: filters 5, kernel sz 1, stride 1, pooling sz 3, nl HS
HS non-linearity
Convolution 1D: filters 10, kernel sz 1
Global Average Pooling 1D
Output layer (one neuron with sigmoid activation)

Table 6.1: MobileNetV3-Tiny architecture

There are two main structures in the MobileNetV3 diagram, the Conv 1D
block, and the Bottleneck block. These are the same blocks as in the original
paper. Conv 1D block consists of a convolutional layer, batch norm layer, and
a nonlinearity, either ReLU (RE) or hard swish (HS). Bottleneck blocks are
the core structures introduced in the paper. The V3 version [45] combines the
inverted residual blocks from MobileNetV2 [44] with a squeeze and excitation

layers.

B Feature model

This model is inspired by this paper. [28] They did not use the entire ECG
signal as an input for the network but only features extracted from it. For
this purpose, they proposed a straightforward dense network. This network is
elementary and does not take much memory, but it depends on the successful
detection of R-peaks. Thus it must be paired with a reliable peak detection

algorithm.

Four of the computed features 6.5 were used as the input data. The network
was a simple dense, deep neural network with 4 input neurons, 4 hidden layers
with 20 neurons and ReLU activation, and an output neuron with sigmoid

activation, totaling 1,381 parameters.

25 |5s|10s | 20s
Treshold R peaks [%] | 71 | 68 | 68 | 69
Neurokit R peaks [%] | 69 | 70 | 70 | 71

Table 6.2: Classification accuracies for Feature model
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Although the accuracy of this model is significantly worse than the other
two, it shows a few interesting things. Firstly, since similar accuracy was
reached with both detection methods, the simple R peak detection method
is not that bad even when compared to a more advanced, computationally
significantly more complex method. Secondly, it is much less computationally
expensive because it only uses computed features and not the whole signal.
This means that this solution could be used even in low-end microcontrollers
with only a few kilobytes of RAM.

. 6.2 How to train a network

B Preparing the data

The first part of training a neural network is to prepare the data. The network
itself can be perfectly designed, but if we present it with bad data, it might
behave entirely differently than expected. Therefore, selecting which data
we train the network on is essential because it will decide what features the

network will learn.

Because this work worked with three datasets, we could create more complex
experiments and create models that could generalize as well as possible. The
WESAD dataset, which contains classes for baseline and stress, seems to be
especially easy for the networks. Even really simple architectures achieved
high accuracy rates on this dataset. The BIOMECH dataset contains only
two classes, one for baseline and one for cognitive load, recorded during the
Stroop test. BIOMECH is small compared to the other two datasets, so
it functions well as a control dataset. During the experiments, if a model
reached more than 90 % on WESAD yet under 60 % accuracy on BIOMECH,
we can conclude that the model learned some patterns that are perhaps
not generally applicable. The problem turned out to be the CLAS datasets.
Initially, neutral and baseline recordings were used for the negative class, and
Stroop test, 1Q test, and math test recordings were used for the positive class.
When we tried training the models separately on each dataset, it turned out
that the accuracy was significantly poorer on the CLAS dataset than on the

other two.

What helped was to use only the baseline for the negative class. It turned

out that the problem was mainly caused by the neutral class, which was
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recorded during 30s breaks between the high cognitive load tasks. As a result,
these samples were often classified as positive class and disrupted the accuracy
of the models. It is debatable whether larger, more advanced networks could
learn to classify these samples correctly or if such subtle changes in such short

intervals can even be determined only from the ECG signal.

After this modification, the models achieved significantly better results
when trained on all the datasets combined while still preserving high accuracy
on each dataset individually. This improvement leads us to believe that

training on this modified dataset creates models that can generalize better.

The majority of the preparation was done with the help of a python script.
The script allows the user to set the desired sample rate, window length, and

whether the signal should be preprocessed.

B Equalizing classes

Equalizing classes was needed because the number of samples from different
classes was not balanced. Classes not being balanced is a common problem in
machine learning, and it causes the model to lean towards the more common
class heavily and classify nearly all the samples as one class. Dropping some
samples from the more common class means that the model can not use the

prior probability of classes for learning, and thus, it helps with generalization.

B Training environment

The experiments were run with the TensorFlow [59] library, version 2.7. The
models were trained with Google Colab [58], a free web-based IDE for Jupyter
notebooks. In the form of Jupyter notebooks, it provides access to virtual
machines with powerful GPUs for training the models and running all the

experiments.

The program for training the models is written in a python notebook. It
contains several commented cells which go through the training process. The
datasets are loaded and preprocessed. Then the model that will be trained is
selected. There is a method for estimating the optimal learning rate, which
is then passed to the Adam optimizer. [57] Two methods for training are

present, a normal one and a one used for training-aware pruning. There is
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a method for evaluating the trained network on the test dataset, and these
scores are displayed. Then the trained model is converted both with and
without the 8-bit quantization, and it is re-evaluated to see whether the

quantization hindered the model’s performance.

B Training

We use a binary cross-entropy loss for the loss function, a common choice for

binary classification problems. [47]

N
Hy(a) =~ v log(ply) + (1~ 91) -log(1 —ply)) (6.1
=1

We trained all the models with a batch size of 64. An often-used value [3§].

We also used early stopping. With early stopping, we select a target
accuracy we want the model to reach and stop the training once it does. This
helps against overfitting and ensures we end up with a model that has high

accuracy on the validation set. [52]

B Learning rate

Learning rate is an influential hyperparameter in training a machine learning
model. When the model trains with gradient descent, it calculates the
direction to some local optimum, and the learning rate specifies the size of
steps it takes in that direction. Too small a learning rate might make the
model train too long and not make any significant progress. On the other
hand, if the learning rate is too big, it might make the model take very
long steps and struggle to find the optima. The optimal training rate lies
between these two extremes and lets the model find a good local optimum
fast. However, it varies depending on the model used. Now let us look at a
simple method used to estimate the optimal learning rate for each model. It

is a simple method that takes only a few lines of code and a couple of plots.

First, we train the model for 100 epochs. In each epoch, the learning rate
increases starting from 1-10~* (which would be too small for most models)
up to 0.2 (which, in most cases, would be too large). Then we plot the loss
for each epoch, and the results are these graphs with a bowl shape where the

optimal learning rate lies at the global minimum of the lower graph. In this
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6.2. How to train a network

case, the model reaches optimum around epoch 30, and then it decreases. In
this case, this happens around epoch 26, which corresponds to the learning
rate of 6.8 - 10~% and that is what I will use to train this model. [21][22]

Evaluation metrics Evaluation metrics
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Figure 6.4: Graphs for determining learning rate

It is also interesting to plot similar plots for validation accuracy and vali-
dation loss. If the validation loss and accuracy oscillate a lot in some regions
(in this case, anything after episode 40), we found that the corresponding
learning rates will not be very stable for training, and the validation accuracy

will tend to oscillate between epochs.

This estimated learning rate is then passed to the Adam optimizer as a
starting point. Adam is a popular algorithm that improves the standard

stochastic gradient algorithm. [57]
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N 63 Experiments

Because the models used in this work are small and training them takes
10 minutes, it was possible to use cross-validation to test many different
configurations and hyperparameters. The evaluation was done on the testing

part of the combined dataset.

B Memory requirements and speed of models

In almost all of the experiments, there are mentions of smaller input tensors
resulting in smaller and quicker models, so here is a direct comparison between
the input size (in numbers) and the model memory requirements, complexity,
and speed. These were measured with the STM32-X-CUBE-AI tool [20], and

the timing was done on the microcontroller with a timer.

500 1000 2500
Ligth CNN flash [kB] 688 | 1534 | 27.69
Light CNN RAM [kB] 6.93 16.66 45.96
LightCNN complexity [MACC] | 216,356 | 559,980 | 1,594,980
Light CNN inference time [ms] | 33.8 79.6 NaN
MbNetV3 flash [kB] 5.34 5.34 5.34
MbNetV3 RAM [kB] 11.4 21.1 50.46
MbNetV3 complexity [MACC] | 273,237 | 542,333 | 1,356,237
MbNetV3 inference time [ms] 41.3 74.9 NaN

Table 6.3: Model memory requirements and complexity vs input tensor size,
NaN - application did not fit into memory

B Different windows

Here are the results of experiments with different windows. This experiment

was done with the filtered dataset and a 100 Hz sample rate.
|25s|5s[10s|20s

93 |94 | 87 | 83

93 |94 | 94 | 93

Ligth CNN accuracy [%]
MobileNetV3 accuracy [%)]

Table 6.4: Model accuracies for window length

From the table, we can see that the Light CNN model performs better with
shorter windows, and the MobileNetV3-Tiny does well with all the windows.
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These results disprove the initial hypothesis. Nevertheless, they are good
because using a shorter window is preferable to a longer one, as it saves

memory, increases inference speed, and produces predictions more often.

The tests for longer sampling windows were not ideal because the datasets
contained many short recordings. As a result, in the 20-second, most positive
samples were from one dataset, and most of the negative were from another.
This disbalance creates worries about the model learning some non-general
dataset-specific features. For this reason, longer sampling windows were not

explored.

So without more data available, the 5-second window for both the MobileNet
and the Light CNN seem like reasonable results to continue with. Using
a shorter window also means more training data will be available, and the
more data we have available for the model, the better the model can learn its

features.

The accuracy still holds even with a very short 2.5 seconds window. While
using shorter windows provides already mentioned advantages in terms of
speed and memory requirements, it is not very good for R-peak detection.
To calculate heart rate and other parameters, we need to catch at minimum
2 peaks. Now let us say that there is an R-peak exactly in the middle of the
window. That would mean that the interval between beats must be shorter
than 1.25 seconds which means that the system could fail to catch heart rate
below % = 48, which is a low, but perfectly possible heart rate., for this
reason, the 5-second window is preferred, where the minimum is %05 = 24,

which is way below the healthy range. [46]

B Different sampling rates

Here are the results for different sampling rates. These different frequencies

were tested with filtered data and a 10-second window.

| 50 Hz | 100 Hz | 250 Hz
Light CNN accuracy [%] 84 87 88
MobileNetV3 accuracy [%] | 90 94 93

Table 6.5: Model accuracies for window length

The optimal sampling rate seems to be 100 Hz, confirming the hypothesis

based on available research that a sampling rate of 100 Hz should be a good
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compromise between memory requirements and the model’s accuracy.

Moreover, we can conclude that with these models, a further increase in
sampling rate to 250 Hz does not provide benefits that would justify the
increased memory requirements and slower computation speeds on the larger
input signal. Also, with the microcontroller available for this work, models of

this size do not leave enough space for other parts of the application.

Furthermore, when the sampling rate was reduced to 50 Hz, the model’s
accuracy dropped, but not drastically. This indicates that lower sampling
rates could be used for smaller-sized models in environments with even stricter

memory requirements.

B Scaling vs. normalization

There seems to be no difference between using either normalization or scaling.
However, scaling is preferred for deployment in embedded devices because it
uses fewer operations. These experiments were performed on the unfiltered
dataset with the Light CNN model.

‘ Normalized ‘ Scaled
Light CNN [%] | 70 |70

Table 6.6: Accuracy on unfilterd data with standardization and scaling

B Preprocess or not?

Why preprocessing and cleaning the data makes sense has already been
explained. Now let us quantify the advantages it provides in the context of
our experiments. These experiments were done with a 100 Hz sampling rate

and a 10-second window.

We thought it sensible to scale it with min-max scaling even when testing
on raw data. This operation is not costly, and it prevents the model from
learning some dataset-specific features, such as DC offset or min-max range,
which can be different for each recording. If this reduces accuracy, it most
likely means that the model previously used some of these features, and thus,

it does not hurt the model but helps with generalization.
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‘ Not scaled ‘ Scaled
Light CNN [%] 73 70
MBV3-Tiny [%] 87 83

Table 6.7: Accuracy on unfilterd data

When training on only the WESAD and BIOMECH datasets filtering
the data essentially did not matter because the data was already without
much noise. However, with the CLAS dataset added to the training data,
preprocessing the data improved the accuracy of the models by a significant
margin. The cause for this is most likely the CLAS dataset containing a lot
more noise, mainly from the mains hum and baseline drift. Filtering removes
these noises, and with cleaner data, the models can better learn the correct

patterns needed for classification.

| Unfiltered | Filtered
Light CNN [%] 70 88
MBV3-Tiny [%] 83 94

Table 6.8: Accuracy on unfilterd vs filtered data

. 6.4 Evaluation on microcontroller

Based on these experiments, two model configurations were chosen as the
most promising. These were further evaluated directly on the microcontroller.
These are the Light CNN on 5-second signal windows with 100 Hz sampling
rate and the MobileNet3-Tiny with 5-second signal windows and 100 Hz

sampling rate, both trained on filtered data.

The filtering was at first done with the NeuroKit2 library, which was
suitable for prototyping. However, the accuracy of these models dropped to
about 77 % when implemented with preprocessing done on the microcontroller.
It seems that our neural networks are sensitive to the data they were trained
on and to minor artifacts in the signal introduced by the filtering method. So
we had to retrain the models on data filtered with the method implemented
on the microcontroller. The following table shows the performance of our two

models when tested on the same data they were trained on.

47



6. Experiments and evaluation

LCNN 4C | LONN NK2 | MB3Tiny 4C | MB3Tiny NK2
acc.[%] 91 94 94 94
sens.[%)] 93 94 95 94
spec.[%)] 89 92 92 94
prec.|%] 90 94 92 94
f1 score 0.92 0.94 0.94 0.94

Table 6.9: Comparison between different types of preprocessing
uC' - preprocessing done on microcontroller

NK2 - preprocessed with the NeuroKit2 library [56],
acc.-accuracy, spec.-specificity, sens.-sensitivity,prec.-precision

Notice that the accuracy slightly drops when we use the proposed filtering
method. We could likely gain a few percent in classification accuracy with a

better preprocessing method. However, this is not necessarily significant.

B 65 QRS complex detection

There are various algorithms for identifying R peaks in the ECG signal.
The oldest but still used Pan-Tompkins algorithm [49] (1985) makes use
of filtering and adaptive thresholding. Recent approaches also use more
advanced methods, such as neural networks, wavelet transforms, or heuristic
methods. [4§]

So how do we choose a suitable algorithm when so many algorithms are
available? In the constrained environment of a mid-range microcontroller, the
algorithm has to have several properties. It must be fast and computationally
cheap. This excludes more complex algorithms, which are usually composed
of computationally expensive operations. Another constraint is that the
algorithm must not consume much RAM, especially when the goal is to
run it alongside the neural network, which requires considerable resources.
Therefore, transformations or other methods that need to allocate additional

arrays are also not suitable.

B Proposed method: Thresholding

This method aims to be as minimalistic as possible. As a result, it has its
limits. However, it requires much fewer resources than other more advanced

methods. It uses the preprocessing already utilized in the application. With
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6.5. QRS complex detection

the data scaled between 0 and 1, the R peaks will have similar values across
all ECG signals, which allows the use of thresholding for R peak detection.

The optimal threshold was found with cross-validation, and it is 0.713.

We also use a 400 ms repolarization restraint to prevent detecting prominent
T waves as R-peaks. This value was also selected by cross-validation to give
the best performance on the training data. One disadvantage is that this
limits the maximum heart rate the algorithm can detect to 150 bpm. However,

such high heart rates were not present in the dataset we used.

M Method evaluation

Because the datasets are not annotated for R peaks, and the author of this
thesis values his time too much to annotate thousands of samples by hand, we
do the next best thing. We take a more advanced R peak detection algorithm
from the NeuroKit2 library [56] and compare it with the proposed method.

Then we implement the proposed low-complexity thresholding method and
compare the peaks detected. Each method outputs the number of peaks
detected and the position at which each peak was detected. If the number
of detected peaks is equal and the absolute difference between the detected
positions is five samples at maximum, we assume the detection to be suc-
cessful. Furthermore, because sometimes the more advanced method tends
to miss beats near the edges of the window, we also consider the detection
correct if the positions match except for one beat near the edges. Addi-
tionally, there is also the possibility that two beats are near both edges,
which is also considered. If neither of these cases occurs, the detection is

considered to have failed. The methods were tested on 4621 5-second windows.

exact matches: 2227 samples
exact match except for one beat near the edges: 2199 samples
exact match except for two beats near the edges: 176 samples

total failures: 99 samples

Apart from the positions of detected R peaks, we can also compare the
heart rates estimated by each method. With a maximum difference of +1
bpm, the predicted heart rates match in 77.6 % of cases (3589/4621 samples).
With a slightly larger range of £3 bpm, we get a match in 91.1 % of samples
(4209/4621 samples), and with an even larger range of £5 bpm, it is 94.7 %.
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And a plot for a successful R-peak detection,
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Figure 6.5: Succesful R peak detection, R peaks predicted by tresholding - red,
NeuroKit [56] R peak detection - green

and a failed one.
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Figure 6.6: Detection failed, R peaks predicted by tresholding - red,
NeuroKit [56] R peak detection - green
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In terms of speed, in Google Colab [58] virtual machine, which uses a
powerful Intel Xeon CPU, the more advanced method from the NeuroKit2
library [56] takes about 1 minute and 20 seconds to evaluate all 4621 samples.

The proposed method takes approximately 1 second.

Based on these results, we can conclude that the proposed method signifi-
cantly reduces computational load while being very accurate on more than
90 % of samples. As the portion of samples where the method totally failed

is relatively tiny, the method is considered suitable for use.
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Chapter 7

Application implementation

This flowchart describes how the full application works.

Microcontroller STM32F303RE | PC
Input buffer for | DMA L USART
USART
I Program to
Parse input into SRR =
floats
* Send It
: end results
Filter and Neural network )
downsample | | inference | ough USART Recieve and
to E’C visualise
¥
Rpeak | Calculate ECG
detection parameters

Figure 7.1: App workflow

And this chapter will describe all of the parts included in the application.

. 7.1 ECG simulator

This part of the application simulates the ECG machine. It loads the test
data and transforms each number into a string. A separating character needs
to be appended at the end of the string so the decoder knows where each
number ends. Each character in the string is represented by an 8-bit value

which is then sent to the microcontroller through USART. It is implemented
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in the send_ data.py script and accepts a command-line argument to specify

the number of window samples to be sent in the form of —samples=NUM.

ECG APP SENDER

Sent 2 samples

Figure 7.2: Sender application window

The sending application sends the data to the microcontroller trough a serial
port. The port can be set in the code or with an optional argument in the
—-port=PORT (example for Linux --port=/dev/tty ACMO and for Windows
--port=COM9.) An error message is displayed if nothing is connected to the
port the application tried to open.

B 7.2 Microcontroller application - receive input

B Receive data

The first part of the application has to correctly receive the data and transform
them from the char format in which they are transferred to the floating-point
format. For this purpose, there exists a simple communication protocol. Each
number is composed of numbers and a floating-point. Trailing zeros are
added to the message to ensure a fixed message length. A program that can
work with variable-length messages could also be created. However, I decided
that the solution used is sufficient for testing purposes. At the end of each
message, there is a separating character 'x’, which is then used by the receiver

to separate messages and parse them back into floats.

This method requires the ECG simulator to ensure that each message
has the same length. This can be easily implemented into the simulated
ECG machine. It would be possible to code a solution that would deal with
variable-length messages. However, this would be pretty bothersome with the
DMA, which does not provide any method to deal with input data besides

the half-full and full callbacks. Moreover, all the methods that we are aware
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of would defeat the whole purpose of DMA, which is to receive data without
the CPU’s intervention.

Another and more straightforward method of receiving the input would be
to bring the voltage from the ECG machine to the analog-digital converter of
the microcontroller. The DMA can then sample the voltage and place the
samples in a buffer for further processing. This solution would be easier to
implement and more robust. It would also eliminate the need for an input
buffer for the USART, which would free up memory that other parts of the
application could use. However, it is not suitable for testing purposes, as it
requires a subject from which the ECG is measured, and also, we did not

have access to an ECG sensor.

B Parse input - double buffer

We want the application to be able to deal with a continuous stream of data.
Our solution is to use a double buffer. The HAL library provides two callbacks
for working with DMA. The first is executed when the first half of the buffer
is reached, and the second is executed when the end of the buffer is reached.
In step one, the input parser processes the lower half while DMA writes into
the upper half. In step two, the input parser processes the upper half while
DMA writes in the lower half. This way, information can be received and

processed in parallel.

[Tml | swp2
Application
DMA writes processes

DMA writes

Haltf
callback 3
Application
processes

Full
callback

Figure 7.3: Double buffer schema

!

We have to guarantee that the application can process the data before it is

overwritten for this to work. However, ECG is usually sampled at rates below
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1 kHz, which is relatively slow, and therefore it leaves plenty of time for the
application to parse the received data. And to the limits of my testing, the

application works with even faster sampling speeds.

The DMA can be set to a circular mode, which means that when it reaches
the end of the buffer, it will continue writing into the first byte of the buffer
again. This configuration saves us from the need to manually restart the

communication each time the end of the buffer is reached.

. 7.3 Microcontroller application - process input

B Preprocessing the data

This stage differs based on the quality of the signal provided. If the signal is
already preprocessed with analog filters implemented in the measuring device,
we may not need to implement additional filtering. However, if this is not

the case and noise is present, we need to filter the signal digitally.

In the process of preprocessing a raw ECG signal, we normalize the signal,
effectively eliminating the DC component. A high-pass filter also has this
property. However, the filter does not start filtering immediately at time zero,

which results in the signal "swinging" from its previous DC value to zero.

Before downsampling to our target frequency, we need to limit the signal’s
bandwidth to prevent aliasing and filter the mains hum. For this purpose,
we use a cascade of two fourth-order Chebyshev low-pass filters with epsilon
0.5 and a cutoff frequency of 40 Hz. Chebyshev filter has a ripple in the
passband. However, at 40 Hz, we do not find many useful ECG components
that would suffer from this, so this is acceptable. [30] The advantage of the
Chebyshev filter is that it has a bigger gain, so it can better attenuate higher

frequencies.

We use two second-order Butterworth filters with a cutoff of 0.5 Hz to filter
the baseline drift. Butterworth has a flat response in the passband, which is
wanted, as a ripple in low frequencies would distort the signal. After filtering,
we scale the signal to the range [0,1] with Min-Max scaling, and now the

signal is ready for analysis.
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B Statistical parameters

Detection of R peaks|6.5|allows the calculation of several statistical parameters.
These are helpful in the detection of cognitive load and provide additional
information about the input signal. The ones included in this work are
mentioned in several papers as statistically significant. [28] [50] These are the

mean RR interval,

o " RR;
RE - il (7.1)
n
the SDNN (standard deviation of RR intervals),
n . _RR)?
SDNN = \/ Lioy(RE: — RR) (7.2)
n
and the RMSSD (root mean square of successive differences.)
n—1 L )2
RMSSD = \/ i1 (Rffll RR,) (7.3)

In addition to these, the detection of R peaks also allows the estimation of
heart rate. We considered two methods to calculate the heart rate. We can

either use the number of peaks detected and the window length.

peaks detected

HR =60 - (7.4)

window length

Or the mean RR interval and the sampling frequency, which is considered
better because it relies on the RR, which is much more resistant to peaks

not being detected. Also, the method works on any window length.

sampling frequency

HR =60 - =
RR

(7.5)

These metrics are all calculated and displayed in milliseconds. An exception

is the heart rate, which is standardly expressed in beats per minute.

o7



7. Application implementation

B Neural network

Implementing the neural network is quite simple with the X-Cube-Al [20]
module API. It provides a graphical interface in which we can load the
compressed model and analyze its memory requirements and computational
complexity. An "X-CUBE-AI/App" folder is added to the project. Inside,
we find modelname.h, which contains information about the version and
APT used, modelname__data.h/c contains the weights and activations, and
modelname.h/c contains the functions used to interact with the network and
information for allocating the tensors for the network. The API functions for
interacting with the network were then used to implement three functions,
ai_init(), ai_run() and perform__inference(). These functions are then used

for initialization and inference with the network.

. 7.4 Application memory requirements and
execution speed

Here we compare the memory requirements and processing speed of the entire
application. This includes filtering and scaling the signal, detecting the R
peaks, computing the parameters, and neural network model inference. The
time is measured from the moment the input buffer is filled until all the
results are sent to the PC. The execution speed is timed without plotting
the signal and with plotting the signal, which requires sending the processed
ECG signal to the PC.

| Flash [kB] | RAM [kB] | execution speed 3] |

LightCNN 5s 100Hz 94.31 32.27 0.23
MB3-tiny 5s 100Hz 113.45 45.66 0.24
LightCNN 10s 100Hz 114.22 41.95 0.47
MB3-Tiny 10s 100Hz 129.16 55.34 0.46

Table 7.1: Memory requirements and execution speed

o8



7.5. PC visualisation

. 7.5 PC visualisation

The application displays the prediction and parameters for the last 5-second
window and keeps a graph for the last 20 samples (100 seconds).

The receiving application reads from the serial port to which the microcon-
troller is connected. This can be set in the code or with an optional argument
in the form --port=PORT (example for Linux --port=/dev/ttyACMO and
for Windows --port=COM09.) An error message is displayed if nothing is

connected to the port the application tried to open.

ECG APP RECEIVER - O x
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Figure 7.4: Receiver application window

B PC application for windows

The Windows operating system does not natively support two programs
accessing one serial port simultaneously. For this reason, another version of
the GUI application exists, which integrates the functionalities of the sender

and the receiver applications into one application.
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ECG APP sender + receiver
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Figure 7.5: Receiver + sender application window
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Chapter 8

Discussion and Conclusions

B s1 Comparison against other methods

A common approach is to extract features from the time and frequency
domains of ECG signal and train classifiers such as Support Vector Machines
(SVM), Decision Trees (DT), Random Forests (RF), or K-Nearest Neighbors
(KNN) on them. [5I][41][13] However, we use a different approach in this
thesis. We feed the signal directly into a convolutional neural network. This
approach provides a fast and accurate prediction of cognitive load without
complicated preprocessing and computation of several statistical parameters
and allows us to reach state-of-the-art classification accuracy with only the

time series of the ECG signal.

However, it also has its disadvantages. A neural network is rather sensitive
to the data on which it was trained and will only perform well on data

preprocessed the same way as the training data.

. 8.2 Limitations & Recommendations for further
continuation

Even though the models in this work reached high accuracies, they are still
limited by the available data. We use a dataset with 87 subjects, which is
slightly larger than in other research, where the number is usually around 30
subjects [13][41][28]. However, the dataset should still be much larger, as it is

suggested that the cognitive load can manifest differently in each individual
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51].

Furthermore, if we could train on data recorded for a bigger range of tasks,
it could lead to better generalization. It seems that the successful detection of
cognitive load depends on the stimuli. For example, detecting a high cognitive
load during stressful driving [28][50] seems like an easier task than detecting

a high cognitive load during arithmetic tasks. [50]

Using more physiological signals to estimate cognitive load should also be
beneficial, as the influence of cognitive load on physiological signals can vary
between individuals [51]. Devices that use multiple signals to estimate the

cognitive load also seem to reach higher accuracy.

Exploring different model architectures could also lead to further improve-

ments in classification accuracy and general network performance.

Another possible continuation of this work would be to create a device
that can measure ECG and classify cognitive load from it. In this form
the application would have to receive samples from an ECG sensor, so the
input method would probably need to be changed. We could use I2C' to
communicate with the sensor digitally or take samples with an A /D converter,
both of which could be implemented into the existing code without much

trouble.

. 8.3 Conclusions

In this work, we proposed, implemented, and tested a microcontroller appli-
cation for the real-time detection of high and low cognitive load from the
ECG signal. The application receives a continuous stream of ECG data,
applies preprocessing to it, runs a trained convolutional neural network, and
computes the heart rate, mean RR interval, SDNN, and RMSSD. It sends
the network prediction and the calculated parameters over a serial port to a

PC application that plots them in a graphical window.

We tested two architectures and many parameters and selected two con-
figurations that produced the best results. These are the Light CNN with a
5-second window and a 100 Hz sampling rate and the MobileNet-Tiny with a
5-second window and a 100 Hz sampling rate. Both reached up to 94 % in

classification accuracy. However, generally, the MobileNet model seems to
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be slightly better. We trained the models on a dataset combined out of the
WESAD [16], CLAS [25], and BIOMECH datasets. This combined dataset

contains nearly 11 hours of ECG recordings from 87 subjects.

The application uses filtering and scaling to preprocess the ECG signal and
is capable of detecting R peaks with a custom low-complexity algorithm that
is significantly faster than more advanced methods and matches the accuracy
of an R peak algorithm from the NeuroKit2 library [56] in around 95 % of

cases.

These results prove that it is possible to detect a person’s cognitive load
on an embedded device in real-time and contribute to the goal of creating

systems that can intelligently recognize the state of the user or patient.
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