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Abstract

Deep brain stimulation (DBS) is a neu-
rochirurgical method consisting of con-
tinuous electrical stimulation to specific
subcortical brain structures. Today, DBS
is an established treatment for Parkin-
son’s disease. The neurologist manually
annotates the microelectrode recordings
recorded during DBS surgery to iden-
tify the ideal position of the DBS elec-
trode. Microelectrode recordings often
contain unwanted artefacts that could sig-
nificantly influence further signal process-
ing.

This bachelor’s thesis aims to imple-
ment and evaluate a set of classifiers for
automatic brain nuclei detection in micro-
electrode recordings. The focus is on the
influence of undesirable artifacts in mi-
croelectrode recordings and on the meth-
ods of their removal. The nuclei classifier
could advise the surgical team intraoper-
atively and in real-time.

Firstly, classification by thresholding
based on one of the microelectrode fea-
tures, normalized RMS power, was eval-
uated. The classification was performed
after two different methods removed arte-
facts from the signals. Proper artifact
removal has an immense impact on the ac-
curacy of classification. Secondly, the nu-
cleus was classified using Random Forest
(RF) with tuned hyperparameters and the
Support Vector Machine (SVM) algorithm
with a balanced training dataset. The
normalized RMS thresholding achieved
an accuracy of 90.71 %. In comparison,
the RF and SVM algorithms achieved an
accuracy of 90.89 % and 90.93 %, respec-
tively.

Keywords: microelectrode recordings,
classification, Parkinson’s disease, deep
brain stimulation, subthalamic nucleus
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Abstrakt

Hlboka mozgova stimulécia je neurochi-
rurgickd metdda, pozostavajica z elektric-
kej stimulécie Specifickej subkortikélnej
struktuary. Je to jedna z metéd liecby Par-
kinsonovej choroby. Pocas operacie hlbo-
kej mozgovej stimuldcie neurolég manu-
alne anotuje nahrané mikroelektrédové
zéznamy aby identifikoval idedlnu pozi-
ciu stimulacnej elektrédy. Tieto zaznamy
¢asto obsahuju neziaduce artefakty, ktoré
mozu vyznamne ovplyvnit ndsledné spra-
covanie a vyhodnotenie signalov.

Tato bakalarska praca je zamerana na
implementéciu a vyhodnotenie sady klasi-
fikdtorov pre automatické rozpoznavanie
mozgovych jadier v zdznamoch. Cielom
prace je sledovat vplyv neziaducich arte-
faktov a dopad ich odstranenia na ich na
nasledné vyhodnotenie. Automatické kla-
sifikdcia mozgového jadra by mohla pocas
operacie ulahcif lekdrom manualnu pracu.

Najskor bola implementovana klasifika-
cia mozgového jadra prahovanim zaloze-
nym na jednom z priznakov mikroelektré-
dovych zdznamov, normalizovanej energii
RMS. Pred klasifikdciou boli zo zdznamov
odstranené artefakty. Bolo ukazané, ze
presné odstranenie artefaktov ma velky
vplyv na presnost klasifikacie. Nasledne
bola implementovand klasifikdcia pomo-
cou algoritmu Random forest s dolade-
nymi parametrami a algoritmu Support
Vector Machine (SVM) so selekciou pri-
znakov. Klasifikdcia prahovanim dosiahla
presnost 90.71 %. Random forest dosiahol
presnost 90.89 % a SVM presnost 90.93
%.

Klicova slova: mikroelektrodové
zaznamy, klasifikicia, Parkinsonova
choroba, hlboka mozgova stimulacia,
subthalamické jadro

Pteklad nazvu: Vplyv artefaktov v
mikroelektrédovych zaznamoch na
klasifikdciu subkortikdlnych struktar
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Chapter 1

Introduction

Deep brain stimulation (DBS) is a method used in neurosurgery consisting
of delivering continuous electrical stimulation to a specific brain structure.
Stimulation is delivered through electrodes implanted during surgery and
connected to a neuropacemaker or a stimulator. Nowadays, DBS is an
established treatment for chronic movement disorders such as Parkinson’s
disease. Significant movement symptoms of Parkinson’s disease, such as
tremors, stiffness (rigidity) and slowness of movement (bradykinesia), are
treated by targeting the subthalamic nucleus with the stimulation. The
specialist identifies the ideal position during surgery by recording and manually
annotating the extracellular microelectrode recording (MER). Optimal results
can be obtained by precisely identifying the exact location of the target
nucleus.

. 1.1 Problem description

MER signals commonly contain undesirable artifacts, and their optimal detec-
tion plays a vital role as they may influence further signal processing. They
might affect over 25 % of the recording length. One of the primary sources
of artifacts is the electromagnetic interference from electrical appliances in
the operating room. This thesis aims to analyse microelectrode recordings
and develop and validate a classifier for automatically detecting nuclei in
the microelectrode recordings of DBS targeted at patients with Parkinson’s
disease. Before the nuclei classification takes place, the aritfacts are removed
from the dataset to ensure better classifier performance. The classifier could
advise the surgical team in real-time and help determine the electrode’s
position. As the manual evaluation of MER is prone to human error and can
take a long time, this could greatly serve the surgical team.

. 1.2 Aims of the thesis

To classify STN successfully, artifacts should be removed from the dataset.
The first aim of this thesis is to study available methods for signal prepro-
cessing, artifact removal and STN classification from MER. A part of this
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1. Introduction

thesis focuses on two different artifact removal methods, those methods are
evaluated using different method settings, and consequently, the best artifact
removal approach should be described.

Another task in this thesis is to implement and evaluate a set of STN
classifiers on artifact-free data, and the best classifier shall be derived. The
algorithms chosen for this task are Random Forest and Support Vector
Machine. Lastly, an optimal preprocessing pipeline for MER with respect to
classification accuracy should be defined.



Chapter 2
Medical background

This chapter is focused on the medical background of Parkinson’s disease
and serves as an introduction to the problems discussed in this thesis. The
thesis aims to classify a subthalamic nucleus from microelectrode recordings
gathered during deep brain stimulation operation. Deep brain stimulation
(2.3) is a method of treatment for Parkinson’s disease, which is described
in Section 2.1 Other treatment methods are described in 2.2l A detailed
description of microelectrode recordings is in Section [2.4l Artifacts found
in MER, what causes them and what problems they cause are described in
Section [2.5.

. 2.1 Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurological disorder characterised
by a great number of the motor and non-motor symptoms. It is named after
James Parkinson, the London doctor who first reported the symptoms in
1817. PD has a significant clinical impact on patients and affects their quality
of life (Karthick et al. [2020). When the disease progresses to its advanced
stage, the complications and symptoms are devastating.

According to Feigin (2017) prevalence of Parkinson’s is approximately
6.2 million people worldwide. Most people who get PD are over 60, but
10 % are under 50. Research revealed that the disease develops from the
interplay of environment and genetics. Slightly more men than women are
affected by the disease. Established environmental risk factors are exposure
to pesticides, prior head injury, and rural living just as well-water drinking.
Factors which are associated with decreased risk are tobacco smoking, coffee
drinking, anti-inflammatory drug usage (aspirin, ibuprofen and naproxen)
and alcohol consumption (Noyce et al. [2012)). However, smoking does not
protect against PD. A case-control study performed by Ritz (2014) showed
that PD patients could quit smoking more easily than controls, which is
compatible with a decreased responsiveness to nicotine during the prodromal
phase of PD.

There is no definitive test for diagnostics, and that is why PD must be
diagnosed based on clinical criteria. Significant motor symptoms include
essential tremor, the most common and easily recognised symptom. Tremors
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2. Medical background

are unilateral and occur at a frequency between 4 and 6 Hz. Hand tremors are
described as supination—pronation ("pill-rolling") tremors that spread from
one hand to the other (Jankovic 2008). Other characteristic motor symptoms
mentioned by Jankovic (2008) are bradykinesia (slowness of movement), rigid-
ity (increased resistance) and loss of postural reflexes, and he also mentioned
non-motor symptoms like autonomic dysfunction, cognitive/neurobehavioral
abnormalities, sleep disorders and sensory abnormalities such as anosmia,
paresthesias and pain. Non-motor symptoms are a common feature of PD
and are often underappreciated.

The disease is mainly caused by progressive degradation of cells producing
dopamine in the substantia nigra (SNr) - structure located in the mesen-
cephalon. Dopamine is a neurotransmitter playing a significant role in the
control of motor functions. A consequence of loss of dopaminergic function is
a lack of dopamine and an imbalance between direct (facilitatory) and indirect
(inhibitory) pathways through the basal ganglia - several large clusters of
neurons located within the cerebral hemisphere and the upper brainstem. The
result is decreased motor activity characteristic of PD. Research also supports
the evidence that PD involves a global network dysfunction at multiple levels
in the nervous system (Scarmeas 2001; Bloem, Okun, and Klein 2021)). As
mentioned in a paper by Tolosa (2006]), Parkinson’s disease is not considered
a single disease entity, and the term may be used with different meanings.
Parkinsonism is a term used to describe a group of neurological problems, and
its causes are numerous. PD is differentiated from other related parkinsonism
diseases by its features’ presence and specific presentation. Today, the actual
cause of PD is still unknown, and there is no recognised cure for it.

. 2.2 Parkinson’s disease treatment

The therapeutic methods are aimed at alleviation of the PD symptoms.
The PD medication helps control the symptoms in the early stage of the
disease. The most potent medication for PD is levodopa - a dopamine
precursor transformed to dopamine in the body. However, the effectiveness of
these drugs declines in the advanced stage (Groiss et al. 2009)). Apart from
therapeutic interventions under active research, such as gene therapy and cell
transplants, the DBS is the only widely used surgical intervention for PD as
of today. DBS to the subthalamic nucleus (STN) is proven to improve the
quality of life in patients suffering from advanced PD (Karthick et al. 2020).

B 23 Deep brain stimulation

Deep brain stimulation (DBS) has been used to treat hundreds-of-thousands
patients worldwide suffering from PD and essential tremors. It has been
approved for the treatment of dystonia and is currently undergoing clinical
trials as a treatment for depression and obsessive-compulsive disorder (OCD).
DBS is a source of a great deal of hope for patients with PD, possibly providing
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2.4. Microelectrode recordings

a new life to those suffering from it (Gardner [2013).

The DBS consists of delivering continuous electrical stimulation to neural
brain structure through surgically implanted electrodes. The success of
DBS depends on the selection of appropriate candidate patients and on the
accurate targeting of target nuclei. Optimal pretargeting using methods like
Magnetic resonance imagining (MRI), Ventriculography, Electrophysiological
exploration done by microelectrodes, and Intraoperative stimulation reduces
the number of passes, risk of bleeding and the duration of surgery (A. L.
Benabid [2003). Implantation of electrodes to identified target is usually
done under local anaesthesia. When the best track has been identified by
assessing clinical response to DBS by a skilled neurologist, the microelectrode
is removed and replaced by a chronic lead. The lead is then fixed to the
skull by, e.g., plate and screw, plug or dental cement (A. L. Benabid et al.
2009). Stimulation electrodes are then connected to a stimulation device,
which closely resembles a heart pacemaker.

The choice of target depends on disease type, and its symptoms, different
targets of stimulation provide different clinical effects. It is a general trend
that treating the STN improves all symptoms of PD, making it the best target
for stimulation. Another commonly targeted structure is Globus Pallidus
(GPi), which specifically improves dyskinesias (A. L. Benabid 2003). The
pulse generator settings such as frequency, pulse width and amplitude can be
adjusted post-operatively and are optimally tuned for each patient. Optimal
clinical results were obtained by stimulus frequency 120-180 Hz, pulse width
60-200 ps and 1-5 V stimulation amplitude (Breit, Schulz, and A.-L. Benabid
2004). The best candidate patients are those with a short beneficial duration
from levodopa doses and patients who have considerable motor benefit from
oral medication (Perlmutter and Mink 2006).

B 2.4 Microelectrode recordings

The neurophysiological technique of microelectrode recordings (MER, uEEG,
microEEG) of very fine neuronal activity is used to refine target position
during the surgery for accurate DBS electrode placement. The electrode
impedance determines its voltage response to current flow during stimulation.
If the surface area of the electrode is larger, then the impedance value it
will measure in the physiological frequency range is lower. Microelectrode’s
tip diameter is typically 2-4 ym and has impedance larger than 0.5 MOhm.
Such dimensions are comparable to dimensions of neurons and, therefore, can
isolate single neural activity and define the properties of individual neurons
in the closest proximity of the microelectrode. The background noise of
neuronal activity in areas more distant from the electrode is also present in
the recordings (Gross et al. [2006). Typical sampling frequencies for MER are
about 20 kHz.

MER is often carried out prior to implantation of the stimulation electrode
to obtain more accurate information on the target’s location. A set of
electrodes (commonly 5) is shifted into the brain using a microdrive. Neuronal
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2. Medical background

activity is recorded at every position, and based on those recordings, a
qualified neurologist evaluates the signals and identifies the margins of the
target structure and the optimal position of the stimulation electrode. This
process is usually based on visual and auditory examination of the signals.
Primary markers are neuronal firing pattern and amplitude of neuronal
background - both are higher in areas such as STN with high neuronal density
(Bakstein, Sieger, et al. . MER signals commonly contain different types
of artifacts.

B 25 Artifacts in microelectrode recordings

Recordings obtained using microelectrodes with tip size around one pm may
contain unwanted signal artifacts. Two examples of MER signals without
and with artifacts can be found in Figures 2.2, Electrode susceptibility
to mechanical shifts and electromagnetic interference is caused by its small
size and low source signal voltage. Great care must be taken to distinguish
artifacts to be able to interpret MER reliably (Stacey et al. . Their
presence might have a dramatic impact on further signal processing. The
main source of artifacts in MER is the electromagnetic interference from the
electrical appliances in the operating room, and it can cause extensive damage
to the MER signals. Other sources are DBS electrode vibration and patients’
or doctors’ movement or speech. Therefore artifacts are commonly found in
DBS MER data, and they may affect more than 25 % of the recording length.
Details on existing methods of artifact detection are described in Section
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2.5. Artifacts in microelectrode recordings
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Chapter 3
Methods

This thesis aims to evaluate a set of STN classifiers. STN is classified using
features computed from MER signals. Artifact detection plays a vital role in
this task, as undesirable artifacts might impact the classification results.

This chapter deals with different methods which were used in this thesis.
Section [3.1| contains a brief description of machine learning and methods
of classification. Subsection [3.1.1] describes one of the machine learning
algorithms - Random forest, and Section |3.1.3|is dedicated to the Support
Vector Machine algorithm. Subsection [3.1.4] describes what is a feature and
presents different MER features and how to compute them, followed by
Section [3.1.5 about feature selection.

Section 3.2 discusses different methods for detection of artifacts in MER.
Section (3.3 presents criteria which were used to compare different classification
methods and Section 3.4 suggests a solution for the thesis problems which
were already presented in the Problem description (1.1))

. 3.1 Classifier

Machine learning is a part of artificial intelligence that studies computer
algorithms that enable systems to learn and improve automatically through
experience. Machine learning distinguishes between two phases: training
phase (also known as learning phase) based on training data and the testing
phase, which is performed on the test data after training the model. The
goal of the training phase is to optimize the training parameters. During the
test phase, the learning model is tested with data set that has not been seen
before, and its performance is evaluated. The ability of a system to classify
previously unseen samples is called generalization.

Learning takes place if performance is improved after making observations
about the world. According to Russel (2012)), there are three types of learning:
unsupervised, reinforcement and supervised. In unsupervised learning, there
is no teacher and algorithms (for instance, K-means and Principal component
analysis) typically form potentially useful clusters. Another type of learning is
reinforcement learning, when the agent learns from a series of reinforcements.
Those could be rewards or punishments, and examples of such algorithms
are Q-learning and SARSA. The last group of algorithms is called supervised
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3. Methods

learning. A teacher is present and provides output to observed input, and the
agent learns an input to an output mapping function. Perceptron, Support
vector machine (SVM) and Random forest represent this group. This thesis
is based on supervised learning algorithms, as there are input data and
output-category labels annotated by neurologists.

One sub-problem a pattern classification task deals with is choosing the
suitable feature extraction. It is crucial to find features that are useful, fast
to compute and discriminating (they preserve useful information, enabling
differentiation) to build an effective algorithm. Calculated features are then
used as their input. The feature extraction is a part of data pre-processing.
If important information is thrown away during pre-processing, the overall
accuracy of the system can suffer (Bishop [2006]). Features are usually numeric,
often forming an n-dimensional feature vector.

Bishop (2006) also mentions other sub-problems, such as noise handling,
overfitting and model selection. Noise is a non-fundamental property of
pattern caused by randomness in the outside world or sensors. Overfitting
is a situation when a complex model classifies specific samples perfectly but
performs poorly on different data.

B 3.1.1 Random forest

A random forest (RF), first introduced by Breiman (2001), is a supervised
algorithm that uses multiple decision trees which operate as an ensemble.
A binary decision tree is a structure based on a sequential decision process
made by asking a series of questions. A decision tree is considered relatively
fast and more intuitive than other algorithms. One of the reasons is that
instead of observing weights, one can look at the questions asked.

The decision tree has a flowchart structure in which every node represents a
question; each branch represents an outcome of this question when evaluated,
and each leaf node represents a class label. Figure [3.1] illustrates a single
decision tree. Growing a tree involves deciding what conditions to use for
splitting and in what order. The given dataset is evaluated and split using
the chosen criterion function. Three different criterion functions are described
in[4.4.1. Choosing the best split is crucial because it determines the structure
of a decision tree and its performance. Our goal is to reduce the number of
splits needed, making the decision path shorter. After the tree is grown, the
classification takes place. The classification process starts at the root, where
a feature is evaluated, and one of the subsequent branches is selected. This
procedure is repeated until the final leaf is reached (Bonaccorso 2017)).
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3.1. Classifier

Figure 3.1: Decision tree

To build the forest, the training set is divided into smaller sets. One of
the algorithms used to divide the training set is Bootstrap aggregating (or
bagging). Training set cases are sampled by random with replacement. This
sample will be the training dataset for growing one of the individual decision
trees. Bagging improves the stability of the algorithm and helps to avoid
overfitting. Also, a random subset of variables (features) is used for each tree.
Each tree is grown to the largest possible extent. To classify a new object,
the input vector is put down each of the trees in the forest. This results
in different predictions by different trees, some weaker and some stronger
than others. The most common approach to interpreting these results is to
consider the majority vote correct (Breiman and Cutler 2004). Figure 3.2
contains a visualization of the RF algorithm consisting of single decision trees.
Random Forest ensembles are a divide-and-conquer approach based on the
idea that a group of weak learners be combined and form a strong learner.

e
»
Jr.
»
¥

)

Figure 3.2: Random forest
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B 3.1.2 Random forest hyperparameters

A set of hyperparameters controls the structure of the forest and each tree
in the RF algorithm. Default values of hyperparameters were derived from
the TreeBagger function (MATLAB 2020a)). Table 3.1 summarizes those
hyperparameters and is followed by more detailed description.

Hyperparameter Default value
InBagFraction 1

0 1
Cost 10
SampleWithReplacement | on
NumPredictorsToSample vV NumPredictors
MinLeafSize 1
Prior empirical
MaxNumSplits NumObservations — 1
MergeLeaves on
PredictorSelection allsplits
PruneCriterion error
Surrogate off

Table 3.1: Table of RF hyperparameters and their default values

B NumTrees

The first hyperparameter is the number of trees in a random forest (NumTrees).
Theoretically, more trees are always better. However, according to Probst
and Boulesteix (2017), the most significant performance improvement can
be achieved when growing the first 100 trees. The number of trees needed
to obtain optimal performance is dependent on the properties of the dataset
and may also depend on hyperparameters and the computational time in-
creases linearly with an increasing number of trees (Probst, Wright, and
A.-L. Boulesteix 2019).

B InBagFraction

The second hyperparameter to consider is the sample size (InBagFraction).
It determines the fraction of input data to sample with replacement from the
input data for training of each tree. When the sample size decreases, the
trees are more diverse, and their correlation is lower. This results in better
prediction accuracy when aggregating the trees, but the single tree accuracy
declines since fever observations are used for training (Probst, Wright, and
A .-L. Boulesteix 2019). The default value at the TreeBagger function is set
to 1.
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3.1. Classifier

B Cost

Next hyperparameter is the cost function (Cost), defined as a square matrix
C', where C(i,7) is the cost of classifying a point into class j if its true class
01

is 7. The default value is C' = [1 O] .

B SampleWithReplacement

Another hyperparameter is the setting of replacement (SampleWithReplace-
ment). The TreeBagger function samples with replacement by default.

B NumPredictorsToSample

The number of randomly drawn candidate variables (NumPredictorsToSam-
ple) is the number of random variables (predictors, features) to consider at
each split point. When the value of candidate variables is lower, the trees are
more different and less correlated and yield better stability when aggregated.
However, the trees tend to perform worse on average, as they are built based
on suboptimal variables (Probst, Wright, and A.-L. Boulesteix . This
means a trade-off between stability and accuracy of single trees has to be
made. The default value at TreeBagger classification is vnumPredictors,
where numPredictors is the number of predictor variables.

B MinLeafSize

The minimum leaf size (MinLeafSize) is the next parameter, describing the
minimum number of observations per tree lead. In the mentioned function, it
is set to 1 by default.

B Prior

The prior probability (Prior) is set to empirical by default, which means the
class probabilities are determined from class frequencies in the training data
labels. If set to uniform, the class probabilities are set to equal.

B MaxNumSplits

Maximal number of decision splits (MaxNumSplits), also called branch nodes,
is by default set to NumObservations — 1, where NumQObservations is the
number of observations.

B Mergeleaves

Merging the leaves (MergeLeaves) that come from from the same parent node
and that yields a sum of risk values larger or equal to the risk associated with
the parent node is set to on by default.
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B PredictorSelection

A further important parameter is the choice of the algorithm used to select
the best split predictor at each tree node (PredictorSelection).

It can be set to Standard CART (A Classification And Regression Tree),
which chooses the split predictor that maximizes the split-criterion gain over
all viable splits of all predictors (Breiman, Friedman, et al. [1984]).

Or a curvature test can be used. It is a statistical test determining whether
two variables are unassociated. It chooses the split predictor, which minimizes
the significant P-value of the chi-square independence tests (curvature tests)
between each predictor and the response (Sinica et al. |1997)).

Another option is to use the interaction test. It is a statistical test deter-
mining whether there is no interaction between a pair of predictor variables
and the response variable. It selects the split predictor that minimizes the
P-value of the chi-square independence tests between each predictor and
the response and, at the same time, minimizes the P-value of the chi-square
independence tests between each pair of predictors and response (Loh 2002]).

B PruneCriterion

Two criteria can be used to prune the subtrees (PruneCriterion). The first
criterion is the Node Error, the fraction of misclassified classes at a node.
The node error is 1 — p(j) if j is the class with the largest number of training
samples at a node. The second criterion is the impurity measure, which
depends on the choice of the SplitCriterion.

B SplitCriterion

The splitting rule (SplitCriterion) is the next hyperparameter. MATLAB’s
function offers three criteria: Gini’s diversity index, maximum deviance
reduction (also known as cross-entropy) and the twoing rule.

In this case, the Gini impurity index is the default. This is a cost function
which gives an idea of how good a split is depending on how mixed the classes
are in the two groups created by the split. Put in other words, it is a measure
of node impurity. It can be calculated as

1— me) (3.1)

where the sum is through the classes i at the node and p(7) is the fraction of
classes with class i that reach the specific node. Given a sample, it measures
the probability of misclassification if a label is chosen randomly using the
probability distribution of the branch. Its values range from 0 to 0.5. A
perfect split would have a Gini index of 0, while the worst-case split would
result in a Gini index of 0.5 (Bonaccorso 2017)).

Deviance (also known as cross-entropy) is based on information theory. It
can be calculated as

~ 3" p(i) log, (1) (32)
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3.1. Classifier

where p(i) is defined the same as for the Gini impurity index. A pure
node has null deviance, and deviance is maximum when the classes are
uniformly distributed (which means there are still many steps until the final
classification).

Unlike the previous functions, twoing rule does not measure node purity.
Let L(i) be the fraction of members of class i in the left child node after a
split and R(i) be the fraction of members of class i in the right child node
after a split. Let P(L) be the fraction of the observations that split to the left
and P(R) be the fraction of the observations that split to the right. Compute

P(L)P(R)(D_|L(0) = R()])* (3-3)

and select the split criterion, which maximizes the expression result. If it is
large, each child node is purer after the split.

B Surrogate

The last hyperparameter considered in this thesis is the surrogate decision
splits flag (Surrogate). The parameter is set to off by default. MATLAB
function fitctree finds no more than ten surrogate splits at each branch node
when the parameter is set to on. This can use considerable time and memory.
If the parameter is set to a positive integer, the fitctree function finds no
more than the specified number of surrogate splits. This can improve the
accuracy of predictions for data with values missing.

B 3.1.3 Support Vector Machine

Support-vector machine (SVM) is a machine learning model developed by
Cortes and Vapnik (1995). The objective of this classifier is to find a hyper-
plane in N-dimensional space that distinctly classifies given data points.

It is based on a linear classifier, which classifies data into two classes as:

7 = sign(w - © + b) (3.4)

where a set of labeled training patterns (yi,1),..., (yn,Zy) is given and
y; € {—1,1},i = 1...N. Many possible hyperplanes could be selected to
separate data points into two classes. The objective of SVM is to find a
hyperplane that has the maximal margin (the distance between data points
from different classes). Data is linearly separable if there exists a vector w
and a scalar b such that all elements in the training set meet the condition

yi(lw-x; +0)>1, i=1,...,N (3.5)
SVM finds the optimal hyperplane
wo-x+by=0 (3.6)
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which determines the direction ﬁ:’—'

projections of the training vectors. The maximal distance is ﬁ The
maximal margin optimization problem can be formulated as:

which maximizes the distance between

1
(w*,b*) = argmin = ||w]|? (3.7)
w,b 2

)

subject to: y;(w-x +b)>1, Vi={l,...,N} (3.8)

Support vectors are vectors x; closest to the hyperplane. The problem of
finding an optimal hyperplane can also be expressed as

N 1 NN
L= argmax{ Z a; — B} Z Z Qi QG Yi YT xj} (3.9)
@ i=1

i=1j=1
subject to » a;y; =0, a; >0, Vie{l,2,...,N} (3.10)

using Lagrangian («;’s are non-negative multipliers), where N is the number
of training data. This equation can be rewritten as

N N N
1
L= argmax{ > - 5 SN iy, K (s, a:])} (3.11)
«

i=1 i=1j=1
subject to » a;y; =0, a; >0, Vie{l,2,...,N} (3.12)
%

K(xi,x;) is the so-called kernel function, which maps the original non-linear
observations into a higher dimensional space to separate the data points (also
called the dimension lifting). With an appropriate nonlinear mapping, data
from two categories can always be separated by a hyperplane (Duda, Hart,
and Stork [2012)). Every semi-positive definite symmetric function can be a
kernel. Commonly used kernel functions are:

Linear kernel
K(x;, xj) = x; - x; (3.13)
Polynomial kernel of power p
K(a:,-,a:j) = (1+mi~:cj)p (3.14)

Gaussian kernel, or Radial Basis Function (RBF) where o is a free

parameter Yy
K (2, ;) = ¢ l#i3ll*/20 (3.15)

Two-layer perceptron
K(xi, xj) = tahn(ox; - xj + ) (3.16)
To solve the equation [3.11], we set the following:

oL oL

5 =0, 2 =0 (3.17)
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and it can be derived that

w = Z a;Y; T; (3.18)
€S
1
b= Ne Z (ai — Z a;jyi K (s, acj)> (3.19)
S ies jes

where S is a set of Ng support vectors.

Sometimes, the training data can not be separated into different classes
without error. In this case, we might want to separate the data with a minimal
number of errors. That is when slack variables are introduced. This model is
called Soft Margin SVM. The previous model without slack variables is also
called Hard Margin SVM.

The new minimization task has a form

1 N
(w*, b*) = argmin§||w||2 +CY & (3.20)

w,b i=1
subject to: y;(w-x; +b) >1-¢, & >0, Vi={l,...,N} (3.21)

where no penalty is paid if the point («, y) fulfills the condition y(w-x+b) > 1
and penalty C' - ¢ is paid if the condition is relaxed to y(w - x +b) > 1 —¢&.
This problem can be also expressed using Lagrangian

N N N
1
L= argmax{ Z ai = 5 Z Z a;a;yy; K (x;, :c])} (3.22)
e i=1 i=1j=1
subject toz a;y; =0 (3.23)
i
0<a;<C, Vie{l,2,..., N} (3.24)

In this thesis, the RBF kernel function was used. MATLAB’s function
fitcsvm (MATLAB [2020c|) was used to implement the algorithm.

B 3.1.4 Features

STN is the main target of PD treatment. The features used for STN classifi-
cation are computed from MER recordings. The typical recording length is
10 s, and the sampling frequency is 24 kHz. The density of neurons is much
higher in STN. This can be observed as the amplitude of the MER signal is
much higher once the electrode is near STN. More STN classification models
have already been implemented, and most of them embrace this attribute of
MER signals.

A paper by Moran (2006]) describes a procedure for STN classification
that could advise the surgical team intraoperatively and in real-time. They
used normalized Root mean square (NRMS) power calculated from MER to
implement a Bayesian classifier. A paper by Zaidel et al. (2009)) used Hidden
Markov Model based on observed NRMS and Power spectral density (PSD)

19



3. Methods

to detect STN in MER. A paper by Guillén et al. (2011)) characterized MER
by Support Vector Machines (SVM) classifier. The features they used in the
paper were Curve length (CL), Threshold, Number of peaks (Peaks), Root
mean square (RMS), Average nonlinear energy (ANE) and Zero crossings
(ZC). The description of features used in this thesis follows.

B RMS (Root Mean Square) power of signal

The RMS value of a signal can be calculated as the square root of the
arithmetic mean of the squares of each signal value (Guillén et al. 2011). It
was calculated as :

N 2
D im1 T

RMS(X) = ~

(3.25)

where N is the number of samples in the signal.

B NRMS (Normalized Root Mean Square) power of signal

The NRMS value was calculated by dividing each RMS power in one trajectory
by the mean RMS of the first five electrode positions recorded in the same
trajectory. This was computed as

RMS(X
5'i€F5

(3.26)

where F'5 are the first five electrodes in the same trajectory as X. This
is possible since all recordings start 10 mm before STN, so we can safely
assume that the first five electrode positions (depths) are outside the STN.
This normalization will secure comparability of power values throughout all
electrodes and all patients (Moran et al. [2006]).

B Power Spectral Density (PSD)

Power spectral density (PSD) measures have also been used for STN classifica-
tion. Different parts of the spectrum might be informative for STN detection.
PSD of the signal was estimated using Welch’s method. Signal was divided
into segments with window length 1 s and 50 % overlapping windows. The
number of discrete Fourier transform points was 24000, equal to the window
length. Afterwards, in order to quantify the oscillatory patterns, spectrum
was divided into three frequency bands. Band « (also referred to as low
band) with frequencies 3 — 12H z, band 8 with frequencies 13 — 30H z and
band ~ with frequencies 31 — 100H z. All indices were computed as a ratio
between the average power in the frequency band and the average power in
the spectrum (Cagnan et al. 2011)).
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B Average Nonlinear Energy (ANE)

Average Nonlinear Energy was calculated as :

N-1
1 § : 2
ANE = m 2 Ty — Li—1Tx41 (327)

where z; € X = z1,x9,...,zny and N is the number of samples in the

signal (Wong et al. 2009).

B Curve Length (CL)

Curve length was calculated as:

N-1

CL= |zit1 — i (3.28)
i=1
where z; € X = z1,x9,...,2zy and N is the number of samples in the
signal (Wong et al. 2009).
B Zero Crossing (ZC)
Zero crossing was calculated as:
1 N1
ZC = 5 Z sgn(ziz1) — sgn(x;) (3.29)
i=1
where z; € X = z1,x9,...,2zny and N is the number of samples in the
signal (Wong et al. 2009).
B Peaks

The number of peaks was computed as:

N—2
1
Peaks = 5 Z max{0, |sgn|zrir1 — zi] — sgn|rite — Tit1]} (3.30)
i=1

where z; € X = x1,x3,...,2ny and N is the number of samples in the

signal (Guillén et al. 2011)).

Values of CL, ZC and Peaks were normalized (divided by the number of
samples in the signal) because some signals may have a different length than
others.

First STN classification method used is called NRMS thresholding. This
method uses NRMS power derived by normalizing RMS power. RF and SVM
were evaluated using feature selection of RMS, NRMS, PSD, ANE, CL, ZC
and Peaks. All features were obtained after the artifacts were automatically
removed from the MER by either maxDiffPSD or COV method.
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B 3.1.5 Feature selection

The complexity of classification depends on a number of features d, which form
the d-dimensional space. Feature selection methods are intended to reduce
the number of features in the dataset, mainly to reduce the computational
complexity. Unnecessary features may be deleted from the dataset, and the
number of features may be reduced to a sufficient minimum. Reducing the
number of features can reduce the computational cost and, in some cases,
improve the performance of a model.

Two main dimension reduction methods are feature selection and feature
extraction. Feature selection consists of selecting the subset of features which
provide the most information from the original feature set. Feature extraction
finds a new set of features which are a combination of the original feature set
(Dougherty 2013).

The best subset of features contains the least sufficient number of features.
Two approaches to selection are forward selection and backward selection.
Forward selection starts with zero variables, and variables that decrease a
suitable error metric are added. Forward selection stops when further variable
addition does not decrease the error metric anymore. Backward selection
starts with all the variables, and variables are removed from the set. In each
step, the variable which decreases the error the most is removed. Backward
selection stops when further variable removal does not decrease the error
sufficiently. In both approaches, the process is costly and finding the optimal
subset is not guaranteed.

Wrapper feature selection methods create many models with feature subsets
and select the features which perform the best according to a chosen metric.
Wrapper methods usually apply cross-validation to select the features. Other
types of methods are called filter methods, which use a chosen function to
measure the characteristics of the supplied data to select the best features
(Dougherty 2013).

In this thesis, forward feature selection using the wrapper method was
used. MATLAB’s function sequentialsfs was used to implement the selection
of features. This function creates candidate subsets by adding the features
which were not yet selected to the subset. A 10-fold validation is performed
with different subsets of supplied training and testing data on each candidate
subsets. A performance metric, the so-called criterion function, is also supplied
to the sequentialsfs function. Each candidate feature subset is evaluated in
accordance with the criterion function. A subset of features which best
predicts the data is selected and returned (MATLAB 2020Db)).

. 3.2 Artifact detection

Microelectrode recordings (2.4) commonly contain signal artifacts. The
presence of artifacts (2.5) in MER is unwanted and could have a dramatic
impact on further signal processing such as spike detection and sorting
(Bakstein et al. [2017)). Those methods are used to separate the activity of
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neurons close to the electrode tip from the background activity and then
cluster, grouping the recorded spikes into clusters based on the similarity of
their shapes (Martinez et al. 2009). Widely-used spike detection algorithms
are susceptible to artifact presence.

The first and the essential step in handling artifacts is correct identification.
The most general approach is to label artifacts manually. The automatic
methods I am going to present based on autocorrelation or maximum-spectral
difference were first introduced in articles (Bakstein, Schneider, et al. 2015}
Bakstein et al. 2017)).

B Autocorrelation method

The autocorrelation-based approach is a technique that extends the existing
stationary segmentation method by Aboy (2006]) and Falkenberg (2003)). The
stationary segmentation method locates the longest stationery segment of
the MER signal, which can be considered the most accurate representation
of the characteristics of the neural structure. MER signal is normalized and
segmented into non-overlapping frames of the same duration. Next, a ratio
of the variances of the covariance values for two neighbouring segments is
calculated and is used to measure distance. This test statistic is used to
establish transition instances. Compared to the threshold and values that are
greater are labelled as transition instances, establishing a boundary between
stationary segments. Then the longest wide stationery segment is selected.
Bakstein (2015) extends this method by forming a distance matrix which
contains the distance between all potential segment pairs. Matrix is then
scanned, and the longest uninterrupted segment is returned. The evident
benefit of this approach is that non-contiguous subsets of the signal may be
returned, which is convenient for manual annotation comparison.

Autocorrelation method algorithm:

1. Signal is normalized:

g, = 2 M= (3.31)

Ox

2. Signal X is divided into m non-overlapping segments
{X}Zil :{X17X2aanaaXm} (332)

Those segments are transformed by autocorrelation function and station-
ary wavelet transform.

3. Then variance of all segments is computed as:
v; = var{y(X;)},1 € (1,n), (3.33)
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4. Next, variance of adjacent segments is computed according to:

maz(vi, v;) . .
= ie(I,n—1),j=i+1 3.34
9= (s, o) (Ln—1),j =i+ (3.34)

5. Distance matrix is formed:

0 diz ... dip-
do1 0 e d27n_1
p=| S (3.35)
dp—11 dn—12 ... 0

6. Values d;; are compared with threshold ¢

1,if d;j; > 0
A (3.36)
0,if dij <6
Then a greedy algorithm is used to search matrix D for the longest continuous
segment.

B Maximum spectral difference method

Secondly, the maximum spectral difference method can be used. This method
was also presented in papers (Bakstein, Schneider, et al. 2015; Bakstein et al.
2017)) and is based on the MER power spectral density and the assumption
that artifact-free band-pass filtered signals have smooth PSD and, on the
contrary, most signals containing artifacts have uneven PSD.

Clean signal segments from training set of N signals X = {X;, X2,..., Xy}
and corresponding annotated artifacts a = {aj,a2,...,an} are used to
compute mean spectrum C'

N
1 .
C=—v—" > a;Pj, (3.37)
i=1% =1
Normalized PSD of signal segment X; of length 1 s is denoted as Pj. It is
estimated using Welch’s method and divided by its sum. Consequently, the
sum of all spectral bins in Pj is equal to one.

Pj— psd(X;))
> psd(X;)
Next C'is compared to all signals in the training set and maximum absolute

difference is computed according to:

(3.38)

d= max |Pj(m)— C(m)| (3.39)
where m = 1... M denotes all spectral bins.

The value which maximizes performance on training data is set as an
optimal threshold for d.
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3.3. Criteria for classification comparison

B 3.3 Criteria for classification comparison

The performance of parameter settings for artifact removal methods was
evaluated by following parameters.

B Receiver Operating Characteristic Curve (ROC)

ROC is a performance measurement for classification problems. It is a graph
of false-positive rate on the x-axis versus true positive rate on the y-axis
binary classified for different threshold values between 0 and 1. The input
values are classified as true or false, and we can define a confusion matrix
(also known as a contingency table) containing four observations as shown in
figure [3.2}

| True class

Positive Negative
Predicted | Positive TP FP
class Negative FN TN

Table 3.2: Confusion matrix

Four other observations can be defined as:

B true positive rate, also known as sensititivity (Sen)

TP TP
Sensititivity = TPR = —-

=————=1—-—FN 4
P TP+ FN R (340)

® false positive rate

FP FP
FPR=—=———=1-TN 41
R N FP+4+TN R (3:41)
B false negative rate
FN FN
FNR = =1-TPR (3.42)

P  FN+TP

B true negative rate, also known as specificity (Spe)

TN TN
N TN+ FP

Specificity = TNR = =1—-FPR (3.43)

The graph is sometimes being called the sensitivity versus (1-specificity) plot.
ROC space is defined by FPR and TPR and the perfect method would score
a point with coordinates (0,1), which represents 100 % sensitivity and 100 %
specificity. On the other hand, a model with no skill can be represented by
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coordinates (0.5, 0.5). A ROC curve of STN classification by simple NRMS
thresholding can be seen in Figure (3.3

The Area under the curve (AUC) measures the two-dimensional area
underneath the ROC curve, and its value is 0.5 to 1. The MATLAB function
perfcurve was used to compute the ROC curve and AUC.

True positive rate

0.1 i

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 3.3: ROC curve of STN classification by NRMS thresholding

B The optimal operating point of the ROC

There are various ways how to obtain the optimal operating point of the ROC
curve. One way is to find the slope S first, using

g Cost(P|N) — Cost(N|N) N

~ Cost(N|P) — Cost(P|P) P (344)

Where Cost(N|P) is the cost of misclassification of a positive class as a
negative class and cost Cost(P|N) is the cost of misclassification of a negative
class as a positive class.
The P is defined as

P=TP+FN (3.45)

and N as
N=TN+ FP (3.46)

In the scope of this thesis, the misclassification costs for both classes are
the same. The point is found by moving the straight line with slope S from
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the upper left corner of the ROC plot down and to the right. The movement
stops when the line intersects the ROC curve. Matlab function perfcurve was
used to compute the optimal operating point.

B Youden’s J statistics (Youden index, J)
Youden’s J statistics is defined as
J = Sensitivity 4+ Specificity — 1 (3.47)
the maximum of Youden’s J statistics is often used
Jmaz = mazx;{Sensitivity(t) + Specificity(¢) — 1} (3.48)

where t denotes the threshold, for which J is maximal. (Ranganathan et al.
2019). In the case of STN detection task, point t is the optimal operating
point of the curve.

B Accuracy (Acc)

The accuracy of a classifier is calculated as ratio of number of correct predic-
tions to the total number of input samples

Number of correct predictions

Accuracy = (3.49)

Total number of predictions

For binary classification, accuracy can be also computed in terms of positives
and negatives which were defined in Table

TP+TN

TP+TN+ FP+FN (3:50)

Accuracy =

The Matlab function classperf was used to implement the accuracy calculation.

B Training error (Train Err)

Training error is the error obtained by calculating the classification error of a
model on the same data the model was trained on.

B Test error (Test Err)

Test error is obtained by running the trained model on a set of data that the
model has previously never seen before.

B 3.4 Structure of the suggested solution

The aim of this thesis is to implement a set of STN classifiers and compare
their performance. Firstly, either maxDiffPSD or COV methods remove
artifacts from the dataset. Various settings of those methods are tested, and
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the best method settings are obtained. Afterwards, the STN is classified by
one of the classifiers.

The Bachelor thesis by Konicarova (2021) concludes an outcome that
NRMS is the greatest feature for the detection of STN by thresholding. The
result was derived from the feature set containing RMS, NRMS, PSD, ANE
CL, ZC and Peaks. It is also easy to compute and is notably improved by
COV artifact removal. Also, the automatic artifact removal methods showed
the best results compared to the raw signal and manual annotation.

Based on those results, the classifier, which consists of NRMS threshold-
ing, was chosen to be suitable for the following STN detection task aimed
at searching for the best parameter settings. This could be classification
using MATLARB’s perfcurve function - simple NRMS thresholding by various
thresholds or by the threshold with the best results. Owing to the simplicity
of the NRMS thresholding STN classifier, a large number of parameter value
combinations for the artifact detection methods can easily be compared. In
the next step, the performance of more complex classifiers (SVM and RF) in
the STN classification task using pre-selected artifact detection parameter
sets from the previous step are evaluated. RF was evaluated using all previ-
ously mentioned features. SVM was evaluated using feature selection. Those
classifiers are then compared, and the best classifier for this task is selected.
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Results

One of the aims of this thesis is to implement and compare a set of classifiers
for nuclei classification on a given dataset. This dataset is briefly described in
Section [4.1. Section 4.2 is dedicated to optimal settings of automatic artifact
detection methods, and those settings are compared to optimal settings for
STN detection task in Section|4.3.3l Section|4.3|is dedicated to setting the best
parameters for automatic artifact detection and following STN classification
using NRMS thresholding by a set of thresholds using ROC curves (4.3.1)
or by the selected best threshold (4.3.2). Afterwards, classification by the
Random forest algorithm with feature selection was performed. Section 4.4.1
is dedicated to setting the best hyperparameters for RF classification. Those
hyperparameters are then used in Section [4.4.2) to derive the ideal artifact
detection settings for following RF classification. Then, those settings are
tested on unseen data. Section [4.5| is dedicated to STN detection by the
SVM algorithm with feature selection. The ideal artifact detection settings
for following SVM classification are derived. Results of both are compared to
simple NRMS thresholding in Section |4.6.1.

B 41 Data description

We used extracellular microelectrode recordings (MER) of 28 patients with
Parkinson’s disease to test the classifier. Recordings were collected during
electrophysiological exploration for deep brain stimulation surgery. The
typical recording length is 10 s, sampling frequency was 24 kHz. In practice,
the MER signal consists of spiking activity of most nearby neuronal units
and background electrical activity that comes from several sources, including
more remotely located units, measurement noise, and various artefacts (Dolan
et al. 2009).

The signal’s id contains the patient’s id, trajectory id, electrode and
electrode id depth. Recording depth carries information about how close
to the expected target a given recording position is located, and there are
typically five electrodes per trajectory (central, medial, lateral, posterior,
anterior). An experienced neurologist manually annotated data during surgery.
Neurologist annotated data as STN, SNr, Th or unknown. The subthalamic
nucleus (STN) is the target, substantia nigra (SNr) can be found below STN,

29



4. Results

and Th stands for the thalamus. The dataset contains 2195 areas annotated
as STN, 244 as SNr, 261 as Th, and the rest of the areas (5551) are annotated
as "other". This thesis is focused on detection of STN nuclei versus all others.

Additional set of annotation labels focuses on artifacts. The neurologist
annotated the presence of artifacts and the exact type of observed artifacts.
Of 8322 signals, 5342 were annotated. Observed artifacts contain mechanical
movement artifacts, low-frequency interference, electromagnetic interference,
"irritated neuron" artifact and others.

. 4.2 Artifact detection

The artifact classification of Autocorrelation and Maximal spectral method
was evaluated with different parameter settings. Two selected parameters to
vary were window length (winLen) and threshold (sometimes referred to as th).
In other words, in this section, we used the manual labels of signal sections
and tested the accuracy of different artifact classifier settings. Microelectrode
recordings with automatic artifact detection are available in Figures 4.1 and
4.2,

When winLen decreases, the maxDiffPSD method can recognize small
parts of the clean signal, and as it increases, the recognition is less detailed.
When the threshold decreases, a huge amount of data is removed from the
test set, often whole signals, and the amount of kept data increases with the
increasing threshold value. This can be observed in Figure |4.1. It contains
two different signals containing signal artifacts and the artifact detection with
various winLen and threshold settings. The detected artifacts are red, and
the clean signal has a blue color.

When winLen decreases, the chunks removed by COV method are shorter,
no signals are entirely removed, and the amount of kept data is higher. When
winLen increases, the method removes large pieces of signals and sometimes
even whole signals are removed from the test set. As the threshold increases,
the amount of data kept increases. This can be observed in Figure [4.2l It
contains two different signals containing signal artifacts and the artifact
detection with various winLen and threshold settings.

Accuracy and Youden-J of the classification were compared. Each signal
second was divided into four segments. The presence of a single segment
labelled by method as an artifact resulted in the whole second being labelled
as one.
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Figure 4.1: Artifact removal by maxDiffPSD method with different winLen

and threshold settings demonstrated on signal A and signal B, detected artifact

sections are in red
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window length (s)

4.2. Artifact detection

The detection results were compared with manual annotation, and the

accuracy and maximum Youden-J of the artifact classification were computed.

Six examples of results of artifact detection can be found in Table Results
with high Accuracy and Youden were chosen.

method th winLen Accuracy J raw signals? n.on-zei'o
(s) signals
maxDiffPSD | 0.04 0.05 0.8458 0.6588 0 0
maxDiffPSD | 0.1 0.1 0.8629 0.621 0.8635 0.8957
maxDiffPSD | 0.05 0.25 0.8066 0.4041 0.8046 0.9316
CoVv 1.2 0.16 0.7663 0.2334 0.875 0.996
CoVv 1.4 0.16 0.7744 0.3408 0.9097 0.999
Cov 1.4 0.33 0.7805 0.2823 0.8626 0.994

Table 4.1: Table of artifact classification performance for different methods and

parameters

The maxDiffPSD performance can be seen in Figures [4.3] and the
COV performance is shown in

Accuracy maxDiffPSD

0.05

0.1

0.25
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(b) : Youden heatmap

Figure 4.3: Artifact detection heatmaps for maxDiffPSD method

3Fraction of raw signals after artifacts are removed
4Fraction of signals with non-zero length after artifacts are removed
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fraction of raw signals after artifacts are removed
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Figure 4.4: Heatmaps of lost data for maxDiffPSD method
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Figure 4.5: Artifact detection heatmaps for COV method
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Figure 4.6: Heatmaps of lost data for COV method
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4.3. Artifact detection methods and their impact on STN detection by NRMS thresholding

B 4.3 Artifact detection methods and their impact
on STN detection by NRMS thresholding

Bl 4.3.1 NRMS thresholding by ROC curves

Both the Autocorrelation method and the Maximal spectral method previously
described in Section 3.2l were used to remove artifacts on a test dataset. The
ailm was to compare how accurately can the methods classify STN with
different parameter settings. The chosen parameters were detection threshold
(th) and time-window length (winLen).

After the artifacts were automatically removed from signals by one of
the methods with a predetermined set of parameters, the NRMS features
were computed, the results were compared with manual annotation. The
STN classification was evaluated in AUC and the Youden-J statistics of the
optimal operating point of the ROC was computed. This is also referred
to as NRMS thresholding by a set of thresholds using ROC curves. It is
essential to emphasize the amount of data lost due to artifact removal, as
results with a low amount of preserved data may be biased. Some signals
were even removed as a whole. When such a situation occurred, the NRMS
feature was calculated only from signals with non-zero length.

Seven examples of results of STN detection can be found in Table 4.2, Pa-
rameters with high AUC and Youden performance were chosen, and detection
was done for the raw signal too. The classification was performed on training
data.

The full maxDiffPSD performance evaluation can be seen in Figures 4.7,
4.8 /4.9, [4.10. From corresponding AUC and Youden values it is clear, that
artifact removal has a positive impact on classification accuracy.

method th winLen AUC J raw signals! n.on-ze;o
(s) signals

o - - 0.8042 0.2620 100 100

signal

maxDiffPSD | 0.005 0.66 0.9233 0.6773 0.3167 0.6216

maxDiffPSD | 0.0085 0.66 0.9232 0.6508 0.5358 0.7821

maxDiffPSD | 0.03 0.66 0.9103 0.5391 0.7532 0.9151

maxDiffPSD | 0.0085 1 0.9176 0.6496 0.5514 0.7661

CoVv 1.025 0.01 0.9222 0.6759 0.8037 1

Cov 1.05 0.16 0.9183 0.6631 0.5926 1

CoVv 1.4 0.08 0.9152 0.6064 0.9239 1

CoVv 1.2 0.33 0.9135 0.6017 0.7811 0.9885

Table 4.2: Table of STN classification performance for different methods and
parameters

The COV performance evaluation can be seen in Figures|[4.11/4.12//4.13/4.14

!Fraction of raw signals after artifacts are removed
2Fraction of signals with non-zero length after artifacts are removed
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Figure 4.8: Youden-J heatmap for maxDiffPSD STN classification
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fraction of raw signals after artifacts are removed
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Figure 4.9: Fraction of data kept for maxDiffPSD STN classification
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Figure 4.10: Fraction of non-zero signals for maxDiffPSD STN classification
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Figure 4.12: Youden-J heatmap for COV STN classification
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fraction of raw signals after artifacts are removed
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Figure 4.13: Fraction of data kept for COV STN classification
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Figure 4.14: Fraction of non-zero signals for COV STN classification
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Bl 4.3.2 NRMS thresholding by the best threshold

As results from the previous Section about STN detection parameters
could be hard to compare to the results of artifact detection and RF classifier
performance, the NRMS thresholding was additionally implemented. The
best threshold value to classify signals containing STN was derived from
MATLAB’s perfcurve function. After the best threshold 8 was found, data
were classified as :

o 1, if NRMS > 6.
position = (4.1)
0, NRMS <6.

where 1 labels the signal as STN and 0 labels it as outside of STN.

The accuracy values of such STN classification are shown in Figure [4.15
for maxDiffPSD method and in Figure for COV method.
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Figure 4.15: Accuracy heatmap for maxDiffPSD STN thresholding
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Figure 4.16: Accuracy heatmap for COV STN thresholding

B 4.3.3 STN detection compared to artifact detection

It would appear that when the parameters for one of the methods are being
chosen, the task of detection should be taken into account, as the best settings
for artifact detection and detection of STN differ.

The STN detection has achieved higher J values than the artifact detection
task. The J was computed from the optimal operating point of the ROC
curve in the STN detection and confusion matrix in the artifact detection
task.

The STN detection is surprisingly sensitive to any unwanted artifact pres-
ence. The highest classification results were achieved when a large amount of
data was removed before the STN classification.

COV method has a better performance for STN classification task and
maxDiffPSD method has a better performance for artifact detection task.

In the STN detection task, maxDiffPSD method has the accuracy of 0.9002
when winLen is set to 0.15 s, and the threshold is set to 0.0175. With those
settings, the J statistics has a value of 0.6279.

In artifact detection task, the maxDiffPSD method has the highest accuracy
of 0.8629 when the threshold is set to 0.1 and winLen is set to 0.1. With
those settings, the J statistics has a value of 0.621.

The COV method has the highest accuracy of 0.9071 in the STN classifi-
cation task when winLen is set to 0.01 s, and the threshold is 1.025. With
those settings, the J statistics has a value of 0.6759. It should be also taken
into account that with the mentioned settings, 80.37 % of raw signal data
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were preserved, and all signals have non-zero length.

When it comes to artifact detection, this method has the highest accuracy
of 0.7805 with winLen 0.33 s and threshold 1.4. The highest J is accomplished
by setting winLen to 0.16 s and having the same threshold.

. 4.4 Random forest STN classification

The STN classification by the Random forest algorithm was implemented.
Firstly, the dataset was divided into 8-fold cross-validation set containing
signals from 24 patients and a test set containing signals from the remaining
4 patients. Afterwards, the hyperparameters of RF were tuned, and the
performance of the RF algorithm, which classified data previously cleared
from artifacts by one of the artifact removal methods with different parameter
settings, was evaluated. Those actions were taken on the cross-validation
set, and the results were eight times cross-validated. Subsequently, the best
hyperparameters and the best artifact removal parameter settings were used
to classify the STN by RF algorithm on the test set.

B 4.4.1 Random forest hyperparameters

The influence of different RF hyperparameter settings was tested. Testing
was performed so that only one of the hyperparameters was changed, and the
rest of the hyperparameters kept their original value. Data from 24 patients
were used in this part of the thesis. It was divided into training and testing
data with a ratio of 7:1. The results were eight times cross-validated.

Firstly, artifacts were removed from the dataset using either maxDiffPSD or
COV method. A set of features described in Section [3.1.4| was used. The STN
was classified by RF algorithm with a various number of trees, algorithm was
implemented using MATLAB’s TreeBagger function. Results of classification
after maxDiffPSD removal and COV removal can be seen in Table 4.3 and
Table |4.4], respectively. The parameters for maxDiffPSD and COV artifact
removal were chosen based on results in Section 4.3. For maxDiffPSD method,
threshold was set to 0.0085 and window length to 0.66 s. For COV method,
threshold was set to 1.025 and window length to 0.01 s.

After the artifact removal, STN was classified by the RF algorithm with
the number of trees with the best accuracy and yet different hyperparameter
settings. Results of classification after maxDiffPSD removal and COV removal
can be seen in Table 4.5/ and Table |4.6|, respectively. Every row of the table
contains one hyperparameter whose value has changed. The first row of the
table contains the classification results with all RF hyperparameters set to
do default.
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4.4. Random forest STN classification

Num Train Test

Trees LT Y s ES Err Err

10 0.9123 0.7161 0.7564 0.9597 0.0182 0.0877
20 0.9162 0.7304 0.7688 0.9616 0.0154 0.0838
100 0.9105 0.7250 0.7718 0.9532 0.0131 0.0895
200 0.9118 0.7302 0.7771 0.9531 0.0126 0.0882
500 0.9161 0.7357 0.7774 0.9583 0.0118 0.0839

Table 4.3: RF evaluation with different number of trees after maxDiffPSD
removal

Num Train Test
Trees LS J e EES Err Err
10 0.9159 0.7263 0.7642 0.9620 0.0072 0.0841
20 0.9169 0.7375 0.7790 0.9585 0.0026 0.0831
100 0.9238 0.7606 0.7997 0.9609 0.0002 0.0762
200 0.9230 0.7567 0.7956 0.9611 0.0001 0.0770
500 0.9232 0.7568 0.7954 0.9614 0.0001 0.0768

Table 4.4: RF evaluation with different number of trees after COV removal

Train Test
Hyperparam Value Acc J Sen Spe Err Err
- all default 0.9097 0.7208 0.7673 0.9535 0.0133 0.0903
InBagFraction 0.5 0.9125 0.7297 0.7746 0.9551 0.0132 0.0875
Cost g (1) 0.8409 0.6925 0.8578 0.8347 0.0720 0.1591
Sample-
WithReplacement  CF 0.9123 0.7226 0.7662 0.9564 0.0120 0.0877
AT RER Ay 0.9156 0.7275 0.7662 0.9612 0.0112 0.0844
ToSample
AT eSS 09138 0.7213 0.7613 0.9600 0.0149 0.0862
ToSample
BT e (o 22 0.9123 0.7149 0.7538 0.9612 0.0151 0.0877
ToSample
MinLeafSize 2 0.9116 0.7249 0.7701 0.9548 0.0186 0.0884
Prior Uniform 0.8953 0.7453 0.8310 0.9143 0.0297 0.1047

) (Num-

MaxNumSplits Observations) /2 | 0154 0.7245 07632 0.9613 0.0138 00846
MaxNumSplits (I foree- 0.9118 0.7340 0.7821 0.9519 0.0122 0.0882
B Observations)/4 | ’ ’ ’ ’ ’
MergeLeaves Off 0.9151 0.7319 0.7733 0.9587 0.0114 0.0849
PredictorSelection Curvature 0.9176 0.7367 0.7769 0.9598 0.0139 0.0824
s et i 0.9153 0.7251 0.7638 0.9612 0.0155 0.0847

curvature
SplitCriterion Gini 0.9103 0.7295 0.7788 0.9507 0.0130 0.0897
SplitCriterion Deviance 0.9173 0.7384 0.7784 0.9600 0.0129 0.0827
SplitCriterion Twoing 0.9091 0.7248 0.7743 0.9505 0.0131 0.0909
Surrogate On 0.9138 0.7377 0.7840 0.9537 0.0112 0.0862

Table 4.5: RF evaluation with different hyperparameters after maxDiffPSD
removal
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Train Test
Hyperparam Value Acc J Sen Spe Err Err
- all default 0.9239 0.7606 0.7995 0.9611 0.0005 0.0761
InBagFraction 0.5 0.9219 0.7519 0.7908 0.9611 0.0005 0.0781
Cost g (1) 0.9144 0.7758 0.8413 0.9346 0.0142 0.0856
Sample-
AT Ty, O 0.9214 0.7541 0.7948 0.9594 0.0002 0.0786
Numpredictors- 0.9194 0.7454 0.7852 0.9602 0.0005 0.0806
ToSample
Numpredictors- ¢ 0.9199 0.7531 0.7967 0.9564 0.0005 0.0801
ToSample
Numpredictors- 0.9191 0.7551 0.8010 0.9541 0.0004 0.0809
ToSample
MinLeafSize 2 0.9225 0.7592 0.7993 0.9600 0.0081 0.0775
Prior Uniform 0.9174 0.7679 0.8233 0.9446 0.0035 0.0826

. (Num-

MaxNumSplits Observations)/2 | 9200 0.7519 07942 0.9577 0.0004  0.0800
MaxNumSplits (Qiates- 0.9225 0.7591 0.8000 0.9591 0.0005 0.0775
el Observations) /4 | ’ ’ ’ ’ ’
MergeLeaves Off 0.9221 0.7547 0.7943 0.9604 0.0006 0.0779
PredictorSelection Curvature 0.9212 0.7575 0.7998 0.9577 0.0021 0.0788
T e 0.9189 0.7513 0.7953 0.9560 0.0018 0.0811

curvature
SplitCriterion Gini 0.9228 0.7598 0.8003 0.9596 0.0006 0.0772
SplitCriterion Deviance 0.9200 0.7541 0.7973 0.9567 0.0005 0.0800
SplitCriterion Twoing 0.9244 0.7609 0.7988 0.9622 0.0005 0.0756
Surrogate On 0.9205 0.7493 0.7895 0.9598 0.0004 0.0795

Table 4.6: RF evaluation with different hyperparameters after COV removal

On the dataset cleared from artifacts by the maxDiffPSD method, the
RF algorithm had the best performance when PredictorSelection was set
to Curvature. The RF algorithm had the best performance on the dataset
cleared from artifacts by the COV method when SplitCriterion was set to
Twoing. In the case of maxDiffPSD, the number of trees was set to 20 and in
the case of the COV method to 100 trees.

B 4.4.2 The settings of artifact detection methods and their
impact on RF classification

The performance of the RF algorithm, which classified data previously cleared
from artifacts by one of the artifact removal methods with different parameter
settings, was evaluated. Data from 24 patients were used in this part of the
thesis. They were divided into training and testing data with a ratio of 7:1.
The results were eight times cross-validated.

Firstly, artifacts were removed from the dataset using either the maxDiff-
PSD method or COV method with different threshold and window length
values. The results from Section [4.3.2| about STN detection parameters were
used to choose the best threshold and window length values. The results
from [4.4.1 were used to set the RF hyperparameters for each method.

PredictorSelection was set to Curvature and number of trees was 20 when
the artifacts were removed by maxDiffPSD method. SplitCriterion was set to
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4.5. Support Vector Machine STN classification

Twoing and number of trees was 100 when artifacts were removed by COV
method. Evaluation results are shown in Tables 4.7, |4.8], respectively.

winLen Train Test
th Acc J Sen Spe Err Err

(s)
0,0050 0,6600 | 0.8959 0.6854 0.7399 0.9456 0.0468 0.1041
0,0300 0,6600 | 0.9143 0.7318 0.7755 0.9562 0.0098 0.0857
0,0085 0,6600 | 0.9164 0.7365 0.7781 0.9584 0.0147 0.0836

0,0085 1,0000 | 0.9128 0.7271 0.7710 0.9561 0.0126 0.0872

Table 4.7: Impact of maxDiffPSD STN detection parameters on RF classification

winLen Train Test
th Acc J Sen Spe Err Err

(s)
1.0250 0.0100 | 0.9209 0.7530 0.7938 0.9592 0.0003 0.0791
1.0500 0.1600 | 0.9180 0.7523 0.7985 0.9538 0.0006 0.0820
1.4000 0.0800 | 0.9203 0.7545 0.7974 0.9571 0.0004 0.0797

1.2000 0.3300 | 0.9198 0.7554 0.7992 0.9563 0.0006 0.0802

Table 4.8: Impact of COV STN detection parameters on RF classification

Lastly, the artifact detection and RF settings with the best performance
results were used on the unseen signals from the remaining four patients.
COV method with threshold 1.025 and window length 0.01 s was used to
remove the artifacts. Afterwards, RF classification with SplitCriterion set to
Twoing and 100 trees was used to classify STN. Final classification evaluation
is shown in Figure 4.9,

method th winLen Acc J Sen Spe Train Test
Err Err

(s)
Ccov 1.0250 0.0100‘0.9089 0.7829 0.8434 0.9395 0.0003 0.0911

Table 4.9: RF STN classification on unseen data

B a5 Support Vector Machine STN classification

The STN was classified by the Support Vector Machine algorithm. First, the
dataset was divided into 8-fold cross-validation set containing signals from
24 patients and a test set containing signals from the remaining 4 patients.
Then, the performance of the SVM algorithm, which classified data previously
cleared from artifacts by one of the artifact removal methods with different
parameter settings, was evaluated. Afterwards, the best artifact removal
parameter settings were used to classify the STN by SVM classifier on the
test set.
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B 4.5.1 The settings of artifact detection methods and their
impact on SVM classification

Support Vector Machine algorithm was also used to detect STN in MER
signals. Data from 24 patients were used in this part of the thesis. It was
divided into training and testing data with a ratio of 7:1. The results were
eight times cross-validated.

Before actual classification, feature selection was applied to a set of features
described in[3.1.4l This action aimed to reduce the number of input variables
and eliminate the redundant features. Forward wrapper feature selection was
used. The criterion function used, which evaluated the subsets of features,
was an error of the SVM classifier with the RBF kernel.

The performance of the SVM algorithm, which classified data previously
cleared from artifacts by one of the artifacts removal methods with different
parameter settings, was evaluated. Evaluation results are shown in Tables
4.10/and [4.11, The final classification on unseen signals from four remaining
patients is shown in Figure |4.12

winLen Train Test
th Acc J Sen Spe Err Err

(s)
0.0050 0.6600 | 0.8770 0.5478 0.5859 0.9619 0.1263 0.1230
0.0300 0.6600 | 0.9121 0.7322 0.7822 0.9500 0.0840 0.0879
0.0085 0.6600 | 0.9141 0.7251 0.7693 0.9558 0.0837 0.0859

0.0085 1.0000 | 0.9158 0.7375 0.7831 0.9544 0.0833 0.0842

Table 4.10: Impact of maxDiffPSD STN detection parameters on SVM classifi-
cation

winLen Train Test
th Acc J Sen Spe Err Err

(s)
1.0250 0.0100 | 0.9194 0.7580 0.8043 0.9536 0.0729 0.0806
1.0500 0.1600 | 0.9040 0.7062 0.7589 0.9472 0.0729 0.0960
1.4000 0.0800 | 0.9190 0.7649 0.8154 0.9495 0.0786 0.0810

1.2000 0.3300 | 0.9198 0.7554 0.7992 0.9563 0.0006 0.0802

Table 4.11: Impact of COV STN detection parameters on SVM classification

winLen Train Test
th Acc J Sen Spe Err Err

(s)
1.2000 0.3300 ‘ 0.9093 0.8067 0.8866 0.9202 0.0773 0.0907

Table 4.12: SVM STN classification on unseen data
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4.6. Comparison of STN classifiers

B 46 Comparison of STN classifiers

B 4.6.1 Comparison of NRMS thresholding, RF and SVM
classifier

The cross-validation set containing signals from 24 patients was used to derive
the best settings for RF and SVM algorithms. The results were eight times
cross-validated. The process of obtaining the best settings for classification
by the Random forest algorithm is described in 4.4.1| and |4.4.2 The same
process for the SVM algorithm is described in [4.5. The best settings were
then used to classify the STN on the test set.

The test set contained previously unseen signals from four patients. For
the RF, the artifacts were removed from the dataset by the COV method
with a 1.025 threshold and window length of 0.01 s and the hyperparameter
SplitCriterion was set to Twoing. For the SVM the threshold 1.2 and window
length 0.33 s was used.

Results on the test set of both RF classification and SVM classification
were compared to the results of NRMS thresholding with the best parameter
settings from Section 4.3.2| and are presented in Table 4.13. Simple NRMS
thresholding has satisfactory results for STN classification. Higher accuracy
can be achieved by RF and SVM classifiers. The biggest benefit RF and
SVM classifiers bring is their sensitivity, which is considerably higher than
the sensitivity of the NRMS thresholding.

Classifier Artifact detection Results

method th winLen (s) | Acc J Sen Spe
NRMS . (6101 1.0250 0.0100 0.9071 0.6759 0.7207 0.9553
thresholding
RF COoVv 1.0250 0.0100 0.9089 0.7829 0.8434 0.9395
SVM (6{0)% 1.2000 0.3300 0.9093 0.8067 0.8866 0.9202

Table 4.13: Comparison of NRMS thresholding, RF and SVM classifier

Table 4.13], which contains values of accuracy, sensitivity and specificity
for NRMS thresholding, RF and SVM classification, shows that SVM had
the highest accuracy, Youden-J and sensitivity, while the specificity of NRMS
thresholding was higher than the specificity of the rest.
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Chapter 5

Conclusion

The goal of this thesis was to implement and evaluate a set of classifiers for
automatic detection of the subthalamic nucleus in microelectrode recordings.
Microelectrode recordings were recorded during deep brain stimulation surgery
performed on patients with Parkinson’s disease. The focus of the thesis was
on the influence of microelectrode artifacts and their precise detection and
removal. Moreover, an optimal processing pipeline for microelectrode record-
ings with respect to the accuracy of implemented classifiers for identifying
the brain nuclei was found.

After an initial study of signal preprocessing methods, artifact removal and
nuclei classification from microelectrode recordings, a method evaluating the
influence of correct artifact detection on STN detection was implemented. Two
different artifact detection methods (autocorrelation and maximal spectral
difference method) were compared using different method settings. Nor-
malized RMS power was the feature according to which the nuclei were
classified using the ROC curve. Respective AUC and Youden values were
computed, and the accuracy of the classification was derived by using the
best threshold to classify the data. Overall, the COV method achieved the
highest accuracy of 90.71 % with threshold and window length parameters
set to 1.025 and 0.01 s, respectively. The accuracy of STN detection was
then compared to plain artifact detection using one of the mentioned methods.

Subsequently, two other STN classifiers were implemented and evaluated
on a set of computed features. The first algorithm was the Random Forest
(RF), for which the best hyperparameter settings were derived. Secondly,
the Support Vector Machine (SVM) was evaluated using feature selection.
Selection of features computed from corresponding MER signals was applied
to reduce the number of input features and remove redundant values.

Classifiers were evaluated on a set consisting of 8322 microelectrode recordings
and were compared with respect to achieved accuracy, Youden-J, sensitivity
and specificity. It was concluded that simple normalized RMS thresholding
could acquire satisfactory results if the artifacts are removed from the set
correctly. Slightly better classification results can be achieved by RF or
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5. Conclusion

SVM classifiers. NRMS thresholding can achieve an accuracy of 90.71 %,
RF achieved an accuracy of 90.89 %, and the SVM algorithm achieved the
best results of 90.93 % accuracy. The most significant benefit RF and SVM
classifiers bring is their sensitivity, which is considerably higher than NRMS
thresholding.

To conclude, the subthalamic detection task can be solved using relatively
easy implementation. The precise removal of artefacts has the has high impact
on nuclei classification performance, as opposed to the choice of classifier
or hyperparameter settings. If artifacts are present, they can significantly
influence the classification results. When artifact removal methods are set,
the detection task should be kept in mind, as different settings achieve the
best results for artifact detection and nuclei detection. For artifact detection,
the maxDiffPSD method has an accuracy of 86.29 % when the threshold is
set to 0.1 and the window length is set to 0.1 s. In the STN detection task,
the COV method has an accuracy of 90.71 % when the threshold is set to
1.025 and the window length is set to 0.01 s.

Even though the goal of this thesis was achieved, there is plenty of room for
improvement. If a larger dataset consisting of manual nuclei annotation from
different neurologists could be obtained, it would be possible to study the
classification deeper. A different set of classifiers could be used to detect the
nuclei and could be compared. Also, a different set of features could be com-
puted. Consequently, a new artifact removal method could be implemented
and compared to COV and maxDiffPSD spectral method.
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Appendix A

Technical details

This Appendix contains the description of files implemented during this
Bachelor’s thesis. All of them were implemented in MATLAB R2020a. The
repository contains those folders :

® thresholdingNRMS:

implementation of the NRMS thresholding STN classification

the implementation can be run using the file nrmsValidate.m
| SVM :

implementation of the STN classification using SVM using feature
selection

the implementation can be run using the file svmValidate.m

B RF:

implementation of the STN classification using RF

the implementation can be run using the file rfValidate.m
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