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Abstract

Mobile phones and other small touch screen devices play a significant role in our
everyday life. Although most of the tasks that can be performed on the touch screen
device can be automated via software and emulation of the physical control, the
configuration of the device to enable this software remains the sole operation that
has to be done manually.

In this work we present a collaborative robot for setting up and control of small
touch screen devices. The robot consists of an off-the-shelf robotic arm and a camera
that observes the arm’s workspace. We have developed a library of functions that
allows for camera calibration, touch screen device detection, and determining the
device’s real world position and orientation in the workspace from the camera, as
well as a set of motion primitives for the robotic arm to allow the basic touch screen
interaction operations like click, long click, double click, and swipe.

On top of that, we have investigated and successfully deployed software enabled
collaborativity of the arm based solely on the position feedback. This allows a teach
and repeat functionality of the configuration scenarios as well as collision detection
of the arm.

Keywords: collaborative robot, touchscreen interaction, automated phone
configuration

Abstrakt

Mobilńı telefony hraj́ı významnou roli v našem každodenńım životě. Přestože většina
úkon̊u, které se daj́ı na těchto zař́ızeńıch provést se dá automatizovat pomoćı softwaru
a emulace fyzických interakćı, konfiguraci nového zař́ızeńı pro tento software je stále
potřeba dělat manuálně.

V této práci představujeme kolaborativńı robot pro nastaveńı a ovládáńı malých
zař́ızeńı s dotykovými obrazovkami. Zař́ızeńı se skládá z robotického ramene a kamery,
která sleduje jeho pracovńı prostor. Vyvinuli jsme knihovnu funkćı, které umožňuj́ı
kalibraci vnitřńıch i vněǰśıch parametr̊u kamery, detekci dotykových zař́ızeńı a źıskáńı
jejich pozice a orientace v pracovńım prostoru robotu. Také jsme připravili sadu
pohybových primitiv pro robotické rameno, které umožňuj́ı základńı interakce s
dotykovou obrazovkou jako je klik, dlouhý klik, dvojitý klik a tažeńı.

V rámci práce jsme také úspěšně testovali možnost softwarové detekce koliźı
robotu s překážkami, č́ımž se nám podařilo z robota nekolaborativńıho vytvořit robota
kolaborativńıho, a tedy i bezpečněǰśıho pro své okoĺı.

Kĺıčová slova: kolaborativńı robot, ovládáńı dotykové obrazovky, automatizované
nastaveńı telefon̊u
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CHAPTER 1
Introduction

In this day and age most people prefer to use their mobile phones and other small touch screen
devices 1 to interact with friends, businesses and even their household appliences. This is a
big incentive for companies to develop mobile applications which are quick and bug free.

Testing these programs on real devices is usually done by a remote access software and
software emulation of physical interaction. However it is still necessary to set up the device
and install the remote access software manually. This is a short 10 minute operation for one
phone, but it adds up quickly. Therefore in cooperation with Škoda Auto we decided to design
an easy to operate robot capable of automating the small touch screen device setup.

The simplest way to give a robot instructions is to show it what needs to be done. This
robot will support the teach and repeat functionality not only as a simple repetition of
movements, but also for phone control actions. Meaning the operator can show the robot
how to setup one phone and the robot will be able to repeat these actions on another phone.

It will still be necessary to change the phones in the work area by hand. As the operator
will be performing this task while the robot is running, the robot will need to detect collisions
to prevent injury.

This thesis serves as a proof of concept for a collaborative robot using only position
feedback. The replacement of additional sensors with a smart piece of software may make
this technology cheaper and therefore more accessible.

1.1 Problem statement

The goal of this bachelor’s thesis is to create a collaborative robot capable of identifying and
controlling small touch screen devices.

The robot will detect all touch screen devices in an image from a camera capturing the
robot’s workspace, then translate the information about their position, size and orientation
from the image to the real world using the camera’s calibration parameters.

To move the robot arm in real world coordinates, it’s forward and inverse kinematic models
are going to be calculated. For collaborativity and phone thickness measurement, the method
described by Faigl and Č́ıžek (2019) will be adapted.

1In this thesis, the terms ”touch screen devices”, ”mobile phones” and their synonyms will be used
interchangably, as their differences are irrelevant in this context.
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Chapter 1. Introduction

For the device control itself, we will develop a library of motion primitives like click, double
click, and swipe.

Lastly the robot will have a teach and repeat functionality. The operator should be able
to guide the robot arm while performing a series of interactions with a small touch screen
device. The robot will remember the location, type and order of the above mentioned motion
primitives present in the guided interaction. This sequence of actions will then be repeated
on another device in the workspace.

1.2 Robot description

1.2.1 Hardware

The base of the robot is a 80 cm by 60 cm rectangle made out of 40mm aluminium extrusion
with a white acrylic top. On one of its long sides is mounted a Rotrics DexArm.

The DexArm is an inexpensive consumer robot arm. It is suitable to our purpose as it
is precise enough to accurately and repeatably interact with a touch screen device, but also
simple enough to demonstrate the benefits of software enabled collaborativity. The DexArm
is controlled by gcode commands send through a serial line. In the arm’s gripper is mounted
the pen holder attachment with an upside down pen. This pen has at its top (that is why it
is upside down) a soft conductive ball from a rubber-like material, which allows the robot to
interact with the touch screen devices.

Behind the DexArm is another aluminium extrusion holding a 3D printed camera mount
55 cm above the workplane. The camera chosen is a Basler Ace 2 industrial camera with a
Basler C125-0418-5M-P f4mm lens. The camera is connected to the computer by an ethernet
cable and communicates with a specialized library called Basler Pylon.

The whole setup is shown in Figure 1.1.

Figure 1.1: The robot.

2



Chapter 1. Introduction

1.2.2 Software

The interesting part of this work is the software which will be in detail described in the rest
of the thesis.

It is a C++ library containing all the above mentioned functionalities as blocks to be used
by a frontend developer. The code heavily relies on principles of object oriented programming.
Excluding the standard libraries and libraries necessary for hardware interaction (Basler
Pylon), we used Eigen (Guennebaud et al., 2010) for vector and matrix operations and
OpenCV (Bradski, 2000) for image processing.

3
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CHAPTER 2
Vision

The eyes of the robot is a Basler Ace 2 camera. This chapter describes how it is used to
detect small touch screen devices in an image and then translate this information into the
coordinate frame of the robot arm.

2.1 Camera calibration

To find the real world position of a point in an image plane we need to go backwards and first
figure out, how the point is projected onto said plane. This is done using the pinhole camera
model, which simplifies the problem by disregarding the camera lens distortion and using ray
optics to calculate the projection.

This projection can be described as a transformation of point x⃗ in 3D space to point p⃗
in the image plane represented by a 3 × 3 camera matrix K - the 9 values of matrix K are
known as intrinsic parameters.

However, this transformation works for a point in camera coordinates, which are not the
same as the robot arm coordinates. Therefore it is necessary to also find a 4 × 4 matrix
T representing the homogenous transformation between these two coordinate frames. The
elements of T are called extrinsic parameters.

There are many different sources of information on camera calibration, this thesis uses the
same notation as Davies (2012) Chapters 15 and 18.

2.1.1 Intrinsic parameters

The image plane is a plane with the z coordinate equal to the focal length of the camera lens
f . The pinhole camera model works by projecting a ray from the origin (also known as the
camera center) to the point being projected as shown in Figure 2.1. The intersect of this ray
with the image plane is the image point.

This type of projection is called perspective projection. If the real point is described

as a vector x⃗ =
(
x y z

)T
and the corresponding image point is x⃗i =

(
xi yi zi

)T
, the

relationship between these two can be described as

xi = f
x

z
, yi = f

y

z
, zi = f. (2.1)
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Chapter 2. Vision

OC

xC

yC
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t2

f

x⃗

r⃗c

yi
xi

px

py
p⃗

Figure 2.1: Pinhole camera projection schematics.

xi and yi are distances from the z axis to the image point. But in an image the distances

from the top left corner (px and py) are important, so an offset o⃗ =
(
t1 t2 0

)T
has to be

added to x⃗i.
Perspective projection is perfomed by two mathematical operations:1 0 t1

0 1 t2
0 0 1/f

x
y
z

 =

x+ t1z
y + t2z
z/f

 =

xi
yi
zi

 , (2.2)

and

p⃗ =

(
px
py

)
=

1

zi

(
xi
yi

)
= f

(
x/z + t1
y/z + t2

)
. (2.3)

The 3× 3 matrix in Equation 2.2 prescribes the camera matrix K containing the intrinsic
parameters. There is only one last thing unaccounted for: units. The image coordinates are
in pixels, but the camera coordinates are in meters. This can be easily remedied by adding
two scaling factors s1 and s2 so that

K =

s1 0 t1
0 s2 t2
0 0 1/f

 . (2.4)

Because of how the calibration method works, it is easier to search for less parameters.
The format of K can be changed by multiplying it by f :

K =

s1f 0 t1f
0 s2f t2f
0 0 1

 =

k11 0 k13
0 k22 k23
0 0 1

 . (2.5)

This change does not affect the results as can be seen in Equations 2.2 and 2.3.
Even though all of these parameters could be determined from the camera’s datasheet, that

would not account for focus adjustment and imperfections during manufacturing. That is why
a ROS camera calibration package was used. This tool is based around the
cv::calibrateCamera OpenCV function which implements an algorithm described by Zhang
(2000).

Given at least 2 different images of 3 coplanar points with known relative positions (we
used an 8-by-11 checkerboard pattern), a matrix H is a maximum likelihood estimate of the

6



Chapter 2. Vision

transformation between the plane defined by these three points and the image plane (the
camera homography). H is a combination of the internal and external camera parameters and
can be expressed as

H =
[
h⃗1 h⃗2 h⃗3

]
= K

[
r⃗1 r⃗2 t⃗

]
. (2.6)

Equation 2.6 represents the multiplication of camera matrix K with the transformation
matrix of extrinsic parameters between points in the XY plane of the world coordinate system
and the camera coordinate system1. Therefore r⃗1, r⃗2, t⃗ ∈ R3, r⃗1 and r⃗2 are orthonormal.

H is not just an ordinary matrix, but a homography. This fact in combination with
orthonormality of r⃗1 and r⃗2 can be used to put two constraints on the intrinsic parameters
and calculate them from the known parameters of the homography.

The resultant camera matrix for our camera is 2

K =

1179 0 971
0 1179 567
0 0 1

 . (2.7)

2.1.2 Extrinsic parameters

OR
xR

yR

zR

Oa
xa

yaza

Oc

xc
yc

zc

Figure 2.2: Positions and orientations of the camera, Aruco marker and robot coordinate systems.

Unlike with the intrinsic parameters that are always the same, the extrinsic parameters
change based on the position and orientation of the camera. The camera mount is the least
sturdy part of the robot and therefore it is possible for it to slightly move, for example during

1Because the extrinsic parameters are calculated separately, the assumption of coplanar calibration points
lying in the global XY plane can be made without the loss of generality.

2The values have been rounded to whole integers here, but are used with precision of 11 decimal places in
the code.
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Chapter 2. Vision

transportation. Because even small deviations could make the robot useless, it is beneficial
to calibrate the extrinsic parameters on every startup.

That is why an Aruco marker was glued onto the center of the workspace. Each Aruco tag
has it’s own coordinate system. Because the marker is on a flat plain of a known height (z =
0 cm), it is easy to measure its position and orientation within the robot’s coordinate system
and find a trasformation matrix T a

R between those two. It can also be easily detected in an
image and because we know the camera matrix K and the exact size of the Aruco marker,
we can precisely determine it’s position and orientation in the camera’s frame of reference,
finding transformation matrix T c

a between these two coordinate systems. Finding the full
transformation matrix T is then a question of simple matrix multiplication. The coordinate
systems referenced can be seen in Figure 2.2.

These transformation matrices are expressed in homogenous coordinates. To convert a
vector from R3 to homogenous coordinates one only has to append a 1 as the fourth element
to the vector. This additional unitary fourth element allows us to express rotations and
translations as matrix multiplication. A homogenous vector can be converted back to R3 by
dividing its first three elements by the fourth one.

The Aruco marker’s coordinate system is located at t⃗a =
(
39.56 8.38 0

)T
and is rotated

2° (0.0349 rad) around the z axis. This transformation can be described using a matrix

T a
R =

(
Rz(0.0349) t⃗a

0⃗T 1

)
=


cos(0.0349) −sin(0.0349) 0 39.56
sin(0.0349) cos(0.0349) 0 8.38

0 0 1 0
0 0 0 1

 . (2.8)

To find the position of the marker in the camera’s coordinate system, the openCV function
cv::estimatePoseSingleMarkers is used. It returns the position as a rotation vector and
translation vector t⃗c. The rotation vector is then transformed into a rotation matrix R using
the Rodrigues formula, t⃗c is multiplied by 100 to change its scale to centimeters3 and the
transformation matrix T c

a is assembled:

T c
a =

(
R 100 · t⃗c
0⃗T 1

)
(2.9)

It makes little sense to write the exact values of T c
a here, as they are always slightly different.

(See Section 7.1.)
The final matrix of extrinsic parameters T is

T = T c
aT

a
R. (2.10)

2.2 Position reconstruction

While the robot operates, it performs the inverse of perspective projection - an object is
detected in an image and its position needs to be determined. In mathematical terms, 2D

point p⃗ =
(
px py

)T
representing a picture of a real world object x⃗ =

(
x y z

)T
is known.

The task of position reconstruction is to find the coordinates of the point x⃗.
If p⃗ is changed to homogeneous coordinates by adding a 1 as the third element (p⃗H =(

px py 1
)T

), it can be multiplied by the inverse of the camera matrix K to obtain point

3The robot operates in centimeters as they are a nice scale to use for small touch screen devices.
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Chapter 2. Vision

r⃗c = K−1p⃗H . (2.11)

As can be seen from Figure 2.1 a whole ray defined by the camera center and point r⃗c is
projected into point p⃗. To find the precise location of a small touch screen device, the collision
detection function of the robot arm is used. The arm moves downwards along the path of
the ray starting at a height of 5 cm above the work surface as it can be assumed no phone is
thicker than that. Once the robot detects a collision, it has hit a device. The point of collision
is the desired point x⃗.4

Equation 2.11 only gives the ray direction in terms of camera coordinates. For the arm
to be able to follow the ray, it is converted to the arm frame of reference as a line defined by
two points

r⃗s = T−1


0
0
0
1

 , r⃗e = T−1

(
r⃗c
1

)
. (2.12)

2.3 Image undistortion

(a) The distorted image. (b) The undistorted image.

Figure 2.3: Comparison of a distorted and an undistorted image.

The used camera lens heavily distorts the image as can be seen in Figure 2.3a. This
distortion causes straight lines to appear bulged out and is called radial distortion because
the distortion depends on the radial distance from the center of the image.

The pinhole camera model used to find the real location of points from an image does not
expect this distortion, so the image is undistorted before the detection of small touch screen
devices.

The real position of a pixel shoud be
(
px py

)T
, the center of the image is

(
pxc pyc

)T
and the pixel position in the distorted image is

(
p′x p′y

)T
. The distortion function is

4As discussed in Section 7.4, the collision detection function was not utilized in the final deployment, hence
the height of the point from the workplane has been entered manually during the setup.
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(
p′x − pxc
p′y − pyc

)
=

(
px − pxc
py − pyc

)(
a0 + a2

(
(px − pxc)

2

(py − pyc)
2

)
+ a4

(
(px − pxc)

4

(py − pyc)
4

)
+ a6

(
(px − pxc)

6

(py − pyc)
6

))
.

(2.13)

The four distortion parameters a0, a2, a4, and a6 are found using the same ROS
camera calibration tool as the intrinsic calibration parameters using the method described
by Zhang (2000). After finding the intrinsic parameters of the camera, this tool finds a
maximum likelihood estimate of the distortion parameters to minimize the error between
where the calibration points are expected after multiplication by K and where in the image
they truly are.

To undistort the image the OpenCV cv::undistort function, which implements the
inverse of Equation 2.13, is used.

2.4 Touch screen device detection

(a) The detected and ignored objects. (b) The corresponding difference mask.

Figure 2.4: Camera image phone detection example. The phones are detected and the other objects
are ignored.

Part of the initilization process of the object detection class is moving the robot arm
out of the view of the camera and taking a picture of the empty workspace. When object
detection is requested a new image of the workspace is taken and a difference of the two
images is calculated. The pixels that stayed the same are black, and the others are lighter
and colored depending on the change. This difference image is then converted to grayscale5

and thresholded so that all pixels lighter than 50 are white and all others black. Each of the
white areas corresponds to an object in the workspace as is shown in Figure 2.4.

This threshold value was found experimentally. It was necessary to detect small changes,
because the contents of the phone’s screen may closely match the background, however if one
detected every change, shadows started to be a problem.

The two parameters used for identifying a phone are it’s size (area) and it’s shape.

Every detected object with an area smaller than 35 · 103 pixels or larger than 150 · 103
pixels is not considered to be a phone. These values were found experimentally to reject small
object like credit cards and too large ones like the operator’s hands.

5Each pixel of the grayscale image can have a value from 0 (black) to 255 (white).
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Minimum area bounding boxes for the remaining objects are found using the OpenCV
function cv::minAreaRect. The ratio of their longer to shorter side is calculated and all
objects which are too narrow (ratio larger than 22

9 ) or too square (ratio smaller than 15
9 ) are

eliminated. These values were found by a short research into the aspect ratios of popular
mobile phones. The narrowest ones have aspect ratios around 21

9 ; e.g., Sony Xperia 10, older
phones tend to have the standard full HD aspect ratio 16

9 ; e.g., Samsung Galaxy Note 1-7.
The ratios selected for filtering allow slightly broader selection to account for inaccuracies
caused by; e.g., the camera not being exactly above the device, etc.

The remaining objects are considered to be phones and their real world positions,
orientations and sizes are computed. The position of the phone is the position of its corner
closest to the origin and orientation is the angle between the workspace x axis XR and the
shorter side of the device. These two parameters are important for coordinate transformations
between the small touch screen device and the robot. More about that in Section 5.1.

Note, when searching for phones, the robot arm is docked, so that it does not obstruct
the view of the workspace.

11
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CHAPTER 3
Arm control

3.1 DexArm firmware

The Rotrics DexArm came with preinstalled open source firmware for 3D printers called
Marlin created by Zalm (2011) modified to support the DexArm. Unfortunately this firmware
was unsuitable to our needs, mainly because it was impossible to read the arm’s position or
stop the arm while the robot was moving.

To overcome these issues the DexArm firmware was adjusted by adding a custom program
loop that continuously streams the motor positions to the serial line and also listens for custom
commands: initialize, move to and stop moving. The initialize and move to commands are
connected to their standard Marlin equivalents, but they bypass the blocking logic of Marlin
command and movement sequencing.

The new DexArm firmware reads bytes from the serial line in a non-blocking mode and
saves them into a buffer. While the received byte is not an end of the line symbol, the position
of the robot’s motors in encoder ticks is sent out. After a whole line has been read into the
buffer, it is converted to a string and the specified command is executed. If the received text
is not a known command, ERR is sent out. When factoring in the time needed for command
execution, the arm reports its position with and average period of 2.2ms.

The robot arm’s motion is handled by an interrupt. The motion commands only write
motion requests into a queue. Periodic interrupt checks the queue and if there is a motion to
be executed, the motors are started. Then the interrupt periodically checks, if the movement
has been finished and if so, it stops the motors. This logic allows the robot to still write
out its position while moving and listen for the stop command, which immediately stops the
robot if a collision is detected.

To execute a straight line move, the motion needs to be interpolated. This is done in a
separate loop from the main one, causing the command reading and position reporting logic to
be unavailable. To remedy this a copy of the main loop was implemented in this interpolation
loop, but only listening for the stop command and writing out the robot’s current position.

3.2 Movement modes

The arm can move from point to point in two ways: fast mode and straight line mode.

13



Chapter 3. Arm control

Fast mode sets the target motor positions and the motors move there at such speeds that
all 3 of them finish the movement at the same time.

Moving in fast mode is useful for most robot movements because a curved trajectory of
the robot’s tip is not a problem. However for some operations, like the swipe gesture on a
touchscreen, it is important to move in a straight line. That is done by interpolating the path
between the current robot position and the target position. Because the motors have to be
synchronized, this type of movement is slower.

The DexArm joints are moved by stepper motors. To prevent them from losing a step, an
acceleration profile is implemented by the Marlin firmware. That makes movements in fast
mode very smooth. However when the same approach was attempted for straigh line mode -
telling the arm to move in fast mode from one of the interpolated points to another - the robot
stopped after each interpolation step making the movement choppy. Fortunately Marlin has
a straight line movement function already implemented so the custom layer of firmware was
modified to use it. This behaviour has also shown to be the main source of problems in the
implementation of the collision detections further detailed in Chapter 4.

3.3 Kinematics

To accurately locate the tip of the robot arm, a way of translating the angular positions of
the motors into a cartesian coordinate frame was found. Mathematical operation doing this
is called the forward kinematics. To position the arm in said coordinate frame, the motor
positions will be calculated from a cartesian vector. Because it is the opposite of forward
kinematics, this task is called the inverse kinematics.

3.3.1 Robot parameters

When calculating the kinematic models, constants representing the robot’s structure and
variables representing its motor positions are used. For clarity, their meaning and values are
in Table 3.1 and Figure 3.1. In the calculations, only the symbols will be used.

Values of lH and lU were obtained from the Dex Arm’s datasheet (Rotrics, 2022).

Table 3.1: Constants and variables of the robot.

Symbol Meaning Value

lH length of the robot’s humerus 15 cm
lU length of the robot’s ulna 15 cm
dth horizontal distance between the gripper base and the tip 10.5 cm
dtv vertical distance between the gripper base and the tip 6.5 cm
dah horizontal distance between the gripper attachment point and the tip 4 cm
dav vertical distance between the gripper attachment point and the tip 6.2 cm
bw the width of the base of the robot arm 11.35 cm
bd the depth of the base of the robot arm 13.2 cm

b⃗ position of the robot base (origin of the OA coordinate system)
(
40 46.15 9

)T
θ rotation of the OA coordinate system about the z axis compared to OR π rad
αA motor A angle variable
αB motor B angle variable
αC motor C angle variable
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Figure 3.1: Robot described using constants and variables with the joint coordinate systems according
to the DH convention.

3.3.2 Tick remapping

The DexArm has a 12 bit encoder on each motor giving it 4096 ticks for the whole 360 degree
rotation. To convert an angle from ticks to radians, the encoder value is multiplied by 2π

4096
and vice versa. The motors cannot move freely and are restricted to these ranges:1

tA ∈ ⟨0, 1341⟩ ∪ ⟨3389, 4095⟩, (3.1a)

tB ∈ ⟨0, 925⟩ ∪ ⟨3848, 4095⟩, (3.1b)

tC ∈ ⟨0, 705⟩ ∪ ⟨3536, 4095⟩. (3.1c)

Only multiplying values in these intervals by the conversion constant would not yield
the motor angles as described in Figure 3.1 because of conflicting positive directions and

1The encoder positions here are referred to as tA, tB and tC . αA, αB and αC are the corresponding angle
values in radians used for kinematic calculations.
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misaligned zeros. For identifying the dynamic parameters of the robot arm in Chapter 4
about collisions, it is necessary for the encoder values to be continuous. That is why the tick
values are remapped before unit conversion. It is also very important to convert calculated
tick positions back into the original sets before they are send to the arm in a motion command.

The mapping function and its inverse for tA are

fA(tA) : ⟨0, 1341⟩ ∪ ⟨3389, 4095⟩ → ⟨0, 2048⟩, (3.2)

fA(tA) =

{
1341− tA tA ∈ ⟨0, 1341⟩,
5437− tA tA ∈ ⟨3389, 4095⟩, f−1

A (tA) =

{
1341− tA tA ∈ ⟨0, 1341⟩,
5437− tA tA ∈ (1341, 2048⟩.

For tB are
fB(tB) : ⟨0, 925⟩ ∪ ⟨3848, 4095⟩ → ⟨0, 1173⟩, (3.3)

fB(tB) =

{
925− tB tB ∈ ⟨0, 925⟩,
5021− tB tB ∈ ⟨3848, 4095⟩, f−1

B (tB) =

{
925− tB tB ∈ ⟨0, 925⟩,
5021− tB tB ∈ (925, 1173⟩.

And for tC
fC(tC) : ⟨0, 705⟩ ∪ ⟨3536, 4095⟩ → ⟨−137, 1128⟩, (3.4)

fC(tC) =

{
tC + 423 tC ∈ ⟨0, 705⟩,
tC − 3673 tC ∈ ⟨3536, 4095⟩, f−1

C (tC) =

{
tC + 3673 tC ∈ ⟨−137, 423⟩,
tC − 423 tC ∈ (423, 1128⟩.

3.3.3 Forward kinematics

The forward kinematics were mostly calculated using the Denavit-Hartenberg (DH) convention
described by Siciliano et al. (2009). Even though this method can be used only on open
kinematic chains and the DexArm has a parallel mechanism, this mechanism is used just to
keep the tip perpendicular to the ground which does not interfere with the DH approach.

Each joint of the robot arm is assigned a coordinate system of which the z axis is the
axis of rotation. The forward kinematics are calculated by transforming the origin of the tip
coordinate system o⃗T from one joint reference frame to another, until it is expressed in the
global robot coordinate system.

The DH convention describes each coordinate transformation in 4 steps: rotation about
the z axis by an angle ϑ, translation along the z axis by distance d, translation along the new
x axis by distance a and lastly rotation about the new x axis by an angle α. This means each
coordinate transformation can be described by 4 DH parameters. The transformation matrix
in homogenous coordinates 2 from Oa to Ob is

T b
a =


cos(ϑ) −sin(ϑ) 0 0
sin(ϑ) cos(ϑ) 0 0

0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1



1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cos(α) −sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1

 .

(3.5)

2How homogenous coordintes work is described in Section 2.1.2.
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The DexArm has 3 joint coordinate systems OA, OB and OC , a gripper and tip coordinate
systems OG and OT , and the main robot coordinate system OR. Their positions are shown
in Figure 3.1.

Transformation between the OR and OA frames of reference is not done using the DH
parameters. Instead a generic transformation matrix was used

TR
A =

(
R b⃗

0⃗T 1

)
, where R =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (3.6)

DH parameters for the next 3 transformations are in Table 3.2.

Table 3.2: DH parameters of forward kinematics.

Transformation ϑ d a α

TA
B αA 0 0 π/2

TB
C αB 0 lH 0

TC
G αC − αB − π/2 0 lU 0

The last transformation from OG to OT also deviates from the DH method. The coordinate
system OG has to rotate π

2 − αC radians about the z axis to have the axes properly oriented

relative to the workplane and then translate by vector t⃗T . The matrix representing this
transformation is assembled from these components

R =

cos(π/2− αC) −sin(π/2− αC) 0
sin(π/2− αC) cos(π/2− αC) 0

0 0 1

 , t⃗T = R

 dth
−dtv
0

 (3.7)

and is

TG
T =

(
R t⃗T
0⃗T 1

)
. (3.8)

The matrix of forward kinematics is obtained by multiplying all of these matrices together

TR
T = TR

A TA
B TB

C TC
G TG

T . (3.9)

The position of the robot arm’s tip v⃗ is the origin of the OT coordinate system in the
robot’s global frame of reference

v⃗ = TR
T o⃗T . (3.10)

3.3.4 Inverse kinematics

The tip of the arm needs to be placed into position v⃗. First v⃗ is transformed from the robot
coordinate frame into the frame of reference of the base joint by multiplying it by the inverse
of the matrix from Equation 3.6. Angle αA is calculated as

v⃗A =


vAX
vAY
vAZ
1

 =
(
TR
A

)−1
v⃗, αA = arctan

(
vAY
vAX

)
. (3.11)
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The end of the arm is not in the tip, but at the base of the gripper - the origin of the OG

coordinate system (see Figure 3.1). To move from the tip there, vector v⃗A is translated to

v⃗G =


vGX
vGY
vGZ
1

 = v⃗A +


−dth · cos (αA)
−dth · sin (αA)

−dtv
1

 . (3.12)

Because joints αB and αC give the arm only two degrees of freedom, v⃗G can be expressed
in just two dimensions as

u⃗ =

(
a
b

)
=

(√(
vGX
)2

+
(
vGY
)2

vGZ

)
. (3.13)

The elbow joint (OC) lies in the intersection of two circles with radii lH and lU and centers

in the origin and u⃗. If the elbow joint is expressed as a vector
(
x y

)T
it can be obtained by

solving a set of two equations with two unknowns

x2 + y2 = l2H , (3.14a)

(x− a)2 + (y − b)2 = l2U . (3.14b)

Subtracting 3.14a from 3.14b, expanding and rearanging gives y as a linear function of x:

(x− a)2 − x2 + (y − b)2 − y2 = l2U − l2H , (3.15a)

a2 − 2xa+ b2 − 2yb− l2U + l2H = 0, (3.15b)

y = −a

b
x+

a2 + b2 − l2U + l2H
2b

= cx+ d. (3.15c)

X is obtained by substituting 3.15c into 3.14a.

x2 + (cx+ d)2 = l2H , (3.16a)

(1 + c2)x2 + 2cdx+ (d2 − l2H) = 0, (3.16b)

ex2 + fx+ g = 0, (3.16c)

x1,2 =
−f ±

√
f2 − 4eg

2eg
. (3.16d)

Equation 3.16d also serves as a test of reachability - if the term under the square root is
smaller then zero, the circles do not intersect and therefore this position is unreachable by
the robot.

By substituting 3.16d back into 3.15c two solutions are obtained. Because of the robot’s
structure, it is known the correct solution is the one with higher y value. The rest of the joint
angles are

αB = arctan
(y
x

)
, αC = arctan

(
a− x

y − b

)
. (3.17)
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3.3.5 Marlin coordinate system

For straight line movements, the target coordinates have to be sent to the robot in the original
Marlin coordinate system.

The Marlin coordinate system is the same as the OA reference frame, exept its scale is
in milimeters. Because the straight line function used is the one from the original DexArm
firmware, it does not account for the tip position. Instead it positions the connection point
between the gripper and the pen attachment.

If the target tip position is v⃗. Its position v⃗A in OA and the angle αA are obtained as in
Equation 3.11. The target position vector m⃗ is

m⃗ = 10 ·

v⃗A +


dahcos(αA)
dahsin(αA)

−dav
0


 . (3.18)

Only the first 3 elements of m⃗ are sent to the DexArm, as the fourth one is only there for
the homogenous transformations.

3.4 Workspace

For the purpose of touch screen device control, the workspace of the robot is a 180 degree
section of an annulus with the center in the origin of the OA coordinate system as shown in
Figure 3.2. The arm cannot go lower then z = 0 cm and it is not necessary to go above z =
5 cm.

The inner radius rin is the radius of a circle circumscribed to the robot base plus the
horizontal distance between the gripper base and the robot tip. If it were smaller, the gripper
would sometimes collide with the DexArm’s base. It can be calculated as

rin = dth +

√
b2w + b2d

2
= 19.2 cm. (3.19)

The outer radius rout is limited by the arm’s reach. The farthest the arm can go is when
both the robot’s humerus and ulna are horizontal (αB = 0 and αC = π

2 ), in this position
the tip is bz − dtv = 2.5 cm above the workplane. However when the tip moves up or down,
this distance decreases, because the arm has to bend. This change is the same in both
directions and the height of maximum reach is in the middle of the chosen height interval, so
the maximum reach is the same both at z = 0 cm and z = 5 cm. Because the boundary of
reachability is close to eliptical in this section, we can guarantee nowhere within the height
range will the reach be smaller than at the limits.

Therefore to obtain rout it suffices to calculate the maximum reach at z = 0 cm. In this
position, αB = 0 and the ulna is slightly bent downwards. The horizontal distance provided
by the ulna can be easily calculated using the pythagorean theorem. The maximum reach of
the arm is

rout = lH + dth +
√

l2U − (bz − dtv)2 = 40.290 cm (3.20)

19



Chapter 3. Arm control

rin

rout

Figure 3.2: Schema of the workplane with the robot arm’s reach limitations from the point of view
of the robot’s camera.

3.4.1 Important positions

There are two significant arm positions: home and docked.

Home

The home position is

h⃗ =

39.41
13.1
3.7

 cm. (3.21)

This position is approximately in the middle of the workspace, making it a good ready
position to access all the reachable devices. The arm can be easily grabbed from wherever
the operator is sitting, making it a good starting position for the teach and repeat mode.

The home position coincides with the Marlin home position. The robot has to move there
at startup to initialize the motor drivers and encoders.

Docked

The docked position is

d⃗ =

39.41
32.46
5.48

 cm. (3.22)

To detect touch screen devices the arm should obscure as little of the workspace as possible.
This position is technically outside of the robot’s workspace as defined in section 3.4, therefore
it cannot obscure any reachable devices.
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Collision detection

4.1 Theoretical background

The common methods used to detect collisions are described by Haddadin et al. (2017).
Most of them rely on external torque estimation either by measuring the power consumed by
(current passing through) the robot’s motors, or by measuring the acceleration of different
parts of the robot. However the DexArm allows only for the position measurements enabled
by our custom firmware. This constraint rules out the power based methods completely and
to convert position values into acceleration, double differentiation would have to be used.
Differentiation introduces significant noise into the measurements and should be avoided.

This is where methods based on observers come in. Specific parameters like velocity
can be simulated using a dynamic model or an observer, when the real measured value of
said parameter is different from the prediction more then expected a collision has occured
(Haddadin et al., 2017).

Faigl and Č́ıžek (2019) have implemented an algorithm based on this approach for a robotic
leg with servo motors. One of the tasks of this thesis is to try to adapt their method for the
robotic arm that uses stepper motors.

The core of this collision detection method is very simple. For each joint we have an
estimate of where it should be θest and we know where it really is θreal. ethr is the maximum
allowed error. Collision is detected when

|θest − θreal| ≤ ethr (4.1)

does not hold.
Complexities arise with acquiring the θest. The simplest way is to estimate it using

interpolation. When the robot is moving between positions θi and θi+1, θest = θi+1. The
precision of the estimate and therefore the reaction time to collisions depends on the size of
the interpolation step as the maximum allowed error has to be at least the same.

To make the model more precise or when interpolation is impossible, a dynamic model of
the robot arm is needed. Before a movement is executed, the positions of the robot’s joints
in time θ(t) are predicted using this model. After a motion command is sent to the robot a
timer is started and θest(t) = θ(t). The more accurate the model, the quicker the reaction to
a collision can be.
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The main problem with the used robotic arm is that the particular motion of the stepper
motors is governed not by our software, but by the Marlin firmware and therefore for the
software defined collision checking module it behaves like a black-box which makes estimation
of θest particularly difficult, as described further.

4.2 Implementation

This section recounts our attempts at implementing the method of Faigl and Č́ıžek (2019).
They differ from each other in the way θest is acquired. Because there are sometimes
measurement errors in the motor positions, collision is detected only after equation 4.1 is
broken two samples in a row.

4.2.1 Interpolation

The first attempted approach at obtaining θest is just the simple interpolation. The desired
movement is separated into as many sub-movements, such as there is no bigger difference
between two position then 5 encoder ticks.

This is done by representing the joint angles of the start position as θ⃗s and of the end
position as θ⃗e. The required direction δ⃗ and distance to cover l are then calculated to be

δ⃗ =
θ⃗e − θ⃗s

|θ⃗e − θ⃗s|
, l = |θ⃗e − θ⃗s|.

The number of required steps N is calculated by the integer division of l by the interpolation
step length s - in our case 5. The individual interpolation steps are then calculated as

θ⃗n = θ⃗s + n · s · δ⃗, n ∈ ⟨1, N⟩, and θ⃗N+1 = θ⃗e. (4.2)

This interpolation is calculated so that the resultant trajectory is equivalent to the
movement in fast mode, however it would work for any trajectory shape as long as the
interpolation step is small enough.

The command to move to θ⃗1 is sent to the arm and θ⃗est = θ⃗1. Then the arm’s position
θ⃗real is read, subtracted from θ⃗est and each element of the resultant vector is compared with
ethr to check if Equation 4.1 holds. If a collision is detected, the stop command is sent to
the arm and the rest of the trajectory is discarded, otherwise after 0.2ms the target position
and θ⃗est are updated to be θ⃗2. This is repeated until the desired final position is reached or a
collision is detected.

The minimum ethr for this to work would be 5 ticks, however we have to account for the
acceleration profile and timing incosistencies. That is why the smallest ethr we found to be
reliably working (with no false positives) is

ethr = 10 ticks. (4.3)

That is 0.879°.

How the angle αA follows the interpolated trajectory and the θest error are shown in
Figure 4.1.
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(b) The position prediction error.

Figure 4.1: The precision of θest when obtained through interpolation visualized for the angle αa.

4.2.2 Models

Because of the issues the DexArm has with interpolation, which are in detail described in
Sections 3.1 and 7.4, it was decided to attempt the acquisition of θest through a dynamic
model. An attempt was made to match the position curves of the individual motors which
have a shape similar to an arctangent, scaled and shifted based on the start and end positions
of the motion.

After the motion command is sent, there is a nonconstant period of time in which nothing
happens. This is caused by the timeout and queue structure of Marlin motion sequencing
described in Section 3.1. On the other side of the motion, there is no reason why monitor the
motor positions after the arm has reached it’s destination. When only slices of the data where
the arm is actually moving are used, the curves are still not linear, however their interpolation
with a straight line seems to be possible with tolerable errors.

Linear model of the first order has only one parameter - the speed of the movement.
Because the knowledge of how long the movement will take is a prerequisite to other modeling
methods and the motion speed can be calculated from a known movement time and distance
it was a logical starting point. Also linear models are easy and fast to train and then use for
online calculations.

We attempted two approaches to estimate the movement time. First by calculating the
average movement speeds for each motor and dividing the movement distances by said average
speeds. Second we used a polynomial regressor to estimate the time from the start and end
motor positions.

These models were only prepared for fast mode as a proof of concept.

4.2.2.1 Data acquisition

To train the models and then verify them before their implementation into the C++ library,
training and validation data are needed.

To gather the data the robot was left to pseudorandomly move in the workspace for 550
moves in fast mode. After each movement command was sent to the arm, the motor positions
were recorded for 3 seconds, as no movements are longer then that, and saved into a text file
with timestamps and the target arm position.
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The recorded data was analyzed using MATLAB. All recorded movements are cropped
between the start and end of the movement. The movement starts when all three motors
move at least two ticks in the target direction and is considered finished when all three
motors haven’t moved for 5 samples and are closer then 5 ticks to the target position. The
laxness in detecting the end of the movement has to be because of the steady state error of
the DexArm’s position controller. These values are also used in the final robot control library
to detect the start and end of movements.

The first 500 movements are used as training data and the last 50 as validation data.

4.2.2.2 Average speed

This method builds on the assumption that the average speed of each of the three motors can
be estimated from the 500 training moves. Then it will be known where the movement starts
and in what direction and speed is the joint moving. From this information the robot joint
position can be estimated at any point in time after the start of the movement.

Because the duration of the movement is dependent on the joint with the largest angle
difference, the time it will take is estimated from the average speed of the corresponding angle’s
motor and the speeds for the other joints are calculated so that all motors stop moving at the
same time.

The average speeds were calculated to be

α̇A = 201.802 ticks/s, α̇B = 96.849 ticks/s and α̇C = 79.534 ticks/s. (4.4)

Figure 4.2a shows how the angle αA moves, and how it would move if it followed the
trajectory predicted by the average speed method. The difference between the real trajectory
and the estimate is shown in Figure 4.2b.
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Figure 4.2: The precision of θest when obtained through the average speed method visualized for the
angle αa.

As can be seen from Figure 4.2 this method is not good enough to be worth implementing,
as the error reaches 350 ticks - 30.762°.
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4.2.2.3 Polynomial regression

The only difference between the average speed method and this one is the way in which the
movement duration is calculated. Instead of estimating the time from the largest angle change
and known speed, it is predicted using a polynomial regressor.

The regressor’s input is a vector a⃗ ∈ Z6 of 6 values, the first three representing the starting
position and the second three representing the target position. The desired output is the time
the arm will take moving between these two positions in fast mode.

From the six input values the polynomial features are calculated. The polynomial features
of degree N are all the terms in a polynomial

∑N
i=0(x1 + x2 + ... + x6)

i without their
constants. Meaning for vector v⃗ =

(
a b

)
its polynomial features of the second degree are(

1 a b a2 ab b2
)
.

The predicted movement duration is the result of the sum of these features with different
weights, which were obtained using the linear least squares method. Polynomials of degrees
1 to 9 were tried and best came out to be the polynomial of the third degree with mean error
of 0.129 s on the validation data.

There are 84 polynomial features of the 3 degree from a vector with 6 elements, if their
vector is f⃗ and the corresponding 84 weights are in the vector w⃗, the predicted time tp can
be calculated as

tp = w⃗ T f⃗ . (4.5)

The time value and known movement angle differences are used to calculate the motor
speeds which are with combination of the starting position and movement direction used to
predict joint positions.

Figure 4.3 shows the same αA movement as Figure 4.2, but the estimated linear trajectory
is based on the time estimate of the regressor.
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(b) The position prediction error.

Figure 4.3: The precision of θest when obtained through the polynomial regression method visualized
for the angle αa.

Most of the validation data had the maximum error below 100, however 4 samples reached
up to 140. To allow for these imprecisely predicted movements the chosen ethr = 150 ticks -
13.184°.
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CHAPTER 5
Touch screen device control

5.1 Phone coordinates

xR

yR
p⃗

α xP
yP

Figure 5.1: Visualization of the workspace and phone coordinate frames.

Each touch screen device has its own 2D coordinate system used for the positioning of
control actions. To execute these actions with the robot arm, a conversion between phone
and world coordinates is necessary.

As described in Section 2.4 each phone’s position can be described using two parameters:
the position of it’s closest corner to the origin p⃗ and the angle of the shorter side of the device
and the global x axis α. These parameters can be seen in Figure 5.1. It will be useful to know
the components of the position vector represent the device’s position in the XY plain q⃗ and
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its thickness t,

p⃗ =

(
q⃗
t

)
=

xp
yp
t

 . (5.1)

The origin of the phone coordinate system is at position p⃗, the x axis is along the shorter
side of the device and the y is along the longer side ( as the devices are assumed to be
rectangular). Note that the global coordinate system was chosen so that if the operator sits
on the side opposing the robot arm and places a touch screen device in the workspace the
right side up, the phone screen will be in the I. quadrant of the phone coordinate system.

If a 2 dimensional vector u⃗P represents a position in phone coordinates of a device
at position p⃗ (with components according to Equation 5.1) and rotated α radians, its 3
dimensional representation u⃗R in global robot coordinates can be obtained as

u⃗R = TR
P

(
u⃗P
1

)
, where TR

P =

cos(α) −sin(α) xp
sin(α) cos(α) yp

0 0 t

 =

(
R q⃗

0⃗T t

)
. (5.2)

The opposite transformation is done in a similar way using the notation from Equations
5.1 and 5.2

u⃗P = TP
R u⃗R, where TP

R =
(
RT −1

t RT q⃗
)
. (5.3)

It is important to know this transformation works only for those u⃗R lying in the z = t
plane. Otherwise their representation in phone coordinates does not make sense.

5.2 Control actions

The robot controls small touch screen devices using a set of motion primitives. Each device
detected in the workspace (How that is done is described in Section 2.4.) is represented as
a phone object containing information about the device’s position and orientation used to
convert between its screen coordinates and global robot coordinates. Each motion primitive
can be called as a function of said object.

For the teach and repeat functionality, action objects were created, representing the type
and parameters of the action to be performed. If an action object is passed to a device object
said action is performed on said device. How these actions are generated is described in
Chapter 6.

The logic of touch screen device control like control element detection and action sequencing
is beyond the scope of this thesis. The possibilities are discussed in Chapter 8.

5.2.1 Arm motion primitives

In this section the motion primitives available to the robot are described.

In preparation for execution of one of these actions, the robot moves to a ready position
0.6 cm above the place where the phone will be touched. After the action is performed the
arm returns back to this position. The exception is the swipe motion, where the end position
is 0.6 cm above the end position of the swipe.

All motions of the arm between the ready positions are part of the control primitive and
are performed in the straight line movement mode.
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Even though during phone interaction the arm directly touches the screen, the collision
detection capabilities are not used, rather the previous knowledge of the phone’s thickness is
utilized to place the tip of the robot arm at an appropriate height.

Click

A click is the simplest action, used for example to open an application. From the ready
position the tip of the arm moves down, touches the screen, waits for 25ms and lifts back up.

When the tip is supposed to touch the screen, it does not go down to the measured phone
thickness, but 2mm above. That is because the ball at the tip of the arm is compressible and
the arm detects the collision later then the device detects a touch. This measure allows us to
more precisely time the touch durations.

Long click

A long click is in principle the same as a click the only difference is in the time the tip is
touching the screen - for the long click it is 750ms.

This control action can be used for instance to open element options.

Double click

A double click is two clicks 200ms apart. The position the arm moves to after the first click
is not the full 6mm above the screen but only 3mm, this is to limit the motion delay from
the acceleration profile and allow the arm to click faster.

Its use includes but is not limited to selecting text.

Swipe

The swipe primitive is mostly used for scrolling and it is different from a click. From the
ready position above the start position, the arm moves down to touch the screen then drags
on the screen to the end position and lifts back up.

29



Chapter 5. Touch screen device control

30



CHAPTER 6
Teach and repeat

The teach and repeat functionality allows the robot operator to grab the arm and guide it
through a series of actions on a touch screen device. The program then is able to identify
which actions were performed and replicate them on a number of other devices.

6.1 Recording movement

When the teach function is activated, the motor torque is turned off so that the operator
can freely move the arm. The current program time is recorded as a start time to calculate
timestamps for each position.

Then a separate thread is launched to record how the robot’s tip position changes over
time. The sampling loop records a sample on average every 2.2ms.

6.2 Action recognition

After the recording stops, the recorded trajectory is parsed into the individual actions.

The program iterates over the trajectory points. It first determines, whether the point
is above a touch screen device. That is done by disregarding the point’s height and then
converting it to the phone coordinates of every known phone in the workspace. If for one of
the devices both x and y coordinates are positive and smaller then the phone’s width and
height, the point is above said device. Because the devices cannot overlap, it is certain the
point can be only above one device at a time. If the point is not above a phone, it is discarded
and the next point is analyzed.

If the point is above a touch screen device, it is checked whether the tip was touching the
screen or not. The thickness t of the device is known, but the compressible ball at the tip
will touch the screen before the rigid structure of the arm, triggering a touch in the device
but not a collision. To account for that the tip is said to have touched the phone, if the z
coordinate of the position is lower than t+ 3mm.

These two steps separate the trajectory into a sequence of touches. For each touch not
only are the start and end positions known, but also the duration. This information is enough
to determine what kind of action was performed.
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If the touch ended less then 1 cm from where it started, it is some variant of a click at the
start position. If this touch is longer then 0.5 s, it is a long click. If it is shorter then that, it
is a click. Two clicks less then 0.5 s apart are a double click.

If the touch ends more then 1 cm away from the start position and lasts longer then 0.2 s,
it is a swipe. The time constraint on swipe had to be used because sometimes there is a motor
position measurement error and one point registers as touching the device when it is not.
This joint angle error translates into error in at least 2 of the real world axes, classifiing it as
a touch which started and ended more then 1 cm apart. (The next measurement is correct
again making it seem like a fast move.) But because the error lasts only one sample, the time
constraint removes these ”ghost swipes”.

An example of the teaching process with recognition of all of the phone interaction
primitives is shown in Figure 6.1.
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Figure 6.1: Visualization of the teach functionality. The highlighted sections correspond to the
following actions: 1. swipe, 2. and 3. click, 4. double click, and 5. long click.

6.3 Repetition

After the trajectory is parsed, the program knows what actions at what positions and in what
order to perform. To replay the taught sequence on a device, the parsed Trajectory object
is passed to the performTrajectory function of the phone object we want to perform the
sequence on.
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CHAPTER 7
Results

This thesis serves mostly as a proof of concept for an industrial robot and it is hard to
make quantitative assesments before it was deployed. Therefore this section will attempt to
qualitatively discuss the successes and deficiencies of our solutions and suggest what might
be improved if some of these deficiencies prove to be problematic during long term operation.

7.1 Camera calibration

The quality of camera calibration is heavily dependent on how consistent we are in locating
the calibration marker. To test that, we let the robot calculate the marker’s position and
orientation in the camera coordinates 20 times. We repeated the experiment once with the
lights turned on (normal light conditions) and once with the lights turned off (low light
conditions).

It was assumed the image plane is parallel to the workplane, so only the rotation of the
marker about it’s z axis (the yaw) is relevant. Results are summarized in Table 7.1.

Table 7.1: Measured marker position and orientation.

Value Normal light Low light

x 0.7927 ± 0.0044 cm 0.7908 ± 0.0025 cm
y -27.4095 ± 0.0420 cm -27.4468 ± 0.0265 cm
z 51.1869 ± 0.1170 cm 51.3064 ± 0.0738 cm
yaw 0.2663 ± 0.0985° 0.1769 ± 0.0606°

The xyz positions have standard deviations on the scale of tenths of milimeters and do
not differ significantly under different light conditions, therefore we can safely assume only
very minor errors will be caused by this.

The yaw of the marker differs by 0.0894° depending on the level of light. This small
angle difference would manifest as an error of 1.248mm in y position for an object near the
x = 80 cm line.

That is not necessarily negligable and may need to be addressed. As discussed in Section
7.2, the marker has no effect on the phone detection algorithm, therefore a bigger marker may
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be used for easier positioning. Also the marker’s color can be adjusted to be more distinct in
the dark.

7.2 Touch screen device detection

To test the touch screen device detection funcitonality, several touch screen devices and non-
device objects were gathered. Four of the devices and four other objects were placed onto the
worksurface and the detection algorithm was run. Then the positions and orientations of the
tested devices/objects were changed and the detection was run once again. This was repeated
10 times and then 10 times again for the rest of the test material. The phones had different
images on their screens, however these images were not changed in between detections. An
example of the test setup can be seen in Figure 7.1. The tests were performed under normal
light conditions similar to Section 7.1 and the results can be seen in Table 7.2.

Figure 7.1: The touch screen device detection test setup. The non-phone objects from left to right
are: the dropper, the Kindle, the Apple Watch, the access chip, the passport, and the computer drive.

Table 7.2: Results of the device detection test.

Device True positive Object False positive

iPhone 12 Pro 100 % Box of screwdrivers 0 %
iPhone 13 Mini 100 % Dropper 10 %
iPhone SE 3 100 % Kindle 0 %
Motorola Edge 20 100 % Apple Watch 0 %
Samsung Galaxy A32 100 % Passport 0 %
Samsung Galaxy M21 100 % Access chip 0 %
Xiaomi Mi A2 100 % Computer drive 0 %
Xiaomi Mi A3 100 % Credit card 0 %

Even though our method is robust and reliable, it still has some limitations, examples of
which are shown in Figure 7.2.
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If a device has a color too simmilar to the white of the worksurface, some pixels do not
cross the change threshold and the contour area is too small to pass as a phone, even though
it’s edges were detected.

If two phones are too close together, their contours merge and neither is detected.

In dimmer lighting some phones are detected twice - once just their screen and once their
outline.

Some shadows are large enough of a change to be detected and therefore sometimes the
phones seem to be larger then they truly are. Even though this could be easily fixed by
changing the threshold value, that would put even more restrictions on the color of the device
and the contents of its screen as discussed above.

And if one finds an object with similar enough shape to a phone, it is detected as a touch
screen device.

(a) The workspace photo. (b) The corresponding mask.

Figure 7.2: An example of erroneous detections. Two phones are too close together and their contours
merged. Another phone is upside down yet still detected. The same applies to the yellow multimeter,
which should be ignored. And the white iPod touch is too similar to the background.

7.3 Arm control

The precision of the arm was measured using the camera and an Aruco marker, which was
attached to the top of the arm’s gripper. The arm was commanded to move between two
positions (x⃗1 =

(
20 20 6

)
, x⃗2 =

(
45 20 6

)
) 20 times. When the arm reached one of

those positions, the marker’s location in the camera coordinate frame was recored, giving us
40 samples.

Because only the repeatability is important, it does not matter that the positions are in
camera coordinates. The standard deviations are written in Table 7.3.

Table 7.3: Arm positioning repeatability.

x y z
Standard deviation ± 0.0508 cm ± 0.0278 cm ± 0.0727 cm

Because the results are not significantly larger then the standard deviations of marker
detection from Table 7.1, we can say the arm has a repeatability on the scale of tenths of a
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milimeter, which is fully sufficient to interract with the control elements of the touch screen
devices.

7.4 Collision detection

Collision detection is very hard to quantitatively measure. To at least qualitatively test how
well our methods perform, we let the arm start moving and then grabbed the gripper to
simulate an obstacle. Examples can be seen in Figures 7.3 and 7.4.

The interpolation method works well for collision detection. As can be seen in Figure 7.3
the robot is stopped 0.17 s after the collision has occured and in the two samples necessary to
register the collision overshoots the threshold only by 3 ticks.

Unfortunately in this configuration the arm moves only 25 ticks/second, which is too slow
to be considered usable. As described in Section 3.2, it is because the motors need to speed up
and slow down for each interpolation step and therefore cannot reach their maximum speed.

To fix this we would have to completely rewrite the DexArm’s firmware. Either to allow
for custom interpolation without stopping at each point or to utilize this method of collision
detection by itself without the help of our external library. Even though this would probably
work, it goes against the idea of creating a collaborative robot only being able to continuously
read its position, because the big expensive industrial robots like Kuka will not let their users
change the firmware.
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(b) The position prediction error.

Figure 7.3: Collision detection using the interpolation method. The last three samples are
highlighted.

As stated previously, the average speed method did not work. The motor speeds are
not constant between movements and therefore it was impossible to accurately predict the
movement duration just by averaging the speeds of previous motions.

The idea behind the polynomial regressor approach was based on the observation that the
duration of the motion (and therefore it speed) depends on the relative positions of the start
and end of the movement. With ethr = 150 the arm stopped 0.23 s after the collision started
and overshot 4 ticks (see Figure 7.4).

The stop time is not much larger when compared to the interpolation method, but the other
important factor is how much did the arm attempt to move in that time. For interpolation it
was 11 ticks - 0.967°, for the polynomial regression method it was 131 ticks - 11.514°. If the
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arm was extended to the full 40 cm this would mean the difference between trying to move
0.675 cm and 8.038 cm.

Not only cannot the arm stop quickly, the threshold is not big enough to eliminate false
positives.
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Figure 7.4: Collision detection using the polynomial regression method. The scale is too large to
highlight the last three samples.

We have succesfully verified the software enabled collision detection behavior. However,
as mentioned above, the movement speed of the robot when the collision detection is enabled
is too slow for a meaningfull deployment.

As the DexArm is small and lightweight, the collaborativity is not safety critical for the
deplyoment and therefore the only critical point remains in the determination of the touch-
screen device height which was remedied by adding the option to manually enter the thickness
value.

Our attempts at modeling the position curves suggest straight line estimations are not
the way to go. The next possible approach would be to attempt to fit the curves using an
arctangent. One could also reverse engineer the firmware to obtain the function calculating
these curves, but that would again defeat the purpose of smart software collision detection.

7.5 Touch screen device control

Because different devices from different manufacturers react slightly differently, it would be
very complicated and timeconsuming to quantitatively test the precision of our control motion
primitives. Therefore we performed only qualitative testing with the same devices we tested
phone detection on. (See Table 7.2.) We told the robot to perform each of the primitives on
every one of the devices and checked whether the actions were performed successfully.

The currently discovered pitfalls and limitations are described below.

What is intended to be a click gets sometimes registered as a long click. That may be
because the current tip of the arm is a pen with a compressible ball at the end. When the
arm starts moving downward the ball hits the screen and starts to get compressed. Different
devices are differently sensitive, some are triggered by the slightest touch, but others require
a more significant press. To trigger a touch even with the less sensitive devices, the arm has
to go low and the sensitive phones are registering a longer touch then intended.
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Another issue of the touch screen device control stems from a modern trend in mobile
phone design - cameras sticking out of the back of the device. These cause uneaven thickness
and rocking when an unsupported part of the screen is touched. Some phone cases solve this
issue by being thick enough to make the camera lie flat with the back of the case. The simplest
solution to this problem would be to create thick trays with a cutout for the camera.

7.6 Teach and repeat

The teach part of the teach and repeat mode works reliably, as long as the operator makes the
desired primitives stand out. Meaning if, for example, a click is wanted, one must decisively
bring the robot’s tip down and up again quickly and then wait for half a second to register a
click and not a double click. It is important to note that a double click will be recorded even
if the second click is at a completely different location on the screen from the first one. This
could be solved by adding a more sofisticated and robust parser function.

The repeat part was found to be working perfectly by itself. It’s only issues stem from
the imperfections of the motion primitives as discussed in Section 7.5.
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Conclusion and possible future work

A robot capable of controlling small touch screen devices was created. It is capable of detecting
the mobile phones in an image of it’s workspace and then use camera calibration matrices to
accurately determine their real world locations with respect to the robot arm. The robot can
use it’s arm to click, long click, double click and swipe the screens of the phones. The same
action at the same place can be performed on several different devices, as the robot is capable
of remapping the action positions between them. When a sequence of actions is performed by
the robot’s operator on a device using the arm, the code is capable of identifying said actions
and reproducing them on the other devices.

The only feature which was not implemented completely successfully is the collaborativity.
The successes we had were unusable because either the movement was too slow or the detection
method too unreliable. However it was known from the beginning this is not going to be easy.
We learned what works, what doesn’t and why, helping us improve our future attempts.

This thesis focused on the inner workings of the robot, these will be connected to a frontend
written by Ing. Č́ıžek and Ing.Karel Frajták. The whole device will be shown to our partners
at Škoda Auto.

Continuation of this work depends mainly on the feedback we receive from the users.
There may be need to address some of the imperfections described in the results section. We
will definitely continue our attempts at adding collaborativity to the DexArm.

Currently the robot can only interact with what the operator tells it to. The logical next
steps in the development of this project are to add ways to detect what is happening on
the device’s screen as a way of understanding the semantics of the phone operation. For the
purpose of device setup and configuration, it would be useful to detect when the contents of
the screen change. Then there are of course the different elements with which the robot can
interact, like buttons, textfields and their contents, which can be identified.

The work on this has already been started when in collaboration with Josef Zelinka we
trained a convolutional network capable of detecting the individual keys of a virtual keyboard.
However this functionality is not yet integrated into the machine.

Even though the current state of the robot can be considered a success, it is still a proof
of concept with its known and unknown flaws. What improvements and fixes will be done is
heavily dependent on how the robot will behave when deployed.
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