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Abstract

The human brain is a highly complex
structure, and some of its functions are
still a mystery. The biggest problem with
studying its function is gaining the data
because non-invasive methods are not suf-
ficiently strong to record neuronal activity
from depth brain structures like basal gan-
glia. However, in some situation where
invasive microelectrode recordings can be
used to gain valuable information about
neuronal activity inside the brain, for ex-
ample, deep brain stimulation.

In this thesis, neuronal activity from
the subthalamic nucleus is analyzed. The
recordings were made during electrode
placement for deep brain stimulation.
During the surgery, patients fulfill the
emotion task to see if there is a specific
neuronal activity for different emotions -
happiness, fear, and neutral. The meth-
ods for processing the recordings and their
statistical evaluation were studied and im-
plemented as software tools.

The results of the analysis of given
recordings show that although the subtha-
lamic nucleus is mostly motoric centrum,
some neurons had significantly different
reactions based on emotion.

Keywords: Parkinson’s disease, deep
brain stimulation, microelectrode
recordings, emotion task, signal
processing, subthalamic nucleus (STN),
t-test, bootstrap, chi-square test, Fisher’s
Exact test

Supervisor: Mgr. Tomés Sieger Ph.D.

Abstrakt

Lidsky mozek je velmi komplexni struk-
tura a nékteré jeho funkce jsou pro nas
i nadale zahadou. Nejvétsi problém pii
jeho studiu je ziskavani dat, protoze ne-
invazivni metody nejsou dostatecné silné,
aby zaznamenaly aktivitu neuront z hlu-
bokych mozkovych struktur jako jsou na-
priklad bazalni ganglia. Nicméné jsou si-
tuace, kdy takovd data muzeme ziskat
pomoci invazivnich mikroelektrod, napri-
klad hluboka mozkova stimulace.

V této praci je analyzovidna neuro-
nova aktivita v subthalamickém jadre. Na-
hravky byly ziskany pfi umistovani elek-
trod pri hluboké mozkové stimulaci. Bé-
hem operace, pacienti provadéli emocni
ulohu, abychom mohli posoudit, jestli je
néjaka specifickd odpovéd na rtzné druhy
emoci — radost, strach, neutralita. Prostu-
dované metody pro vyhodnocovani byly
implementovany jako softwarové nastroje.

Vysledky analyzy dostupnych dat uka-
zuji ze ackoliv je subthalamické jadro pri-
marné motorické centrum, nékteré neu-
rony vykazovaly vyznamné rozdilné re-
akce na zédkladé emoci.

Klicova slova: Parkinsonova choroba,
hlubok& mozkova stimulace, emoéni
uloha, mikroelektrodové zaznamy,
zpracovani signalil, subthalamické jadro,
t-test, bootstrap, chi kvadrat test dobré
shody, Fishertv exaktni test

Pteklad nazvu: Analyza elfz. zdznamu
z hluboké mozkové stimulace: emocni
uloha
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Chapter 1

Introduction

Deep brain stimulation is a way to treat, for example, Parkinson’s disease
when the medicaments do not help. But it also has the potential to treat
other psychiatric disorders where we know which changes are made in the
brain, but we do not understand why so we can cure just symptoms. To make
this possible, we have to know what exactly is happening in the brain when
we insert electrodes there. Because the brain is a complicated structure and
we still do not understand the functions of every connection, before we place
some foreign body into it, we have to know all possible advantages and, most
importantly, disadvantages.

It is hard to get signals from humans’ brains for research because there is no
non-invasive method to record them from deep brain structures. However, we
gain many rare electrophysiologist signals we can process during the insertion
of electrodes for deep brain stimulation. From these recordings, we can learn
a lot about the function of subcortical brain structures. Also, patients do
some easy tasks during the surgery to gain as much information as possible.
One example is an emotional task where different images are shown to the
patients while the neuronal activity is recorded.

The motivation for examining recordings from the emotional task is that
some patients who undergo deep brain stimulation have a change in emotions.
However, electrodes are placed in the motoric structure during the treatment
of Parkinson’s disease. For better treatment and understanding of our brain,
it is essential to find out if the stimulation of the motoric centrum can also
influence the patients’ emotions. In this work, we will examine if there are
different reactions to different emotions - happiness, neutral, and fear.



1. Introduction

The objectives of this thesis are the following:

1. To explore

® The treatment of Parkinson’s disease (PD) using deep brain stimu-
lation (DBS)

® The neurophysiological signals recording during DBS implantation -
microelectrode recordings (MER) and local field potentials (LFP)

® The emotion task

2. Visualize signals in the time and frequency domain, and to get the

activity of the distant neurons, remove the activity of nearby neurons in
MER signals.

3. Decide if specific traces of activity based on the type of shown image -
neutral, happy, fearful can be found in the signals.

4. Summarize findings and decide if there is dependence on the type of
neuronal activity, recording location, or hemisphere.

5. Implementation of the methods used in steps 2-4 in the form of well-
documented and commented Matlab functions.



Chapter 2

Background

. 2.1 Neurons and neurotransmiters

The nervous tissue consists of two main types of cells - neurons and glial cells.
More types of glial cells exist, and we divide them according to their function.
Some of them support or protect the neurons, and others eliminate damaged
neurons. Glial cells are more numerous than neurons in the nerve tissue and
also, they are capable of cell division[I].

Neurons consist of three parts (Figure 2.1)):

1. Soma = cell body, which is responsible for receiving, sending, and creating
the information.

2. Axon = long filament. Each cell has just one axon, which transmits the
information efferent (from the cell body), for example, from the soma to
the muscle. It could be longer, even more than 1 meter.

3. Dendrite = short filament, which transmits the information afferent (to
the cell body), for example, from receptors.

Synapses transmit information between neurons or between neurons and
non-nervous cells. Synapses are places where the neurons are in touch. The
synapses could be chemical (usually) or electrical. The means of the chemical

3



2. Background

[

Figure 2.1: Structure of nerve cell (neuron). 1 - Soma, 2 - Axon, 3 - Dendrite

synapses are neurotransmitters, also called mediators. Neurotransmitters,
chemical substances created in neurons, are released on the neuron mem-
brane, touching the axon. The mediator breaks the electrical and chemical
equilibrium of the other neuron, which causes the transmission of the signal.
The chemical composition of neurotransmitters determines if the signal is ex-
citatory or inhibitory. The primary excitation neurotransmitter is glutamate.
On the other hand, the primary inhibition neurotransmitter is GABA ( =
gamma-aminobutyric acid). [2]

The principle of the neuronal connection is simple, but when we look at
the whole neuronal network, it is very complicated and has great plasticity.
Because one neuron can be connected through synapses with other 20 - 30
thousand neurons, and the estimated number of neurons is 25 billion, the
amount of all synapses in the neuronal network is really high.

B 22 Basal ganglia

Basal ganglia are subcortical structures made of grey matter - somas of
neurons. They are placed deep in the telencephalon. They are composed of
several independent structures of different origins (Figure [2.2). One of the
biggest parts is the caudate nucleus. However, there are also smaller but
not less important nuclei like the striatum, putamen, nucleus subthalamic,
substantia nigra (pars compacta and pars reticularis), or amygdala. [2]

4



2.2. Basal ganglia

The function of the basal ganglia is not exactly clear, but we know that
they are involved in motoric circuits. So far, we assume their function is
something like a motoric filter that lets just some motoric patterns proposed
by the cortex to the thalamus. When the patterns get to the thalamus, we
will do that movement [I]. Whether the basal ganglia allow the movement
depends on the amount of dopamine. An abundance of dopamine causes
Huntington’s disease.

On the other hand, if there is a lack of dopamine Parkinson’s disease occurs.
[3] Because of their involvement in motoric circuits, basal ganglia are the
primary object for deep brain stimulation for Parkinson’s disease treatment.
The electrodes are mostly placed near or inside the subthalamic nucleus
because it is an important output modulator of basal ganglia. [4]

4]

Figure 2.2: Basal ganglia. AL = ansa lenticularis; CP = cerebral peduncle;
FF = Fields of Forel; GPe = globus pallidus externus; GPi = globus pallidus
internus; H1 = Field of Forel (thalamic fasciculus); IC = internal capsule; LF
=lenticular fasciculus (H2); PPN = pedunculopontine nucleus; Put = putamen;
SN = substantia nigra; STN = subthalamic nucleus; Thal= thalamus; ZI = zona
incerta.



2. Background

. 2.3 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative movement disorder. The first
symptoms usually occur during the fifth or sixth decade of life and worsen
over time. Unfortunately, we do not know what causes it. It is probably
the results of genetic mutations and some environmental factors that are
currently unknown.

Patients with PD have dopaminergic neuron loss in substantia nigra, part
of the basal ganglia - a structure made of grey matter in the telencephalon.
This loss of neurons causes a decrease in dopamine. Dopamine is a chemical
substance responsible for transmitting signals from substantia nigra to create
smooth conscious movements. If there is not enough dopamine, basal ganglia
refuse to do the movement (a part of the basal ganglia called the striatum is
responsible for this decision)[3]. So the significant symptoms are motoric.

Four main symptoms are:

® Tremor - is a rhythmic movement of the muscles with the frequency of 3
to 6 per second. Usually, hands, foot, or jaw are affected. It is obvious
mainly when the hands are at rest. Tremor disappears during sleep or
voluntary movement.

B Rigidity - the muscles are constantly tensed and contracted.

® Bradykinesia - spontaneous and automatic movements are slowing down,
making everyday tasks like dressing or washing dishes more difficult and
slower.

® The postural inability - it causes problems with balance.

As the disease worsens, other symptoms like difficulty in swallowing and
chewing, speech changes, urinary problems, constipation, and more, occur.
But Parkinson’s disease also has many non-motoric symptoms, for example,
emotional changes or depression. [5].



2.4. Treatment of Parkinson’s disease

. 2.4 Treatment of Parkinson’s disease

Because we do not know the precise cause of the PD, we are able to treat
just symptoms. Nowadays, we have two approaches to treat its symptoms.

The first is using levodopa medication. Because levodopa is a precursor of
dopamine, this approach alleviates symptoms caused by the loss of dopamine
in substantia nigra, especially the very troublesome bradykinesia. Despite
this fact, as the disease progresses, the beneficial effect of levodopa decreases.
Another problem with levodopa medication is that most dopamine is crated
from levodopa in other parts of the brain, where there is enough dopamine.
An abundance of dopamine in other brain structures can cause several side
effects, such as loss of appetite, sleep disturbances, changes in mood, and
more [3].

The second approach is surgery. In the past, ablative techniques were used.
However, nowadays, it is replaced by deep brain stimulation (DBS). Because
it is an invasive method and we still do not have all possible side effects, this
approach is only used when the medicaments do not help [6]

B 25 Deep brain stimulation

Deep brain stimulation is not a new technique; in fact, it has been known for
many years. But the first electrical stimulation used to alleviate tremors was
made in the 1950s by Hessler and colleagues [7].

Deep brain stimulation is a surgical treatment belonging to neuromodula-
tion treatments that use electrical stimulation to modulate brain function.
The effects of DBS stimulation are immediate, reversible, and do not cause
permanent tissue lesions such as ablative techniques.

It is commonly used for the treatment of movement disorders such as
Parkinson’s disease or dystonia. However, it can also be used to treat other
neurological diseases such as pain syndromes or epilepsy. Furthermore, it has
the potential to treat psychiatric disorders like obsessive-compulsive disorder,
depression, addiction, and lots of others. Nevertheless, the treatment of
psychiatric disorders is still in the study phase [6].

7



2. Background

Deep brain stimulation is a fully implantable system (Figure. It consists
of one or more electrodes placed inside the brain, which deliver electrical
impulses to the focal brain regions [6]. The exact location depends on the
treated disease. For example, for treating Parkinson’s disease, the electrodes
are placed in the STN (subthalamic nucleus), or another possible target is
globus palidus internus [7].

The second part of the system is the neurostimulator. It is a power
source whose primary function is to generate pulses. That is why the device
is also called an internal pulse generator (IPG). The construction of the
neurostimulator is similar to the cardiac pacemaker, and as well as the
pacemaker is placed under the collar bone. These two parts - electrodes and
neurostimulator are connected by an extension lead. [6]

Extension
[CEL ]

= EMBO

Figure 2.3: DBS system used for clinical applications

The future goals for improvements of the device are to construct it without
extension cables and improve properties of IPG such as battery life or wi-fi
connection for better control. However, the improvement can bring some
dangers which have to be solved. For example, when the neurostimulator has
internet or Bluetooth connection, it will help patients manage the treatment
according to their individual needs. Because of it, the therapy will be more
personalized and thus more effective. On the other hand, it raises the risk of

8



2.5. Deep brain stimulation

brain hacking and maybe a possibility of controlling somebody’s brain, so it
has to be really secure[§].

B 25.1 Neurosurgery

For deep brain stimulation, we need to place electrodes inside the brain.
Placing the electrode is a difficult task because the target is inside the brain,
and along the way, there should not be any other part of the brain tissue
damaged.

Firstly, the patients get a local anesthetic to numb the skin on the top
of the skull because two burr holes are made there. General anesthesia is
not needed because there are no pain receptors in the brain. Furthermore,
patients must report any sensory changes during the surgery, and after the
electrode is successfully placed, the effect of the stimulation has to be tested.

The most challenging problems for this neurosurgery are location and
navigation. STN is a small structure (20 — 30mm?), and its location can
slightly differ from patient to patient. The target’s location is set based
on scanning the patient’s brain. Magnetic resonance imaging (MRI) and
computed tomography (CT) are used to do this scanning [9].

Figure 2.4: Schematic image of stereotactic frame used for navigation

The navigation is solved by a stereotactic frame (Figure 2.4). The stereo-
tactic frame is a semicircular arc attached over the patient’s head. Moreover,
a movable holder for auxiliary microelectrodes can be found on the arc. Its
primary purpose is to generate a coordinating system in the brain which
allows neurosurgeons to navigate there. [6]

9



2. Background

B 2.5.2 Effects on the brain

Deep brain stimulation has an electrical impact on individual neurons and
neuronal networks. Overall it causes enhancement of the activity in the
basal ganglia and thus equalizes the dopamine loss. But DBS does not have
just electric effects. Studies revealed that it also influences the chemical
environment of neurons. Immediate neurochemical effects are changes in the
firing patterns of the nerve circuits. Nevertheless, these changes probably
affect neurotransmitters, so DBS causes long-term effects. [6]

Electrodes themselves can cause changes in the brain’s chemical com-
position as well. Especially the resistance of the tissue can change. The
resistance primarily changes because of tissue edema, which emerges around
the electrodes after their implantation. But that is not a problem because it
disappears by itself four to six weeks after the surgery.

B 2.5.3 Emotions and Deep brain stimulation

Deep brain stimulation of the subthalamic nucleus, like any other treatment,
does not have just positive effects which suppress the symptoms of motoric
disease (like Parkinson’s disease). Side nonmotor effects also occur, like
impulsivity, irritability, mania, depression, or body weight gain. The reason
why this is happening is still unknown. [11]

According to the studies made in primates, we can divide STN into three
parts: sensorimotor, associative, and limbic territories. Other anatomical
studies in monkeys and rodents located the limbic area in the ventral part of
STN. Also, studies in humans showed that neuronal activity in STN changed
during motor and emotional information processing. These researches lead
us to the theory that the ventral part of STN is connected to a limbic brain
network, and thus it is involved in emotion processing [12].

One of the hypotheses of its function is that STN generates emotional
patterns and coordinates the activity of the cortical and subcortical structures.
Because the research findings showed that STN activity does not depend on
the type of emotion or even valence (positive or negative), it should have a
more general function. [13]
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2.6. Signals from neurons

Several studies already exist about the impact of STN on emotional pro-
cessing. Nevertheless, they do not discover the exact function of STN. That
is probably because there are a lot of other influences. For example, the
medicaments that PD patients take are omitted just one night before the
surgery, so we cannot fully neglect their effect. Furthermore, the location
of the electrodes could change a bit, and even a little difference can cause a
significantly different impact. Last but not least reason is that all information
we know about these processes is gained from DBS. People who undergo it
are not neurologically healthy, so we have to consider that our data could be
changed because of it. [13]

B 26 Signals from neurons

Electric currents from all cell processes, which are simultaneously active in the
range of the whole brain, are overlapped and generate the electrical potential
[14]. Potential V, is a scalar quantity, and we have to determine it relative
to a reference potential. The electric field arises because of the difference
in electrical potential between two brain areas. This electric field can be
measured using several approaches.

The first of them is electroencephalography (EEG). With the help of EEG,
we can measure potential V. from the surface of the head. We have to place
the non-invasive electrodes on the head surface to record the data. The
electrodes are small with a diameter of 4 to 10 millimeters and are usually
made from silver [15]. We have to ensure that the electrodes do not move. For
this reason, special electrode hats (Figure [2.5)) are created, so the electrodes
stay in the correct position. The two most used electrode connection systems
are 10-20 and 10-10. The number means the percentage of the distance
between electrodes. Locations of the electrodes are in figures |2.6/12.7

From EEG, we can find out a lot of information that can be used in a wide
range of examinations. For example, according to signals from EEG, we can
determine epilepsy, some types of brain damage, or for monitoring of sleep
processes [15].

EEG is one of the oldest methods we have for investigating the brain’s
electrical activity. Hans Berger made the first measurement of EEG on
humans in 1929. Nevertheless, electrical brain activity was discovered earlier
in animals. The first person who described it was Richard Caton in 1875 [17].
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2. Background

Figure 2.5: A man undergoing EEG with the electrode hat
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Figure 2.6: Position of the electrode system 10-20. A — auricular (ear lobe)
C — central region P — parietal (parietal lobe) F — frontal (frontal lobe), Fp —
frontopolar (frontal lobe), O — occipient (occipital lobe), T — temporal region.
Numerical indexes are used for indication of the position lateral, even numbers
are in the right and odd numbers are in the left.

Figure 2.7: Locations of electrodes 10-20. A — frontal view, B - side view.
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2.6. Signals from neurons

The next approach is electrocorticogram (ECoG). Using ECoG, we can
measure potential V. directly from the surface of the cerebral cortex. For
that, we use electrodes mostly made from platinum-iridium. Because we
record signals subdural they are not noisy like when using EEG. That is the
reason why the popularity of ECoG is rising recently. Nevertheless, the price
for this is that ECoG is an invasive method [14].

Another approach is local field potential (LFP). This method is also known
as macro-EEG. While in the previous two approaches, we record neuronal
activity from the brain’s surface, in this case, we record in the deeper parts
of the brain. LFP records the activity of the neuronal populations (group of
neurons). Those signals are most valuable for studying cortical electrogenesis
[14].

A similar approach as LFP is microelectrode recording. It is also an
invasive method because the recording electrodes are placed deep in the brain.
But with this approach, we gain extracellular electric activity of individual
neurons. [1§]

Other recordings methods for extracellular events are megnetoencephalogy
and voltage-sensitive dye imaging. Magnetoencephalogy (MEG) measures
the magnetic field of neurons outside of the brain. Superconducting quantum
interference devices (SQUIDs) that are used for measuring are very accurate.
The most significant advantage is that this method is non-invasive. Unlike
the EEG, MEG is not disturbed by the conductivity of the extracellular
space. The voltage-sensitive dye imaging (VSDI) method enables us to detect
changes in the voltage of neurons by a camera. [14]

Another display method is fMRI (Figure 2.8), an abbreviation for functional
magnetic resonance imaging. Functional MRI, as well as EEG and MEG, is
a non-invasive method that allows us to display which part of the brain is
active during some tasks. The task could be, for example, to move the index
finger. It is based on the fact that brain activity in a specific area causes a
transient increase in the blood supply. As a result, the BOLD (Blood Oxygen
Level Dependent) signal arises. This means that oxygen increases in the brain
area responsible for the performed action. Because oxygen is a paramagnetic
substance, we can use magnetic resonance for imaging. Nevertheless, the
response in the form of increased blood flow is not immediate.

Moreover, that is not the only disadvantage of this method. Another
problem is that we have to average images in time, so the time resolution is
bad. On the other hand, we have good space distinction, and also, we can use
this method in vivo because it is non-invasive. So that is the most significant
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Figure 2.8: fMRI used to study the regions of the brain responsible for bilateral
finger tapping

advantage over micro-EEG. [19]

B 2.7 Extracellular field

The extracellular field is not created by one type of cell. In fact, all excitable
membranes in the brain contribute to it. The excitable membranes in the
brain are dendrites, axons, or axon terminals. The resulting extracellular
field arises as a superposition of all ionic processes.

Extracellular currents have several sources. The primary source is the
synaptic activity of the neurons. The influx of cations (Na®™ and Ca?")
from the extracellular into the intracellular area occurs during synaptic
transmission. These changes, mediated by neurotransmitters, give rise to the
extracellular current.

Another important source of the extracellular current are fast action po-
tentials. The fast action potentials is detected as spike activity, and it is
generated by Na ions. Although it is the source of the strongest current, it
is hard to detect because it has a short duration, even less than 2ms.

Calcium spikes are the next source of the extracellular current. They are
also non-synaptic and are generated by Ca?*. Unlike the fast action potential,
the calcium spike has a long duration.
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2.7. Extracellular field

Nevertheless, other sources of the extracellular currents exist. For example,
intrinsic currents and resonances, spikes after polarization and down states,
gap junctions, and neuron-glia interaction or ephaptic effects [14].
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Chapter 3

Data

For this experiment, were used 105 records from 22 patients. The data were
collected from surgeries for deep brain stimulations done between the years
2016 to 2018. For each patient, several recordings were done in different

depths of the electrodes in the brain (Figure . Each of them was recorded
with a sampling frequency of 25 kHz.
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Figure 3.1: Schematic image of microelectrodes for recording (MER). MER
points labeled depths where was the signal recording
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We aimed to reveal if DBS has some impact on emotions and if that impact
depends on the type of emotions. During recordings, images of human faces
were shown to the patients during the surgery for 500, 550, or 600 ms. Because
of that, we selected the 550 ms after the picture occurred as significant parts
of the signal for further processing. So the brain has enough time to process
it, but it is not expected that the reaction persists after the image is gone.
These pictures were chosen to evoke some emotional reactions in patients.
The reaction could be pleasant, neutral, or unpleasant to allow us to see the
impact of different emotions in the signals. The examples of used images are
shown in the figure 3.2

Figure 3.2: Examples of the shown pictures. From the left it is happy, fearful
and neutral images.

During each of the recordings, 50 happy, 50 fearful, and 50 neutral images
were shown to each patient. So enough data was collected for statistical
testing.

From the recorded data, we process signals from microelectrodes recordings
denoted as LFPx and MERx, where x is an index of the channels, from one to
five (there are five recording electrodes in the brain). So we have ten different
channels from each patient’s recording for processing. According to their
position, the electrodes were labeled as medial, anterior, central, posterior,
and lateral.

We were only interested in electrodes that were active in STN (Figure 3.3).
If the electrode is active, it records the activity of STN. And the neurosurgeons
determined if the electrodes were active in STN or not.

Recordings denoted as LFPx are broadband signals of local field potentials.
The method of local field potentials is described in the section Recordings
denoted as MERx are broadband signals from single-unit recordings. The
single-unit recording is a method to get action potentials from individual
neurons in the brain. [20]
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Figure 3.3: Schematic image of microelectrodes (MER) for recording in STN

To prove if there are any responses to the emotion in the STN, we statisti-
cally tested the amplitudes of signals after the different types of images were
shown. That means that we tested signals after fearful (F') images against
signals after happy (H) images, signals after neutral (N) images against signals
after fearful (F) images, and signals after neutral (N) images against signals

after happy (H) images (Figure [3.4).
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Figure 3.4: Image of the recorded signal with tags from 2 LFPx recordings.

Where N1 is tag for neutral image, F1 for fearful image and H1 for happy
image.
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Chapter 4

Methods

This chapter will briefly introduce all the methods we used for processing the
data.

B a1 Frequency domain

In the world around us, it is quite common for artificial and even natural
signals to oscillate. From the biological signals, it is, for example, voice.
So to obtain more information about them, it is useful to decompose them
into sinusoids and learn something about the signal’s frequency, phase, and
amplitude. The decomposition of the signals is done by Fourier analysis.
Because the signals are discrete in this case, the Discrete Fourier Transform
is used.

B 4.1.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) transforms discrete signals from
the time domain into the frequency domain. The transformation is made
according to the equation This equation is called direct Discrete Fourier
Transform. The equation |4.2|is called inverse Discrete Fourier Transform and
transforms a signal from the frequency domain back to the time domain.
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= > z(n) e IRk | =0,1,2,.. N — 1, (4.1)

ZX Ke? N n=0,1,2,..,N —1 (4.2)

In practice, the Fast Fourier Transform (FFT) is used to compute DFT
instead of direct calculation from the equation 4.1l This is because FFT is
much faster than solving this equation. The main idea behind this algorithm
is to decompose one signal with N samples into the N signals of one sample.
Then, for each individual signal, its frequency spectrum is computed. The
frequency spectrum of signal with one sample is equal to the sample itself,
so no system of linear equations needs to be solved. And that is why FFT
makes the computing of DFT faster. And to gain the frequency spectrum
corresponding to the original N point time-domain signal, it synthesizes the
N frequency spectra. It is essential to synthesize them in the same order as
they were decomposed. In each step, the part of the signal is divided into
two. The first half contains the samples at even positions and the second half
samples at odd positions (Figure |4.1)).
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Figure 4.1: The FFT decomposition. The signal of 16 samples is divided into
16 signals of one samples.

B 4.1.2 Spectrogram

The spectrogram shows how the frequency changes during the time. The signal
is divided into segments, and for each of them, the spectrum is computed. The
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4.1. Frequency domain

spectrum represents the signal in the frequency domain. Then these spectra
are placed side by side to describe the development in the time domain.

In the frequency spectrum, the frequency resolution depends on the duration
of the signal. So to have a better frequency resolution, we can extend the
signal with zeros. Zeros do not change the shape of the spectrum; they
only change the length of the signal to create more samples in the frequency
domain.

Another problem is when the signal is not entirely periodic. That means it
contains a sinusoid with a frequency different from the basis function. This
will be reflected in the spectrum as a peak with tails that expand it. The
signal is multiplied by a Hamming window before DFT to solve this (Figure
4.2). On the other hand, the usage of the Hamming window reduces the
resolution of the spectrum.
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Figure 4.2: Spectral analysis of a signal consisting of two sine wave. One have a
frequency equal to a basis function, the second does not. (A) is without using
Hamming window, (B) with.

The spectrogram of the signal is created in several steps:

1. Divide the signal into segments
2. Extend each segment of the signal with zeros
3. Multiply each segment of the signal with the Hamming window

4. Computed DFT for each segment

[21]
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Spectogram of x = sin(w0*n)+ sin(2*w0*n)
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Figure 4.3: Spectogram of the signal x = sin(%n) + sin(*Fn)

. 4.2 Filters

The main objective of the filter is to suppress the determined frequency
component and pass the others. Using that, we can, for example, remove the
noise from the signal so it cannot distort the result of the following signal
processing.

One of the most used filters is a linear time-invariant filter (LTT). A Linear
filter means that the principle of superposition applies, so the sum of the
system’s responses to a part of the signal is equal to an overall system’s
response. And when the system is time-invariant, the delay of the input
causes the same delay in the system’s output.

Filters can be described based on the responses to the unit sample sequence,
also known as the impulse response. Unit sample sequence is defined as 4.3
And the response of the system can be computed as a convolution of the input
and the response of the filter to the unit sample sequence - using formula [4.4]

[22]

ﬂ@:{?ﬁio (4.3)
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u(t) = [ u(mh(t=r)d(r) (4.4

B 4.2.1 Classification of filters

Filters can be classified by the duration of their response to the unit sample
sequence into two groups: filters with finite impulse response and with infinite
impulse response.

A filter with finite impulse response (FIR) is stable in contrast to a filter
with infinite impulse response (IIR), so its design is easier. Their stability
is caused by settling their impulse response to zero in finite time. Another
parameter that describes the filter is the filter’s order, which indicates the
filter’s steepness. The filter’s steepness directly impacts how the filter muffles
the required frequencies. The bigger the steepness, the bigger the filter
efficiency. The filter steepness is related to the impulse response duration, so
as indicated from the name of the filter, IIR muffles better than FIR with
the same order.

Another way to classify filters is by which frequencies they pass. There are
four main types (Figure 4.4)):

1. Low pass filter - pass lower frequencies and suppress the higher ones.
2. High pass filter - pass higher frequencies and suppress the lower ones.

3. Band-pass filter - pass interval of frequencies, which means that frequen-
cies lower or higher than the interval are suppressed.

4. Band-stop filter - suppress interval of the frequencies, so the lower and
higher frequencies are passed.
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Figure 4.4: Filter response for different types of real filters. From left to right:
low-pass, high-pass, band-pass and band-stop filter

B 4.2.2 Application of filters

In our data, it was important to remove the noise caused by electromagnetic
interference, which affects the signal during the whole measurement. We
use a comb filter (Figure 4.5), an FIR filter that can filter 50 Hz and its
multiples.[25]. But because it’s an FIR filter and the sampling frequency is
high, its order must be high too to achieve the required steepness of the filter.
So it takes a long time to compute it.
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Figure 4.5: Frequency response of comb filter

The same problem with the filter order is in our second filter application,
where we use a high pass filter to supress the noise in the low frequencies.
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4.3. Resampling

B a3 Resampling

When we record a continuous signal, we get its representation in a discrete
time. So we have a sequence of samples. How many samples we can record
in one second is given by the sampling frequency. The sampling frequency is
also called the sampling rate. The sampling frequency is not a fixed value;
we can manually change it - increase it or decrease it by an integer factor.

B 4.3.1 Decimation

Decimation or also downsampling is the reduction of the sampling frequency
by an integer factor. So our sampling frequency will be lower, and we will
have fewer signal samples in one second. For example, if we want to reduce
the sampling rate twice, we will take every other sample from the original
signal. So, in the end, we will have half of the samples for the same time
interval (Figure 4.6).
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Figure 4.6: Decimation of the signal by factor 2

However, it is essential to comply with the Nyquist theorem [4.1.

Theorem 4.1. For reconstructing a periodic signal from its samples, the
signal sampling rate must be at least twice its highest frequency component.

According to the theorem, the sampling frequency can be reduced to
a maximum of twice the highest frequency signal component. Otherwise,
aliasing occurs.
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Aliasing (Figure 4.7)) is an overlap in the signal’s frequency spectrum, so
it loses some information, and the original signal cannot be restored. We
can first reduce the frequency range to avoid it, so after decimation, the new
sampling frequency compiles with the Nyquist theorem. [22]
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Figure 4.7: An example of aliased spectrum

B 4.3.2 Interpolation

Interpolation or also upsampling is increasing the sampling rate by an integer
factor. In interpolation, we insert zeros between signal samples, so we enhance
the amount of the samples in one second, and due to it, we increase the
sampling frequency. The increase factor depends on how many zeros we insert
between signal samples. For example, if we want to increase the sampling
rate twice, we insert one zero between each signal sample (Figure 4.8). After
inserting the zeros, we have to use a lowpass filter to get the exact shape of
the signal in the time domain [22].

B 24 WwaveClus

WaveClus is an algorithm that can identify the action potentials of individual
neurons in the signals. Action potentials, or in different words, spikes,
rise due to electrical neuronal activity. Moreover, WaveClus is not only
for unsupervised spike detection from recordings but also for their sorting,
making it a very powerful tool for processing neuronal signals.
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Figure 4.8: Interpolation of the signal by factor 2

This method has three stages (Figure 4.9):

1. Detection of the spikes
2. Selection of spike features

3. Clustering

The spike detection is done by automatic amplitude thresholding. It
is used after the signal is filtered by a bandpass filter at 300 - 6000 Hz.
The thresholding runs automatically, so the spike detection threshold is set
according to the equation |4.5.

2]
0.6745

Thr =4 - median{ } (4.5)
Where x is the filtered signal, and median{%} is an estimation of the
background noise.

In the second stage, it is needed to compute the wavelet transformation of
the signals. Wavelet transformation is a time-frequency representation of the
signal. Sixty-four wavelet coefficients for describing one spike are obtained
from this method. To select the spike features, it needs to choose a few wavelet
coefficients that best describe the spike and distinguish it from others. That
is done automatically by the Lilliefors modification of a Kolmogorov-Smirnov
test for normality. The WaveClus algorithm applies ten wavelet coefficients
with the most significant distinction from normality.
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Figure 4.9: Overview of the automatic clustering procedure. (A) spikes are
detected by setting an amplitude threshold. (B) A set of wavelet coefficients
representing the relevant features of the spikes is selected. (C) The SPC algorithm
is used to cluster the spikes automatically.
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Figure 4.10: Cluster size vs. temperature. At temperature 0.05, the occurring
of the transition to the superparamagnetic phase can be seen and then the three

clusters are separated.
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The last step - clustering, is done by superparamagnetic clustering (SPC).
SPC is inspired by spin glass. Spins are dependent on temperature. If the
temperature is high, the spins switch randomly. But as the temperature
gets lower and lower, the spins get grouped, and in these groups, the state
will change simultaneously. This phase is called 'superparamagnetic.’ In
low temperatures, all spins are in one group and shift their states together.
Similarly, it works in SPC. It tries to find a temperature that describes the
superparamagnetic phase, so groups of points changing together will describe
the clusters (Figure 4.10)). This approach is also automatic because SPC can
set the temperature by itself. [27]

B 4.4.1 The usage of WaveClus algorithm on the processed
data

In our task, we use the WaveClus algorithm to expose spikes in MER signals.
We want to focus on the activity of the distant neurons, so we want to remove
the action potentials of the neurons close to the electrodes. And to achieve
that, we use this algorithm to find the spikes, sort them, and gain the time
when they are active. After that, we compute the median shape of spikes
for each detected neuron to deduct it from the signal at the time when they
occur there (Figure |4.11)).
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Figure 4.11: Example of removing action potential from the signal. The median
of the action potential is shown in red.
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. 4.5 Hypothesis testing

The most important part of hypothesis testing is choosing the hypothesis we
want to test. This hypothesis is called the null hypothesis, and it is tested
against the alternative hypothesis. For example, we want to know if we should
stop distributing the medicine based on its side effects. In this case, the null
hypothesis is that this medicine does not increase the risk, and the alternative
hypothesis is the opposite - the medicament is increasing the risk. [28§]

But the results of hypothesis testing are not always correct. In fact, there
can be two types of errors. A type I error occurs when we reject the null
hypothesis, which is actually correct. Conversely, a type Il error occurs when
we accept the null hypothesis when it is not valid.

The main idea of the testing is that we try to figure out if there is sufficient
evidence to reject our hypothesis. If we do not find it, the null hypothesis is
accepted. Also, in hypothesis testing, the significance level must be chosen.
The significance level is a number from zero to one and is denoted as alpha.
The smaller the significant level is, the stronger evidence we need to have
for rejecting the null hypothesis. The significance level also expresses the
probability of a type I error. [29]

B 45.1 P-value

Another important thing in hypotheses testing is a p-value.

Theorem 4.2. P-value is the probability under the null hypothesis of obtaining
results at least as extreme as, or more extreme than, the observed value

P-value can be between zero and one. And we can also say that p-values
show us how strong evidence against the null hypothesis is in the data -
the closer the p-value is to zero, the stronger the evidence against the null
hypothesis. Based on the p-value, we can decide if we reject or accept the
null hypothesis by comparing it to the chosen significance level. We reject
the null hypothesis when the p-value is lower than the significance level. [29]
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B 4.5.2 The t-test

T-test, also called Student t-test, is one of the possible approaches to test
statistical hypotheses.

B The t-test for one sample

The conditions in which we can use the t-test:

1. The data is from a normal distribution

2. The variance of the distribution is unknown

In the t-test, we test if the mean p of the distribution with n samples is
equal to the fixed mean pg. So we get a random variable T which has a
t-distribution with n — 1 degrees of freedom and is equal to

(4.6)

Where samples are (X1, ..., X,,) ~ N(m,s?), S, is the sample variance of

the samples (X7, ...X,), po is the fixed mean, and X, is the sample mean of
the samples (X1, ...X,).

B The t-test for two samples

Another possible usage of the t-test is to compare two normal distributions
again when the distribution variances are not known. In this case, we test if
the mean of the first distribution (with m samples) is equal to the mean of
the second distribution (with n samples). Here we get a random variable T
which has a t-distribution with m + n — 2 degrees of freedom and is equal to

4.7
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X =Yy

%, ¥, s T
T= m (4.7)
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Where there are two independent groups of samples: (X1, ..., X;,) ~ N(mq, %)
and (Y1,...,Y;) ~ N(mg,s?), and X,, is the sample mean of the samples
(X1,..., Xp) and Y;, is the sample mean of the samples (Y7,...,Y,). S is a
sample estimation of s2, and it is computed according to equation 4.8

o= )

Where S% and S% are two estimations of the same value s?, but S% is the
sample variance of the samples (X1, ..., X;,) and S%, is the sample variance of
the samples (Y1, ..., Y},).

[28]
B The usage of the t-test on the processed data

My null hypothesis was that the signals after two different types of images (for
example, after neutral and happy images) come from the same distribution.
This means that there were no specific reactions to different emotions. And
the alternative hypothesis is the opposite - that the signals come from two
different distributions, and the signals are affected by watching the different
types of images. The significance level was chosen to be 5%, so the type I
error equals 5%.

Time domain. In the time domain, we used a t-test to compare the signal’s
amplitudes in each time interval of the significant part of the signal (550 ms
when the picture is shown to the patients). If we used it for each time interval,
we would have to do 13750 tests because the sampling rate is 25000 Hz.

But the samples are dependent on the surrounding samples, so the indi-
vidual results of the t-tests are not independent. Also, if we do so many
tests, the probability that at least one of the results is the type I error is
high - almost 1. And because of that, to manage the error rate of 5%, we
have to lower the significance level of each test, so the sum of them is still 5%.
So the level of significance of the each t-test is 0.05/the number of the tests.
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4.5. Hypothesis testing

If we compare each signal sample, the significance level will be absurdly
low. So to avoid this complication, we reduced the number of samples. We
divided the signal into 55-time intervals, each with 250 signal samples. Each
time interval is represented by only one value computed as an average of the
signal samples in the time interval (Figure 4.12)). In this case, the level of

significance for each t-test was set to %.
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Figure 4.12: Example of reducing number of samples for t-test

Frequency domain. In the frequency domain, we compare the power spectral
density of two signals at the same time and frequency interval. In medical
signals, the difference is expected to be in the lower frequencies, so we decided
to process just frequencies lower than 200 Hz. Here is a similar problem with
the number of tests as in the time domain. We divided the signal into 8
time intervals of the same duration and frequency into 24 intervals. The
frequency intervals are not divided uniformly; the higher the frequency gets,
the wider the interval is (Figure 4.13)). So, in the end, 192 t-tests had to
be done to compare the dependency of two emotions. The outcomes of the
t-tests over neighboring spectrogram segments are not independent because
they are based on correlated data. Same as in the time domain, to manage
the significance level under 5%, we have to set the significance level for each

t-test as 0.05/all the t-tests done at one signal. So, in this case, it is %.

B 4.5.3 The bootstrap

Bootstrap is a powerful statistical tool that has extensive applications. For
example, it can be used for determining variances and standard errors of
random variables from distributions that are not fully known. And among
other uses, it can be used for hypothesis testing.
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Figure 4.13: Example of reduced spectrogram

B The bootstrap principle

The bootstrap is one of resampling methods, which means that its core
principle is multiple repetitions of simulated replications with replacements.Or
in different words, the simulation means that from all available data, it
randomly selects the same amount of samples as the original has. The same
sample can be selected several times, while other samples are not selected at all

(Figure 4.14)). And the process is repeated multiple times (for example, 1000
times).

data simulated data

0.00168 0.00183
-0.00249 0.00183
0.0183 > -0.00249
000587 re-sampling 0.00249
0.0139 -0.00587

| 99

S G

+ R

< [

£ £

o =i

o 3

empirical
distribution
l parameter calculation l re-estimate
qoor = -0.0392 qoor = -0.0354

[30]

Figure 4.14: Schematic model of bootstrap resampling
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The bootstrap principle for hypothesis testing. In bootstrap hypothesis
testing, the null hypothesis is that there is no difference between the two
tested groups. The alternative hypothesis is the opposite - the tested groups
are different.

It is done in two steps. First, we assume the original data as it was
measured. Some chosen statistic is computed from them. For example, if
we have two groups of samples, the difference between the sample means of
these groups can be computed as a statistic.

The second step is data stimulation. The new groups of samples with
the same length as the original groups are created. However, the individual
samples in the groups are chosen randomly with the replacements from all
the samples (samples from both groups). These samples are called bootstrap
samples . We count the same statistic for each data simulation as with
the origin data. For example, if the difference between the sample means
of groups is used as a statistic for the original data, it is also used for the
simulated data. This step is repeated multiple times, and we count the chosen
statistic from each resampling. The number of times we repeated the data
stimulation is labeled as B.

We need to calculate the p-values from the bootstrap samples for hypothesis
testing. P-value can be computed as the percentage of the bootstrap samples
which are bigger or equal to the statistic determined for the given data.

,_ #TE) > T()

= (4.9)

However, if the p-value is computed according to the formula 4.9], it can
happen that the p-value will be zero, which is very unlikely to happen in
reality. The p-value equal to zero is a problem because that gives us strong
evidence for the alternative hypothesis, although the p-value could represent a
noise. So considering this fact, it is better to count the p-value using formula
4.10, where the p-value cannot be zero and avoid this problem.

_ #HT(E) 2 T(@)} +1
B+1

p (4.10)
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B Implementing

The signal is tested as a whole using the bootstrap; it is not divided into
parts like in the t-test. So there is no problem with the low significance level,
and the significance level can be set directly to 5%. Before using bootstrap,
we must decide which statistic we will use to evaluate the data.

Time domain. Several approaches can be used to compute the statistic in
the time domain.

Maximum difference. It is probably the most straightforward approach.
For example, consider that we will evaluate statistical dependecy of signals
which occurs after neutral and happy images. The maximum difference
between them is the biggest distance between the signal amplitudes of neutral
and happy photos (Figure . This statistic is simple, but it is not robust
to noise. If there is an artifact, it could give us wrong results. That is the
reason why we did not use this method.
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Figure 4.15: Example of maximum difference of the absolute difference of two
signals

Mazimum area under the curve. Another possible approach is not that
straightforward, but it protects us from mistakes caused by noise. Again
we consider evaluating the statistical dependence of the signals after happy
and neutral images. So we have many signals of both types. First, we will
compute an average signal, one for happy photos and one for neutral photos.
After that, we subtract them from each other, so we get their difference.
And we look at the maximum area between this curve and zero. However,
the parts of the signals oscillating rapidly around zero are redundant and
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4.5. Hypothesis testing

can cause mistakes in the results, so we decimated the sampling frequency
down by 100, so from 25000 Hz to 250 Hz. After the decimation, we gained
smoothed signal (Figure |4.16)).

Counting the area under the curve is more robust to the artifacts because
we use the sample mean of the signal. That is why we choose the maximum
under the curve as the statistic.
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Figure 4.16: Example of maximum area under the signal

Frequency domain. In the frequency domain, we used a similar approach
as in the time domain to count the statistic. However, the spectral volume
changes not just in time but also in frequency, it is moved to the 3D. So
we comute the maximum volume under the area. We gain this area as a
difference between the average spectrogram after one type of image and
the average spectrogram after a different kind of image (Figure 4.17). The
average spectrogram means that, firstly, the significant parts of the signal
(550 ms after images of one type occur) are found in one recording. Secondly,
the spectrogram is computed for all these signals. And lastly, the average
spectrogram from all of these spectrograms is computed. It is more accurate
than computing the average of the signals in the time domain and then
converting it into the frequency domain.

B 4.5.4 The chi-square test

The chi-square (x?) test examines if properties depend on each other (for
example, if the hair color is related to the color of eyes). Usually, the data are
in a contingency table. The contingency table shows the distribution of the
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Figure 4.17: Example of maximum volume under the area - maxumum volume
under the area is denoted with red.

observed results. The null hypothesis is that the values in different groups
are the same, and their difference is caused by a chance. The alternative
hypothesis is the opposite.

The chi-square test is based on comparing the observed values and the
expected values if the groups were independent of each other. The most
significant advantage of this approach is that it can be used even if the
contingency table has more than two columns and rows. For using it, every
value in the contingency table must be more than 5. [32]

B 4.5.5 The Fisher’'s Exact test

The Fisher’s Exact test does not rely on assumptions about the distribution.
Instead, it computes the probability of the observed data.

The Fisher’s Exact test has similar usage as the Chi-square test, but
in contrast to the Chi-square test, it does not require every value in the
contingency table to be higher than 5 [32]. In this thesis, it is used only
when the contingency table has two rows and two columns because the
implementation of the Fisher Exact test in Matlab cannot work with bigger
contingency tables.
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Chapter 5

Results

In this chapter, we describe the results and how we got them. The first
section describes preprocessing of the signals. And the second section shows
the results of processing LFPx and MERx signals - in the time domain and
then in the frequency domain.

N 51 Preprocessing

Before the recordings can be processed, we have to deal with interference and
artifacts that could appear there. An artifact is a sample with significantly
higher amplitude than the majority of the samples in the signal.

The first problem is an electromagnetic interference that affects the signal
during the whole measurement. We use the comb filter to solve it (Figure

. The comb filter is described in the section

The second problem is that signals are mostly a mixture of the actual signals
and artifacts. And biological signals are not an exception. In microelectrode
recordings (MER), artifacts can affect almost 25% of the signal. Mainly,
the artifacts are caused by some motion. [I8] The motion artifacts arise
as a result of, for example, a patient’s speaking or slight movement of the
electrodes in the brain. These artifacts are most apparent at the beginning
and end of the recording, when most of the movement occurs.
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Figure 5.1: Example LFP signal before and after applying the comb filter

Before processing the signals, it is important to check if there were no
artifacts. It was essential to remove parts of the signal where the artifacts
were found because if we used them in the following calculations, the used
statistics could give us wrong results. To prevent this, we plotted all the
signals and manually checked them.

B 5.1.1 LFPx

We set a threshold of the amplitudes for LFP signals, which is already
considered an artifact. We checked if there was an amplitude higher than the
threshold in each selected part of the signal (550 ms after the tag occurred).
If so, we did not include this part of the signal in the following processing.
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Figure 5.2: Example of LFP signal. An artifact occurs around 100s mark
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5.1. Preprocessing

We also discovered that some of the signals were contaminated with low-
frequency noise (Figure . This interference could be caused by the
tremor of the people who undergo surgery because they are treated with
Parkinson’s disease. The measured voltage is relatively small, so the electrodes
must be sensitive enough to catch the signals. Also, the wire between the
microelectrode and the amplifier is not shielded, so the noise can be easily
induced into the signal.
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Figure 5.3: Example of LFP signal with low-frequency noise

To remove the low-frequency noise, we used a high-pass filter (Figure ,
which suppresses frequencies lower than 5 Hz (Figure . But neural activity,
which we are looking for in the signals, could occur at these low frequencies
so that we would lose it after filtering the signal. Because of this, we decided
to do the statistics twice. First, we used the signal in the original state with
the noise and periodicity. Second, we use the high-pass filter to eliminate all
noise (but possibly lose important data).
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Figure 5.4: Power signal density of the signal before and after using the high
pass filter on 5 Hz
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Figure 5.5: LFP signal before and after using the high pass filter on 5 Hz

B 5.1.2 MERx

We did not manually set the threshold in MER signals. The times when
artifacts occurred for every recording were part of the given data. If the part
of the signal we were interested in (550 ms after the required tag occurs) is
contaminated with the artifact, we remove it from further processing.

B 5.2 Implementing the methods

The implemented methods were applied to four types of signals:

1. Unfiltered LFP signals - preprocessed LFPx signals

2. Filtered LFP signals - filtered preprocessed LFPx signals with the high
pass filter on 5 Hz

3. MER signals with action potentials (AP) - preprocessed MERx signals

4. MER signals without action potentials (AP) - preprocessed MERx signals
from which AP from close neurons were removed using the WaveClus
algorithm

To examine if there are different reactions based on emotion, we did
statistical tests for both time and frequency domains. We compared the
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signal parts of individual neurons after different types of images recorded by
electrodes active in STN.
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Figure 5.6: Example of MER signal with artifacts

The null hypothesis was that the signal after two different types of images
came from the same distribution. This means that there were no spcific
reaction to different emotions. And the alternative hypothesis was that the
signals come from two different distributions. We were looking for statistical
tests in which the p-value was lower than 5%, so we could reject the null
hypothesis and assume that the signals are affected by watching the different
images. These tests are denoted as significant.

To control the correctness of the statistical methods, we tried two of them -
the t-test and the bootstrap. Both methods were used in the time and
frequency domain.

Before using bootstrap, the sampling frequency of the signal was decimated.
The decimation was done to smooth the signal, so the number of zero-
crossing is reduced. Because of it, the area between the curve and zero
corresponds to the trend of the signal. The sampling frequency was decreased
a hundred times - from 25000 Hz to 250 Hz. So instead of processing 13750
samples (550 ms after the image occurs), we processed only 138 samples.
The decimation of the number of samples made computing of the bootstrap
statistics significantly faster.
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B 52.1 Time domain

B The t-test

We divided the signal into 55 intervals, and we used the t-test to compare
the signal’s amplitudes in each time interval.

The significance level was chosen to be 5%. But because we divided the
signal into 55 intervals, to ensure that the significance value remained 5%,
we had to set the significance level for each t-test to % =9.09-107%. So
their sum is equal to 5%. Otherwise, the probability that at least one t-test
from the total of 55 t-tets gives the type I error would be much higher than
the required 5%. So we considered only p-values smaller than 9.09 - 10~%. A
more detailed description of the usage of the t-test in the time domain is in
the section 14.5.2.

The results of the t-tests are in the figures 5.7, /5.8 The confidence interval
for the signal was computed using the bootstrap. For each bootstrap sample
(1000 repetitions), the mean of the signal was computed. After sorting the
results, the lower limit was set to 2.5%, and the upper limit was set to 97.5%.

There were 51975 t-tests done (315 recordings - 3 types of combination of
the images - NH, NF, FH - 55 p-values from each time interval).

T-tests with p-value lower than the level of significance:

Unfiltered LFP: 22 t-tests (0.042%)

Filtered LFP: 48 t-tests (0.092%)

MER with AP: 16 t-tests (0.031%)

MER without AP: 16 t-tests (0.031%)

46



5.2. Implementing the methods

3 )
T [JavgF
3 JavgH
2
S
e 200 = I | 1 | | i
< 0 100 200 300 400 500 600
Time (ms)
P-values from t-test

(0]

=}

_g 05- 1

o @ . )

0 | 900 1°9°°% 09600000 e ccodc ;
0 10 20 30 40 50 60

Time (ms)

Figure 5.7: Example of the results from t-test on unfiltered LFP signals. The
first figure shows an average signal from significant parts of the signal after fear
and happy images occur and their confidence interval. And in the second figure,
there are p-values for the individual time intervals.
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Figure 5.8: Example of the results from t-test on MER signal with AP. The
first figure shows the average signal from significant parts of the signal after fear
and nautral images occur and their confidence level. And in the second figure,
there are p-values for the individual time intervals.
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B The bootstrap

In contrast to the t-test, for the bootstrap testing the signal was not divided
into intervals, so we got just one p-value for each test. So the significance
level remained 5%, and there was no problem with the low significance level
as in t-tests. More information about implementing the bootstrap can be
found in the section [4.5.3.

We also checked if the bootstrap results correspond to the t-test results. The
p-values from the t-test should be low in the place where the maximum under
the curve occurs (used bootstrap statistic). The time when the maximum of
the area under the curve occurs is in the images [5.9/5.10//5.11|/5.12| denoted
with the red curve.

There were 945 bootstrap tests done (315 recordings - 3 types of combination
of the images - NH, NF, FH).

Bootstrap tests with lower p-value than the level of significance:

Unfiltered LFP: 39 tests (4.13%)

Filtered LFP: 38 tests (4.02%)

MER with AP: 29 tests (3.07%)

MER without AP: 34 tests (3.60%)
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Figure 5.9: Example of verification of the bootstrap results with t-tests results
in unfiltered LFP signals. Red curves in the t-test denote the p-values under 5%
and red curves in the bootstrap denote the time when the maximum of the area

under the curve occurs.
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Figure 5.10: Example of verification of the bootstrap results with t-tests results
in filtered LFP signals. Red curves in the t-test denote the p-values under 5%
and red curves in the bootstrap denote the time when the maximum of the area

under the curve occurs.
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Figure 5.11: Example of verification of the bootstrap results with t-tests results
in MER signals with AP. Red curves in the t-test denote the p-values under 5%
and red curves in the bootstrap denote the time when the maximum of the area

under the curve occurs.
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Figure 5.12: Example of verification of the bootstrap results with t-tests results
in MER signals without AP. Red curves in the t-test denote the p-values under 5%
and red curves in the bootstrap denote the time when the maximum of the area

under the curve occurs.
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B Depth and hemisphere where the electrode is placed

We were also interested if there is some dependence on the depth or hemisphere
where the recording electrode is placed. And because the t-test tested only
signal intervals, not all signals, we used results from the bootstrap to examine
this.

We created a histogram to compare if there were significantly more results
that were significant at a specific depth of the recording, as you can see in
the figure 5.13|[5.14l To verify this dependency, we used the chi-square test at
the 5% significance level (we used a downloaded Matlab function chi2cont).
But for the chi-square test, all values in the contingency table have to be
higher than five, so we had to merge some depths to manage it for significant
neurons. The used contingency tables and the resulting p-value can be seen
in the tables [5.1//5.2/5.3], [5.4. None of the chi-square tests reject the null
hypothesis, so the occurrence of the significant tests does not depend on the
depths of the electrodes.

Depths of the electrodes

Newrons | g 3o (3,-2> (21> (1,05 (03> | © Ve
Tnsignificant 136 172 210 213
Significant 5 11 12 0.3902

Table 5.1: Table of the chi-square test for unfiltered LFP signals in the time
domain. Some depths have to be merged for usage of the chi-square test.

Depths of the electrodes

Neurons (-8-3> (-3,-2> (-2-1> (-1,0> (0,3> H P-value
Insignificant 135 178 224 210
Significant 11 6 5 = 0.4092

Table 5.2: Table of the chi-square test for filtered LFP signals in the time
domain. Some depths have to be merged for usage of the chi-square test.

Neurons Depths of the electrodes Pvalue
8 2> (-2-1> (-1,0> (0,3> |
Insignificant 176 222 214
Significant 7 9 0.6582

Table 5.3: Table of the chi-square test for MER signals with AP in the time
domain. Some depths have to be merged for usage of the chi-square test.

Depths of the electrodes

Newrons || g 3o (3,-2> (21> (-1,0> (03> | © Ve
Insignificant 165 135 177 220 214
Significant 6 6 11 0-6940

Table 5.4: Table of the chi-square test for MER signals without AP in the time
domain. Some depths have to be merged for usage of the chi-square test.
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Histogram of the electrodes depths for bootstrap tests
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Figure 5.13: Histogram of the electrode depths for (A) unfiltered and (B) filtered
LFP signals in the time domain. The depth is measured relative to the target in
STN.

We also compare the number of results marked as significant in the left
and right hemispheres, as you can see in the figure We used the
Fisher’s Exact test to decide if significantly more significant tests are in one of
the hemispheres. But at the 5% significance level, none of the Fisher’s Exact
tests reject the null hypothesis, so that means that there are no nonrandom
associations between the left and the right hemisphere in none of the signal
types. In the table 5.5, you can see the p-values for individual tests.
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Histogram of the electrodes depths for bootstrap tests
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Figure 5.14: Histogram of the electrode depths for MER signals (A) with and
(B) without action potentials in the time domain. The depth is measured relative
to the target in STN.

Types of the signal P-value Decision
unfiltered LFP 1 fails to reject the null hypothesis
filtered LFP 0.0686  fails to reject the null hypothesis
MER with AP 0.8515  fails to reject the null hypothesis
MER without AP 1 fails to reject the null hypothesis

Table 5.5: The results of the Fisher’s Exact tests for comparing the hemispheres
in the time domain
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Higgggram of the hemisphere where electrode is placed for all bootstrap tests
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Figure 5.15: Histogram of the hemispheres for (A) unfiltered and (B) filtered
LFP signals in the time domain

B Summary of the results in the time domain

The significance level was set to 5% in every test, so we expected that 5%
of the result would be the type I error. And because the number of total
significant tests in all types of the signal was lower than 5%, it is possible
that all of the results were just false positives (so the test found a specific
reaction to the different emotions although nothing was there). But we are
not able to decide if all significant tests were false positives.

We can divide the bootstrap results by the type of the test, which was
denoted as significant. In the table[5.6, there is the percentage of the significant
tests from the total of 315 tests for each type of test (neutral-happy, neural -
fearful, fearful - happy).
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Higgggram of the hemisphere where electrode is placed for all bootstrap tests
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Figure 5.16: Histogram of the hemispheres for MER signals (A) with and (B)
without action potentials in the time domain

Time domain
NH NF FH
unfiltered LFP | 6.03% 3.17% 3.17%
filtered LFP 6.03% 4.13% 1.91%
MER with AP 3.17% 3.17% 2.86%
MER without AP | 4.13% 2.85% 3.81%

Types of signals

Table 5.6: Table of significant bootstrap results for individual tests
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As you can see in the verification results from the t-test and bootstrap
for LFP signals (figure [5.9), the maximum area under the curve is much
bigger than the area where the p-values from the t-test are under 5%. That
is because the t-test used a more strict significance level than the bootstrap,
so it has lower statistical strength.

In the filtered LFP signals, in contrast to unfiltered LFP signals, the area
under the curve is smaller as we expected. It is not expected that the reaction
to the images will be in the entire duration of the signal but just in some
part of it.

In figures [5.17//5.18] the red area denotes the time where the difference
between the curve (difference of the mean signals after different images) and
the zero (bootstrap statistic) occurs in neurons where bootstrap tests have a
lower p-value than 5%. In unfiltered LFP signal, there is a tendency that the
maximum occurs more at the end of the signal and there are long intervals.
In contrast, the intervals are more random and shorter in the filtered LFP
signals. The filtration using a high pass filter can cause the loss of some
important neuronal activity, or alternatively, the occurrence at the end of
the interval in unfiltered LFP signal can be caused by noise. In MER signals,
most of the red intervals are in the middle. In MER signals with AP, red
intervals are mostly in the first half, but when action potentials from neurons
close to the electrodes are removed, most of the intervals are in the second
half. This could be caused by closer neurons that created the difference
earlier, but when we removed them, the distant neurons affected it.

It does not seem that the number of significant tests depends on the depth
or hemisphere where the recording electrode was placed. Only in the MER
signals without AP is p-value under the 5% significance level so we concluded
that in this specific case it depend on the depths of the electrode.

We were also interested in whether the reaction to the emotion can be
seen in the different types of signals simultaneously. For example, if a test
in filtered LFP signals was denoted as significant, the test done in the same
position in unfiltered LFP signals would also be denoted as significant, and so
on. We used the Fisher’s Exact test at the 5% significance level to examine
that. And only the bootstrap results were used because t-tests tested only
signal intervals, not the whole signals. The results are in tables|5.7//5.8//5.9
5.105.11//5.12. However, the only p-value lower than 5% was in MER signals
with and without AP. So those signals seem to be dependent.

56



5.2. Implementing the methods

Times of difference between the curve and zero for significanct neurons
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Figure 5.17: Schematic images of the time intervals where are the difference
between the curve (difference of the mean signals after different images) and zero.
In each row, red denotes time intervals, where there is the difference between

the curve and zero. Each row corresponds to a single significant neuron.
(A) unfiltered LFP signal, (B) filtered LFP signal

Another way to evaluate the results from bootstrap is to verify if there is a
higher probability that if there was a specific neuronal activity on one type
of emotion, there would also be a specific neuronal activity on the other two
types of emotion. For example, if the test for happy and neutral images is
significant, the test for happy and fearful or neutral and fearful images will
be significant too. We used the Fisher’s Exact test at the 5% significance
level for examination. The results can be found in tables [5.13/(5.14!(5.15!/5.16.
There is a higher probability for the filtered LFP signal that if the neuron
has a different neuronal activity for neutral and happy images, there will also
be different neuronal activities for neutral and fearful or fearful and happy
images. In the MER signal with AP, there is a higher probability that if
the neuron has a different activity to a specific emotion, it will also have a
different activity at least to one of the two other emotions. In the MER signal
without AP, there is a higher probability that if the neuron has a different
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Figure 5.18: Schematic images of the time intervals where are the difference
between the curve (difference of the mean signals after different images) and zero.
In each row, red denotes time intervals, where there is the difference between
the curve and zero. Each row corresponds to a single significant neuron.

(A) MER signal with action potentials, (B) MER signal without action poten-
tials

neuronal activity for neutral and fearful images, there will also be different
neuronal activities for fearful and happy images or neutral and happy images.

LFP filtered
Bootstrap results Significant Insignificant H P-value
Significant 3 36
LFP unfiltered Insignificant 35 371 0.2035

Table 5.7: LFP filtered x LFP unfiltered in the time domain
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LFP filtered
Bootstrap results Significant Insignificant H P-value
. Significant 0 29
BAIEL il AP Insignificant 38 878 Dlepise
Table 5.8: LFP filtered x MER with AP in the time domain
LFP filtered
Bootstrap results Significant Insignificant H P-value
. Significant 0 34
MER without AP Insignificant 38 373 0.3939
Table 5.9: LFP filtered x MER without AP in the time domain
LFP unfiltered
Bootstrap results Significant Insignificant H P-value
. Significant 0 29
MER with AP | Genificant 39 877 0.6276
Table 5.10: LFP unfiltered x MER witht AP in the time domain
LFP unfiltered
Bootstrap results Significant Insignificant H P-value
. Significant 0 34
MER without AP Insignificant 39 879 0.3937

Table 5.11: LFP unfiltered x MER without AP in the time domain

MER with AP
Bootstrap results Significant Insignificant H P-value
. Significant 27 7 _43
MER without AP Insignificant 9 909 1.6-10
Table 5.12: MER with AP x MER without AP in the time domain
NF
Bootstrap results Significant Insignificant P-value
Significant 2 17
NH Insignificant 8 284 0.1187
i P-value
Significant Insignificant
Significant 2 16
NH Insignificant 7 283 0-0910
NF P-value
Significant Insignificant v
Significant 1 9
FH Insignificant 9 294 02808

Table 5.13: NH x NF x FH - unfiltered LFP in the time domain
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NF
Bootstrap results Significant Insignificant P-value
Significant 3 16
NH Insignificant 10 280 0-0382
FH Poval
Significant Insignificant “vate
Significant 3 19
NH Insignificant 6 290 0-0185
NF Poval
Significant Insignificant “vate
Significant 1 )
FH Insignificant 12 295 0.2263
Table 5.14: NH x NF x FH - filtered LFP in the time domain
NF
Bootstrap results Significant Insignificant P-value
Significant 2 8
NH Insignificant 8 293 0-0365
kil P-value
Significant Insignificant vt
Significant 2 8
NH Insignificant 7 294 0.0297
NF Poval
Significant Insignificant “vate
Significant 2 7
FH Insignificant 8 294 0.0297
Table 5.15: NH x NF x FH - MER with AP in the time domain
NF
Bootstrap results Significant Insignificant P-value
Significant 2 11
NH Insignificant 7 291 0-0493
ki P-value
Significant Insignificant
Significant 2 11
NH Insignificant 10 288 0-0841
NF Poval
Significant Insignificant “vate
Significant 2 10
FH Insignificant 7 292 0.0423

Table 5.16: NH x NF x FH - MER without AP in the time domain
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B 5.2.2 Frequency domain

The signals were divided into 8 time intervals and 24 frequency intervals in
the frequency domain. The only exception is the filtered LFP signals. The
first 5 Hz was filtered in the filtered LFP signals, so there is no reason to
compare them. Because of that, the frequency intervals up to 5 Hz were
removed from the spectrogram. So, in the end, for filtered LFP signals, we
still had 8 time intervals but only 22 frequency intervals.

B The t-test

The t-test in the frequency and time domain are very similar. But here, we
did not compare the signals’ amplitudes but the power spectral density of
their spectrum. The spectrum was divided into 24 frequency intervals - 8 time
intervals = 192 intervals. The only exception is the filtered LFP signals, with
only 22 frequency intervals, so their spectrum was divided into 176 intervals.

As well as in the t-test in the time domain, the significance level was set
to 5%. But because we divided the signal into many intervals, to ensure that
the significance level remained 5%, we had to set the significance level for
each t-test to % =2.6-107%. So their sum is equal to 5%. Otherwise, the
probability that at least one t-test from all t-tets gives the type I error would
be much higher than the required 5%. So we considered only p-values smaller
than 2.6 - 1074, The filtered LFP signals have a lower number of intervals,
so here is the significance level equal to % =2.84-107%. A more detailed
description of the usage of the t-test in the frequency domain is in the section

4.5.2

There were 181440 t-tests done (315 recordings - 3 types of combination of
the images - NH, NF, FH - 192 p-values from each time interval) for unfiltered
LFP and MER with and without AP. For filtered LFP 166320 t-tests were
done. (315 recordings - 3 types of combination of the images - NH, NF, FH -
176 p-values from each time interval)

T-tests with lower p-value than level of significance:

® Unfiltered LFP: 22 t-tests (0.012%)
® Filtered LFP: 19 t-tests (0.010%)
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= MER with AP: 19 t-tests (0.010%)

® MER without AP: 19 t-tests (0.010%)

B The bootstrap

With the usage of bootstrap, the problem with a low level of significance
disappears, so the significance level remains at 5%. More about the usage of
bootstrap on our data you can find in section |4.5.3

As well as in the time domain, we checked if the bootstrap results corre-
sponded to the results of the t-tests. The p-value from the t-test should be
low in intervals where is the maximum volume under the area (bootstrap
statistic). The maximum real volume under the area is denoted with the blue
color in figures |5.19(/5.20//5.21L

There were 945 bootstrap tests done (315 recordings - 3 types of combination
of the images - NH, NF, FH).

Bootstrap tests with lower p-value than level of significance:

Unfiltered LFP: 45 tests (4.76%)

Filtered LFP: 51 tests (5.4%)

MER with AP: 16 tests (1.69%)

MER without AP: 18 tests (1.90%)
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P-values from t-tests
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Figure 5.19: Example of verification the bootstrap results with t-tests results in
unfiltered LFP signals. In the first figure, there is the p-value from t-tests for
each time and frequency interval. In the second figure, the intervals where we
can find the maximum volume under the area is denoted with the blue color.
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Figure 5.20: Example of verification the bootstrap results with t-tests results in
filtered LFP signals. In the first figure, there is the p-value from t-tests for each
time and frequency interval. In the second figure, the intervals where we can
find the maximum volume under the area is denoted with the blue color
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P-values from t-tests
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Figure 5.21: Example of verification the bootstrap results with t-tests results in
MER signals with action potentials. In the first figure, there is the p-value from
t-tests for each time and frequency interval. In the second figure, the intervals
where we can find the maximum volume under the area is denoted with the blue
color

B Depth and hemisphere where the electrode is placed

Like in the time domain, we were also interested in whether there is a
dependence on the depths or hemisphere where the recording electrodes are
placed. To examine this, we used the same approach as in the time domain.
The histograms of the depths and the hemispheres of the recording electrodes

can be found in figures [5.22/5.23| and [5.24[5.25.

We used the chi-square test to evaluate the dependency on the electrode
depths, and again, because of its restriction (every value in the contingency
table must be five or higher), we had to merge some depths. But in this case,
the p-value for each signal type was higher than 5%. You can find the used
contingency tables and their p-values in the tables

Depths of the electrodes

Neurons H (-8-3> (:3,-2> (21> (-1,0> (01> (1, 3> | P-value
Insignificant 163 136 174 223 137 67 0.6329
Significant 8 5 9 8 10 5 '

Table 5.17: Table of the chi-square test for unfiltered LFP signals in the
frequency domain. Some depths have to be merged for usage of the chi-square
test
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Depths of the electrodes

Neurons 8 4> 4’ 3> (_3, 2> (_2’_1> (_1’ 0> (0,3> H P-value
In.81gr.11ﬁcant 95 130 178 215 212 0.1472
Significant 7 11 5 16

Table 5.18: Table of the chi-square test for filtered LFP signals in the frequency
domain. Some depths have to be merged for usage of the chi-square test

Depths of the electrodes

Neurons 8 1> (-1, 3> H P-value
Insignificant 442
Significant 8 0-8475

Table 5.19: Table of the chi-square test for MER signals with AP in the frequency
domain. Some depths have to be merged for usage of the chi-square test

The evaluation of the dependence on the hemisphere where the electrode
is placed was done with the help of Fisher’s exact test. Nevertheless, similar
to the time domain, all Fisher’s Exact tests fail to reject the null hypothesis
at the significance level of 5%. This means that there are no nonrandom
associations between the left and the right hemisphere in any of the signal
types. The results of the Fisher’s exact test are in the table [5.21l.

B Summary of the results in the frequency domain

Processing the signals in the frequency domain brought similar results as
processing the signals in the time domain. The significance level was 5%, and
therefore, the expected number of false-positive results was 5% of all the tests.
In none of the tests was the number of the significant tests significantly higher
than 5%, so it is possible that all of them were false positives. Unfortunately,
we are not able to decide it.

The bootstrap results can be divided by the type of the test, which was
denoted as significant. In the table [5.22]is the percentage of the significant
tests from the total of 315 tests for each type of test (neutral-happy, neural -
fearful, fearful - happy).

We noticed that the maximum volume under the area is often in lower
frequencies and also from the very beginning of the signal. That is strange
because the brain needs some time to transport the information. It is
impossible to react to the image immediately after seeing it.
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Depths of the electrodes

Neurons H (-8,-1> (-1, 3> ” P-value
Insignificant 485 442
Significant } 10 8 H 0.7854

Table 5.20: Table of the chi-square test for MER signals without AP in the
frequency domain. Some depths have to be merged for usage of the chi-square
test

Histogram of the electrodes depths for bootstrap tests
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Figure 5.22: Histogram of the electrode depths for (A) unfiltered and (B) filtered

LFP signals in the frequency domain. The depth is measured relative to the
target in STN.

Types of the signal P-value Decision
unfiltered LFP 0.7617  fails to reject the null hypothesis
filtered LFP 0.3137  fails to reject the null hypothesis
MER with AP 0.1347  fails to reject the null hypothesis

MER without AP 0.3481  fails to reject the null hypothesis

Table 5.21: Table of the results of the Fisher’s Exact tests for comparing the
hemispheres in the frequency domain
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Histogram of the electrodes depths for bootstrap tests
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Figure 5.23: Histogram of the electrode depths for MER signals (A) with and
(B) without action potentials in the frequency domain. The depth is measured
relative to the target in STN.

Frequency domain
NH NF FH
unfiltered LFP | 4.76% 3.81% 5.71%
filtered LFP 4.13% 6.03% 6.03%
MER with AP 1.56% 2.22% 1.27%
MER without AP | 2.22% 1.90% 1.59%

Types of signals

Table 5.22: Table of significant bootstrap results for individual tests
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Higgggram of the hemisphere where electrode is placed for all bootstrap tests
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Figure 5.24: Histogram of the hemisphere for (A) unfiltered and (B) filtered
LFP signals in the frequency domain

In the figures [5.26/5.27][5.28|[5.29| , color denotes the time and frequency
intervals where the difference between the area and the zero (bootstrap
statistic) occurs in neurons where bootstrap tests have a lower p-value than
5%. Time intervals in the LFP signals are distributed randomly. There are
just a few time intervals where the maximum volume under the area occurs in
most of the frequencies. In MER signals with AP, the time intervals where the
maximum volume under the area occurs in most of the frequencies appears
randomly. For MER signals without AP, there were no significant results. In
all types of signals, the frequency intervals where the maximum volume under
the area occurs in most of the time intervals appear in the lower frequencies.
They are not so common in the higher frequencies.

From the tables[5.17][5.18][5.20/5.21}, it is clear that the number of significant
tests does not depend on the depths and hemisphere where the recording
electrode is placed.
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Higgggram of the hemisphere where electrode is placed for all bootstrap tests
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Figure 5.25: Histogram of the hemisphere for MER signals (A) with and (B)
without action potentials in the frequency domain

The next approach to evaluate the results from the bootstrap (the bootstrap
tests the whole signals, not just intervals as the t-test) is to examine if
the reaction to the emotion can be seen in the different types of signals
simultaneously. For example, if a test in filtered LFP signals was denoted
as significant, the test done for the same position in unfiltered LFP signals
would also be significant, and so on. We used the Fisher’s Exact test at the
5% significance level to examine that. The results are in tables
However, the only p-value lower than 5% was in MER signals
with and without AP. So those signals seem to be dependent.

Another approach to evaluate the results from bootstrap is to see if there
is a higher probability that if there was a specific neuronal activity on one
type of emotion, there would also be a specific neuronal activity on the other
two types of emotion. For example, if the test for happy and neutral images
is significant, the test for happy and fearful or neutral and fearful images will
be significant too. We used the Fisher’s Exact test at the 5% significance
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A)

B)

Figure 5.26: Schematic image of the time intervals where there are the difference
between the area and zero. In each row, there are time intervals where there is a
difference between the area and zero. Each row represents a single significant
neuron. The number of significant frequency interval in each time interval is
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denoted with the color.
(A) unfiltered LFP signal, (B) filtered LFP signal

level for examination. The results can be found in tables [5.29/5.30//5.311/5.32.
There is a higher chance for the MER signals with and without AP that if
the neuron reacts differently to the neutral and happy images, it will also
react differently to neutral and fearful or fearful and happy images. We also
found a dependence between fearful and happy images and neutral and fearful

images in the unfiltered LFP signals.
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Figure 5.27: Schematic image of the time intervals where there are the difference
between the area and zero. In each row, there are time intervals where there is a
difference between the area and zero. Each row represents a single significant
neuron. The number of significant frequency interval in each time interval is
denoted with the color.

(A) MER signal with action potentials, (B) MER signal without action poten-
tials
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Frequencies of difference between the curve and zero for significanct netérons
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Figure 5.28: Schematic image of the frequency intervals where there are the
difference between the area and zero. In each row, there are frequency intervals
where there is a difference between the area and zero. Each row represents
a single significant neuron. The number of significant time interval in each
frequency interval is denoted with the color.

(A) unfiltered LFP signal, (B) filtered LFP signal
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Frequencies of difference between the curve and zero for significanct neLérons
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Figure 5.29: Schematic image of the frequency intervals where there are the
difference between the area and zero. In each row, there are frequency intervals
where there is a difference between the area and zero. Each row represents
a single significant neuron. The number of significant time interval in each
frequency interval is denoted with the color.

(A) MER signal with action potentials, (B) MER signal without action poten-
tials
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LFP filtered

Bootstrap results Significant Insignificant H P-value
Significant 5 40
LFP unfiltered Insignificant 46 854 0.0888

Table 5.23: LFP filtered x LFP unfiltered in the frequency domain
LFP filtered

Bootstrap results Significant Insignificant H P-value
. Significant 1 15
i 50 879 0.5914

Table 5.24: LFP filtered x MER with AP in the frequency domain

LFP filtered
Bootstrap results Significant Insignificant H P-value
. Significant 1 17
MER without AP | 1, ignificant 50 877 !

Table 5.25: LFP filtered x MER without AP in the frequency domain

LFP unfiltered
Bootstrap results Significant Insignificant H P-value
. Significant 2 14
e 43 886 0.1745

Table 5.26: LFP unfiltered x MER witht AP in the frequency domain
LFP unfiltered

Bootstrap results Significant Insignificant H P-value
MER without AP Iifg}(‘fgiﬁt 423 81864 0.2098
Table 5.27: LFP unfiltered x MER without AP in the frequency domain
Bootstrap results Signiﬁ(lt/;]fj:{ WIiﬁ;igrfl)iﬁcant H P-value
MER without AP | SE™fcant 15 2 a0

Table 5.28: MER with AP x MER without AP in the frequency domain
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NF
Bootstrap results S T Pvalue
Significant 1 14
NH Insignificant 11 287 0.4513
i P-value
Significant Insignificant vaiu
Significant 1 10
N Insignificant 13 277 0.4132
¥ P-val
Significant Insignificant -vatue
Significant 3 15
i Insignificant 9 282 DA

Table 5.29: NH x NF x FH - unfiltered LFP in the frequency domain

NF
pootstrap results Significant Insignificant vl
Significant 2 11
NH Insignificant 17 281 0.1844
i P-value
Significant Insignificant
Significant 2 11
NH Insignificant 17 281 0.1844
¥ P-val
Significant Insignificant -vatue
Significant 3 G
H Insignificant 16 274 01101k

Table 5.30: NH x NF x FH - filtered LFP in the frequency domain

NF
Bootstrap results Significant Insignificant F-velms
Significant 2 3
NH Insignificant 5 301 0.0042
FH P-value
Significant Insignificant
Significant 2 5
NH Insignificant 4 306 0.0060
NF _
Significant Insignificant -vatue
Significant 1 3
i Insignificant 6 303 DS

Table 5.31: NH x NF x FH - MER with AP in the frequency domian
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5. Results

NF

Bootstrap results Significant Insignificant P-value
Significant 2 =
NH Insignificant 4 300 0.0063
FH P-value
Significant Insignificant Vv
Significant 2 7
NH Insignificant 5 303 0.0140
N P-value
Significant Insignificant
Significant 1 A
FH Insignificant 5 303 0.0928

Table 5.32: NH x NF x FH - MER without AP in the frequency domian
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Chapter 6

Conclusion

Patients with Parkinson’s disease undergo deep brain stimulation hoping
that it alleviates the motor symptoms of this disease. But some patients
have changes in emotions, although the electrodes for DBS are placed in the
subthalamus nucleus (motoric centrum). To study this phenomenon, patients
fulfill the emotional task during the implantation of the electrodes for DBS.
This thesis aimed to examine if the neuronal activity in STN was specific to
different emotions - happiness, neutral, and fear.

The results were gained by processing 105 records from 22 people diag-
nosed with Parkinson’s disease. Several recordings in different depths of the
electrodes in the brain were done for each patient. The results from t-tests
were used just to verify the bootstrap results because the t-test tests signal
parts while the bootstrap tests the signals as a whole.

Four types of signals were tested:

1. Unfiltered LFP signals - preprocessed signals of local field potentials

2. Filtered LFP signals - filtered preprocessed signals of local field potentials
with the high pass filter on 5 Hz

3. MER signals with action potentials (AP) - preprocessed signals from
microelectrode recordings

4. MER signals without action potentials (AP) - preprocessed signals from
microelectrode recordings from which AP from close neurons were re-
moved using the WaveClus algorithm
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6. Conclusion

We first evaluated if there is a specific neuronal activity by comparing
the results from bootstrap tests of signals after neutral and happy (NH),
neutral and fearful (NF), and fearful and happy (FH) images. Because the
significance level was set to 5%, it is expected that 5% of the results are false
positives. In the time and frequency domain, there were just a few significant
tests, and some of them, even all, could be false positives. But because we
can not decide if the significant results are false positives or true positives,
we should consider them all significant.

We also compared the number of all significant bootstrap tests in different
depths of the brain where the electrodes were placed. However, none of the
p-values for the chi-square test was higher than the significance level (5%), so
no dependency of the significant neurons on the depth of recording electrodes
was detected.

We evaluated the number of all significant bootstrap tests in the left and
the right hemispheres to see which hemisphere is more involved in emotional
processing. Nevertheless, from the results of Fisher’s Exact tests, the number
of significant tests does not depend on the hemisphere in the time domain
and not even in the frequency domain.

We examined if the reaction to the emotion can be seen in different types
of signals simultaneously. For example, if a test in filtered LFP signals were
significant, the test done for the same position in unfiltered LFP signals would
also be denoted as significant, and so on. The only dependency was found
in MER signals with and without AP in both the time and the frequency
domain. So it seems that removing the action potentials of the close neurons
doesn’t affect the results much. This could be caused by the fact that the
neurons close to the electrodes do not affect emotional processing, but the
activity of the distant neurons affects it so much that they are apparent even
if there are still action potentials from close neurons in the signal. Another
possible explanation is that the activity of both close and distant neurons is
connected with emotion processing.

Lastly, we evaluated if there is a higher probability that whether there were
a specific neuronal activity on one type of emotion, there would also be a
specific neuronal activity on the other two types of emotion. The results show
some dependency for the filtered LFP signals in the time domain, for MER
signals with and without AP in both the time and the frequency domain,
and for unfiltered LFP signals in the frequency domain. Because the test was
significant for neutral and happy images and also, for example, for neutral
and fearful images, it is not likely that these results are caused by chance or
that they are false positivities. So these signals might be candidates for real
emotional response. But to confirm that, more research is needed.
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6. Conclusion

While processing the bootstrap results, we discovered that the maximum
area under the curve or the maximum volume under the area often begins
immediately after the picture is shown. And that is impossible because the
brain can not process the environment so quickly. Some time is needed to
transmit the information through neurons. This could happen because there
might have been some artifacts left which could affect the results, or also,
there could be some problem with the recorded data.

To conclude our results, there is no significant proof that STN affects the
processing of different emotions. On the other hand, it also did not bring
any significant evidence that STN did not affect it because it is important
to remember that our recordings come from DBS. DBS is used only for
patients who can not be treated with drugs, so usually in an advanced phase
of Parkinson’s disease, where STN does not perform its function. So the
results could differ for healthy people. Another factor that could affect the
results is that the patients stopped taking the medicaments just a day before
the surgery, so they could still affect the brain, especially when the patients
took them for a longer period.

Our results support the hypothesis that the involvement of STN does not
depend on the type of emotion but that STN has a more general function
in emotional processing. Omne of the possibilities is that STN decides on
the relevance of the information from the environment. And based on it, it
modifies performed movements. Electrodes placed in STN for deep brain
stimulation could affect relevance detection and therefore cause changes in
patients’ emotions. [I3] Nevertheless, more research is required to verify this
theory. Especially, data from neurologically healthy people should be gained.
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Appendix B

Sofware documentation

This appendix contains documentation of the used Matlab function. Mat-
lab functions can be downloaded from: https://gitlab.fel.cvut.cz/
kutovmag/analysis_dbs_recordingsl Matlab version R2020a was used
for implementing the methods. In the given data, the signals were marked dif-
ferently - MEx = macro electrode recordings (LFP), UExd = microelectrode
recordings (MER).

B B1 Preprocessing

In preprocessing the data were loaded from .d files, filtered with the comb
filter and then divided into matrixes of the signals parts which occur 550 ms
after required emotion tag - H (happy), N (neutral), F (fearful). If any of the
significant parts contained an artifact - that part was not used.

comb__filter.m is a Matlab function that suppresses the 50 Hz and its
multiplies with the use of the comb filter. Arguments and returns of this
function are described in its documentation.

Loading.m is a Matlab file that loads the data from .d files and filters
them with the comb filter. comb_filter.m is used for filtering. Filtered data
are saved as origin_ name.d_ preprocessed.mat files into the save_ file. It is
used a list__modified2.txt file with the names of the recordings. The function
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B. Sofware documentation

does not have arguments or returns.

high_ pass_ filter.m is a Matlab function that filters the signal with FIR
high pass filter on the frequency fy. Arguments and returns of this function
are described in its documentation.

artefact__cuts.m is a Matlab function that, from a given signal, cuts the
parts of the signal which occur after the required tags. The cut part of the
signal has a given length fs - time.

Arguments:

B x - KxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns.

® tags - tags read from a .d file

® tagsToCut - name (or a cell array of names) of tags (their 2-character
abbreviations) to cut.

® time - time interval which we want to cut after the tag occurs (int)
® quantity - number of tags that occurs in the signal

® filter - if the data were filtered with the function filtfilt - the first and
last second of the signal cannot be used for forwarding processing

B treshold - minimum amplitude of the signal, which is denoted as an
artifact

Returns:

® y - LxM matrix with the cuted parts of the signal where M is fs(de fault)-
time and L is quantity minus the number of the signal parts occured
after the required tags which cannot be used because there is an artefact

artefact__cuts__uexd.m is a Matlab function that from the given signal
cuts the parts of the signal which occur after the required tags, the cut part of
the signal has a given length fs-time. It is a modification of artefact cuts.m
for a different way of detecting artifacts.

Arguments:
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B.2. Removing action potentials

® x - KxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns.

B tags - tags read from a .d file

® tagsToCut - name (or a cell array of names) of tags (their 2-character
abbreviations) to cut.

® time - time interval which we want to cut after the tag occurs (int)
B quantity - number of tags that occurs in the signal

B artifact - Mx2 matrix of indexes of the found artifact in the signal.
The first column is for the beginning. The second is for the end of the
artifact.

® fs - sampling frequency
Returns:

® y - LxM matrix with the cut parts of the signal where M is fs - time
and L is quantity - artefact_ count

® artefact_ count - the number of the signal parts that occurred after
the required tags but cannot be used because there is an artifact

tags_ count.m is a Matlab function that counts the number of required
tags. Arguments and returns of this function are described in its documenta-
tion.

decimation.m is a Matlab function that decimates the sampling frequency
100 times. Arguments and returns of this function are described in its
documentation.

B B.2 Removing action potentials

fill__artefact.m is a Matlab function that removes action potentials of all
the neurons from the original signal. But it preserves the length of the signal
(fills back the artifacts). Arguments and returns of this function are described
in its documentation.
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B. Sofware documentation

UExd_STN_noart is a Matlab file that cuts the artifacts and shorten
the signal from MER signals from STN. Data without artifacts are saved as
origin_ name.mat files into the save_ file.

It uses text files with those information:

B list modified2.txt - names of the .d files with the data
B fs.mat - the sampling frequency for data

® STN_ neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

8 UExd_ artefact.txt - list of the .csv files with the besginning and the end
of the time where the artifact occurs.

demoWC_ STN is a Matlab file that runs the WaveClus algorithm and
saves the results.

UExd__STN_ noAP is a Matlab file that removes actions potentials from
all of the neurons from the MER signals. Because the action potentials were
computed from MER signals without artifacts, it is modified to the original
length (with the use of the function fill _artefact.m) of the signal so it can be
processed same as the MER signals with action potentials. The information
about the action potentials are loaded from the output of the WaveClus
algorithm saved in the time_ file. MER signals with artifacts and without
action potentials are saved into the .mat files in the path - save_file.

It uses text files with those information:

B list modified2.txt - names of the .d files with the data
B fs.mat - the sampling frequency for data

® STN_ neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

® UExd_ artefact.txt - list of the .csv files with the beginning and the end
of the time where the artifact occurs.
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B.3. Time domain

. B.3 Time domain

In this section a description of an implementation of statistical tests modified
for the time domain can be found.

max__area.m is a Matlab function that returns the maximal area between
the given curve and zero. Arguments and returns of this function are described
in its documentation.

interval__ttests.m is a Matlab function that does a t-test of x and y in
the time domain at the 5% significance level.

Arguments:

® X - KxN matrix of signals (recorded in individual channels); signals
come in K rows, samples in N columns

® Y - KxN matrix of signals (recorded in individual channels); signals
come in K rows, samples in N columns

® b - number of the done t-tests - length of the avgX and avgY
Returns:

® p_ value - array length b of the p_ values from done t-tests

B intervals - indexes of the test where the p_ value is lower than the
required error rate - alpha (0.05/b)

average.m is a Matlab function that cuts the signal into the required
number of time intervals, and the average number of the interval represents
each interval. Arguments and returns of this function are described in its
documentation.

bootstrap__statistic.m is a Matlab function that does the bootstrap -
generates random indexes of the signal with replacement with the function
bootstrp and then for each bootstrap sample counts the statistics - max area
under the difference of the mean of the signals.
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B. Sofware documentation

Arguments:

® x - KxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns

® y - LxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns

B real__maximum - statistics computed on the origin data

® B - number of bootstrap samples we want
Returns:

B p_ value - int, result of the bootstrap statistic

B B4 Frequency domain

In this section a description of an implementation of statistical tests modified
for the frequency domain can be found.

get__spectrogram.m is a Matlab function that returns a spectrogram of
the signal, but in the required size to the frequency 200 Hz, the size of the
final spectrogram is set in the code. Arguments and returns of this function
are described in its documentation. STN

spectrogram__mean is a Matlab function that computes the mean of
the spectrograms from all of the signals in the matrix X with the use of the
function get spectrogram.m.

Arguments:

® X - KxN matrix of signals (recorded in individual channels); signals
come in K rows, samples in N columns

® fs - sampling frequency
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B.4. Frequency domain

Returns:

® spect__mean - 24x8 matrix (set default) of the mean from spectro-
grams from all of the signals, the spectrum is just up to 200 Hz and the
size of the frequency intervals is modified into default size in function
get__spectrogram.m

® F_ 200 - array of origin distribution of frequnecies up to 200 Hz for the
spectrogram

real__max_ volume.m is a Matlab function that computes the maximum
volume under the area x for the spectrum. It also prints where the maximum
can be found.

Arguments:

® x - KxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns

8 pum_ time - number of time intervals in the spectrogram

® num__ freq - number of frequency intervals in the spectrogram

Returns:

® maximum - maximum volume under the area x

® table_interval - num_freq x num_ time matrix, indexes of the position
where the maximum volume can be found are denoted with 0 othervise
itis 1

max__volume is a Matlab function that returns the maximum volume
under the area y and on which indexes we can find it - can find volume
above zero or under zero (determined by the parameter sgn). The volume is
computed in 4 directions - it has to be connected with the other squares of
the same sign on the left, right, top, or bottom to be taken into consideration.
For both signs, we look for positive values, so in case we look for a volume
under the zero, we have to change the sign in all signal samples. Arguments
and returns of this function are described in its documentation.
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B. Sofware documentation

interval_ttests_ spectrum.m is a Matlab function that does t-tests of
x and y in the frequency domain with an error rate of 5% in all t-tests.

Arguments:

® X - KxN matrix of signals (recorded in individual channels); signals
come in K rows, samples in N columns

® Y - KxN matrix of signals (recorded in individual channels); signals
come in K rows, samples in N columns

® b - number of the done t-test - length of the Spect_x and Spect_y

® fs - sampling frequency

Returns:

® p_ value - array of the p_ values of X and Y in spectral domain

B intervals - indexes of the test where the p_ value is lower than the
required error rate - alpha (0.05/b)

count__spectrum.m is a Matlab function that computes spectrogram
from the individual signals and reshapes them into the required size (1x(24x8)).
Arguments and returns of this function are described in its documentation.

bootstrap__statistic_ spectrum.m is a Matlab function that does the
bootstrap - generates random indexes of the signal with replacement with the
function bootstrp and then for each bootstrap sample counts the statistics -
max volume under the difference of the mean spectrogram of the signals.

Arguments:

B x - KxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns

® y - LxN matrix of signals (recorded in individual channels); signals come
in K rows, samples in N columns

B real__maximum - statistic counted on the origin data
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B.5. Usage of the implemented functions

® B - number of bootstrap samples we want
Returns:

® p_ value - int, result of the bootstrap statistic

B B5 Usage of the implemented functions

STN.m is a Matlab file that runs both hypothesis testing (bootstrap and
t-tests) for the LFP signal in STN in the time domain.

It uses text files with information:

® list modified2.txt - names of the .d files with the data
® fs.mat - the sampling frequency for data

8 STN_neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

8 LFP_ artefacts.txt - txt file of the name of the signal and for its every
electrode is set the minimum amplitude for the artifact (how big the
sample has to have amplitude to be considered an artifact)

Data are loaded from .mat files (only electrodes active in STN) and are
already preprocessed. The results (p-values for t-tests and bootstrap, borders
of the maximum area between the curve and zero - difference of two signals
and zero) are saved into the .mat files in the path - save_ file.

STN__spec.m is a Matlab file that runs both hypothesis testing (bootstrap
and t-test) for the LFP signal in STN in the frequency domain.

It uses text files with information:

® list modified2.txt - names of the .d files with the data
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B. Sofware documentation

® fs.mat - the sampling frequency for data

® STN_ neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

® LFP_ artefacts.txt - txt file of the name of the signal and for its every
electrode is set the minimum amplitude for the artifact (how big the
sample has to have amplitude to be considered an artifact)

Data are loaded from .mat files (only electrodes active in STN) and are
already preprocessed. The results (p-values for t-tests and bootstrap, borders
of the maximum volume between the area and zero - difference of two signals
and zero) are saved into the .mat files in the path - save_file.

STN_ UExd.m is a Matlab file that runs both hypothesis testing (boot-
strap and t-test) for the MER signal in STN in the time domain.

It uses text files with information:

B list modified2.txt - names of the .d files with the data
® fs.mat - the sampling frequency for data

® STN_ neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

® UExd_ artefact.txt - list of the .csv files with the beginning and the end
of the time where the artifact occurs.

Data are loaded from .mat files (only electrodes active in STN) and are
already preprocessed. The results (p-values for t-tests and bootstrap, borders
of the maximum area between the curve and zero - difference of two signals
and zero) are saved into the .mat files in the path - save_ file.

STN__UExd_ spec.m is a Matlab file that runs both hypothesis testing
(bootstrap and t-test) for the MER signal in STN in the frequency domain.

It uses text files with information:
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B.5. Usage of the implemented functions

® list modified2.txt - names of the .d files with the data
® fs.mat - the sampling frequency for data

8 STN_ neurons.mat - matrix, in the first column is the order of the
recordings which were identified as in STN, and in the second column is
the number of the electrode which was active in STN (recorded in STN)

B UExd_artefact.txt - list of the .csv files with the beginning and the end
of the time where the artifact occurs.

Data are loaded from .mat files (only electrodes active in STN) and are
already preprocessed. The results (p-values for t-tests and bootstrap, borders
of the maximum volume between the area and zero - difference of two signals
and zero) are saved into the .mat files in the path - save_file.
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