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Abstract

Registration of medical images is an im-
portant topic that has seen much research
in the last several years, thanks to the ad-
vancements in deep neural network archi-
tectures. Optical flow estimation methods
are generally used for finding pixel-wise
motion in image sequences in scenes with
constant brightness and homogeneous lo-
cal movement.

The application of optical flow for the
purpose of registration of the histologi-
cal tissue samples is relatively unexplored.
We will use the ANHIR dataset, which
contains such samples. This thesis will
analyze the main weak points of the opti-
cal flow methods on medical images and
develop a method capable of correctly reg-
istering them. We also propose a training
procedure and training dataset generation
for this purpose.

The developed method uses the GMA
or RAFT architectures, which we trained
on our dataset, combining supervised
and unsupervised loss functions. The
method utilizes a two-part process reg-
istering global and local movement sepa-
rately.

The proposed method is compared to
methods submitted to the ANHIR chal-
lenge. Our method outperforms all base-
line methods provided by the organizer
while being competitive with the other
participants.

Optical flow is shown to be able to reg-
ister histological images both locally and
globally.

Keywords: machine learning, neural
network, deep learning, image
registration, optical flow, biomedical
imaging, histological images
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Abstrakt

Registrace 1ékarskych snimku je duilezité
téma, které se v poslednich nékolika le-
tech dockalo velkého mnozstvi vyzkumu,
diky pokroktim v architekturiach hlubo-
kych neuronovych siti. Metody odhadujici
opticky tok jsou obecné pouzivany k na-
lezeni pohybu kazdého pixelu v sekvenci
obrazu s konstantnim jasem a lokalné stej-
norodym pohybem.

Pouziti optického toku na histologic-
kych vzorcich tkané je relativné nepro-
zkoumané. Pouzijeme dataset ANHIR,
ktery tyto vzorky obsahuje. V této praci
zanalyzujeme hlavni slabiny metod zale-
zenych na optickém toku, pri pouziti na
lékarskych snimcich a vyvineme metodu,
ktera je schopna jejich registrace. Také
navrhneme postup trénovani a generace
trénovacich dat, kterych k tomuto pouzi-
jeme.

Vyvinutd metoda, vyuzivajici architek-
tury GMA nebo RAFT, byla natrénovana
na nasem datasetu, za pomoci uceni s
ucitelem i bez ucitele. Tato metoda je za-
lozena na dvoudilném procesu, kde dojde
k registraci globalniho a lokalniho pohybu
samostatné.

Navrhnutd metoda je nasledné porov-
nana s metodxamy ostatnich tcastnika
soutéze ANHIR. Prekonala vSechny me-
tody poskytnuté organizdtory soutéze a je
konkurence schopné v porovnani s ostat-
nimi tcastniky.

Opticky tok, se ukézal byt schopny re-
gistrace histologickych snimki jak lokalné,
tak globélné.

Klicova slova: strojové uceni,
neuronové sité, hluboké uceni, registrace
obrazu, opticky tok, biomedicinské
zobrazovani, histologické snimky

Preklad nazvu: Registrace
histologickych snimkt za pomoci
optického toku a hlubokého uceni
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Chapter 1

Introduction

The apparent optical flow is used for motion estimation on many different
image types and sequences. However, its use for the registration of histological
images is relatively unexplored. Therefore, we will develop a method utilizing
the optical flow for both the global and local registration of such images.

The analysis of histological tissue is currently the only definitive method
for the confirmation of the presence or absence of some diseases, grading
of the disease, and quantitative measurements of the disease progression
[1]. Over the past several decades, due to the ever-increasing digitization
and development of whole slide digital scanners, histopathological slides
are becoming more accessible. Tasks, which in the past must have been
carried out by medical personnel, are now subject to automation, with the
help of computer-assisted diagnosis (CAD), e.g., image alignment for further
processing (segmentation), and are becoming a standard part of the workflow
in many applications [I].

Development of more accurate methods was accelerated by the rise in
popularity of convolutional neural networks due to their immense ability to
solve many of the problems facing the medical image analysis community [2].

. 1.1 Motivation

The registration of histological images is needed for many different reasons.
Some of which, amongst many others, are

8 Creation of a 3D object from scanned thin 2D slices, by overlaying them
on top of one another [3].

® Distortion compensation, after inaccurate initial alignment [4].
® Connection of small patches together to form a high-resolution image [4].

® Fusion of information from different modalities or after different stains
have been used on them [5].

® Combination of gene expression maps from multiple specimens [6]

1



1. Introduction

Thanks to machine learning, specifically neural networks, registration of
medical images has become more approachable, and the overall process
achieves way higher performance than non-machine learning methods. The
optical flow estimation deep learning networks have shown to be highly
accurate when computing the per-pixel motion in the image.

One of the most critical issues faced in medical image analysis today
is the scarcity of high-quality annotated data appropriate for the given
task. Many different collections of such data were created over the years,
but primarily focusing on image classification or segmentation rather than
registration. Their value cannot be overstated as they lower the barrier of
entry tremendously.

Challenges are organized to benchmark methods developed for the given
dataset. Participants in such challenges are tasked with creating an ML
method that is later evaluated. Such challenges usually end with a workshop
and discussion between all participating sides in hopes of further improvement
in the given field. Some of the challenges with the image registration are the

# RIRE - Retrospective Intermodality Brain Image Registration is a
project focusing on brain images from the CT, MRI, and PET scans [7].

® EMPIRE10'|- EMPIRE10 challenge focused on CT scans of the lungs
[3].

® CuRIOUS 20197 - Correction of Brain shift with Intra-Operative
Ultrasound focuses on the registration of pre-operative MRI to iUS
before brain tumor resection and the registration of iUS after-before
brain tumor resection.

and the ANHIR Challenge®| [9], which we will use as the benchmark for
our experiments.

B 1.1.1 ANHIR Challenge

The Automatic Non-rigid Histological Image Registration Challenge (ANHIR)
aimed to evaluate the accuracy, robustness, and speed of non-rigid registration
methods on microscopy histology images [9]. These images have been stained
by a collection of several histological dyes (see section 2.3)). Images are from
eight distinct groups (e.g., lung lesions, human breast tissue, or human kidney
tissue), each of which is annotated with landmarks, which serve as a basis for
the method evaluation (see section 3.5)). Part of the dataset was previously
made public as a part of a research paper [10].

Images were provided by various organizations, such as CIMA of the Uni-
versity of Navarra, Institute of Pathology of University Hospital Aachen,
Masaryk Memorial Cancer Institute Brno, Masaryk University Brno, Depart-
ment of Pathology of Lomonosov Moscow State University, Grupo VISILAB

! Available at [https://empirel10.grand-challenge.org/
2 Available at https://curious2019.grand-challenge.org/
3 Available at https://anhir.grand-challenge.org/


https://empire10.grand-challenge.org/
https://curious2019.grand-challenge.org/
https://anhir.grand-challenge.org/

1.2. Goals and structure of this thesis

of UCLM. Images were obtained and prepared thanks to the AIDPATH
European project [9].

. 1.2 Goals and structure of this thesis

The main goals of this thesis are as follows.

® Development of a medical image registration method based on optical flow
estimation. Optical flow is generally not used in this context but rather in
longer image sequences, like autonomous driving, image tracking, video
compression, and movement detection, amongst many other applications
[11].

® Establish the effectiveness of the optical low methods on medical images.

® Propose possible improvements to both the method and the training
procedure.

In the chapters that follow, a method based on optical flow estimation is
created and tested on the ANHIR [9] dataset. Its results are evaluated and
compared to the other participants of the ANHIR challenge [9].

This work also contains additional information, which should allow the
reader to better understand the medical background, other registration meth-
ods, and the problem of the optical flow estimation.






Chapter 2
Medical background

Histology, also known as microscopic anatomy, studies the microscopic
anatomy of diseased tissue samples through staining, sectioning, and ex-
amination under a microscope. Its importance lies in the diagnosis of a wide
variety of diseases, for example, cancer, in order to aid future treatment [12].

Histological staining is a series of processes in the preparation of the tissue
by staining it with special chemicals in order to make different features more
pronounced or visible for the microscope study [I3]. This process has five
distinct stages: fixation, processing, embedding, sectioning, and staining.

Figure 2.1: Human breast tissue stained with H&E



2. Medical background

B 21 Sample preparation

B 2.1.1 Fixation

Fixation provides a way to prevent the natural tissue and cellular struc-
ture from degrading. For the microscopy using a light microscope, neutral
buffered formalin (NBF) is used. Fixatives irreversibly cross-link proteins.
Unfortunately, in the process, DNA and mRNA, amongst many other protein
structures, undergo denaturalization and, as such, may lead to incorrect
results [I3]. Nonetheless, the tissue retains its chemical composition and
hardens the cells.

They also change the penetrative properties of the tissue, possibly enhancing
the effectiveness of stains. Aside from NBF, other commonly used fixatives
are paraffin-formalin or Bouin fixative [14].

B 2.1.2 Processing

Processing consists of several different steps, one of them being dehydration.
After the removal of the water from the sample, the tissue is solidified and
cut into thin slices (thinner for electron microscopy, somewhat thick for light
microscopy) [I5]. Once more, the process is repeated through a hydrophobic
clearing substance such as xylene to remove unwanted chemicals like alcohol
or paraffin wax.

B 2.1.3 Embedding

This part of the overall process is to make the extraction of the cellular
structures easier and preserve the morphology of the tissue. Paraffin wax, or
in more complex structures, plastic resin, is used. However, the same problem
presents itself as with other fixatives, being the possibility of degrading the
cellular structure [13].

B 2.1.4 Sectioning

Sectioning refers to the preparation of thin ribbon-like slices, which are then
used in the microscope [13].

B 2.1.5 Staining

As stated above, staining is used to highlight important features of the tissue.
One of the most frequently used stains is hematoxylin, which stains the nuclei
with a bluish color, commonly used together with eosin, which stains the
nuclei with a pinkish color, giving tissues a familiar look as shown in figure
2.1 There is, however, a wide variety of different staining techniques for
specific cells and tasks [I3]. Staining is often used for the diagnosis of tumors
in which a dye color is applied to the front and the back of the sample to
locate tumorous or diseased cells [16].



2.2. Histological tissue

B 2o Histological tissue

This section will describe several different types of histological images from
different tissue samples, stains used on them, and diseases diagnosed with
the help of said images. All image groups of this section are represented in
the ANHIR dataset [9].

B 2.2.1 Lung lesion

Lung lesions, sometimes referred to as pulmonary nodules, are defined as
an approximately rounded opacity [I7], which is more or less well-defined,
measuring up to 3 cm in diameter. Lesions whose diameter is above 3 cm
are considered lung masses and indicate lung cancer. The prevalence of such
masses is around 40%, but varies widely depending on different things such
as age, medical history, or smoking [I8]. They can be categorized into four
different types,

8 Benign tumors, such as hamartomas, which is a local malformation of
cells caused by an overgrowth of multiple aberrant cells. They account
for about 75% of all benign lung tumors and around 7% of all solitary
lung nodules. [19]

® Infections, such as tuberculosis, which accounts for around 7% of all
deaths in developing countries, making it the single highest cause of
death from a single source of infection among adults. The symptoms of
tuberculosis are chronic cough, pain in the chest, hemoptysis, weakness
or fatigue, and many others [20]. Other sources of infection can be fungal
in origins, such as histoplasmosis or coccidioidomycosis [21].

® Inflammation, such as rheumatoid arthritis or sarcoidosis [22].

® Malignant tumors, including lung cancer and cancer that has spread
to the lung from other parts of the body. Lung cancer is a leading cause
of cancer deaths worldwide, with 1.8 million new cases and 1.6 million
deaths annually. Its survival rate for a 5-year period is 18%, compared
to breast, colon, or prostate cancer, which all have a rate of 90, 65,
and nearly 100 %, respectively. The majority of lung cancer cases are
diagnosed at the advanced stage [23].

Figure 2.2: Lung lesions from the ANHIR dataset [9]



2. Medical background
B 2.2.2 Lung lobes

The lungs are the primary respiratory system in most animals. Human lungs
are comprised of lung lobes. The right lung has three lobes (superior, middle,
and inferior), and the left has only two lobes (superior and inferior) due to
the presence of the heart. However, in rodents, lung lobes are distributed
differently, with the right lung having an additional post-caval lobe and the
left one being comprised of a single lobe [24]. Our images contain the lung
lobes of mice.

Trachea

Superior lobe

Main (primary)
bronchus

Superior lobe Lobar

(secondary)
bronchus

Segmental
(tertiary)
bronchus

Middle lobe Cardiac notch

Inferior lobe Inferior lobe

Right lung Left lung

Figure 2.3: Gross anatomy of the human lungs, taken from [25]

Figure 2.4: Lung tissue, taken from [26]



2.2. Histological tissue

B 2.2.3 Breast tissue

Histological slices of human breast tissue are most commonly obtained for
breast cancer research. Breast cancer is globally the leading cause of mortality
among women. In 2018, a total of 2.1 million women were diagnosed, and
around 630 thousand death were recorded [27]. The primary distinction is
whether the tumor is limited to the epithelial component of the breast or has
spread to the surrounding stroma.

Tumor types can also be separated based on where its located, being either
in the ducts or lobes. In the actual histological practice, more general descrip-
tors are used, such as cell type and their number, location of secretion, or
their immunohistochemical profile [28]. Around 50 % to 80% of all diagnosed
breast cancer cases are so-called invasive ductal carcinoma (IDC), while the
rest are classified as invasive lobular carcinoma (ILC). They both have many
subtypes, based on their distinctive characteristics [28]. Some of which are

® Invasive ductal carcinoma no specific type (IDC-NST) is the
most prevalent type of invasive breast carcinomas, constituting about
40% to 75% of all cases. It has a wide variety of morphological variations
and clinical behaviors. Areas with dead and calcified tissue are detectable
in more than 50% of the cases [28].

® Invasive lobular carcinoma is the second most common breast carci-
noma with around 5% to 15% of all cases. It generally affects women
of advanced age. It is characterized by small tumor cells with atypia,
uniformly distributed in a concentric pattern [29].

® Medullary carcinoma is responsible for 5% of all cases. The cause
of this cancer type is a mutation of the BRCA1(Breast cancer gene 1)
germline. It is well-circumscribed, composed of large and pleomorphic
tumor cells, spindle cell metaplasia, and giant tumor cells [28§].

® Apocrine carcinoma constitutes around 1% to 4% of all cases, with
prominent apocrine differentiation comprising at least 90% of tumor
cells. This subtype is of high histological grade with a poor prognosis. It
affects women of all ages but is more common in women after menopause.
Bizarre tumor cells with multilobulated nuclei are also observable [28].

Nowadays, the cancer classification based on its morphological properties
such as nuclear and tubular grade, mitotic index or architecture characteristics,
and the pathological parameters like tumor size, lymph node involvement, or
metastasis is not good enough to predict the real behavior of breast tumor
pathophysiology. Classification based on the molecular patterns is therefore
utilized [28]. Four clinically relevant molecular subtypes are Luminal A,
Luminal B, enriched HER2, and Triple Negative (see section Histological
stains and markers])



2. Medical background

Figure 2.5: Human breast tissue from the ANHIR dataset [9]

B 2.2.4 Mammary glands

Mammary glands are responsible for the production of breast milk. They are
modified sweat glands consisting of alveoli, lined with milk-secreting cuboidal
cells and surrounded by myoepithelial cells. Alveoli join together to form
lobules, which are in turn drained by a lactiferous duct into the opening in
the nipple [30]. Most of the breast carcinoma originates either in the lobes or
the ducts (see 2.2.3)).

Figure 2.6: Mice mammary glands from the ANHIR dataset [9]

10



2.2. Histological tissue

B 2.2.5 Gastric tissue

As with the breast tissues, gastric samples are commonly collected to further
research cancer prevention or therapy. Gastric cancer is the fifth most common
cancer and the third most common cause of cancer death globally, with around
1 million new cases and around 780 thousand deaths reported in 2018 [31].
Risk factors for the condition include age, high salt intake, diets low in fruit
and vegetables, and Helicobacter pylori infection [32].

From the histological standpoint, early gastric cancers can be classified as

® Type I - Protruded
® Type II - Superficial (either elevated, flat or depressed)
8 Type III - Excavated

The advanced stages of the gastric cancer are commonly classified according
to Borrmann [32] into four types, being

8 Type I - polypoid, without elevated borders of sharp margins
8 Type II - ulcerated with elevated border and sharp margins
® Type III - ulcerated with diffuse infiltration at the base

8 Type IV - diffusely infiltrative thickening of the wall

The five-year survival rate for the patients varies widely between countries
(USA - 32%, Japan - 70%). For the advanced stages, specifically Type IV,
the survival rate is below 5% [32].

Figure 2.7: Gastric tissue from the ANHIR dataset [9]
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2. Medical background

B 2.2.6 Kidney tissue

Kidneys are partly responsible for controlling various bodily fluids, acid-base
balance, the removal of toxins, and blood pressure regulation, amongst many
more functions. The parenchyma of the kidney is divided into two major
structures, the outer renal cortex and the inner renal medulla [30].

The main functional units are the nephrons. They are responsible for the
formation of the urine by filtering the blood passing through them. They
consist of a clump of capillaries called glomerulus and a structure called
Bowman’s capsule [30].

Once the kidneys cease working, the resulting state is called chronic
kidney disease (CKD). It does not have any symptoms in the early stages
and, as such, can only be diagnosed by chance from blood or urine test
conducted for other reasons. However, symptoms can include tiredness,
swollen ankles, feet or hand, shortness of breath, and blood in the urine at
a more advanced stage. It is caused by high blood pressure, diabetes, high
cholesterol, infection, or long-term effects of some medications [33].

Some of the kidney diseases that can lead to the CKD are

® Cystosis, which is caused by a build-up of a naturally occurring chemical
called cystein.

# Glomerulonephritis, where the glomeruli are damaged and lose their
ability to remove waste and fluid from the blood.

® IgA Nephroapthy, caused by a build-up of proteins created by the
immune system.

(a) : (b) : Mice kidney
Glomerulopathies
blocks

Figure 2.8: Sections of glomerulopathies blocks and mice kidney from the
ANHIR dataset [9]
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2.3. Histological stains and markers

2.3 Histological stains and markers

Histological stains change the coloration of cells and tissues significantly. This
is used to highlight specific structures with the sample [I3]. Some of the
commonly used stains or markers are

Clara cell 10 protein (CC10)

The CC10 protein is generated by the Clara cells, which are secretory
epithelial cells lining the pulmonary airways. It is primarily used for the
detection of pulmonary tumors [34].

Hematoxylin and eosin (H&E)

H&E is the standard stain used for histological examination of human
tissue. The combination of hemotoxylin and eosin is capable of high-
lighting the fine structures of cells and tissue because most organelles
and extracellular matrices are eosinophilic, while the nucleus is rough
endoplasmic reticulum and ribosomes are basophilic [35].

Antigen KI-67 (Ki67)

Ki67 is associated with cell proliferation. It is present in the active phase
of the cell cycle but absent in the resting phase. It is therefore capable
of serving as a proliferation marker [36].

Platelet endothelial cell adhesion molecule (PECAM-1 / CD31)
Among vascular cell adhesion molecules, platelet-endothelial cell adhesion
molecule has a distinctive feature of being expressed on several of the
major cell types associated with the vascular compartment [37]. It is,
therefore, ideal for the mediation of the cell-to-cell interactions that
involve platelets, leukocytes, or endothelial cells [37].

Human epidermal growth factor receptor 2 (HER-2)

HER-2 (sometimes called c-erbB-2) oncogene is overexpressed in various
human cancers (breast, ovarian, lung, gastric or oral). Its presence in
the sample is associated with poor overall survival chances [38].

Estrogen receptor (ER)

ER is a member of the steroid/nuclear receptor superfamily. It is a
ligand-activated enhancer of proteins. The function of the ER is to
signal transducers and transcription factors to modulate the expression
of target genes after ligand binding [39].

Progesterone receptor (PR)

PR is a regulator in reproductive tissues of women that controls devel-
opment, proliferation, and differentiation during pregnancy and repro-
ductive cycle [40]. Same as ER, PR is a member of the nuclear receptor
family. The primary purpose of PR is to regulate networks of target
gene expression after binding. It also plays a role in the progression of
endocrine-dependent breast cancer [41].
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2. Medical background

The following images show the same sample of mice lung lobes after being
stained [9].

(a) : H&E (b) : CD31 (c) : proSPC

(d) : CC10 (e) : Ki67

Figure 2.9: Effects of different types of stains

B 24 Description of images in the ANHIR dataset

Images of the samples are taken from

#® Lung lesions: The base for images in these sets is the 3um section
which is either stained with H&E, CD31, proSPC, CC10, or Ki67. Three
mice lung lesions, either adenoma or adenocarcinoma, were acquired at
a magnification of 40x and pixel size of 0.174um/pixel [9].

B Lung lobes: Four images of mice lung lobes were acquired in the same
fashion as lung lesions, at a lower magnification of 10x and pixel size of
1.274 pm/pixel [9].
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2.4. Description of images in the ANHIR dataset

®8 Mammary glands: The base for images in this section is two mice
mammary glands stained with H&E, the estrogen, and progesterone
receptor antibodies or HER2. The images were acquired in the same
way as the mice’s lung lobes, with a pixel size of 2.294 pm/pixel [9].

®8 COAD: The Colon Adenocarcinoma sets are made of colon cancers
samples, taken at 10x magnification. Samples were stained with either
H&E histopathology, hematoxylin or DAB [9].

B Mouse kidney: Mouse kidneys are similar to human kidneys and, as
such, can be substituted. Samples were stained with periodic acid-Schiff
(PAS), smooth muscle actin (SMA), or CD31 [9].

® Gastric: Gastric samples in the ANHIR, dataset are from patients with
a histologically verified gastric adenocarcinoma. Samples were stained
with H&E, CD4, CD8 CD68, or CDl1a or used for immunophenotyping
[9].

# Human breast: Samples in these sets were made from the 3pm section
of blocks stained with H&E immunohistochemistry(IHC) with antibodies
against ER, PR, and HER2 [9].

8 Human kidney: 3um sections were cut from glomerulopathies blocks
and stained with H&E, PAS, Masson, and Methane [9].

B 2.4.1 Image annotation

Images are annotated with landmarks signifying important structures in the
tissue samples, with 86 landmarks per image on average. The work was
done by nine annotators, with each set taking around 2 hours. At least two
different annotators annotated each image. Distances between the landmarks
placed by annotators were, on average, 0.05% of the image diagonal [9].

(a) : Mammary glands
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2. Medical background

(b) : Lung lesion (c) : Lung lobes
(d) : Mice kidney (e) : COAD
(f) : Gastric (g) : Human breast

(h) : Human kidney

Figure 2.10: Annotated tissues sample from the ANHIR [9] dataset (landmarks
are shown as red crosses)
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Chapter 3

Data description

For the training of deep neural networks, vast quantities of data are required.
We, therefore, use several different datasets, both with and without ground
truth optical flow.

Obtaining large datasets of medical images for the training is often difficult
due to the privacy issues or lack of annotations done by professionals.

B 31 Flying Chairs

Flying Chairs is a synthetic dataset created in 2015 to train the Flownet
architecture [42]. 964 publicly available images of mountains, cities, and
landscapes with the resolution of 1024 x 768 were used for the background,
each cropped into a shape of 512 x 324. The foreground images comprise 809
chairs, with 62 views per chair (with some of the similar images removed to
avoid overfitting) [42].

Motion is generated by randomly sampling 2D affine transformation param-
eters and transforming the chairs relative to the background. The original and
the target images are obtained with ground truth optical flow and occlusion
regions. Parameters of the affine transformations are adjusted to more closely
matched values seen in the dataset. 22 872 image pairs and flow
fields were generated in total (22 232 train / 640 test) [42].

&

Figure 3.1: Flying Chairs dataset, taken from [42]
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3. Data description

B 32 MPISintel

The MPI-Sintel dataset is based on a short open-source animated movie cre-
ated in Blender with the same name (see https://youtu.be/eRsGyueVLvQ)
[43]. The open-source nature of this project enabled access to the 3D graphics
elements used to create the movie. This allows for the creation of several
different types of images, based on the complexity of the rendered scene,
ranging from a simple albedo pass, with no shadows rendered and constant
albedo over time, to a clean pass, with illumination including shading and
specular reflection to a final pass, with all the after-effects, such as blur due
to depth of field or atmospheric effects, resembling the original movie.
MPI-Sintel is formed by 35 different image sequences, most around 50
frames long, with corresponding ground truth optical flow. 1628 images were
generated, with 1064 belonging to the training set and 564 to the validation
set. Images are rendered at a resolution of 1024 x 436. In addition, unmatched
pixels, which were previously invisible due to occlusion, are provided [43].

Figure 3.2: MPI-Sintel dataset, taken from [43]

The MPI-Sintel dataset is one of the most commonly used optical flow
datasets for the initial training of the networks and a commonly used bench-
marking tool.
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3.3. ANHIR dataset

. 3.3 ANHIR dataset

The ANHIR dataset is formed by histological images at a microscopic scale
that were stained. It contains 49 different sets, with 3 to 9 images per set
(average of 5 per set) [9]. In total, there are 355 images with 18 different
stains. Each image can be registered with all other images in their respective
set, generating 481 image pairs, which are split into 230 training and 251
testing pairg!| [0]. Within each of the 49 sets, images correspond to the same
slice of the same tissue sample [9].

Examples of the images in the ANHIR [9] dataset are shown in full in the
section [2.4l

pum/  Avg. size # # #

Name Scanner Magnitude pixel  [pixels] of sets  train  test
Lung lesions Zeiss 40x 0.174 18k x 15k 3 30 0
Lung lobes Zeiss 10x 1.274 11k x 6k 4 40 0
Mammary glands Zeiss 10x 2294  12kx4k 2 38 0
Mouse kidney Hamam. 20x 0.227 37k x 30k 1 15 18
COAD 3DHistech 10x 0.468 60k x 50k 20 84 153
Gastric Leica 40x 0.2528 60k x 75k 9 13 40
Human breast Leica 40x 0.253 65k x 60k 5 5 20
Human kidney Leica 40x 0.253 18k x 55k 5 5 20

Table 3.1: Data summary of the ANHIR dataset, taken from [9]

B 3.4 Dataset comparison and usage

Flying Chairs and MPI-Sintel were explicitly created to train deep neural
networks. Movement in the scenes is mostly rigid, with discontinuities
occurring due to occlusion by another object. The color of objects generally
does not change. Maximum movement is mostly just a fraction of the scene.

In contrast, images in the ANHIR dataset are different both in shape and
color, with maximum displacements of even more than half of the image
size. Discontinuities occur due to folding or tearing the tissue, where huge
areas suddenly go missing, whereas, in the other two mentioned datasets, the
disappearance would have been more sudden.

Each of the three datasets has its unique place in the training of our
network. While Flying Chairs or MPI-Sintel have little in common with
the histological images, their accurate ground truths with sometimes more
superficial scenes are an ideal starting point for the training and, as such, are
used for pre-training of our network.

ANHIR dataset does not contain necessary dense ground truth information
for learning the optical flow using neural networks since there is no motion.
Therefore it needs to be created synthetically. Another issue we are facing is
the relatively small size of the dataset, which forces us to use additional data
augmentation methods.

!The lung lesions and lung lobes datasets were previously used in [I0], and were made
entirely public. Therefore, they are used for training only.
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3. Data description

Pairs Pairs Pairs Image Ground
total train test  size truth
Flying Chairs 22872 22232 640 512x324  Yes
MPI-Sintel 1628 1064 564 1024x436  Yes
ANHIR 481 230 251  5k-60k Ng?

Name

Table 3.2: Comparison of the datasets used for the training

. 3.5 Evaluation metrics

Before talking about the performance of different methods, we need to define
the metrics. In this paper, we will be using metrics used in the ANHIR
challenge [9] as well as several other commonly used ones.

The main distinction between the two is what they measure. Measures
used in the ANHIR use the landmarks in each of the images, while the other
measure image differences in a more general sense.

B 351 EPE

End-point-error is a simple metric which coincides with a pixel-wise L2
distance ||(+)||2 of either the flow, or the landmarks themselves. For optical
flow, we are interested in the mean value. It is defined as

BPE = 3 () ~ £,00) (31)
xef

where fy; is the ground truth optical flow, f, is the predicted flow and x is a
given pixel in the image.
The definition changes slightly for the landmarks and becomes

EPE(k) = 11(1) - o(k)]|2, (3.2)

where [y is the landmarks pair k.

B 352 (TRE

r'TRE, or relative target registration error is the end-point-error, divided by

the image diagonal as
EPE
'TRE = ——, (3.3)
d
where d is the diagonal computed as \/z2 + y2. Since the images in the
ANHIR dataset vary widely in their size, this enables us to normalize the
values and compare different sets.

2Images are annotated with landmarks, however are missing ground truth for dense
registration
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3.5. Evaluation metrics

B 353 MITRE

Median rTRE will be the main criterion (represented by u in equations) which
we will use to compare individual image registrations. It is defined as

% (m) = median rTRE! (m
pt7(m) = medis ;7 (m) (3.4)
where L is the set of landmarks, which can be found in both images and m is
the given method.

B 3.5.4 Robustness

Robustness is defined as a ratio of the landmarks, which have decreased their
distance after the registration (their initial rTRE is higher then their new
r'TRE). It is defined as

_ K]

Ri,j(m) =

(3.5)

where L’ is the set of all landmarks in the image and K% is the subset of
the landmarks for which the inequality rTRE; < rIRE;, holds, where rIRE;
is the initial registration error. The mean robustness is then computed over
all images as

R(m) = mean  R"™ (m) (3.6)
(,5)€T

B 3.5.5 Other ANHIR metrics

Several other criteria are computed in the ANHIR challenge, as well as average
time required for a registration of a single image pair.

B AMrTRE (Average median rTRE)

AMrTRE(m) = mean  p™ (m) (3.7)
(4,9)eT

B MMrTRE (Median of median rTRE)

MMrTRE(m) = median 7 (m) (3.8)
(4,9)eT

B AMxrTRE (Average maximum rTRE)

AMxrTRE(m) = mean max rTREf’j(m) (3.9)
(4,9)€T  leL?

B ARMxrTRE (Average rank maximum rTRE)

ARMxrTRE(m) = mean rank max rTREf’j (m) (3.10)
(i,J)eT meM IeLi
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3. Data description

B ARM(TRE

Average rank of median rTRE is the main criterion used to compare results
achieved by participants of the ANHIR challenge. It is defined as

ARMrTRE(m) = ko phd
rTRE(m) mean  rank  p (m) (3.11)

where 7 is the set of image pairs, M is the set of methods of all the partici-
pants.
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Chapter 4

Image registration

Image registration is a process of overlaying two or more images of the same
object (or related objects) on top of each other. Images could be taken from a
different angle, different sensors, different modality, or simply after the object
in the image has undergone some form of distortion [44]. One of the common
goals in medical imaging is to align tissue samples after their location changes
due to inaccurate alignment by the human doctor. As the tissue is usually
soft, the transformation will be non-rigid, although a rigid transformation can
usually approximate a large part of the transformation. The goal of image
registration is to find suitable spatial transformation such that

A

T = argmin S(I;,T o Iy), (4.1)
T

where I; and I are the fixed and the moving image respectively or their
features, T are different transformations from some predefined class of trans-
formations and S is a measure of dissimilarity [45]. We use argmax instead
of argmin if using SSIM [46] or other similarity based functions.

Basic pipeline for most image registration [44] methods is as follows

1. Preprocessing - Images can be filtered to pronounce different features of
the image, or their color space transformed to a different one (gray-scale
conversion).

2. Feature detection (or extraction) - Distinct objects e.g., edges,
contours, corners are manually, or automatically detected [45]. Some
methods (like ours) instead extract their own features from the image
with the help of learnable filters (CNN).

3. Feature matching - Corresponding features are matched, and a con-
nection is made. Various descriptor are used for this purpose [45].

4. Transformation model estimation - The transformation function
is created (in our case, a dense displacement field), which aligns the
features of the two images.

5. Image transformation - The warping algorithm transforms the image
using a transformation function. Sometimes, interpolation is utilized, for
the coordinates, which land on non-integer values [45].
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4. Image registration

B a1 Image similarity functions

To quantify the difference between images, we need a function that allows us
to do so. This problem is approachable from many angles, e.g., geometric or
probability.

B 4.1.1 P-norms

One of the simplest ways to quantify the difference between two images is to
use a norm of the pixel values. The difference is then

Z 111.(x) = 12(x)]Ip, (4.2)

xeh

where Iy are the two images in the given point x, and p is the type of norm.
Two most used are p = 1, which is called sum of absolute differences, and
p = 2, being sum of squared differences.

B 4.1.2 Census loss

Census loss utilizes the census transform of the image. This transformation
converts the gray-scale image I, to have nine channels, one for each of the
neighbors and the center pixel itself as

Iy = (393%1;71)(157 |in=1, out =9), (4.3)

where Conv denotes the convolution operations with given stride s, kernel size
3 x 3, number of input channels in, and output channels out, the convolution
kernel is the identity matrix. The original value is subtracted from the
nine-channel image to measure whether the neighborhood has lower or higher
intensity values than the center pixel, simply as I7 = Iy — I,;. Value is then

normalized as
I

where € is some normalization constant. This process is then repeated for the
second image, and the normalized Hamming distance is computed for each
pixel as

Iy = (4.4)

o I Ui (%) — T (x))?
79 =5 2 (T30 — Thal)2 + ¢ 9

The overall census loss between the two images is then

Le(I, L) = Z d(x (4.6)

xeh
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4.2. Image pyramid

B 4.1.3 SSIMm

The structural similarity index measure is based on the assumption that the
human vision evolved to differentiate between different structures in the scene.
Where norm-based dissimilarity function would give us high values, e.g., due
to change in brightness, SSIM remains relatively unchanged. The index for
the given pair of windows I is given as

(2u1p2 + ¢;) (2012 4 ¢5)
(13 + 13 +c1)(0F + 05 +cx)’

SSIM(Ih,I5) = (4.7)
where p(.) is the average of the given window, 0(2,) is the variance, 019 is the
covariance and ¢y is used to stabilize division with weak denominator [46].

B 4.1.4 Cross-correlation

Cross-correlation (CC) matches the image intensities directly (unless CC is
used after features have been extracted by a convolutional filter of a CNN or
a similar method) [47]. The normalized cross-correlation coefficient in the
given point x can be computed as

_ SwW - EOW)(I(x) — E(I(x))
VEw (W — B2/ 00 (I(x) - B(I(x)))?

where W is the window (cropped part of the image, which is used for the
cross-correlation), F(-) is the mean and I(x) is the intensity in the given
point [47]. This matching method is susceptible to noise and the similarity
measure is relatively flat near its maximum [45].

CC(x) (4.8)

B 4.1.5 Mutual information

The mutual information (MI), or sometimes called relative entropy, measures
statistical dependency between two dataset. MI between two random variables
I, and Iy, which have been computed from the two images is given as

MI(I1, 1) = H(Iy) — H(Ix|I1) = H(I1) + H(I2) — H(I1, I2), (4.9)

where H(-) = —E((log(P(-))) is the entropy of the variable and P(-) is
the probability of the given variable. Course-to-fine resolution is usually
implemented in the so called pyramidal approach (see section 4.2)) [48]. MI is
maximized, when the two images are aligned, and the information redundancy
between the two measured areas is the highest [49].

B a2 Image pyramid

Image pyramids, sometimes called feature pyramids, are sequences of the
same image taken at different resolutions. This can be done in multiple ways,
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4. Image registration

either by simply only taking every nth pixel, using a filter, like Gaussian
or Laplacian, in order to propagate local information onto a larger area, or
interpolating the image [50]. Pyramids generated by CNNs are more flexible,
as their learnable kernels allow them to find the ideal filter for the given
dataset, as seen in the PWC-Net [51]. Our method uses the interpolated
pyramid between the local and global transformation (see section [6.8)and
average pooling within the correlation levels (see section .The primary
purpose of the image pyramid in the context of deep neural networks is to
find an approximate registration on a lower resolution quickly, which then
serves as an initial estimate of the next finer levels.

Figure 4.1: Image pyramid created by interpolating to the 1/2 and 1/4 of the
original image size

. 4.3 Transformation models

The transformation models can be divided based on the number of degrees of
freedom and whether they are linear or not. The number of control points
determines the degree of freedom. Some global models use all control points
to estimate one set of parameters used for the entire image. Local models
only use several control points for each area and may rely on the global
context. However, the higher the number of control points used, the higher
the accuracy of the final transformation model. The final transformation can
then be approximated with the least-squared fitting, among other methods.
This holds true for both the local and global models [45].

In this section, a 2D space is assumed for all transformations. Each point
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4.3. Transformation models
x of this space is comprised of 2 coordinates (z,y).

Bl 4.3.1 Global registration models

Some of the most frequent global models are bivariate polynomials of low
degree.

B Similarity transform
Similarity transform (shape-preserving mapping), preserves angles and is
determined by two control points. This transformation consist only of rotation,

translation and scaling as

u =s(x cos(f) — ysin(f)) + t,

v =s(xsin(f) + ycos(d)) + t, (4.10)

where s is the scaling factor, ¢ is the angle of rotation and ¢, is the translation
in the given direction [45].

B Affine transform

Affine transform provides a more general mapping which is defined by three
non-collinear control points [45], defined as

U =a1Z + agy + t,

(4.11)
v =bix + bay + t,

B 4.3.2 Local registration models

Sometimes the global transformation is not enough to accurately approximate
local geometric distortion. In such cases, local methods are utilized.

B Radial basis function
Radial basis functions (RBFs) are capable of accurately generating transfor-

mations for local geometric distortions. The mapping created by the radially
symmetric functions is then

N
u= Zcz-g(a:,xi), (4.12)
i=1

where ¢(+) is the radial basis function, centered in point x;, with weight ¢;

52].
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4. Image registration

B Thin-plate splines

The most often used RBFs are the thin-plate splines (TPS) [53], where the
basis function is defined as

g(z,2:) = o — 25 *In([la — z])). (4.13)

The whole equation is then

N
u=ao+ a1x + asy + Zcig(a:,:ci)
i=1
. (4.14)
v =>by+ b1z + boy + Z cig(y, yi)
i=1
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Chapter 5
Optical Flow

Optical flow approximates the apparent movement of brightness patterns in
a series of images (image pair in our case). It can arise from a motion of
the object in the scene or relative motion of the object, and the observer
[54]. We use the estimated optical flow between image pairs to find a pixel-
wise transformation between them. Aside from motion estimation, which is
utilized in this thesis, optical flow can also perform motion detection, object
segmentation (due to discontinuity of the flow at the borders of the object),
motion compensated encoding, or stereo disparity measurement [55].

Figure 5.1: Image pair and the corresponding optical flow estimation

Optical flow could be computed locally for each point without additional
constraints. However, if the local patch of points all have comparable bright-
ness values, flow cannot be determined locally. As with other registration
methods, global, or semi-global context is needed for correct estimation [54].

The underlying assumptions behind optical flow are the invariance of the
structure brightness, and local homogeneity of motion [54]. The brightness
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5. Optical Flow

constraint in each point x in time ¢ is expressed as

aI(x, )
ot

=0 (5.1)

where [ is the brightness of the image.

Since we use an image pair instead of an image sequence, we consider
the change in ¢ to correspond to the movement between the two images.
Furthermore, if talking about optical flow f, we assume the change from the
image in the initial time to the one in the changed time.

B 51 Optical flow estimation

This section discusses several methods used for the optical flow estimations
and slightly outlines their derivation.

B 5.1.1 Basic gradient-based estimation
The equation [5.1] can be rewritten, with the use of optical flow as
I(x,t) =I(x+f(x),t+1) (5.2)

where [ is the intensity of the image in the point x, f(x) is the flow in the
given point and ¢ is a time step [11].

Furthermore, we can approximate the second image by a first-order Taylor
series. Firstly, we consider 1D case,

file —d) = fi(z) — dfy(z) + O(d*fy), (5.3)

where d denoted the translation and f(.) are the two signals at two time
instants. Let fa(x) = fi(x — d). If we ignore higher order terms then the
second, the approximation for d is obtained as

g (@) = fo(z)

7 (5.4)
fi(z)
If generalized to the 2D case, the displaced image is approximated as
I(x+f(x),t+1) = I(x,t) + f(x) - VI(x) + [;(x,t) (5.5)

where I; denotes the temporal partial derivatives of the image I.

B 5.1.2 Least-squares estimation

In order to constrain the flow estimation, constraints from surrounding pixels
are used, with the assumption of a similar movement in the given patch. The
minimization of the constraint error is done by least-squares fitting such that

E(f(x) =Y gx)[f(x) - VI(x,t) + L(x,1)]*, (5.6)
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5.1. Optical flow estimation

where g(x) is a weighted function that determines the support of the estimator.
It is usually a Gaussian in order to increase the weight of the pixels in the
center of the patch while reducing the importance of the edge pixels [I1I]. The
problem can be rewritten in matrix form as

Mf =b (5.7)
where M and b are

M = Zg]?: ZngIy b=— ZgI:cIt
> 911y 2915 ’ Y9l )’

where I, and I, are the spatial partial derivates of the image I. Estimated
flow is then computed as
f=MTb, (5.8)

where M is the pseudo-inverse of the matrix M.

B 5.1.3 Iterative optical flow estimation

The solution of the least-squares estimation provides an optimal solution
(non in the sense of the original problem). The Taylor polynomial of the
first degree is used. We can use Gauss-Newton optimization [56], where the
current estimate of the f(x) is used to undo the motion and look for the
residual motion not accounted for by the original estimate. In our method,
we use the GRU [57] for the flow iteration. This loop continues until the
residual motion is below an acceptable threshold (or a maximum number of
iterations is reached) [58]. The warped image sequence is generated as

F(x,t) = I(x + f(x)dt,t + ot) (5.9)

where 0t is the time between consecutive frames [I1]. In our problem, the
consecutive frames represent gradual change from the first image to the
second. If the flow difference is not zero, we can estimate the residual flow as

of(x) =M*b (5.10)

and the next iteration of the refined optical flow as

A

£ (x) = £/ (x) + of (x) (5.11)
and finally the objective function, which we want to minimize is

Zg [ (x,t) — I/ (x + 6f(x),t 4 1))

~ Zg VI (x - 6£(x)) + I (%, £)] = E(5£(x)). (5.12)

We can see, that E approximates E to second-order. This error diminishes,
as of approaches zero.
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5. Optical Flow

B 5.1.4 Global smoothing

The main advantage of global smoothing is propagating information over
large areas of the image. The smoothing enables regions of uniform pixel
intensity to receive information about flow estimation from regions where the
flow could be estimated more easily. One such function is

E(f(x)) = /(VI £(x) + 12 + AV L2+ 1V £y 1) dzdy, (5.13)

which was proposed in [59]. A is the regularization parameter. The integral
can be split into a discrete approximation, which leads to a large system of
linear equations [59].

B 5.1.5 Other methods of optical flow estimation

Many other methods of flow estimations exist. The problem can be formu-
lated from the standpoint of probability, where the likelihood of the flow
corresponding to the actual motion is computed. Another approach is the
usage of mixture models and utilization of Expectation-maximization (EM)
algorithms. EM algorithms assign each pixel within the given region to a
small number of possible flows [I1].

B 52 Optical flow visualization

The overall motion could be hard to recognize when viewing optical flow,
especially in larger images. Therefore a color-coded system is used (Middle-
bury color code). Each pixel is assigned a color based on the magnitude and
direction of the flow.

Hue of the output color is calculated from the angle of the flow as

a = atan2(fy, fz) (5.14)

where f, and f, are components of flow vector f(x) and atan2 is the two-
argument arctangent. After the angle is calculated, the hue is picked from
the standard color wheel, 0° corresponding to the red color, 120° to the green
color, and 240° to the blue. Saturation is then computed simply as

£

~ max |f(x)]

(5.15)

With fixed V, of the HSV color space, the corresponding RGB color is
generated.
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Chapter 6
Methods

Over the past several years, overall progress in developing deep neural networks
has progressed rapidly. The flow estimation methods generally have similar
architecture, with several different modules responsible for different tasks. As
described in Image registrationl, the vast majority of methods follow the same
pipeline, that being feature calculation (usually with the help of a feature
pyramid), matching, flow estimation from matched features, and some context
network for spreading the flow calculated for each pixel into a surrounding
area or areas where the motion cannot be determined uniquely due to the
aperture problem.

B 6.1 FlowNet

FlowNet is one of the first successful neural network architectures to estimate
optical flow, developed in 2015 [42]. Its architecture is somewhat similar to a
standard U-Net.

B Feature extraction

We define features as an output of the convolutional layers computed on
the whole image. The first part of the network is responsible for feature
extraction, composed of several gated convolutional layers (gated in the
sense of a non-linearity), which reduce the image’s spatial dimensions. These
convolutional layers have a stride of 2, and a larger kernel size of 7 or 5 [42].

F! = Conv (I; |in=3, out=64)

(7x7|s=2)

F? = Conv (F} |in=64, out=128)
(5x5 | s=2)

F} = Conv (F? |in =128, out = 256)
(5x%5 | s=2)

Conv(z, in, out) denotes the convolutional block, described in |B.1, which is a
combination of a convolutional layer, with the kernel size and stride written
underneath (padding is always used to keep spatial dimensions the same after
the convolution), batch norm and a non-linearity (LeakyReLU in this case).
The variable x represents the input data and arguments in and out of the

33
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number of channels. /.y are the input images (i € {1,2}) and Fl(') are their
feature maps, after the convolution. The exact process is repeated for the
second image, with the same weights, to find the corresponding set of features

in the second image [42].

B Feature matching

The matching is either done by a dedicated correlation layer, this version is
called FlowNet-C, or left for the network to decide, called FlowNet-S [42].
Correlation for the FlowNet-C is defined as

C(x1,x2) = Z <F§(x1 + o), F%(m +0)),
o€ [—k.k] x [~ k,k]

where F(,) is the feature map patch from the given image. Correlation is
computationally expensive, requiring ¢ - K2 operations, where K = 2k + 1
and c is the number of channels [42]. However, the correlation is not done for
each pair of the features and is limited only to those which position in the
grid are closer than some predefined constant m (maximum displacement)
[42).

In the FlowNet-S, the correlation block is replaced with a simple convolution,
with an additional path to the refinement block.

Additionally, a second path that skips the correlation block is used, which
allows the network to use the directly obtained information. This path is
created as

S= Conv (F?|in= 256, out = 32).
(1x1 ] s=1)

B Feature pyramid and flow estimation

The output of the correlation block C and the output of the skip path S are
concatenated and in the channels dimension into a single matrix J° [42].

The second part of the network is essentially a feature pyramid. As such,
each level is constructed as a combination of two convolutional blocks, where
the first one halves the spatial resolution of the feature map. This part of
the network looks as

J'= Conv (J° |in =473, out = 256)

(3x3|s=1)

J2= Conv (J' |in =256, out = 512)
(3x3|s=2)

J2= Conv (J3 |in=>512, out = 512)
(3x3|s=1)

J3= Conv (J? |in =512, out = 512)
(3x3|s=2)

J3= Conv (J} |in =512, out = 1024)
(3x3|s=1)

Ji= Conv (J® |in=1024, out = 1024)
(3x3]s=2)

J4= Conv (J§ |in=1024, out = 1024)
(3x3]s=1)

34



6.2. SpyNet

Once all the levels of the pyramid have been constructed, the last one with
the lowest spatial resolution but the most dimensions is used to estimate the
flow f°. As before, simple convolution is used.
0 = FlowHead(J* | in = 1024, out = 2)
(3x3|s=1)
This block is made of a single convolution with two output channels, one for
each spatial direction, without any non-linearity [42].

This flow is upsampled through a flow deconvolutional block, which consists
of a transposed convolution without any non-linearity, doubling its spatial
resolution each time, matching the resolution of the previous level of the
pyramid. We will denote this upsampled flow as qug .

Furthermore, each level of the pyramid is upsampled in the same way (but
with a non-linearity this time) into J u})) [42].

The flow prediction is then done in a course-to-fine approach as

f! = FlowHead([J3,J% %] |in = 1026, out = 2)

(3x3 | s=1) up?

f? = FlowHead([J%,J5,,f'] |in =770, out = 2)
(3x3]s=1)

£3 = FlowHead([Jl,Jip, 2] |in =386, out=2)
(3x3]s=1)

f! = FlowHead([J°,J,,,f°] |in =194, out = 2),
(3x3|s=1)

where [(+)] denotes the concatenation operation.

B Supervision

Loss is estimated separately for each of the four pyramid levels. Ground
truth optical flow is downsampled to match the spatial resolution of each
flow [42]. This approach makes the backpropagation easier, in contrast to
only calculating the loss for the last estimation, as the values do not have to
propagate through the entire network, but rather each level receives relevant
information directly while still backpropagating through lower levels of the
pyramid [42].

Figure 6.1: FlowNet architecture

B 6.2 SpyNet

This architecture, developed in 2017, uses a coarse-to-fine pyramid structure
to learn the residual flow at each pyramid level [60].
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B Image pyramid

First, the image is downsampled with the average pooling operation several
times (five times was proposed in the original paper [60]). We, therefore,
obtain the list of five image pairs at varying resolutions as

= AvgPool (IF71).
(2x2[s=2)

B Flow estimation

A basic CNN is created for each of these pairs, with a separate set of weights,
which allows each level to better focus on its specific resolution [60]. This
network G* looks as follows.

FO = (1}, 1% 51

F'= Conv (F |in=8, out=32)
(7x7|s=1)

F? = Conv (F' |in =32, out = 64)
(7x7|s=1)

F? = Conv (F? |in =64, out = 32)
(7x7|s=1)

F'= Conv (F® |in=32, out = 16)
(7x7|s=1)

6fF = FlowHead(F* |in =16, out = 2)
(7x7|s=1)

where F() are the feature maps and 6f* is the residual flow estimate. IF is
the original downsampled image, while I” is the image I¥ after it was warped
with the flow estimate from the previous level as

IF = warp(I%, £571).

The f° is set to zero [60].
The residual flow is upscaled with bilinear interpolation and added to the
current flow estimate as

f* = £*~1 1 upsample(5f*).

Each network is only responsible for displacements in the order of several
pixels, which simplifies the flow estimation problem. While the first levels
need to find bigger relative movements compared to the overall image size,
their absolute values remain relatively similar [60].

B Supervision

To obtain the ground truth necessary for training each of the networks G*,
the original ground truth optical flow is first downsampled to the desired
resolution and subtracted from the GT in the original resolution [60].
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6.3. FlowNet 2.0

Figure 6.2: SpyNet architecture

B 6.3 FlowNet 2.0

FlowNet 2.0, developed in 2017, chains several FlowNets (both FlowNet-C
and FlowNet-S) into a single network [61]. The first network in the chain is
responsible for big displacements and is is fed only the input images I; and
I5. All subsequent networks, in addition to the two original images receive
the flow f*, warped image IZZ = warp(I2, upsample(fk_l)) and the brightess
error E = ||I; — I¥||; (k denotes the position of the previous network in the
chain) [61].

The original paper [61] proposes chaining one FlowNet-C and two FlowNets-
S into a single chain (FlowNet2-CSS), which is responsible for more signifi-
cant displacements. The second chain is created with a modified version of
FlowNet-S, with smaller kernels, higher resolutions, and additional convolu-
tions between upsampling layers (FlowNet2-SD). This network is responsible
for smaller displacements in the image pair [61].

Finally, the resulting information (flow, flow magnitude, and brightness
error) from both the chains is combined inside of a small network, which then
outputs the resulting flow at the original resolution [61].

Figure 6.3: FlowNet 2.0 architecture

B 6.4 PwWC-Net

PWC-Net was developed in 2017, the same year as FlowNet 2.0. However,
PWC-Net outperforms FlowNet 2.0 architecture while comparatively having
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a lower number of parameters [51].

B Feature pyramid

The first part of the PWC-Net is a feature pyramid extractor. It extracts
features similarly to the one seen in the FlowNet architecture [42]. Each
level is downsampled to half of the spatial resolution while increasing the
number of channels. For the six-level pyramid the number of channels N°
proposed is 16, 32, 64, 96, 128 and 196 [51]. The feature pyramid levels F¥
are constructed as

le = Conv (I; |in= Ni_l, out = Ni)

(3x3|s=2)

F? = Conv (F} |in= N’ out = NY)
(3x3|s=1)

F¥= Conv (F? |in= N out = N*).
(3x3]s=1)

The feature map is warped with the upsampled flow estimate from the
previous level as
FY = warp(F%, upsample(f*~1)),

with f* being once again set to zero [51].

B Feature matching

Correlation C* is computed from pairs of features F§ and F%, for which the
inequality ||x1 — X2||cc < m holds, as

CH o) = o (3 (PG Fha)) )

where o is the LeakyReLU and N the number of correlated elements [51].

B Flow estimation

After the correlation, a small CNN is utilized to find optical flow. This
network is the same for each of the levels. However, the network weights are
not shared for the same reasons as in FlowNet. ResNet-like architecture R¥
consisting of five convolutional blocks is utilized when the original feature
map is concatenated with the output of the convolutional layer [51].
The input of this network is
x! = [Ch F. £, L F Y,

and each of the four layers (i € {1,2,3,4}) being

x' = | Conv (x'1),x"!

(3x3|s=1)

The number of channels is not shown, as it varies widely based on the level k
and position inside of the network R* (see the original paper [51]). The flow,
upsampled flow, and upsampled features are created in the same way as the
FlowNet architecture.
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6.4. PWC-Net

B Context network
For the last level, a context network is utilized. Instead of simply out-

putting the upsampled flow, the output of a seven-layer CNN called CN with
increasing dilation is used [51]. This network looks as

x! = Conv (FS in = IC, out = 128)

(3x3|d=1)
x? = Conv (x!| in = 128, out = 128)
(3x3]d=2)
x3 = Conv (x?| in = 128, out = 128)
(3x3|d=4)
xt = Conv (x3] in = 128, out = 96)
(3x3| d=8)
x"= Conv  (x'in=96, out=64)
(3x3| d=16)
x% = Conv (x°] in = 64, out = 32)
(3x3|d=1)
fON = FlowHead (x°|in =32, out=2),
(3x3|s=1)

where IC is the number of channels of the output of the last network RS

and d is the dilation (padding is used to preserve the spatial dimension).

The purpose of the context network is to propagate flow values to the areas

of the images where they could not have been predicted due to a lack of

distinguishable features and to remove outliers in the predicted flow [51].
The overall predicted flow of the network is then

f=f0+ N

Figure 6.4: PWC-Net architecture
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. 6.5 MaskFlownet

The ambiguity created by occluded areas during warping can create artifacts
(doubling of the feature map) [62]. MaskFlownet introduces an asymmetric
occlusion-aware feature matching module (AsymOFMM).

AsymOFMM incorporates learnable occlusion mask 6 and additional feature
tensor p, which filters useless information after feature warping. Additionally,
an extra convolutional layer D is introduced, which deforms only one of the
images [62].

The overall network architecture is similar to a standard PWC-Net. How-
ever, instead of refining only the flow at each level of the feature pyramid,
occlusion mask 6 and feature tensor p are also computed.

B Occlusion-aware mask

For the creation of the mask, an additional convolutional layer is introduced
at each level, which outputs a single channel, which is mapped to a [0, 1]
range by a sigmoid function and upscaled to match the spatial resolution of
the next level of the pyramid, where it is multiplied with the flow prediction
[62].

B Feature tensor

The feature tensor p is computed similarly, without being limited to a single
channel or the [0, 1] range, and is then added to the predicted flow [62].

Il Deformable convolution

The deformation is done with a deformable convolutional module [63], which
instead of using a standard rectangular kernel that samples the feature map
in the specific integer grid, creates its own kernel, which augments the kernel
with an offset to its location, allowing the layer to sample even in fractional
locations, changing the convolution from B.1|to

Io(i,j):a<b+ Z Ij(i+m+Am,j+n+An)K(m,n)), (6.1)
(m,;n)eK

where Am and An are the learned offsets of the given location in the kernel
[63].

The overall process done by the AsymOFMM at level k can then be ex-
pressed as
where fF_ =fF1lopi-tg it

occ

(6.2)
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6.6. RAFT

Figure 6.5: AsymOFMM architecture

B 66 RAFT

Recurrent All-Pairs Field Transforms architecture estimates flow at a single
high-resolution (while still using the pyramid approach) [57].

B Feature extraction

Similar to other architectures, features are extracted at a smaller resolution
(1/8) with the feature network (FN). This network consists of a standard
input and output convolution and two residual blocks in the middle [57]. FN

is then

F; = Conv (I; |in=3, out =64)
(7x7]s=2)

F? = ResBlock (F; | in = 64, out = 96)
(3x3|s=2)

F? = ResBlock (F? | in = 96, out = 128)
(3x3|s=2)

F,= Conv  (F}|in=128,out = 128)
(1x1|s=1)

B Context network

The context network (CN) has the identical architecture to FN, with its
output being split into two matrixes with different channel count, the first,
which remains the same during subsequent updates, mapped into the [0, 0]
range by the ReLU and second, called hidden state, to the [—1, 1] by the tanh

[57].
B Feature matching and correlation pyramid

Full correlation volume is computed from a dot product of the feature maps
as

Clx1,x3) = %(Fl(xl))T Fa(xs). (6.3)

For feature maps with dimensions R”*W the resulting correlation vol-
ume will have dimensions REXW>HXW A four-level correlation pyramid is
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constructed, with each level halving the spatial resolution of the two last
dimensions of C [57].

A correlation lookup operator L¢ is defined [57]. This operator generates
feature maps by indexing from the correlation pyramid within the given
radius 7. Given current estimate of the flow f*, each pixel from the I; is
mapped to Iy as x| = Xo + fk(xl). A grid N is created at each point, such
that

N(xz) = {xo +dx | dx € Z2, ||dx]); < r} (6.4)

A lookup is performed at all the levels of the pyramid, with each level
generating a single feature map [57].

B Flow estimation

First, the coordinate systems Cr and Cr§ are initialized by creating two
meshgrids [57]. Flow is computed as difference of these coordinates as

fF = Cory — Orb. (6.5)
The operator takes flow, correlation volume, and hidden state and outputs

updated hidden state and residual flow 6f*. The residual flow is used to
transform the coordinate system as

Cri =Cry ' ot (6.6)
which in turn updates the current estimate of the optical flow as
T L) (6.7)

The operator is designed to mimic the steps of an optimization algorithm
and converge to the fixed point f¥ — £*, where f* is the optimal solution [57].

B Update operator

The update operator can be split into four distinct parts. Firstly, a motion
encoder, which takes the correlation volume C* and the flow estimate f* and
outputs motion features MF as

C'= Conv (CF|in= CP,out = 256)
(1x1]s=1)

C’ = Conv  (C'|in = 256,out = 196)
(3x3|s=1)

fi = Conv  (f*|in = 2,0out = 128)
(7x7|s=1)

f/ = Conv  (f'|in = 128,out = 64)
(3x3|s=1)

MF = Conv  ([f/,C] |in = 192 + 64,0ut = 128 - 2)
(3x3|s=1)

MF = [MF, f¥]
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6.7. GMA

The core component of this operator is a gated activation unit (GRU) [57],
which structure looks as

x, = [MF, CF]
z = (3CSO|nV1)([ht,1,xt] | in = 128 + 128 + 196, out = 128)
X sS=
re = (3(%0|nv1)([ht_1,xt] | in = 128 4+ 128 4+ 196, out = 128)
x3 | s=
hy = Conv ([o(r;) ® hy_1,%¢] | in = 128 4 128 + 196, out = 128)
(3x3]s=1)

hi = (1 —0(2)) © hi—1 + 0(z) © tanh(hy)

where C'F are the context features and hy_; is the previous hidden state[57].

Residual flow is computed from the updated hidden state, with the flow
head module [57]. Lastly, a flow mask is created as an output from two
convolutional layers [57].

B Supervision

During each update, the upsampled flow estimate is saved for the training.
Similar to FlowNet, creating the loss function, not only for the network’s
final output, allows the gradient to propagate easier. However, the weight of
the earlier flows is reduced (see section |B.5)).

Figure 6.6: RAFT architecture

B 67 cva

Global Motion Aggregation (GMA) architecture is based on the RAFT while
introducing a new module, which creates additional information for the GRU
cell [64].

This module, based on the transformer architecture, is used to find long-
range dependencies between image pixels and motion features, effectively
bundling them together and allowing the network to choose between global
and local motion features [64]. The GMA module computes the feature vector
update as an attention-weighted sum of the projected motion features [64]
and is given as

N
Vi =yi+a) FS(0(x), 6(x5)o(y;)

Jj=1
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where « is a learned scalar parameter, 6, ¢, and ¢ are the projection functions
of the query, key, and value vectors (each with their respective learnable
projection matrix). F'S is the similarity attention function defined as

exp (ainj \/ﬁ)

FS(aj, b)) = N (a;fbj\/ﬁ)'

The projection functions for the query, key and value vectors are

H(XZ) = quyxia
d(xi) = WieyX;, (6.9)
o(yi) = Wy,

where Wy, Wiey, and W, are the learnable parameters of the GMA module
[64].

Figure 6.7: GMA module architecture

. 6.8 Our method

Our method utilizes a course-to-fine approach with two distinct modules. The
first one is responsible for global and the second for local registration. The
global and local modules use the GMA network as their respective backbone.
However, weights are not shared between the two.

The global network estimates flow on a downsampled image, which is then
interpolated to match the original resolution and is used to warp the original
image alongside the landmarks.

The failure state of the global registration is determined by census loss
before and after registration.

The warped image and landmarks and the target image and landmarks are
then used as the input of the local module.
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6.8. Our method

Figure 6.8: Overall registration process of our method

B 6.8.1 Global registration

Images are downsampled to a smaller size and padded so that their size is the
same and are in shape, which the network can process (side length divisible
by 8).

The global network is trained with a higher weight of the smoothness loss
(see section 8.5)) function and lower weight of the ground truth optical flow
to force the network to register significant movements and ignore smaller
displacements. Images used for training are smaller in size but with bigger
relative movement to force the global network to learn its desired function.

Optical flow f; from the global network is first bi-linearly interpolated to
the original size, and the values are scaled based on the change in the said
size as

f = [ry, ry] - interpolate(fy) (6.10)
(z0,Y0)

where r, = x,/x4 and r, = y,/y, are the ratios of the original image size and
the image size used in the global network. The original image, alongside its
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corresponding landmarks, is warped with the globally found optical flow and
fed into the local module for further registration.

We have chosen to use the GMA architecture [64] as our global network,
as the GMA module makes estimating the global movement easier than the
standard RAFT [57]. The primary purpose of the GMA module was to solve
issues raised by occlusion. Since extensive parts of the tissue sometimes go
missing, either due to tearing or folding, and entire structures disappear due
to different stain dyeing, we, therefore, have a use for such a module.

It is also important to note that both the RAFT and GMA networks, which
we are using, are not capable of registering images with displacements higher
than 256 pixels. This value is based on the receptive field of the correlation
module, which creates a 4 level correlation pyramid and the lookup operator

with a radius of 4 (4* = 256, see section RAFT)).

B 6.8.2 Local registration

Due to memory constraints, we cannot register the whole image simultaneously
in high resolution. Instead, the image is split into smaller patches, which are
then fed into the local network.

We assume that the patch is big enough to have both the original and target
features inside it. However, a higher weight is given to the flow predictions
from the middle of the patch.

The resulting flow is then recombined into the original resolution as

(6.11)

where w;(x) is the weight mask of the given flow patch f;(x) in point x.

B 6.9 Other methods in the ANHIR challenge

The ANHIR paper [9] describes 13 different methods, seven created by the
participants and six baseline methods provided by the organizers.

All of the methods in the ANHIR paper submitted by the participants use
grayscale images and an affine/rigid pre-alignment. Our method, however,
uses color images, and the pre-alignment is done non-rigidly as well. The
methods provided by the organizers use B-splines as the non-linear trans-
formation, while the participants use a wider variety of different, primarily
dense transformations.
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6.9. Other methods in the ANHIR challenge

Method Grayscale Exhaustive Afﬁne/ rigid Fezliture Non-linear . Criterion ~ Optimization
search pre-alignment points  transformation
UA . . dense moving mesh MI gradient
TUNI . . . virtual springs NCC robust linear
CKVST . . B-splines NCC L-BFGS
MEVIS . . . dense NGF L-BFGS
AGH . . . . dense various various
UPENN . . . various NCC L-BFGS, gradient
TUB . . dense NCC CNN
bUnwarpJ* . dense SSD LM
RVSS* . . . B-splines SSD LM
NiftyReg* . . B-splines NCC, MI  conjugated-gradients
Elastix* . . B-splines NCC ASGD
ANTs* . . B-splines NCC, MI L-BFGS
DROP* . . B-splines SSD discrete optimization
Our method dense various CNN

Table 6.1: Methods in the ANHIR challenge, (*
from [9]

- organizer methods) taken

Further reading on the specifics of each of the methods is available in the
ANHIR paper [9].
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Chapter 7
Simulated ANHIR dataset

The goal of our thesis is to register images in the ANHIR dataset [9], however,
this dataset does not contain the necessary ground truth for optical flow
estimation, and as such, we need to create our own, alongside with images
generated by said flow. Contained in the dataset are images in varying reso-
lutions, ranging from images that have several hundred to tens of thousands
of pixels in width and height.

The high-resolution images are downsampled to a more manageable size of
around a few thousand pixels.

Figure 7.1: Examples of the images in the ANHIR dataset

The training triplets (original image, target image, and corresponding
optical flow) are generated in several different ways. Either the target image
is created from the original image as a combination of several different
transformations, which are translated to flow or when the image has a high

number of landmarks, the flow is directly generated from the coordinate
difference of said landmarks.
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7. Simulated ANHIR dataset

B 7.1 Affine approximation of the transformation

Transformations done to the images in the ANHIR dataset can be split into
rigid and non-rigid parts. We have chosen to approximate the rigid part as
an affine transformation.

To find the transformation matrix, least-squares fitting is utilized. We try
to find a 3x3 matrix A (represented by a 6 item matrix in the optimization
task), which corresponds to the affine transformation and solves the equation

XA =b (7.1)
in the least-squares sense as
A =X"b. (7.2)
Matrix X is generated from the landmarks of the first image as

rz1 y1 1 0 0 O
0 0 0 2 w» 1

X = (7.3)

O e

Tn Yo 1 0 O
0 0 0 =z, yn

[u—

where z(.y and y(.) are the coordinates of the given landmark. The matrix b
is constructed from the landmarks of the second image as

b=|:]. (7.4)

We calculate the matrix X for all the image pairs, then the mean and the
variance of each of the six parameters needed for the affine transformation
are calculated. This transformation, however, does not describe pair-wise and
higher-order dependencies, and values vary drastically between different sets
of images.

Values calculated from the ANHIR dataset are

0.993 £0.0138 0.0221 £0.0448 0.00673 = 0.00553
—0.0210 £0.0427 0.989£0.0136  0.0122 £ 0.00595 (7.5)
0 0 1

Values corresponding to the translation have been scaled to correspond to
the fraction of the image, instead of the absolute pixel distance, to facilitate
the different image shapes better.

The original landmarks /o (7) in the ANHIR dataset have a mean rTRE (see
section 3.5) of roughly 0.0655, while landmarks after the affine transformation
[a(1), calculated for each of them as

1a(i) = Alo(i) (7.6)
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have a mean rTRE of 0.00495, meaning roughly 92.5% of the transformation
is rigid.

We sample from a random normal distribution with the given means and
variances corresponding to each of the six parameters from the matrix [7.5.
The corresponding synthetic affine flow is then computed from a difference of
coordinates before and after affine transformation as

f(x) =Ca(x) — Co(x) (7.7)

where Cp is the original coordinate grid and C'4 is the transformed coordinate
grid of the image.

. 7.2 Flow estimation from landmarks

Each image has a corresponding list of landmarks, with their coordinates
as (x,y). We denote landmarks for the original image as lp and I for the
target image. We, therefore, have an accurate estimate of the flow f in several
points in the image, computed as

f(lo(i)) = lo(i) — I (3). (7.8)

However, we need to extrapolate this sparse flow onto the whole image. For
the extrapolation, we use k of the nearest landmarks (usually 5). Their
distance being

d(x,1) = |[x = lo(i)]]2 (7.9)

with x being a pixel coordinate and ¢ the index of the corresponding landmark.
The optical flow estimate is then computed as a weighted average of the k
points, computed as

_ Sud(x i) (lo(i))

f(X) Zz d(X,i)_2

(7.10)

where ¢ € kK — NN. We then blur the flow to eliminate any discontinuities on
the boundaries between landmarks. Optical flow created with this method
has r'TRE (see section 3.5)) in the range of 0.0005 — 0.0036 on the landmarks
while being relatively smooth in the rest of the image. Other methods, such
as creating the flow from the weights of a Gaussian mixture, where each
landmark is in the center of 2D Gaussian with some arbitrary variance (see
section |7.3)), while being smoother, increase the rTRE well above 0.01, which
is not acceptable for the direct creation of the flow between images as errors
are more than the goal of our registration.
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7. Simulated ANHIR dataset

Figure 7.2: Flow generated from the landmarks

B 7.3 Flow generation from random distribution

For the random generation, a multivariate Gaussian mixture is used. This
method is capable of roughly approximating the transformation of images
in the ANHIR dataset and, as such, is ideal for the creation of the target
image from the original image as we get the exact flow responsible for the
transformation. Each pixel x of the image has some assigned value

Z e {C SRR YRy CET) (7.11)
\/27T|Z
where X; are the covariance matrixes, u; are the centers, D; € {—1,1} is
chosen randomly and determines the direction of the flow, and N is the
number of multivariate Gaussians contributing to the mixture. Since we do
not want to create displacement with magnitudes, which are too high, the
values are normalized into the [0, 1] range as

f.(x) — min, f.(x)

f, = 12
(x) max, f.(x) — min, f.(x) (7.12)
and finally into the [—m,m| range as

f(x) =m- (2f,(x) — 1) (7.13)

where m is the maximum displacement, this process is repeated to obtain the
flow for the other direction. The resulting synthetic flows then look as shown
in the figure [7.3]
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7.4. Image segmentation

Figure 7.3: Synthetic flow generated from a Gaussian mixture

. 7.4 Image segmentation

As we utilize several unsupervised loss functions for the fine-tuning, we do
not want to penalize the network for incorrect predictions in areas of the
image which are of no interest to us. Instead, we only focus on the image’s
foreground (that being the tissue itself). The segmentation is done naively
by first filtering the image with a high-pass filter. For this, we use the Ricker
(Mexican hat) wavelet, which is defined as

W(w,y) = —— (1 _ % (M)) St (7.14)

mot o2

normalization into the [0, 1] range as in equation and simple thresholding
against the mean value of the filtered image as

Io(x) = |Ii(x) > T (7.15)

where [(+)] is the Iverson bracket and I; is the mean value of the image,
mapping the output to {0,1}. We then use Gaussian blur, for which the

kernel looks as
1 _ 12+y2

e 202 7.16
V2mro? ( )

to remove the empty spots with and repeatedly dilate by taking an average
in the given receptive field R simply as

1
Io(z0,Y0) = N > Ii(zy) (7.17)
(z,y)ER

G($7y) =
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7. Simulated ANHIR dataset

and thresholding against 0.5. This process generates a mask which we pass
to the unsupervised loss function. Resulting segmentation looks as shown in
figure (7.4l

Figure 7.4: Foreground masks generated from our segmentation (red - foreground,
blue - background)

Even though the method proposed above is relatively trivial, the results
are acceptable. We do not need the mask to fit precisely onto the foreground,
as this means slightly slower training without any actual loss of accuracy.

B 75 Image warping

The warping of the original image with the synthetic flow is done by trans-
forming the pixel grid of the original image with the values of the flow
as

Co(x) = Cr(x) + f(x) (7.18)

and the use of bilinear sampling in the coordinates Cp(x) to transform the
original image.
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7.6. Histogram matching

Figure 7.5: Example of a warped image (red - original, blue - warped)

B 76 Histogram matching

Histogram matching (histogram specification) is a process where the histogram
of the original image is matched with the histogram of the target image. This
is done by calculating the probability density function (PDF) as
e
p(x;) = NZ (7.19)

where x; is the given color value, n; is the number of pixels with this color, and
N is the total number of pixels in the image. For scalar images, cumulative
density function (CDF), is calculated for each of the images as

Foy(xi) =) play), (7.20)
j=1

i € [0; L], where L is the number of different values, each color channel can
have. Output value for each color is then

yi = H Y (F(xy)), (7.21)

where H is the CDF of the target image, F' the CDF of the original image
and z; is the original value. [65]

(a) : Original  (b) : Target image (c) : Matched
image image

Figure 7.6: Histogram matching process
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7. Simulated ANHIR dataset

B 7.7 Simulated training dataset

For the actual training of our network, we use training triplets from the
methods stated above. The dataset contains 2000 images for training and 200
images for validation. Images are interpolated from the original dimension
of several thousand pixels to a more manageable size of 512 x S, where 512
is always the smaller side, and S is chosen so that the aspect ratio of the
original image remains the same (S x 512 size is used when the original image
was wider than taller).

The transformation in this dataset is artificial (same for the target image)
since we want to have an exact flow. The pipeline for the creation of the
triplets is

1. Matching histograms of the original image to the target image to simulate
the change in color, which is present in the ANHIR dataset.

2. Generate random flow as described in section 7.3l The maximum dis-
placement of this flow is roughly tens of pixels (depending on the image
size).

3. Random affine transformation is generated from the matrix|7.5. While we
fix the parameter as; &~ —aj2 in order to simulate rotation. Parameters
a13 and aeg3, which are responsible for the translation in the z and y
directions, respectively, are scaled by the image dimensions.

4. Both the flows are added together, and the original image is warped to
create the target image.
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Figure 7.7: Examples of the training triplets generated from the combination of
the affine and non-rigid transformation
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Chapter 8

Training

The main goal is to train our network based on the RAFT architecture (either
RAFT itself or the GMA) [57, [64] to become able to register images in the
ANHIR dataset. All training was done with the AdamW optimizer and
either fully supervised with a sequential loss function (see section B.5), a
combination of this function and several unsupervised ones based on image
similarity functions (see section |4.1)). Gradients are clipped to the [—1,1]
range for stability. Training took place on several GPUs based on availability,
but mainly on the NVIDIA GTX 1050 Ti, with an SSD and Intel i7-8750H
CPU.

B s1 Training on the synthetic datasets

The training process can be split into several different phases. First, the
network is trained on the three synthetic datasets, Flying Chairs, FlyingThings
3D (similar to the Flying Chairs), and MPI-Sintel. Movement in these datasets
is generally more straightforward and the magnitude smaller, usually locally
rigid. While not having any realistic movements, the first two datasets are
way simpler in appearance. MPI-Sintel is created from a short animated
movie. The movement is therefore based on the movement in the real world.
Parameters for this part of the training process are shown in the table |8.1.

Name # of ‘ Batch Patch
iterations  size size
Flying Chairs 120k 6 368 x 496
FlyingThings3D 120k 6 400 x 720
MPI-Sintel 50k 6 368 x 768

Table 8.1: Parameters of the synthetic datasets

We use pre-trained weights, which are publicly available from the RAFT
paper [57], since training on our machine with such a large batch and image size
is not possible on our machine, and the reduction in any of these parameters
would only lead to a reduction in the overall accuracy, with the required time
to complete the number of iterations, being in the order weeks.
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8. Training

B s> Training on the ANHIR dataset

We then switch to the ANHIR dataset, which creation was described in the
chapter [Simulated ANHIR dataset. Movement in the synthetic datasets has
a maximum magnitude of a few hundred pixels. In contrast, movement in
the ANHIR dataset sometimes has a magnitude close to a thousand pixels
(even in our heavily down-scaled dataset). We, therefore, train a separate
network responsible for global registration on lower resolution images.

We split the training on the ANHIR dataset into several different parts.
First, we only use the ground-truth optical flow, which we generated (Syn)
or the mixture of flow generated from affine transformation and directly from
landmarks (S).

We introduce flow smoothness, SSIM, and census loss functions (see section
4.1)) in the second part of the training. We combine the loss from these
functions with the supervised loss, resulting in a semi-supervised learning
(SS). Images used are partly from the dataset with the synthetic flow and
partly from the one with approximate flow calculated between the real image
pairs.

In the last part of the training, we switch entirely to unsupervised learning
(US) and use image pairs exclusively from the ANHIR dataset for the fine-
tuning. This is done under a very low learning rate of 1075,

Time per 1000 iterations is roughly 30 minutes, with the entire training
requiring about 36 hours to complete.

# of Batch Patch
Name . . . .

iterations size size
Supervised 40k 2 384x384
Semi-supervised 15k 2 384x384
Unsupervised 5k 1 512x512

Table 8.2: Parameters for the different parts of training on the ANHIR-based
dataset

B 8.2.1 Training validation

A small validation dataset of 50 image pairs is randomly sampled from the
ANHIR dataset. The AMrTRE (see section Evaluation metrics) of the pre-
trained network is 0.0472 (see section 8.1)), with the validation dataset having
an initial value of 0.0469. However, starting from the pre-trained model sped
up the initial training drastically compared to starting from a blank model.

We see a sharp decrease in AMrTRE at the start of the training, with
steady progress through the first 40 thousand generations. Once we switch to
semi-supervised learning, we see a quick drop. The lowest error of 0.00762
is reached in the unsupervised learning in iteration 4k (59k iterations from
the start of the training on the ANHIR-based datasets).
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8.3. Learning rate scheduler

Figure 8.1: Validation dataset AMrTRE, (Syn - synthetic flow, S - supervised,

SS - semi-supervised, UN - unsupervised; (-)k - thousands of iterations in the
given stage)

B 83 Learning rate scheduler

For the learning rate scheduler, we use the one-cycle learning rate policy [66].
The learning rate is updated based on the number of iterations rather than
the number of epochs. We start with a low learning rate, gradually increasing

it to the predefined value, after which it is once again slowly lowered for the
rest of the training [66].

Figure 8.2: Learning rate progress under the one-cycle learning rate policy
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8. Training

B 84 Data augmentation

In order for the network to successfully register images in the ANHIR dataset,
we implement several data augmentation techniques, which try to mimic
different challenges we face in the ANHIR dataset. Another reason is to
increase the effective amount of data we have available.

B 8.4.1 Flipping

One of the simplest yet effective data augmentation techniques is the random
flipping of the images and the corresponding flow in either the vertical or
the horizontal direction. After the flow is flipped, the direction of the flow
needs to be reversed. This is done as f{ )= —f(Tf), where f means flipped and
n normal.

(a) : Original image (b) : Flipped image (c) : Original flow (d) : Flipped flow

Figure 8.3: Flip augmentation

B 8.4.2 Scaling

Image scaling means simulating different distances of the sample from the
objective while the photo was taken while allowing the network to not fixate
on features on a single scale. Images are interpolated to the new size and
the flow is in addition multiplied with a scale factor as f" = [Zscqie, Uscale] - £
because the magnitude of the movement is now different. Additionally, we
can scale the dimension with different coefficients to stretch the image.

(a) : Original image (b) : Scaled image  (c) : Original flow (d) : Scaled flow

Figure 8.4: Scale augmentation
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8.4. Data augmentation

B 8.4.3 Color augmentation

Aside from geometric differences, color change is the second main difficulty we
face. Since image pairs in the ANHIR dataset are likely not to share the same
color space, we simulate this with color augmentations (aside from histogram
matching already done to the base images) by transforming the RGB images
into the HSV and multiplying each channel by a random constant. This
operation is asymmetric, meaning only one of the images undergoes this
transformation.

Figure 8.5: Examples of the color augmentations (first image is the original)

B 8.4.4 Additive noise

Further augmentation is done on a per-pixel basis. This is achieved by adding
white Gaussian noise (AWGN) as

Io(x) = I;(x) + N(0,0?), (8.1)

where N is a random sample from the normal distribution with the mean
of 0 and variance ¢2. Since the stains highlight different parts of the tissue,
AWGN somewhat approximates this process.

Figure 8.6: Additive white Gaussian noise (not to scale, higher value was used
for the purpose of visualization)
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8. Training

B 8.4.5 Erasure

The tissue samples can change their shape drastically due to the folding or
tearing, where entire areas of the image are missing. We randomly create
several rectangles on the image and fill them with the mean value of the
image.

Figure 8.7: Erasure augmentation

B 85 Unsupervised loss functions

Several unsupervised loss functions are used in the second and third stages of
the training process. Namely, these are SSIM, census loss (see section [4.1),
and flow smoothness. Flow smoothness loss Ly is implemented as

La(f) = ~ Y Vi) (8.2)
N

xef

We also utilize a multi-resolution approach when creating the SSIM and
census loss, where instead of taking the image at a single resolution, we
calculate the loss of an image pyramid. Combined unsupervised loss is then

N
LI, L) =wL(£) + Y. w Y AN, L), (8.3)
le(C,8SIM)  i=1

where [ E’v) € RH/2'XW/2' q16 the downsampled grayscale images, f is the flow,
~v is the exponential weight (0.8), and N is the number of levels of the image
pyramid.

Since we need the warping to be differentiable, we use a spatial transformer
module, introduced in Spatial transformer networks [67].

The census loss implemented differs from the standard definition. While
normally, only integer values generated from thresholding are allowed, the
approach which we use creates a list of real numbers. As such, the loss
function is differentiable.

The weights of the individual loss functions w.) are not constant but are
generated from a combination of sigmoids, which take the number of iterations
as their input.
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8.5. Unsupervised loss functions

Figure 8.8: Weights of different loss functions (before additional scaling)

In the figure 8.8 we can see the semi-supervised (left) and unsupervised
(right) parts of the training process. Even though the supervised weight is
only 1, the sequential loss is bigger for most of the semi-supervised part than
the unsupervised losses, with sequential loss reaching values of 5 — 100 and
unsupervised losses usually staying below 1. Since, in this stage, they are
used together, and their values are comparatively not very high, we need to
increase their weights to see any results from their usage. This is done simply
a multiplying all three by 10. The value of 10 was chosen arbitrarily and,
therefore, may not be optimal.
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Chapter 9

Experiments and results

B 9.1 Landmark warping

In order to quantify the resulting accuracy of our network, a set of landmark
pairs is utilized for each image. The landmarks from the first image need
to be warped towards the landmarks in the second image, after which point,
metrics listed in section 3.5 are calculated.

Since we cannot directly obtain the coordinates of the warped landmarks
after flow warping, we need to find a point in the warped coordinate grid
with the smallest distance to the original landmark coordinate, as this is the
point from which we want to sample in order to get the second image.

The warped landmark is found as

lw (i) = argminl||l; (7) — x||1, (9.1)

x€Gr

where G is the warped coordinate grid of the original grid G, calculated
as Gr(x) = G(x) + f(x) and [y are the landmarks. In order to increase
accuracy, we sample 4 closest points, which are then weighted as

X (di)
lw (i) = %a (9.2)
i€ANN

where d; is the distance of the point x; in the coordinate grid.

. 0.2 Ablations

A set of ablation experiments is performed to show the importance of each of
the components of our method. The experiments were performed in isolation,
sometimes on differing sub-samples of the dataset (method structure and
similarity check was run on the full dataset). Results of each study is shown
in table The setting which we will use in our method is underlined. Each
of the experiments is described in more depth below.
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9. Experiments and results

Experiment Setting AMrTRE AMxtrTRE AR
96 0.038214 - -
128 0.018328 - -
Patch size 256 0.004538 - -
384 0.002421 - =
512 0.002343 - -
1 0.002493 - -
2 0.002401 - =
Patch frequency 4 0.002353 - -
7 0.002316 - -
10 0.002323 - -
1 0.010071 - -
2 0.009164 - -
5 0.009136 - -
Flow updates 7 0.089402 - i
9 0.009091 - -
12 0.009370 - -

Global-only 0.02292 0.05367 0.9060
Method structure Local-only 0.01275 0.03945 0.9656
Course-to-fine  0.01005 0.03609 0.9579
No 0.01005 0.03609 0.9579
Yes 0.00730 0.03065 0.9790

Table 9.1: Ablation settings

Similarity check

B 9.3 Patch based registration

The local module splits the original image into several smaller overlapping
patches. This process is controlled by two parameters, namely the size of the
patch and the frequency of the overlap.

B 9.3.1 Weighted flow mask

Features are more likely to be registered correctly if they are in the middle of
the patch, as the chance that the corresponding features are inside is higher
than those at the edge of the patch. The mask aims to give flow estimates at
the edge of the patch with lower weight than those in the middle in hopes that
other patches will be centered in such an area. A weighted mask is created
from a Gaussian function, which gives a higher value to the flow estimated in
the middle, as shown in the figure 9.2
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9.3. Patch based registration

Figure 9.1: Flow prediction error (scaled to the 0-1 range, where white corre-
sponds to the maximum error within the given patch)

Figure 9.2: Patch weight mask (white - 1, black - 0)

The image is registered with overlaying windows, with varying frequency,
with higher density in the middle, as most of the tissue samples are already
centered and do not touch edges. Weight masks are shown in the figure 9.3l

(@): f=1 (b): f=2 (c): f=4

Figure 9.3: Flow weights with varying frequency (shown are the edges of the
patches and the top-left and bottom-right coordinates)

There are several parameters that we have chosen arbitrarily. Namely,
these are the patch size, frequency, and variance of the Gaussian function.
Variance has been chosen for each patch size individually so that the mean
value of weights inside the patch is normalized. To find optimal values, we
run multiple trials for each of these parameters on a smaller subset of 50
image pairs with dimensions of 512 x S.
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9. Experiments and results

B 9.3.2 Patch size

0.05 - —— AMrTRE
----- Initial AMITRE
0.04 -
IEI‘J 003 B R . Wttt Stttk ettt eehleleteheteletletetehetas el
el
=
<
0.02 -
0.01 -
0.00 ;

100 200 300 400 500
Patch size [pixels]

Figure 9.4: AMrTRE as a function of patch size

As we can see in the figure[9.4] the registration error decreases with the size
of the patch. Below a certain threshold (around 110 pixels), the registration
increases the distance of the landmarks, resulting in a complete failure. Once
the patch gets big enough (around 320 pixels), any further increase in accuracy,
while still measurable, is greatly diminished. However, a bigger patch size
decreases the time of registration since a big part of the time is not spent on
the actual registration, and doing so reduces this overhead. Therefore, we
will always choose the biggest patch size, which the memory or the image
size allows. Measurements were done with the frequency value of 4.

B 9.3.3 Frequency

We will test several different frequencies, namely f € [1,10]. To increase
the number of times the given point is registered, the initial coordinates are
shifted by a distance proportional to the patch size and frequency in order to
offset them and allow the network access to a different context, which could
have previously not been observable.

From our experiments depicted in the figure [9.5] we can see that the
frequency above 6-7 does not improve the accuracy of the registration any
further while increasing the time required drastically. Frequency of 7 will
therefore be used in the future. Tests were done with a patch size of 512.
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9.4. Effect of number of iterative flow updates on registration accuracy

Figure 9.5: AMrTRE as a function of frequency

B 9.4 Effect of number of iterative flow updates on
registration accuracy

Both the RAFT and GMA architectures update the flow estimate iteratively.
The first several updates are responsible for the biggest displacements, with
subsequent updates correcting the error done by the previous ones.

Figure 9.6: AMrTRE as a function of the number of iterations

71



9. Experiments and results

The initial AMrTRE of the dataset sample was 0.04125. As we can see
in figure 9.6, the most significant decreases in AMrTRE occurs in the first
update, where the value gets lowered to roughly 25% of the original. The
second update reduces the error further by 10% of the previous value. We
then see a slight decrease until we reach a minimum in the 7th iteration,
after which point, the error starts increasing.

This is in contrast to the findings of the original RAFT paper [57], which
says that an increase in the number of residual flow updates does not reduce
the accuracy, but the amount reduced becomes insignificant after 12 updates.

One of the possible causes for the diverging accuracy might be that once a
certain flow precision is reached, any further updates only cause the flow to
become smoother and not correctly predict small local movements.

(a) : 1st iteration (b) : 2nd iteration

(c) : 7th iteration (d) : 12th iteration
Figure 9.7: Flow after increasing number of updates
In the figure 9.7, we can see flow prediction after 1, 2, 7 and 12 iterations.

The flow progressively becomes more accurate, however between the 7th and
12th iteration, a loss of detail start to become visible.

B 9.5 Effectiveness of the global module

Since the tissue samples in the ANHIR dataset are somewhat centered and,
except for a few cases, are entirely inside, we can be somewhat generous with
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9.6. Effectiveness of the local module

the size of the images used for the global registration. Most of the images
will have a flow magnitude of roughly 13.5% of the original image size, with
outliers reaching 23.8% [9]. Images are downsampled to roughly 250 x S size,
depending on the original image size. This size allows for the global view of
the image while keeping the resolution at an acceptable level. Lower values
cause a loss of visibility in important structures and mainly cause edges of
the tissue to become blurred.

Figure 9.8: Performance of the global module (green - reduction in MrTRE, red
- increase in MrTRE, blue - AMrTRE)

As we can see in the figure [9.8], the proposed global module is capable
of reducing the registration error, especially in images with high levels of
displacement. However, this reduction is not as visible for the smaller ones, as
we need higher resolution to achieve better performance. The global network
creates a smooth flow, which does not create artifacts in the warped image,
and the said image is therefore usable in further registration. In our randomly
sampled dataset, it was capable of reducing the AMrTRE to roughly 30% of
the original value.

The global network is purposely not capable of registering details. Such
actions could lead to an increased error and further harm the chances for
successful registration in the patch-based part.

. 0.6 Effectiveness of the local module

For the local module, we use settings found experimentally, namely patch
size of 512 and patch frequency of 7. Furthermore, limiting the number of
flow updates to 7 is especially beneficial. While the smoother flow estimate
does not reduce the overall effectiveness of the global module, we need the
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9. Experiments and results

flow to retain the finer details.

From the figure (same sampled dataset as the one used for the global
network), we can see that the local network performs better on images that
already have somewhat low AMrTRE while struggling with the ones which
do not. However, compared to the global network, it does not increase the
registration error for any of the pairs.

Figure 9.9: Performance of the local module (green - reduction in MrTRE, red -
increase in MrTRE, blue - AMrTRE)

B a7 Similarity check

We compare census loss of the image pair before and after registration to
decide whether the registration was successful and only apply those for which
the ratio of census loss, computed as

L.(Iwy, I
r = c( W 2) (93)
Lc(Ila IZ)
where L.((+), (+)) is the census loss of warped image Iy and original and target
images, is lower then 0.90 (value chosen arbitrarily, for the given dataset).
This prevents us from applying unsuccessful registrations and those which

could be handled more precisely by using only the local module.

B 9.8 Effectiveness of the course-to-fine approach

Through a combination of the global and local networks, with a similarity
check in between, to get rid of unwanted registrations, our method can further
reduce the registration error. Compared to the local-only approach, we are
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9.9. Error generated by the network

seeing a reduction of roughly 42.75% and 68.1% when compared to the
global-only approach.

Out of the three possible registrations (global only, local only, course-to-
fine), the course-to-fine approach achieves the best results in 73.90% of the
cases, followed by local only, standing at 24.36% and global only at 1.74%,
with the multi-scale census loss being able to determine, whether the global
registration was successful in almost all of the cases.

Figure 9.10: Performance of the course-to-fine approach (green - reduction in
MrTRE, red - increase in Mr'TRE, blue - AMrTRE)

B 9.9 Eror generated by the network

Unfortunately, the network generates a small amount of error not caused
by the displacement of the tissue itself but the inability of the network to
correlate the two images correctly. This amount is in a range that significantly
decreases the final accuracy. We estimate this error by letting the network
register a set of duplicate images. On the small dataset, landmarks have had
their AMrTRE increased from zero to 0.0014, with each landmark having
been moved by approximately 1.5 pixels.

With the resulting AMrTRE being approximately 0.0073 (7.8 pixels), the
noise values are equivalent to 19.2% of the final error.
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Figure 9.11: Error generated by the network

. 0.10 Results

In sections that follow, we will quantify the results of our method by cal-
culating the metrics presented in section |3.5 and compare them with other
participants of the ANHIR challenge.

Results were computed with our scripts rather than uploading our method
to the ANHIR challenge.

B 9.11 Results of our method per sub-dataset

ArTRE MrTRE MxrTRE Robustness

Name avg med avg med avg med avg med

Breast tissue 0.0102 0.0108 | 0.0091 | 0.0085 0.0312 0.0317 1.0000 1.0000
COAD 0.0099  0.0056 | 0.0082 | 0.0043 0.0373 0.0241 0.9806  1.0000
Gastric tissue 0.0046  0.0034 | 0.0041 | 0.0031 0.0132 0.0101 0.9989  1.0000
Human kidney 0.0036  0.0034 | 0.0030 | 0.0028 0.0115 0.0101  0.9969  1.0000
Lung lesion 0.0075  0.0075 | 0.0064 | 0.0062 0.0241 0.0231 0.9771  1.0000
Lung lobes 0.0040 0.0035 | 0.0032 | 0.0027 0.0198 0.0179 0.9857  0.9907
Mammary glands 0.0068  0.0063 | 0.0056 | 0.0047 0.0227 0.0184 0.9854  1.0000
Mice kidney 0.0233  0.0199 | 0.0200 | 0.0160 0.0635 0.0582 0.9242  0.9242
All 0.0083 0.0056 ‘ 0.0073 ‘ 0.0045 0.0306 0.0211 0.9796 1.0000

Table 9.2: Results of our method per sub-dataset (AMrTRE is in the avg

MrTRE column)

The most important metric is the AMrTRE. Our method can reduce its value
below 0.01 (representing 1% of the image diagonal) for every sub-dataset
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9.12. Comparison to state-of-the-art

except the mice kidney. This sub-dataset also scores the worst in every other
metric.

As we can see from the robustness metric, our network is capable of reducing
the landmark distance for 97.66% of the landmark pairs.

The time required for registration varies widely, depending on the image
size, ranging from roughly 8 seconds on smaller images like lung lobes or lung
lesions up to 45 seconds on larger images like mammary glands.

Figure 9.12: Relative results of our method per sub-dataset, with values nor-
malized and scaled for visualization (higher is better)

B 912 Comparison to state-of-the-art

ArTRE MrTRE MxrTRE Robustness
method avg med avg med avg med avg med Tu.ne
[min]
initial 0.1340  0.0684 | 0.1354 | 0.0665 0.2338  0.1157 - - -
MEVIS 0.0044  0.0027 | 0.0029 | 0.0018 0.0251 0.0188 0.9880 1.0000  0.17
AGH 0.0053  0.0032 | 0.0036 | 0.0019 0.0283 0.0225 0.9821 1.0000 6.55
UPENN 0.0042  0.0029 | 0.0029 | 0.0019 0.0239 0.0190 0.9898  1.0000 1.60
CKVST 0.0043  0.0032 | 0.0027 | 0.0023 0.0239 0.0189 0.9883  1.0000  7.80
TUB 0.0089  0.0029 | 0.0078 | 0.0021 0.0280 0.0178 0.9845 1.0000  0.02
TUNI 0.0064  0.0031 | 0.0048 | 0.0021 0.0287 0.0204 0.9823 1.0000 9.73
DROP 0.0861  0.0042 | 0.0867 | 0.0028 0.1644 0.0273 0.8825 0.9892  3.99
ANTs 0.0991  0.0072 | 0.0992 | 0.0058 0.1861 0.0351 0.7889  0.9714 48.24
RVSS 0.0472  0.0063 | 0.0448 | 0.0046 0.1048 0.0275 0.8155 0.9928 5.25
bUnwarpJ 0.1097  0.0290 | 0.1105 | 0.0260 0.1995 0.0727 0.7899  0.9310  10.57
Elastix 0.0964  0.0074 | 0.0956 | 0.0054 0.1857 0.0353 0.8477 0.9722 3.50
UA 0.0536  0.0100 | 0.0506 | 0.0082 0.1124 0.0353 0.8209 0.9853 1.70
NiftyReg 0.1120  0.0372 | 0.1136 | 0.0355 0.2010 0.0714 0.7427 0.8519 0.14

Our method 0.0088 0.0056‘0.0073‘0.0045 0.0307 0.0211 0.9796 1.0000 0.23

Table 9.3: Comparison of methods, data taken from [9] (AMrTRE is in the avg
MrTRE column)
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9. Experiments and results

Our method is comparable to results achieved by other participants of
the ANHIR challenge while outperforming the baseline methods provided
by the organizers. While the accuracy is on the lower end of the participant
spectrum, the time required is the third lowest.

The reduction from the initial AMrTRE value of 0.1354 to 0.0073 means
that our method was capable of a reduction of 94.6%. This result places our
methods on the 5th place based on AMrTRE.

Figure 9.13: Comparison of methods, with values normalized and scaled for
visualization (cross - participant method, diamond - organizer method, higher is

better)

Figure 9.14: rTRE based metrics comparison (cross - participant method,
diamond - organizer method, lower is better)
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9.13. Examples of the registration
B 913 Examples of the registration

This section shows several image pairs which were registered using our method.
The first image in each pair represents the original difference, with the
respective landmark distance shown by blue lines. The second image shows
the difference after registration, with landmarks that have reduced their
distance shown in green and those which did reduce it in red.

(a) : Original difference

(b) : Warped difference
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(a) : Original difference

(b) : Warped difference

80



" 5 B B E S E S EESESSESEESESEESESSESN 9.13.Examp/esoftheregistration

(a) : Original difference

(b) : Warped difference



9. Experiments and results

(a) : Original difference

(b) : Warped difference
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9.13. Examples of the registration

(a) : Original difference

(b) : Warped difference

83



9. Experiments and results

(a) : Original difference

(b) : Warped difference
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9.13. Examples of the registration

(a) : Original difference

(b) : Warped difference
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9. Experiments and results

(a) : Original difference

(b) : Warped difference
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9.14. Generalization of our method on another dataset

(a) : Original difference (b) : Warped difference

. 9.14 Generalization of our method on another
dataset

In order to establish whether our method has not overfitted the ANHIR
dataset, we have chosen to register several images from the ACROBAT
challengeﬂ This dataset contains stained breast cancer tissue samples and
therefore is from a similar modality as our ANHIR dataset.

As we can see in the figure our method is capable of registering images
from different datasets comparably to the ANHIR dataset. The effectiveness
of our method was tried only on several images without landmarks. Therefore,
further testing is required.

! Available from: lhttps ://acrobat.grand-challenge.org/ I
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(c) : Warped difference
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(d) : Original image

(e) : Original difference

(f) : Warped difference

Figure 9.24: Examples of the registration on the ACROBAT dataset
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Chapter 10

Discussion

In this chapter, we will discuss the effectiveness and weaknesses of our
registration method, propose possible improvements and report on problems
with our training.

B 101 Viability of the optical flow for the
registration of histological tissue samples

Optical flow estimation methods have proven to be viable for the histological
tissue registration.

We have shown that our method is capable of both the global pre-alignment
and the local registration, given good training data and proper training. The
main two assumptions, which are made about the images for the purpose
of the optical flow estimation, namely the brightness consistency and local
movement homogeneity, can be somewhat met or compensated.

The RAFT-based architectures, which were used in our method, could
compensate for the difference in colors between images without encountering
any significant issues past the initial few thousand iterations of learning.

B 10.2 Encountered problems with the global
registration

The ANHIR dataset contains several images with a high magnitude of dis-
placement, and their registration would require a rotation of more than 90
degrees. Additionally, several images, primarily those belonging to the mice
kidney sub-dataset, would require scaling before being correctly registered.
As seen in section our network is not capable of reaching the same
level of accuracy on these images as on the rest of the dataset.

A commonly seen error is the over or under rotation of the image caused
by a missing part of the tissue, as shown by the second image pair in figure
As we have chosen to train the global network only to be capable of
registering global motion, its only course of action is to move the entire tissue
sample. Since flow generated by this network is smooth, this hugely reduces
the change of creation of artifacts in the input image of the local network.

91



10. Discussion

(a) : Original image pair (b) : Registered image pair
(correct)

(d) : Registered image pair (incorrect)

Figure 10.1: Examples of correctly and incorrectly registered images using only
the global registration module (blue - initial, green - correct, red - incorrect,
correctness in the sense of distance reduction)

It is visible from the second image pair in figure that the global network
tried to apply a rotation. However, the transformation is more complex, and
the registration fails. In the first image pair, the network correctly predicts
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10.3. Encountered problems with the local registration

translation.

B 10.3 Encountered problems with the local

registration
(a) : Original image pair (b) : Registered image pair (cor-
rect)
(c) : Original image pair (d) : Registered image pair (in-
correct)

Figure 10.2: Examples of correctly and incorrectly registered images using
only the local registration module (blue - initial, green - correct, red - incorrect,
correctness in the sense of distance reduction)

The use of the optical flow for local movement faces the same challenges.
However, we can only utilize limited downsampling. Furthermore, the iterative
flow estimation approach utilized in the RAFT-based architectures diverges
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10. Discussion

after several updates rather than converging or remaining the same.

The network also produces a small amount of error, not generated by a
wrong flow estimation but rather by structures in the image itself, which
reduces the registration accuracy.

In the figure |10.2) we can see that the network is capable of registering
small movements better than the global network. However, it is useless when
presented with bigger movements, such as 90-degree rotation.

B 104 Proposed improvements to our method

Our methods essentially utilize a two-level pyramid with varying downsam-
pling and the ability to skip a level when similarity is not increased. However,
the original images in the ANHIR dataset have a resolution of tens of thou-
sands of pixels, while we only use images in the size of a few hundred pixels
for the global module and around a thousand for the local module, effectively
wasting most of the information contained inside the image.

We propose adding additional levels to the pyramid, created in the same
way as the first two, with the same similarity check between every two levels
and training more networks, which are fine-tuned for the specific resolution.
The main problem with adding more higher-resolution layers is the increased
memory requirement.

Another possible improvement is connecting the two networks into a single
network. Since all the steps in between are capable of a backward pass,
creating a single network with a ’bridge’ would allow better training, akin to
the FlowNet2 architecture. Once again, the main bottleneck is the hardware
used since even evaluation would likely require more than double our current
memory.

B 105 Issues with the training

The main issue with the training is the small batch size and relatively small
image size. For the batch size of 2 and image size of 384 x 384 for the local
network, or a batch size of 4 and image size of 256 x 256 for the global network,
full memory of the GPU (3.8/4 GB) is used. Given access to a more powerful
GPU, the increase in both the batch and image size would likely allow the
network to achieve better results.

Likely candidates for some of the problems are the several parameters that
were chosen arbitrarily, only with limited experimentation. Mainly these
are the weights of different unsupervised loss functions, which were chosen
only after several short trials, as to see the actual results is heavily time
demanding. Giving the right weight to each of the different metrics used for
training is essential for successful registration.
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Chapter 11

Conclusion

In this thesis, we have developed a method for registering histological tissue
samples after they have been stained with the help of optical flow, using
convolutional neural network architectures based on the GMA, combining
them in a fashion similar to the FlowNet2 architecture. Registration with the
help of optical flow has proven to be a viable alternative to the commonly
used methods, outperforming the baseline methods and being comparable to
the other participants of the ANHIR challenge.

We have created several different training datasets, which were utilized for
different parts of the training process and different purposes of the network.
The proposed training routine, utilizing both supervised and unsupervised
loss functions, has allowed the network to correctly learn the optical flow
between the histological image pairs.

The inability of optical flow to register bigger displacements was addressed
by creating the global registration module. At the same time, the brightness
inconsistency between pixels has been revealed not to be a significant issue,
with the network being able to compensate for the difference.

The generalization ability was tried on a second dataset, with images from
the same modality as the original ANHIR. We tried only several images, but
our method seems to have no issue with their registration.

95



96



1]

Bibliography

M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot,
and B. Yener, “Histopathological image analysis: A review,” IEEE
reviews in biomedical engineering, vol. 2, pp. 147-171, 2009.

K. Suzuki, “Overview of deep learning in medical imaging,” Radiological
physics and technology, vol. 10, no. 3, pp. 257-273, 2017.

J. Pichat, J. E. Iglesias, T. Yousry, S. Ourselin, and M. Modat, “A survey
of methods for 3d histology reconstruction,” Medical image analysis,
vol. 46, pp. 73-105, 2018.

M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, and J. Kovacevic,
“Automated histology analysis: Opportunities for signal processing,”
IEEE Signal Processing Magazine, vol. 32, no. 1, pp. 78-87, 2014.

C. Ceritoglu, L. Wang, L. D. Selemon, J. G. Csernansky, M. I. Miller, and
J. T. Ratnanather, “Large deformation diffeomorphic metric mapping
registration of reconstructed 3d histological section images and in vivo
mr images,” Frontiers in human neuroscience, vol. 4, p. 43, 2010.

G. J. Metzger, S. C. Dankbar, J. Henriksen, A. E. Rizzardi, N. K.
Rosener, and S. C. Schmechel, “Development of multigene expression
signature maps at the protein level from digitized immunohistochemistry
slides,” PloS one, vol. 7, no. 3, p. €33520, 2012.

M. A. Viergever, J. A. Maintz, S. Klein, K. Murphy, M. Staring, and J. P.
Pluim, “A survey of medical image registration—under review,” 2016.

K. Murphy, B. Van Ginneken, J. M. Reinhardt, S. Kabus, K. Ding,
X. Deng, K. Cao, K. Du, G. E. Christensen, V. Garcia, et al., “Evaluation
of registration methods on thoracic ct: the empirel0 challenge,” IEEE
transactions on medical imaging, vol. 30, no. 11, pp. 1901-1920, 2011.

J. Borovec, J. Kybic, I. Arganda-Carreras, D. V. Sorokin, G. Bueno,
A. V. Khvostikov, S. Bakas, E. I. Chang, S. Heldmann, K. Kartasalo,
L. Latonen, J. Lotz, M. Noga, S. Pati, K. Punithakumar, P. Ruusuvuori,
A. Skalski, N. Tahmasebi, M. Valkonen, L. Venet, Y. Wang, N. Weiss,

97



11. Bibliography

[19]

[20]

[21]

[22]

M. Wodzinski, Y. Xiang, Y. Xu, Y. Yan, P. Yushkevich, S. Zhao, and
A. Munoz-Barrutia, “Anhir: Automatic non-rigid histological image
registration challenge,” IEEFE transactions on medical imaging, vol. 39,
no. 10, pp. 3042-3052, 2020.

J. Borovec, A. Munoz-Barrutia, and J. Kybic, “Benchmarking of im-
age registration methods for differently stained histological slides,” in
2018 25th IEEE International Conference on Image Processing (ICIP),
pp- 3368-3372, IEEE, 2018.

D. Fleet and Y. Weiss, “Optical flow estimation,” in Handbook of mathe-
matical models in computer vision, pp. 237-257, Springer, 2006.

J. G. Black and L. J. Black, Microbiology: principles and explorations.
John Wiley & Sons, 2018.

H. A. Alturkistani, F. M. Tashkandi, and Z. M. Mohammedsaleh, “His-
tological stains: a literature review and case study,” Global journal of
health science, vol. 8, no. 3, p. 72, 2016.

M. Titford, “Progress in the development of microscopical techniques
for diagnostic pathology,” Journal of Histotechnology, vol. 32, no. 1,
pp. 9-19, 2009.

S. Shostak, “Histology’s nomenclature: Past, present and future,” Biol
Syst Open Access, vol. 2, no. 122, p. 2, 2013.

G. Musumeci, “Past, present and future: overview on histology and
histopathology,” J Histol Histopathol, vol. 1, no. 5, pp. 1-3, 2014.

M. H. Ross and W. Pawlina, Histology. Lippincott Williams & Wilkins,
2006.

K. Loverdos, A. Fotiadis, C. Kontogianni, M. Iliopoulou, and M. Gaga,
“Lung nodules: A comprehensive review on current approach and man-
agement,” Annals of Thoracic Medicine, vol. 14, no. 4, p. 226, 2019.

C. P. Hansen, H. Holtveg, D. Francis, L. Rasch, and S. Bertelsen,
“Pulmonary hamartoma,” The Journal of Thoracic and Cardiovascular
Surgery, vol. 104, no. 3, pp. 674—678, 1992.

K. Zaman, “Tuberculosis: a global health problem,” Journal of health,
population, and nutrition, vol. 28, no. 2, p. 111, 2010.

D. Ost, A. M. Fein, and S. H. Feinsilver, “The solitary pulmonary nodule,”
New England Journal of Medicine, vol. 348, no. 25, pp. 25635-2542, 2003.

A. B. Shinagare, G. Cunto-Amesty, and F. M. Fennessy, “Multiple
inflammatory nodules: a differential diagnosis of new pulmonary nodules
in oncology patients,” Cancer Imaging, vol. 10, no. 1, p. 205, 2010.

98



[23]

32]

[33]

[34]

[35]

11. Bibliography

L. T. Tanoue, N. T. Tanner, M. K. Gould, and G. A. Silvestri, “Lung
cancer screening,” American journal of respiratory and critical care
medicine, vol. 191, no. 1, pp. 19-33, 2015.

C. G. Irvin and J. H. Bates, “Measuring the lung function in the mouse:
the challenge of size,” Respiratory research, vol. 4, no. 1, pp. 1-9, 2003.

G. Betts, K. Young, J. Wise, E. Johnson, B. Poe, D. Kruse, O. Korol,
J. Johnson, M. Womble, and P. DeSaix, “Anatomy & physiology - gross
anatomy of the lungs,” 2013. [Online; accessed April 6, 2022].

W. Commons, “Normal appearance of elastic laminae of visceral pleura.
elastic tissue stain.,” 2009. [Online; accessed April 7, 2022].

B. Weigelt, F. C. Geyer, and J. S. Reis-Filho, “Histological types of
breast cancer: How special are they?,” Molecular Oncology, vol. 4, no. 3,
pp- 192-208, 2010. Thematic Issue: The Molecular Biology of Breast
Cancer.

R. G. do Nascimento and K. M. Otoni, “Histological and molecular
classification of breast cancer: what do we know,” Mastology, vol. 30,
pp. 1-8, 2020.

A. E. M. Reed, J. R. Kutasovic, S. R. Lakhani, and P. T. Simpson, “Inva-
sive lobular carcinoma of the breast: morphology, biomarkers and’omics,”
Breast cancer research, vol. 17, no. 1, pp. 1-11, 2015.

L. M. Biga, S. Dawson, A. Harwell, R. Hopkins, J. Kaufmann, M. LeMas-
ter, P. Matern, K. Morrison-Graham, D. Quick, and J. Runyeon, Anatomy
& physiology. OpenStax & Oregon State University, 2020.

H. H. Hartgrink, E. P. Jansen, N. C. van Grieken, and C. J. van de
Velde, “Gastric cancer,” The Lancet, vol. 374, no. 9688, pp. 477-490,
2009.

E. C. Smyth, M. Nilsson, H. I. Grabsch, N. C. van Grieken, and
F. Lordick, “Gastric cancer,” The Lancet, vol. 396, no. 10251, pp. 635—
648, 2020.

A. S. Levey and J. Coresh, “Chronic kidney disease,” The lancet, vol. 379,
no. 9811, pp. 165-180, 2012.

G. Singh and S. L. Katyal, “Clara cells and clara cell 10 kd protein (cc10),”
American journal of respiratory cell and molecular biology, vol. 17, no. 2,
pp- 141-143, 1997.

J. K. Chan, “The wonderful colors of the hematoxylin—eosin stain in
diagnostic surgical pathology,” International journal of surgical pathology,
vol. 22, no. 1, pp. 12-32, 2014.

99



11. Bibliography

[36]

[37]

[38]

[39]

[41]

[42]

[44]

[45]

[46]

T. Scholzen and J. Gerdes, “The ki-67 protein: from the known and the
unknown,” Journal of cellular physiology, vol. 182, no. 3, pp. 311-322,
2000.

H. M. DelLisser, P. J. Newman, and S. M. Albelda, “Molecular and
functional aspects of pecam-1/cd31,” Immunology Today, vol. 15, no. 10,
pp. 490-495, 1994.

M. Hung and Y. Lau, “Basic science of her-2/neu: a review,” Seminars
in oncology, vol. 26, p. 51—59, August 1999.

C. M. Klinge, “Estrogen receptor interaction with estrogen response
elements,” Nucleic acids research, vol. 29, no. 14, pp. 2905-2919, 2001.

E. Vegeto, M. M. Shahbaz, D. X. Wen, M. E. Goldman, B. W. O’Malley,
and D. P. McDonnell, “Human progesterone receptor a form is a cell-and
promoter-specific repressor of human progesterone receptor b function.,”
Molecular endocrinology, vol. 7, no. 10, pp. 1244-1255, 1993.

S. L. Grimm, S. M. Hartig, and D. P. Edwards, “Progesterone receptor
signaling mechanisms,” Journal of Molecular Biology, vol. 428, no. 19,
pp- 3831-3849, 2016. Molecular Basis of Signal Transduction.

P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” 2015.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Furopean Conf. on
Computer Vision (ECCV) (A. Fitzgibbon et al. (Eds.), ed.), Part IV,
LNCS 7577, pp. 611-625, Springer-Verlag, Oct. 2012.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image
and vision computing, vol. 21, no. 11, pp. 977-1000, 2003.

X. Chen, A. Diaz-Pinto, N. Ravikumar, and A. F. Frangi, “Deep learn-
ing in medical image registration,” Progress in biomedical engineering
(Bristol), vol. 3, no. 1, 2021.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398-
1402, Teee, 2003.

L. M. Fonseca and B. Manjunath, “Registration techniques for multisen-
sor remotely sensed imagery,” PE € RS- Photogrammetric Engineering
& Remote Sensing, vol. 62, no. 9, pp. 1049-1056, 1996.

P. Viola and W. M. Wells III, “Alignment by maximization of mutual
information,” International journal of computer vision, vol. 24, no. 2,
pp. 137-154, 1997.

100



[49]

11. Bibliography

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-

tion,” IEEF transactions on Medical Imaging, vol. 16, no. 2, pp. 187-198,
1997.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden, “Pyramid methods in image processing,” RCA engineer, vol. 29,
no. 6, pp. 33—41, 1984.

D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume,” 2018.

M. Fornefett, K. Rohr, and H. S. Stiehl, “Radial basis functions with
compact support for elastic registration of medical images,” Image and
vision computing, vol. 19, no. 1-2, pp. 87-96, 2001.

F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations,” IFEE Transactions on pattern analysis and
machine intelligence, vol. 11, no. 6, pp. 567-585, 1989.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1, pp. 185-203, 1981.

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Comput. Surv., vol. 27, p. 433-466, sep 1995.

M. J. Black and A. D. Jepson, “Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation,” Inter-
national Journal of Computer Vision, vol. 26, no. 1, pp. 63-84, 1998.

Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Furopean conference on computer vision, pp. 402-419,
Springer, 2020.

P. Nesi, “Variational approach to optical flow estimation managing
discontinuities,” Image and Vision Computing, vol. 11, no. 7, pp. 419—
439, 1993.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical
flow techniques,” International journal of computer vision, vol. 12, no. 1,
pp. 43-77, 1994.

A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proceedings of the IEEFE conference on computer
vision and pattern recognition, pp. 4161-4170, 2017.

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”

in Proceedings of the IEEFE conference on computer vision and pattern
recognition, pp. 2462-2470, 2017.

101



11. Bibliography

[62]

[71]

[72]

[73]

[74]

S. Zhao, Y. Sheng, Y. Dong, E. I.-C. Chang, and Y. Xu, “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,” 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2020.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” 2017.

S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley, “Learning to
estimate hidden motions with global motion aggregation,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
pp- 9772-9781, 2021.

D. Coltuc, P. Bolon, and J.-M. Chassery, “Exact histogram specification,”
IEEFE Transactions on Image processing, vol. 15, no. 5, pp. 1143-1152,
2006.

L. N. Smith and N. Topin, “Super-convergence: Very fast training of
neural networks using large learning rates,” in Artificial intelligence and
machine learning for multi-domain operations applications, vol. 11006,
p- 1100612, International Society for Optics and Photonics, 2019.

M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer
networks,” Advances in neural information processing systems, vol. 28,
2015.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org|

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2018.

K. O’Shea and R. Nash, “An introduction to convolutional neural net-
works,” 2015.

H. Gholamalinezhad and H. Khosravi, “Pooling methods in deep neural
networks, a review,” 2020.

C. Nwankpa, W. I[jomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep learn-
ing,” 2018.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”

The journal of machine learning research, vol. 15, no. 1, pp. 1929-1958,
2014.

102


http://www.deeplearningbook.org

[75]

[76]

11. Bibliography

D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E.
Dahl, “On empirical comparisons of optimizers for deep learning,” CoRR,
vol. abs/1910.05446, 2019.

S. ichi Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4, pp. 185-196, 1993.

)

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,’
2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation, vol. 9351, pp. 234-241. Cham:
Springer International Publishing, 2015.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, pp. 1-40, 2016.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?,” Advances in neural information
processing systems, vol. 27, 2014.

103



104



Appendix A

List of abbreviations and acronyms

Adam
AGT
AIDPATH

AMrTRE
AMxrTRE
ANHIR
ARMrTRE
ARMxrTRE
AsymOFMM
AWGN

BN

BRCA
CAD

CC10

CD

CDF

CE

CIMA
CKD

CN

CNN
COAD

CcP

CT

DNA

EM

EPE

ER

FN

FP

FPN

GD

GT

Adaptive Moment Estimation
Alternate-group transformer
Artificial Intelligence-driven,
Decentralized Production for Advanced Therapies in the Hospital
Average Median rTRE

Average Maximum rTRE
Automatic Non-rigid Histological Image Registration
Average Rank of Median rTRE
Average Rank Maximum rTRE
Asymmetric Occlusion-Aware Feature Matching Module
Additive White Gaussian Noise
Batch Norm

Breast Cancer

Computer Assisted Diagnosis

Clara Cell 10

Cluster of Differation

Cumulative Density Function

Cross Entropy

Center for Applied Medical Research
Chronical Kidney Disease

Context Network

Convolutional Neural Networks
Colon Adenocarcinoma

Control Point

Computed Tomography
Deoxyribonucleic Acid

Estimation Maximalization

End Point Error

Estrogen Recopter

Feature Network

Feature Pyramid

Feature Pyramid Network

Gradient Descent

Ground Truth
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A. List of abbreviations and acronyms

GRU Gated Recurrent Unit

H&E Hematoxylin and Eosin

HER2 Human Epidermal Growth Factor Receptor 2
HSV Hue, Saturation, Value

IDC Invasive Ductal Carcinoma

IDC-NST Invasive Ductal Carcinoma No Specific Type
ILC Invasive Lobular Carcinoma

iusS Intra-operative Ultrasound

kNN k - Nearest Neighbours

LR Learning Rate

LS Least Squares

LReLU Leaky Rectified Linear Unit

MAE Mean Absolute Error

MD Maximum Displacement

MI Mutual Information

ML Machine Learning

MMrTRE Median of Median rTRE

MRI Magnetic Resonance Imaging

mRNA Messenger Ribonucleic Acid

MSE Mean Squared Error

NBF Neutral Buffered Formalin

NN Neural Network

PAS Periodic Acid-Schiff

PDF Probability Density Function

PECAM-1 Platelet endothelial cell adhesion molecule 1
PET Positron Emission Tomography

PR Progesterone receptor

PRelLU Paremetric Rectified Linear Unit
proSPC Prosurfactant Protein C

RBF Radial Basis Function

RAFT Recurrent All-Pairs Field Transforms
ReLU Rectified Linear Unit

ResNet Residual Network

RIRE Retrospective Intermodality Brain Image Registraion
rTRE relative Target Registration Error
SGD Stochastic Gradient Descent

SSIM Structural Similarity Index Measure
SSD Solid State Disk

SMA Smooth Muscle Actin

SpyNet Spatial Pyramid Network

TPS Thin-Plate splines

VGG Visual Geometry Group

UCLM Universidad de Castilla-La Mancha
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Appendix B

Neural networks

Hidden layer 1 Hidden layer 2 Hidden layer 3

Input layer Output layer

Figure B.1: Basic structure of a feedforward neural network

Neural networks are helpful for a wide variety of different tasks, from time
series classification, recommendation creation, text analyzing, and most
importantly, in our case, image processing [68]. The purpose of the network
is to find an approximation of a function f*, that defines a mapping from
input space to output space such that y = f*(x;0), where x is the input of
the network, usually in a shape of a data grid, y is the output with variable
shape. 0 are values of the parameters of the hidden layers of the network
(represented by the individual connections between the nodes in that
result in the best approximation of the unknown function [68].

This section discusses essential components of a neural network, such as a
convolution layer, a fully-connected layer, and their basic structure.
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B. Neural networks

B B.1 Convolution layer

The vital building block of any CNN is a convolutional layer. These layers
focus on learning and using the convolution kernels. Values of each kernel
K are learned from the specific features of the input I [69]. These kernels
are way smaller than the respective image they are used on, usually around
several pixels in height and width. The space from which they can receive
information is called a receptive field [70]. As they move through the input
matrix, output Ip is computed at each position as

Io(i,j)=0o|b+ Y I(i+m,j+n)K(m,n)|. (B.1)
(m,;n)eK

where b is the bias and o is some non-linearity [70].

We see that output values correspond only to several input values and, as
such, vastly reduce the number of parameters of the network compared to a
fully-connected layer. Convolution reduces the overall size of the input at the
edges. Padding prevents the image’s size from changing by adding some value
to the edge of the image (usually zeros). We can also reduce the output size
further by increasing the stride of the kernel, which makes it, so we compute
convolution on only some of the input values [70] such that

Io(m+1,n+1) = Conv(I[(z + sz, y + sy), K), (B.2)
where s() is the stride in given direction. This also allows the network to find
connections between areas that are not directly bordering one another, which

is ideal for image registration, as we can use this fact to construct a feature
pyramid.

Figure B.2: Convolution with 3 x 3 kernel
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B.2. Fully-connected layer

B B2 Fully-connected layer

As the name implies, a fully-connected layer, sometimes called a dense layer
(or linear layer), consists of neurons connected to every output of the previous
layer via a connection with learned weight. These layers are usually used to
map outputs of convolutional layers into the desired output. They are shown
in figure |B.1| as the hidden layers. Since the fully-connected layer does not
differentiate between the relative positions of each of the inputs, the equation
can be rewritten in 1D. The output of such layer is computed as

Toli) =0 (b1 + 3 wis 1) | (B.3)
=0

where b is the bias, o some non-linearity, w are the weights of each connection
from the inputs I to the outputs Ip [68].

B B3 Pooling layer

Pooling layers allow neural networks to aggregate information over space.
They are usually used after a convolution layer to reduce the dimensionality
of the feature maps. Using pooling can also provide a form of spatial trans-
formation invariance or remove unnecessary details. The pooling filter of a
given size and stride moves throughout the input image [71].

Two pooling layers, which are commonly used, are a max-pooling layer and
an average-pooling layer. Max pooling outputs only the highest value from
the given receptive field. This can be written for each output value as

Io(i,§) = I B.4
0(i,7) o 1(m,n), (B.4)

where A(i, j) is the receptive field of the output [71].
Average pooling returns the average of values from the receptive field, which
can be written for each of the output values as
. 1
Io(i,j) = m Z Ir(m,n), (B.5)
D mnyead.g)

where |A; ;| is the number of elements in the receptive field [71].

. B.4 Activation functions

Activation functions are used to determine whether the neuron should fire or
not. They are usually non-linear as we need non-linear mapping to estimate
some functions (e.g., XOR function). A considerable variety of activation
functions exist, each with a different place in the overall NN architecture [72].
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B. Neural networks

B B.4.1 ReLU

Rectified linear unit, or ReL'U for short, is the most commonly used activation
function today. The ReLLU implements a threshold operation against zero
and is formulated as follows

f(z) = max(0, x). (B.6)

It provides faster learning and better performance than other previously
used functions such as sigmoid or tanh. However, ReLU easily overfits, and
due to the zero output value in the negative interval, the gradient from such
neurons causes them to become inactive. There is also an issue of gradient
discontinuity for the zero input value. The most commonplace location of
the ReLU function is after a convolution or a fully-connected layer. ReLLU
gives mapping to interval [0, c0) [72].

Figure B.3: ReLU

B Leaky RelLU

Leaky ReLU addresses the problem with the inactive neurons. Instead of
output becoming zero, it is multiplied by some small constant. This constant
can also be learnable. We call such function Parametric ReLU (PReLU). The
equation is

f(z) = max(0,z) + amin(0, x), (B.7)
where a is some small constant [72].
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Figure B.4: Leaky ReLU

B Softplus

Softplus is a smooth function without zero gradient problems. Therefore it is
more stable than standard ReLU [72]. It is defined as

f(z) =log(1 + expz). (B.8)
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B.4. Activation functions

Figure B.5: Softplus

B B.4.2 Sigmoid

Sigmoid is usually used at the end of neural networks. Compared to ReLU, it
is differentiable for all real-valued inputs. Issues arise when the value moves
further away from 0.5, as the gradient becomes progressively smaller. Its
mapping to [0, 1] interval is ideal for binary classification [72]. Sigmoid is
defined as

(B.9)

Figure B.6: Sigmoid

B B.43 Tanh

The hyperbolic tangent function is a zero-centered function that maps to
the [—1, 1] interval and, as such, is ideal for the output layer of the neural
network. Compared to the sigmoid function, its learning process is faster [72].
Tanh is given by

_ exp(x) — exp(—7)
J(w) = exp(z) + exp(—x)’

(B.10)

Figure B.7: Hyperbolic tangent
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B. Neural networks

B B.4.4 Softmax

The softmax activation function is used in multi-class models to return the
probability of each class as

exp(x;)
fxi)) = ———. (B.11)
' Zé‘vzo exp(z;)
with the resulting class being ¢* = argminf(x;) [72].
i

. B.5 Loss functions

The loss function provides us with necessary values for learning, as it helps
establish how close we are to the desired output. There are many different
types of loss functions, each more suitable for the given tasks in the neural
network architecture than the other [68]. Some of the most commonly used
loss functions are

mean absolute error (MAE),

N
1 .
Lyae = — Y |yi — il (B.12)
N
mean squared error (MSE),
1N
Lyse =~ > i — 4l (B.13)
N
and cross-entropy loss (CE),
N
Leog =— Zpilog(pi). (B.14)
i=1

Other more specialized types exist such as sequential loss, which uses the list
of optical flow estimates produced by some optical flow DNN architectures.
Flows are weighted, so later updates are more important than the first ones.
Loss is defined as

N
Lspg =Y 2" '|Fg — Filh (B.15)
i=1
where Fy; is the flow ground truth, F; are the network outputs and v € [0, 1]

[57].
B B.6 Other layer types

B B.6.1 Batch Normalization

Batch normalization (BN) is used for regularization and stabilization while
also reducing the network’s dependence on the initialization of parameters
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B.7. Optimizer

by making it so the values of the layer within a given batch have zero mean
and unit variance. This is done by performing normalization [73] for each
mini-batch B such that

. B-B
B= : (B.16)
opB

where op is the standard deviation.

B B.6.2 Dropout

Dropout prevents the network from overfitting. During training, we randomly
set a large subset of parameters to zeros (usually 50%). The dropout layers
are turned off during testing. One of the drawbacks is the increase in the
learning time [74].

B B7 Optimizer

Selecting an optimizer is one of the most critical steps in optimization of a
neural network. The purpose of the optimizer is to minimize the loss function
[ by updating the parameters of the network. The update is generally done
by finding a cost function gradient and taking a step in this direction [75].

B B.7.1 SGD

Stochastic gradient descent (SGD) is one of the simplest methods for learning
the ideal parameters of the NN. It’s update rule is

9t+1 == ‘9t - atVL(Ht) (B17)

where 6 is set of parameters and « is the learning rate [76]. We can improve
this simple method by introducing momentum, which takes into account
gradient of previous iterations. Update rule is then as follows

Vo = 0
Vit1 = YUt + VL(Qt) (B18)

Or1 = 0y — v

where v is the momentum rate.

Another space for improvement is a stochastic approach (SGD). Given large
enough batch of randomly chosen entries from the dataset, it is possible to
approximately calculate the loss function from a single batch and thus saving
memory in the process (on larger datasets, standard GD may not be even
possible). Another version of SGD with momentum is so called SGD Nesterov
[76], which is defined as

Vo = 0
Vi1 = YUt + VL(H,:) (Blg)
Or+1 = 0p — cw(yvpe1 + VL(6y))
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B. Neural networks

B B.7.2 Adam

Adam’s name is derived from adaptive moment estimation. This method
computed individual learning rates of different parameters from first and
second moments of the gradient. Some of its advantages are good performance
on sparse gradients or that the magnitudes of parameter updates are invariant
to gradient rescaling [77]. Adam algorithm is defined as

mo = 0, Vo = 0
miy1 = Bimy + (1 — B1)VL(6;)
Vi1 = Bovy + (1 — B2)VL(6,)?

W (B.20)

bet1 = T+1
i

Mi+1
Orr1 =0 —ap———by11
* V/Vt+1 T € *
where « is the learning rate, § are exponential decay rates, m is first moment,
v is second moment [75].

. B.8 Encoder - decoder CNN

These types of networks consist of two parts. Encoder, where the network
learns to find features from the input image, and decoder, which maps said
features into an output such as classification, segmentation, or in our case,
registration [45].

B B.8.1 ResNet

Residual networks, or ResNets [78] for short, implement residual blocks.
These blocks allow the gradient to flow easily through the network and skip
several layers through an identity shortcut. Inside the block are two or three
convolutional layers with ReLLU and batch normalization. ResNets can have
a depth of up to hundreds of layers (e.g., ResNet-152). ResNets, and more
specifically the residual blocks, are some of the most commonly used network
architectures today [78].

Figure B.8: Residual block, taken and edited from [78]
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B.9. Transfer learning

B B.8.2 U-Net

U-Net was initially designed in 2015 as a way of segmenting biomedical images.
The architecture consists of the contracting path and the expansive path,
first reducing spatial information while increasing the information about the
features. The latter takes this information and applies it to the entire image
on a pixel-by-pixel basis [79].

Contracting path is similar to a standard CNN structure, with each block
having two convolutional layers with a 3 x 3 kernel, doubling the number of
channels and 2 x 2 pooling. The expansive path then expands the features with
up-convolutional layers, halving the number of channels from corresponding
feature maps found in the contracting path while simultaneously allowing for
details lost in the downsampling to be used in the upsampling. Finally, the
last layer is a convolution layer with a 1 x 1 kernel that maps to the number
of desired output classes [79].
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Figure B.9: U-Net architecture, taken and edited from [79]

B B.9 Transfer learning

Transfer learning is a technique used in machine learning, which uses learned
parameters from different datasets to "boot-start" learning on another dataset
[80], effectively reducing the time required for learning. Especially several first
layers of the network are affected, as they are usually responsible for feature
extraction, which could vary widely between datasets. However, deeper layers
are responsible for more general tasks, like the overall movement of the found
features, which is usually similar between datasets and is transferable [81].
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Appendix C

Implementation

All scripts are available from the GitLab repository: https://gitlab.fel|
|cvut.cz/biomedical-imaging-algorithms/deep_registration.git.

Scripts taken but partially edited from other sources are shown with an
asterisk *.

List of required libraries:
# Numpy - General matrix operations

® PyTorch - Machine learning and neural networks framework (CUDA
capable GPU is required)

® SciPy - Algorithms for scientific computation
8 PIL - Image loading and augmentation

B cv2 - Image augmentation and manipulation
B scikit-image - Image augmentation

® Matplotlib - Image visualization

8 csv - Landmark loading

The length of our code is around 3500 lines, not including code taken from
other sources. It is split into 21 files.

Not included is the network architecture itself, which is available from the
https://github.com/zacjiang/GMA.
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C. Implementation

Bl Structure of the directory

Src

{ ] data_generation
{E]dataset_generation.py
{E]downsample_dataset.py

" generate_affine.py
{E]generate_flow_affine_and_synthetic.py
" generate_flow_landmarks.py

" mask_creation.py

{E]synthetic_flow.py

[ registration

{Ejmetric.py
{E]register_course_to_fine.py

{E]register_global.py

U™ register_local.py
{1 training

" census_loss.py*
" datasets.py*

" loss_functions.py
L") sequence_loss.py*

" smooth_loss.py

" ssim_loss.py*

{E]train.py*
il utils

" data_management.py

{E]utils_warp.py

U™ visualize_data.py
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C. Implementation

data__generation - Scripts in this folder are responsible for the creation
of the training dataset. The user is expected to provide a folder with the
images and landmarks with the same structure as the ANHIR dataset.
Output training data is then placed into a single folder.

registration - The content of this folder is centered around the different
parts of the registration process and result quantification. The input of
the different methods is a image pair, alongside with their landmarks,
however, only the image can also be used (scripts are written with
landmarks in mind, but parts of the scripts can be used for image-only
registration).

training - These scripts are responsible for the training of our network,
ranging from different loss functions, dataset augmentation, and loading
to the training procedure itself. The input must be in the shape of the
dataset generated by the scripts in the data__generation folder.

utils - Several shorter scripts, or scripts which are commonly used in
larger part of the codebase are placed in this folder.
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