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Abstrakt: Tato préce z oblasti teorie ortogonélnich polynomi se zaméfuje na vyuziti zminéné
teorie pii FeSeni Heunovy diferencidlni rovnice. Zafixovanim jednoho z parametrd v Heunové
rovnici v zavislosti na jiném jsme schopni podle ¢lanka [11] a [10] naleznout feSeni ve tvaru
mocninné Fady a ur¢it koeficienty této fady. Zminény postup lze aplikovat za predpokladu, Ze
parametry této rovnice jsou kladné. V praci bude vysledek zobecnén na komplexn{ rovinu s
vyjimkou zaporné poloosy. Pravé v nalezeném feSeni figuruji ortogondlni polynomy piislusejici
jisté Jacobiho matici. Dale bude zkoumana prvni vlastni hodnota (zdkladni stav) této matice
pomoci dvou piistupit k poruchové teorii, klasického dle knizek [6] a [8] a pomoci pfFistupu
odvozeného v ¢lanku [5]. Bude ukazano, ze vysledky obou teorii se shoduji.
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Abstract: This thesis from the field of the theory of orthogonal polynomials focuses on the
application of this theory to solution of Heun’s differential equation. Fixing one of the parametres
of the equation in dependence on another, we will be able to find a solution in the form of power
series and we will be able to determine coefficients of these series according to [11] and [10]. This
approach holds under the assumption that all parametres of Heun’s equation are positive. The
result will be extended to the complex plane except for negative real numbers. In the found
solution, orthogonal polynomials corresponding to a certain Jacobi matrix occur. Next part of
the thesis focuses on finding the approximation for the ground state by two methods. Firstly,
we will find perturbation series according to [6] and [8]. Next, we compare obtained results with
those obtained by second method due to [5]. We will show that the results coincide.
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Introduction

This master’s thesis focuses on the theory of orthogonal polynomials and in particular on the
application of this theory to the solution of Heun’s differential equation.

Heun’s equation is an ordinary linear differential equation of the second order in the complex
plane with, in general, four singular points. Some sources, for instance [12], reffered to this
equation as natural generalization of the Gauss differential equation. Similarly as the Gauss
equation, Heun’s equation occurs after separation of variables in a certain PDE. Namely, according
to [12], this happens when adding three spins in quantum mechanics.

In the first chapter, we will summarize essential results from the theory of orthogonal polynomials.
Two approaches will be described. The first one, via the so-called moment functional. This
approach allows us to state that orthogonal polynomials corresponding to a given moment
functional obey certain three-terms recurrence. Conversely, Favard’s theorem claims that if
some system of polynomials obeys a certain three-terms recurrence, then there exists a moment
functional for which they are orthogonal. This will be the second approach — via semi-infinite
Jacobi tridiagonal matrices. Also, we will define Hamburger moment problem. We distinguish
two types of this problem — determinate and indeterminate. Some criterions for determinacy
of the Hamburger moment problem will be given too. The case of the determinate Hamburger
moment problem will be epsecially important for us. Results from the first chapter are mainly
taken from [4] and [1].

The second chapter is focused on the theory of the Fuchsian differential equations. Heun’s
equation is introduced as a special case of this type of differential equations. Main refference
for this part is [9]. Next, we introduce some notations and results from paper [11| which are
connecting Heun’s local function with some orthogonal polynomials.

The third chapter brings some original results for a given Jacobi matrix. Heun’s local function
will be found for Heun’s equation with just one fixed parameter. Firstly, some restriction
will be required on parametres to apply the theory derived in paper [10]. These results are
also summarized in this chapter. Next, we extend the result to a significantly larger range of
parametres.

The final, fourth, chapter focuses on the perturbation theory from two points of view. The
first one is the classical perturbation theory due to Kato. Main referrences for this section are
[6] and [8]. The second approach, via the implicit function theorem, is taken from [5]. Both
methods will be applied to the Jacobi matrix from chapter three, in order to find it’s ground
state. The obtained results from the two methods are then compared.
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Chapter 1

Theory of orthogonal polynomials

The following chapter is based mainly on the books [1] and [4]. First of all, we are going to
introduce orthogonal polynomials as a certain sequence that obeys some relations given by the
so-called moment functional. The vector space of all complex polynomials in a real variable z
is denoted by C[z] in the following chapter. However, if convenient, the domain of these can be
extended to the complex plane. Similarly, R[z] will denote vector space of all real polynomials
of a real variable.

1.1 The moment functional and the orthogonal polynomials

Definition 1.1.0.0.1. Let {y,}72, be an arbitrary sequence of complex numbers. Let the linear
functional £ : C[z] — C be given by the condition

Llz"] = pn

for all n > 0. In this case, linear functional £ is called the moment functional corresponding to
the sequence of moments {pn}52,. For all n > 0 number pu, is called the moment of the n-th
order.

It is clear that for a polynomial m(z) = Y}_, k2" we have L[r(z)] = S p_, crpx due to

linearity of the moment funcitonal. Now we are about to introduce orthogonal polynomials
correspoding to a given moment functional.

Definition 1.1.0.0.2. Let £ be a moment functional. A sequence of polynomials {P,(z)}72,
satisfying the following conditions for all nonnegative integers m and n

1. P,(x) is a polynomial of degree n,
2. L[Pn(x)Py(z)] = 0 for m # n,
3. LIP2(a)] £ 0
is called orthogonal polynomial sequence corresponding to the moment functional L.

In this text, ,orthogonal polynomial sequence® will be abbreviated ,,OPS“ due to [4]. Particularly
important for us will be the case where the condition 3 in definition 1.1.0.0.2 is specified as
L[P?(x)] = 1. In this case, we are talking about orthonormal polynomial sequence.

From conditions 1 and 3 in definition 1.1.0.0.2 it is obvious that Py(z) = a € C\ {0} and
L1] = po # 0.

Next proposition will give us some statements equivalent with definition 1.1.0.0.2.

13



Proposition 1.1.0.0.3. Let £ be a moment functional and let {P,(z)}5%, be a sequence of
polynomials. Then the following are equivalent:

a. {Pn(z)}22 is an OPS with respect to L,

b. Lir(z)P,(z)] = 0 for every polynomial 7(x) of degree m < n while L[r(x)P,(z)] # 0 for
every polynomial 7(x) of degree m = n,

c. Lz"mPy(x)] = Kpom,n where K,, #0, m =0,1,...n.

Remark 1.1.0.0.4. Let us consider OPS {P,(z)}72, corresponding to a moment functional L.
We already know that any polynomial of degree n can be represented as a linear combination

n

m(z) = Z cxPr(x), ¢n #0.

k=0

We will take Py, (z) for m =0,1,...,n and compute
Ll (@) P(x)] =Y ek L[Ps(2) Pu(2)] = e LB, ().
k=0

Thus we have identity for coefficients ¢ in the form

Llr(z) Py ()]
LIPi ()]

C —

which strongly reminds identity for Fourier.

As a consequence of preceeding remark, we can state that OPS is determined uniquely up to
an arbitrary nonzero factor. Indeed, if { P, ()}, is OPS corresponding to a moment functional
L, sequence {c, P, (x)}72, is also OPS corresponding to the moment functional £. Conversely,
we can state

Consequence 1.1.0.0.5. Let {P,(z)}5°, be OPS corresponding to a moment functional £ and
let {R,(z)}52, be another OPS corresponding to the moment functional £. Then there exist
constants ¢, # 0 such that

R, (x) = cpPp(x).

1.2 Existence of the OPS

Since we are aware of the fact that OPS corresponding to the given moment functional £ is
given unambiguously up to a factor, next to discuss will be an existence of the OPS to a given
moment functional £. For these purposes, we will use the following notation.

Notation 1.2.0.0.1. For a moment functional £ with a sequence of the moments {p,}22, we
will denote

fo  H1 . fn

L R L R
Ay o= det(pity)ij—o = | : : :

Hn  Hn+1 .- H2n




Theorem 1.2.0.0.2. Let £ be a moment functional with moment sequence {u,}. A necessary
and sufficient condition for the existence of an OPS correspoding to the moment functional £ is

A,#0, n=0,1,....
Next definition will be very important in our approach to the so-called moment problem.

Definition 1.2.0.0.3. A moment functional £ is called positive-definite (PD) if and only if
L[m(x)] > 0 for every polynomial 7(x) which is non-negative for every € R and is not identically
7Z€ro.

In case of PD moment functional £ one convenient property occurs.

Theorem 1.2.0.0.4. Let L be positive-definite. Then £ has real moments and a corresponding
OPS cousisting of real polynomials exists.

Finaly, we state a criteiron for positive-definiteness for a moment functional L.

Theorem 1.2.0.0.5. A moment functional £ is PD if and only if its moments are all real and
A,, > 0 for each n > 0.

1.3 Three-terms recurrence, Favard’s theorem and Jacobi matrices

In this section, we will show a one-to-one correspondence between moment functional and
semi-infinite matrix. We will be able to state this result for a certain type of moment functionals.

Definition 1.3.0.0.1. A moment functional £ is called quasi-definite (QD) in case that for every
n>0

A, #0
holds true.

From this section on, we are going to assume that sequence {P,(x)}%, corresponding
to at least quasi-definite moment functional £ is orthonormal. In this case, we will use a

~ o0
symbol {Pn(ac)} . Obviously, every polynomial can be expressed as a linear combination

n=
of orthonormal polynomials, thus

~ ~

2Py () = anni1Pas1(2) + annPo(@) + anp1Pai1(z) +. .. (1.1)

Multiplying both sides of equation 1.1 by polynomials f’l(az) for i = 0,1,...n and applying the
moment functional £ we will get, according to the proposition 1.1.0.0.3,

ap; =0, prot=0,1,...,n—2,
apn-1 =L [wﬁn(:ﬂ)ﬁn_l(m)} ,

ann =L {xﬁn(x)ﬁn(x)} .

15



We also have that ap 1 = A%:l # 0,n > 0. Now let as assume the following representation

2Py 1(x) = an 10 Pa(x) + Rp_1(2),

here R, —1(x) is a polynomial of degree not greater than n — 1. Let us multiply both sides by
P,(x) and apply the moment functional £. Hence we have

Ann—1 = Gn—1,n-

Due to this symmetry we see that expression (1.1) is reduced to

~

2P0 (%) = an_1Pa_1(2) + BnPo(x) + anPoi (z), (1.2)

where o, := annt1,Bn = ann. By the preceding it is obvious that terms of the sequence of
orthonormal polynomials {]3”(:1:)} corresponding to a certain at least quasi-definite moment

functional £ obeys three terms recurrence formula (1.2) with initial data
aoPy(z) + (Bo — z) Po(x) = 0. (1.3)

It means that if 130(95) is known, one is able to compute another ﬁn(az) by the recursion. As
Py(x) has to be polynomial of degree 0, natural choice is Py(z) = 1.

Remark 1.3.0.0.2. Moreover, if the moment functional £ is PD, 3, € R and «, > 0 for every
n > 0.

Now we are about to state a very useful conversion of the preceding thoughts, which is known
as Favard Theorem.
Theorem 1.3.0.0.3. Let {a, }2°, and {5, }72, be arbitrary sequences of complex numbers. Let

{]3”(13)} be a sequence of polynomials defined by three terms recurrence (1.2) with an initial

~

data (1.3). Then there exists unambigiously given QD moment functional £ such that {Pn(x)}

is its corresponding sequence of orthonormal polynomials. Moreover, if 8, € R and «, > 0 for
each n > 0, the moment functional £ is PD.

Now let us conclude the preceding thoughts. First of all, let us denote

50 (675} 0 0 0
Qg 51 a7 0 0 ..
‘7 = 0 a1 ,32 a9 0 ... : (1'4)

Definition 1.3.0.0.4. A matrix J given by (1.4) is called Jacobi (tridiagonal) matriz.

A symbol C* will stand for a vector space of column vectors of complex numbers. Jacobi
matrix J can be considered as an operator on this vector space. Moreover, if we will denote

~

~ ~ T
P(2) = (Ry(@), (@), Pala),. )
then obviously for every z € Ris P(z) € C* and one can consider equation for formal eigenvalues

JP(z) = zP(x). (1.5)
16



With ]30(;10) = 1 according to Favard theorem, equation (1.5) gives us unique QD moment
functional £ for which {ﬁn(:ﬂ)} is the sequence of orthonormal polynomials. Conversely, if we

have a QD moment functional £ we can construct Jacobi matrix as it was shown in the beggining
of the section.

Remark 1.3.0.0.5. Again, we assume recurrence

2Qn () = ap—1Qn-1(x) + BnQn(x) + nQni1(x).

However, this time we will replace initial condition with

Qolz) = 0, Qr(x) = —.

ap
Thus we have another solution {@Q,(x)}2, of the considered recurrence.

Definition 1.3.0.0.6. Polynomials introduced in the remark 1.3.0.0.5 are called the polynomials
of the second kind.

1.4 Zeros of the orthogonal polynomials

There are also some interesting properties of orthogonal polynomials in the brunch of their
roots. The following section will be focused on these. Firstly, let us generalize the definition of
positive-definiteness.

Definition 1.4.0.0.1. Let E be subset of R. A moment functional L is said to be positive-definite
on E if

Lir(z)] >0

for every polynomial 7(x) which is non-negative and non-zero on E. Set E is called the supporting
set of the moment functional L.

Theorem 1.4.0.0.2. Let I C R be an interval which is supporting set for some PD moment
functional £. Zeros of orthogonal polynomials corresponding to £ are all real, simple, and located
in the interior of the interval I.

Due to the fact that there are exactly n different zeros of the polynomial P, (z) in an interval
I C R, we can order them increasingly

Tl < Tpa < - < Ty
Without loss of generality let us assume that P,(x) is monic. Thus for every z > z,,, is
P,(x) > 0.
Conversely, for x < x,,1 one has
sgn P, (z) = (-1)".

Since Pp(xn k) = 0 = Py(xp ky1) for every k =1,...,n — 1 and P,(z) is differentiable, in each
interval (2, k, Tn k+1) there is a zero of a polynomial P, (z). Since P}, (x) the polynomial of degree
n — 1, one has all of the zeros.

The following theorem will be an important tool for us and will be often recalled as the
separation theorem for the zeros.

17



Theorem 1.4.0.0.3. Zeros of polynomials P, (x) and P, t1(x) are mutually separated, i. e.
Tn414 < Tpyi < Tntl,i+1
foreachi=1,...,n.

Remark 1.4.0.0.4. By the separation theorem for the zeros, we have that {z,, ;}°° , is decreasing

sequence and {Z n—k4+1}00 . is increasing sequence. Thus there exist numbers & and 7; in R
such that

fi = lim Tn,i
n—oo

n; = lim Tnn—j+1
n—00

Definition 1.4.0.0.5. An interval [§;,7;] is called the true interval of orthogonality of the OPS
corresponding to a moment functional L.

1.5 Representation theorem

An important question is under which conditions can be a moment functional £ represented as
a convergent Stieltjes integral over the real line, this means under which condition the expression

L[z"] = /R:C"dw(x) eR (1.6)

holds for some bounded, non-decreasing function v continuous from the right.

Definition 1.5.0.0.1. A bounded, non-decreasing function ¢ continuous from the right for
which

fp i= / z"dy(z) € R; n=0,1,..., (1.7)
R

holds, is called distribution function solving a problem (1.6).

Definition 1.5.0.0.2. Under same assumptions as in the definition above, a set
o(4) = {o € R; (%6 > 0) ((z +9) — h(w — 9) > 0)}
is called spectrum of the function ¢. A point x € o(v) is called spectral point of the function .

Remark 1.5.0.0.3. Conversely, a point € R does not belong to the spectrum of the function
1, if there is § > 0 such that ¢ (y) = constant for every y € [z — §,z + 0]. Therefore, o(¢)) is a
closed set.

Problem (1.6) is called Hamburger moment problem.

Definition 1.5.0.0.4. Two distribution functions 11,19 are said to be substantially equal if and
only if there is a constant C such that ¥ (x) = ¥o(x) + C at all common points of continuity.

Definition 1.5.0.0.5. Hamburger moment problem is called determinate if there is unique
distribution function v which obeys (1.6) up to substantially equal functions. Else, Hamburger
moment problem is said to be indeterminate.

Connection between a spectrum defined in 1.5.0.0.2 and the spectrum of a certain operator
will be discussed later.
18



1.5.1 Gauss quadrature

Remark 1.5.1.0.1. Let us take n € N and a set {t1,t2,...,t,} C R. We set

n

F(x) =[]z - t:).

=1

Obviously, deg <f£“2) =n — 1. Also,
Fl(ty) #0 k=1,2,....n

holds true. For £k =1,2,...,n one can define polynomials

F(x)

W= TP m)

Again, deg(lx(x)) = n — 1 and moreover

lk(tj) = 5j,k-

Then for every set of numbers {y1, y2,...,yn} degree of the polynomial
n
Lu(@) = eli(x) (1.8)
k=1
does not exceed n — 1. Moreover, it obeys property
n n
Ln(t;) Zzyklk(tj) :Zyk5j,k:yj J=12...,n
k=1 k=1
Note that the polynomial (1.8) is the only solution of the task of searching polynomial which

degree does not exceed n — 1 and its graph intersects points (¢;, y;)-

Definition 1.5.1.0.2. Polynomials constructed in the preceding remark and defined by the
equation (1.8) are called Lagrange interpolation polynomials corresponding to the nodes t; and
coordinates ;.

Let us remind that x, ; denotes k—th root of n-th orthogonal polynomial. The following
theorem is known as the Gauss quadrature formula.

Theorem 1.5.1.0.3. Let £ be a PD moment functional. Then for every n > 0, there exist
numbers A, 1, ... Ay, such that for every polynomail m(x) € C[z] of degree not exceeding 2n — 1

Lir(@)] =) Appm(@ns). (1.9)
k=1

holds true. Numbers A, 1,... A, are positive and obey the condition

ZAn,k = o- (1.10)
k=1

19



Due to this theorem we can prove the following proposition which is in the book [4] left as
an excercise for the reader. First of all, we denote a set of roots of all orthogonal polynomials
corresponding to a moment functional £ by the symbol NV (L), i.e.

o

N(L) = [ J{znndizr:

n=0

Proposition 1.5.1.0.4. Let £ be a positive-definite moment functional. Then N(L) is a
supporting set for L.

Proof. Let us take polynomial m(x) of degree n such that m(z) > 0 on N'(£). Since £ is PD and
7(z) of a degree less than 2n—1, we have according to the theorem 1.9 numbers A, 1,..., A4y, >0
obeying the relation

Lr(x)] = Appm (znp) > 0.
k=1

The preceeding expression must be positive. Indeed, there must be any j € {1,...,n} such that
7(2zn,5) # 0. If there was not such number, the following expression would be hold

m(x) =c¢ H(x — Zn k) = cPp(x)
k=1

for some ¢ € R. However, it would contradict the positivity of the polynomial 7(x) on the set
N (L). Indeed, according to the separation theorem for the zeros, polynomial P, (z) changes sign
in the roots of the polynomial P, 1(x), which are eleements of the set N'(L). O

Consequence 1.5.1.0.5. Under the same assumptions as in the proposition above, it is obvious
that N(£) C [&1,m1] and N (L) is a supporting set for the positive-definite moment functional
L. According to the theorem 1.4.0.0.2 the true interval of orthogonality [£1,7:] is the smallest
closed interval which is supporting for L.

1.5.2 Representation theorem

Let £ be a positive-definite moment functional with moments {x,}7>,. From theorem 1.9

we have that for every n € Ny exist numbers A, 1,..., A, , such that
n
Llab = = Apal, k=0,1,...,2n 1.
i=1

We define a sequence {1, }5

0 for = <an1
Un(x) = ¢ S0 1A, for xp, < <wypr1, where 1 <p<n. (1.11)
140 for >z,

It is readily seen that v, is

e bounded,
20



e continuous from the right,
e non-decreasing.
e and o(¢n) = {xn,1,...,2Znn} and a size of the jump at the point z,,; is Ay, ;.

Due to the last point of the preceding properties, one has
n
/ﬁd%@) = Apiab ;= k=0,1,...,2n — 1. (1.12)
R i=1

For our next step we will need the following theorems which are known as the Helly selection
principle and Helly’s second theorem

Theorem 1.5.2.0.1. Let {¢,,}>2, be a uniformly bounded sequence of non-decreasing functions
defined on real axis. Then there is a subsequence {¢,};2 of the sequence {¢,};2, such that
{pn}22y converges pointwise in R to a bounded, non-decreasing function.

Theorem 1.5.2.0.2. Let {¢,}>2 be a uniformly bounded sequence of non-decreasing functions

7b . . .
defined on compact interval [a,b] and let ¢, laf] ¢ pointwise, where ¢ is a bounded, non-
decreasing function. Then for any real function f continuous on the interval [a, b]

/ab fdn "5 /abfdeb

holds true.

Sequence {y, }o2, obeys assumptions of the theorem 1.5.2.0.1, thus there is some subsequence
{&n}zo:o which converges to a bounded, non-decreasing function v pointwise in real axis. Now
consider true interval of orthogonality [£1,71]. There are two possibilities. Firstly, [£1,m1] is
bounded, then due to the theorem 1.5.2.0.2 and (1.12) we have

/ aFd(z) = /m a*dy = py = L[zF] k=0,1,.... (1.13)
R 1

First equation holds, because for z < &; is ¢(z) = 0 and for > ny is ¥(x) = po. Therefore we
can write integration over smaller interval [{1,71]. The second possibility is that interval [1, 1]
is non-bounded. In this case, one does not get answer from Helly’s second theorem and it is
necessery to prove (1.13) directly. Answer for this question is given by the following theorem
which proof can be found in [4].

Theorem 1.5.2.0.3. Let £ be a positive-definite moment functional and the sequence {1, }72
defined by (1.11). Then there is a subsequence {1,,}°%, which converges on entire real axis to
a distribution function 1 for which o (1)) is an infinite set and 1 is a solution of the Hamburger
moment problem (1.6).

Definition 1.5.2.0.4. A distribution function ¢ which is a solution of the Hamburger moment
problem (1.6) is said to be a representation of the positive-definite moment functional £. If
¢ = 1 (i. e. it is the distribution function from the theorem 1.5.2.0.3) we are talking about
natural representation of L.
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1.5.3 About zeros of OG polynomials and the spectrum of the distribution
function

Theorem 1.5.3.0.1. Let £ be a positive-definite moment functional. Then there is a representation
¢ such that o(¢) C [&1,m]. Moreover, true interval of orthogonality [{1,71] is subset of every
closed interval which contains spectrum of any representation of L.

Theorem 1.5.3.0.2. Let ¢ be a representation of a moment functional £. Then

a(o)N (xn,ia "En,iJrl) #0
form=2,3,... and 1 <i<n-—1.
Particularly important for us will be the following remark.

Remark 1.5.3.0.3. Recall the notation
& = lim x,,,
n—oo

= 0 Tnnsi

Regarding those limits as elements of the extended real axis, one obviously has {;_1 < & <n; <
nj+1- Thus, we can define

¢ = —00 if (Vi € N)(& = —o0)
| limisee & if (3p e N)(&p > —o0)
and
[ i (vj € N)(n; = o0)
= lim; 0o m; if (3¢ € N)(n, < 00)
Adding

we have non-decreasing sequence
—00=§ < << << <<y <y < = 0.
Theorem 1.5.3.0.4. Let ¢ be a representation of a moment functional L.

1. If for some k € N inequality &, < &1 holds, then
o () N (&k, Erra] # 0. (1.14)

2. If for some k € N equality & = &1 holds. then & € o(¢),

3. £€o(o).

Theorem 1.5.3.0.5. Let ¢ be the natural representation of a moment functional £. If & > —oo,
then for every i € N, &; is an element of o(¢). Moreover, o(¢) does not contain any smaller point
than & except eventually &;.
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Similar result holds for 7.
Proof of the following proposition is left as an excercise for reader in [4], we include proof.
Note that according to [4], for coefficients of the Gauss quadrature the following equation holds

1
Sh_o PR(wns)
Proposition 1.5.3.0.6. Let —oco < & < & .... Then the following inequalities
1

<
2kzo P2 (&)

Angk = (1.15)

0 < (&) — (&)

hold.

P7:00f. The first inequality is a consequence of theorem 1.5.3.0.5. There exists a subsequence
{tn} of the sequence {1, } such that it’s pointwise limit is natural representation ¢. According
to definition (1.11) and relation (1.15) we have

J 7 1
wn(xn,k) - wn($n7k_1) = An,k = #
> im0 Pi(Tnk)

Due to the assumption of the proposition, for any k € N inequality &_1 < & holds. Hence,
there is N € N such that for any n > N inequality =, ;1 < & holds. Moreover, sequence {z,, 1 }
is decreasing according to the separation theorem for zeros. Thus, for every n € N inequality
&k < Tp i holds. Since that, we can find numbers a, b such as

Tppe1 < a <& < Tpg <b <&yt < Tt (1.16)

from a certain N € N on. By the choice of these numbers and by the definition (1.11) it follows
that

~ ~ ~ ~ 1 1

(D) — ¥n(a) = Yn(@nk) — YnlTnr—1) = S ﬁkz(xn,k) < Zévzo 13;3(%,1;)
Combining of (1.16), monotony of the function ¢ and theorem 1.5.3.0.5 one has
<
YRy {C)

Taking limit N — oo in the last inequality, we have proved the coveted inequality from the
statement. O

V(&) — V(&) = ¥(b) — Y(a)

Theorem 1.5.3.0.7. Let £ be a positive-definite moment functional and let [£1,7:] be bounded
subset of R. Then £ is determinate.

1.6 The operator of multiplication by the coordinate

Let us assume operator @ on the Hilbert space H = L?(R,dt) given by

Dom(Q) :={f € H;x - f(z) € H},
(Qf) (@) =z f(x).

The spectrum of this operator will be denoted by spec(Q) and it’s resolvent set by o(Q). Our
goal is to show that (1)) = spec(Q). For later purposes, let us recall well-known Weyl’s criterion
for self-adjoint operators.
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Theorem 1.6.0.0.1. Let H be a Hilbert space and T an self-adjoint operator on H. Then
1. A € o(T) only if there exists m > 0 such that (Vo € Dom(T)) (|[(T"— Nl > m||¢])

2. X € spec(T) only if there exists sequence (¢,,)>2; C Dom(T") such that (Vn € N)(|lon] = 1)
and ||(T — AN)en|| — 0.

As can be seen from the theorem 1.6.0.0.1, we need to show that @ is self-adjoint, if we wish
to apply Weyl’s criterion.

Proposition 1.6.0.0.2. @ is self-adjoint operator.

Proof. We need to find domain of @* and how does it work on it’s domain. We know that

Dom(Q") = {g € H;(3h € H)(Vf € Dom(Q))((g,Qf) = (h, f))} -
One has

(9,Qf) = /R g@)f(x)di(x) = /R 9@ f(2)d(z).

If h exists, almost for every x € R equality h(z) = z - g(x) must hold. Thus we have

Dom(Q") = Dom(Q),

and

(Q*g)(x) :=x - g(x).
Thus Q* = Q. O

Remark 1.6.0.0.3. Note that due to the fact, that @ is self-adjoint, spec(Q) C R. At the same
time, o(¢) C R from the definition.

Theorem 1.6.0.0.4. Under the same assumptions about ¥ and @), equality

o(1) = spec(Q)
holds.

Proof. We need to show two inclusions. Firstly, consider that A ¢ o(¢). By the definition of
o (1), there exists ¢ > 0 such that function v is constant on (A —e, A + ). Thus, Borel measure
generated by the function ¢ of this interval is zero. Let us denote

1

(Baf) (@) = br(@)f (@) = — f(z).

Function by is bounded almost everywhere on R (exceptional set is (A — &, A + €) which is of the
measure zero). Thus by € L*°(R,dv) and B) is bounded operator on H. Bounding constant can
be taken, for instance, as ||by||L~. We will show that B, is an inverse operator for Q@ — A. We
compute

1@~ NBxf — fI? = /R (Q = A)BA(x) — f(2) dip(a) = /R (@) — fo)Pdp(a).

\(A—g,A+e)
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The second equality holds, since deleting set of the zero measure does not affect result of the
integral. We have By = (Q — \)~! € B(H), thus A € o(Q). Therefore we have inclusion

spec(Q) C o (1)
Conversely, assume that A € o(1). Again by the definition of o (1) we have for every § > 0 that

pB((A=0,A+0)) = (A +0) —p(A=6) >0

Here pp stands for Borel measure generated by the function . Thus characteristic function of
the interval (A — d, A + J] is measurable and

[ xocsasa(@die) = us (= 8.0+
Let us denote §,, = % and I, = ()\ — %, A+ %) Obviously,

I |2 = /R ©i (@) d() = pp(l) > 0.

With further notation

1
fn = XIns
Iz, I
one has ||f,|| = 1. Let us compute
1 )\"r%
@ =51 = [ Jo =N v dvte) = = [l = 2Pav(a)
1 /\Jri UB (>\_ 77)"’_;) 1 o
“Ta H2n2/ WO ETE eO
n )\75 XI, n

thus by Weyl’s criterion we have A € spec(Q). Finally,

o (1) C spec(Q).
O

Remark 1.6.0.0.5. Finally, we will discuss a relationship between orthonormal polynomials and

~ o0
operator Q. A sequence of orthonormal polynomials {Pn} can be given by the three-terms
recurrence =0

~

2Py (%) = a1 Pa_1(2) + BnPo(x) + anPoi (z),
with initial data
Py(z) =1,
P_i(z) =

Let us compute matrix elements for the operator (). Those are given by
wi= (P, QPy) = / 2Py (2) By () dup ()
R

_ /R (m 1P 1 (&) + B Pon(2) + o Prn1(2) ) Palr) ().
25
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In our case
Qm,n = O‘n—lém,n—l + 5n5m,n + an5m7n+l-
This result can be represented by semi-infinite matrix

ﬁo (67) 0 0 0
(7)) 51 a1 0 0 ...
Q - 0 aq ﬁg Q9 0 ... = j

This is exactly already discussed Jacobi matrix.

1.7 Density of the set of polynomials in L*(R,dy) and unitary
operator between L?(R,d)) and /2

In the following section, we will discuss isometric operator between L?(R, d¢) and £? generated
by the solution 1 of the moment problem (1.7). Results are taken from book [1]. Assume

~ o
system of orthonormal polynomials {Pn} . and a system of the polynomials of the second
n=
kind {Q,}52, for a given Jacobi matrix J. For any n € Ny we define a function

Qn(z) —tQn-1(2)
Po(2) — tPy_1(2)

. (1.17)

wp(z,t) == —

It is the function of complex variable z and real parameter t. Obviously,
wn (z,00) = wp—1(%,0).
The following theorem will be important in the sequel text.

Theorem 1.7.0.0.1. Let z € C be fixed such that Im(z) > 0. Let the parameter ¢t vary along
the whole extended real axis. Then the function

w = wp(z,1)

describes a circular contour K, (z) in the half-plane Im(z) > 0. The center of this circle is at the
point

for its radius one has

[z =21 050 | Pe(=) >
The equation of the circle K, (z) may be written in the form

2

n—1
> wPz) + Qulz)| =0,
k=0

26
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Remark 1.7.0.0.2. Points w lying outside the circle K,,(z) are described by inequality

w —w

2
- ‘<0
VARV A

n—1

=" [wPiz) + Qul2)
k=0

Conversely, points w lying inside the circle K, (z) are given by

_ n—1
w —gj . ];0 ‘wﬁk(z) + Qr(z)

> 0.

‘2
Z_

Proposition 1.7.0.0.3. Under the same assumptions as in the theorem above, for every z € C\R
an inclusion

K,(z) C K,-1(2), neNy
holds.

We conclude, that there is a decreasing sequence { K, (z)} for fixed point z € C\R. It means
that there exists some limiting set K (2z). This can be either a circle or a point. Let us take
w € Koo(z) arbitrary. Obviously for every n € Ny we have

n—1

~ 2 w-—w
S [wPi(e) + Qu(e)| < S
k=0

Taking limit n — oo on both sides of the previous expression, one gets
s 2
> |whi() + Qi) < 0.
k=0
~ o0
Hence, we have the solution {ka(z) + Qk(z)} of the recurrence

Qp1Yn—1 + (,Bn - Z)yn + apYnt+1 =0,
belonging to £2 independent on the type of the limiting set.

Theorem 1.7.0.0.4. The solution of the recurrence

Qp1Yn—1 + (,Bn - Z)yn + anYnt1 = 0,
belongs to £2 only if K.o(2) is a circle.

Theorem 1.7.0.0.5. If K (z) is a circle for some z € C\ R, then K (z) is a circle for any
z€ C\R.

Theorem 1.7.0.0.5 allows us to define the following.

Definition 1.7.0.0.6. Jacobi matrix J is called of a type C if K () is a circle for some (and
thus for any) z € C\ R. Conversely, Jacobi matrix J is called of a type D if K (z) is a point
for some (and thus for any) z € C\ R.
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Remark 1.7.0.0.7. For Jacobi matrix J of a type D there exists unambigiously given function
w = w(z) such that

S |wPi(e) + @ul2)| <00, (¥zeC\B),

while Koo(z) = {w(z)}. This function is called Weyl’s function and will be defined more
specificaly later.

Theorem 1.7.0.0.8. Let {u,}°2, be a positive sequence of moments. If the corresponding
Jacobi matrix is of type C, the Hamburger moment problem (1.7) is indeterminate.

Let us consider a positive sequence of the moments {u,}5°, and a function 1 solving
Hamburger moment problem

U = / uFdy(u), k€ Np.
R

Symbol Li will denote space of all quadratic-integrable functions in a space with Borel measure
given by function 1, that says

fell & /R |f (w)2de(u) < oco.

Li is a Hilbert space. Scalar product is given by

(Vf,g€L¢)<f7 ho = [ glaanta >>

~ o
The system of orthonormal polynomials {Pn} is obviously orthonormal in L2 An element
n=

z = {2, }2, € £? is said to be finite if z,, # 0 just for a finite number of indices n € Nj.
Let us construct a certain operator U : £2 — L2 The constructions will be devided in several

steps. Firstly, let us take a finite element x € £2. We define
f(u) = (Uz)(u) = o Po(u) + 21 Py(w) + -+ + 2 Po(u) . ..

Obviously, f(u) € pr. Moreover

113 = U=[|%, —/ |f () Py (u Z xzx]/ dip(u) = > |zil* = |||,
1,7=0 i=0

here symbol || - || stands for the norm in ¢2. Similarly,

Uz, Uy)y = (2,y).
In the second step, let us take 2 € ¢? arbitrary. We define
)= w2 Pp(u)

k=0
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Clearly,

n

/ua ()P = Y el

k=m+1

Taking limits m,n — oo on the both sides in the expression above, one gets

lim /un — fonl)Pdep() =

n,Mm—00

Hence {f,}72 is a Cauchy sequence in L?p, thus there exists a limit f in L?p. We define

(Uz)(u) == f(u).

We will show that operator U is an isometry. Indeed, let us take x,y € ¢? arbitrary. Let us
denote f:=Ux,g:= Uy. Then

Zxkyk = lim Zl‘kyk = lim (fn,9n)y = (f,9)y-

k=0

Next, we justify the last equality. Indeed,

Thus

(s gnde = (s 9)ol < fn = Fllllglle + 1 £ Mg llgn = glle +11fn = Fllollgn — gl

Taking limit n — oo in the expression above, we have proven the equality. The preceding process
can be summarized in a theorem.

Theorem 1.7.0.0.9. Any solution of the Hamburger moment problem (1.7) 1) generates linear
map U : (2 — L2 given by

Uzx —L¢— lim Zkak (u).

n—o0

Furthermore, Dom(U) = ¢? and Ran(U) := Ay is a subspace of Li. The map U is isometry and
for an inverse map

a%zéﬂmﬂmmww. (L18)

obeys.

(1.18) is an equation for Fourier coefficients. These can be introduced for any function
F € L2, we do not have to be restricted for those belonging to Ay. With a function F we can
associate Fourier series

o0
E i Py,
k=0
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with xj given by (1.18). We adopt the following notation
o A~
k=0

The partial sum
n
D> okl
k=0

is the best approximation of the function F' in Li. It means

In::/
R

where R, is a polynomial with degree not exceeding n. We have

2
av() = myin [ [F(w) = Rl dw(u),

F(u) =Y 2 Pr(u)
k=0

= u2 U—nx2.
fn—/R|F< ) 2dup(u) ;)rkr

Taking n — oo one gets Bessel inequality

el < [ PP,
e

In the case of equality, we are talking about Parseval equality.
Natural question arise, whether Ay coincides with Li. The following theorem answers this
question.

Theorem 1.7.0.0.10. Subspace Ay coincides with Li only if the set of all polynomials is dense
in L2.
P

Consider a set of all solution 1 of the moment problem (1.7). Now, we define function

wy(z) = /R dy(u) (1.19)

u—z

Definition 1.7.0.0.11. A function defined by (1.19) is called Weyl’s function.

Theorem 1.7.0.0.12. The set of all values of Weyl’s functions wy(2) consider in a point z € C\R
coincides with a closed disc bounded by the circle Koo (2).

For later purposes, we will prove a part of the statement above.

Proof. Let us take z € C\ R arbitrary. Symbol w will stand for the value wy(z). Let us consider
a function

fw) = —— e L}

u—z
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and let us find it’s Fourier coeflicients

o= [ A = [ FO=EE ag) 4 B [ S = Gue) + whi)

u—=z u—=z

Hence we have

According to Bessel inequality

| 5 2 1 1 1 1 w—w
> lubi) + @] < [ v = [ (- ) ) =
— R |u— 2| RZ—Z\u—2 uU—2% z—Z
(1.20)
Thus, inequality (1.20) gives us that w is an element of closed disc bounded by Koo (2). O

Theorem 1.7.0.0.12 is a prelimianary for a proof of the following important theorem.

Theorem 1.7.0.0.13. If a Jacobi matrix corresponding to the given positive sequence of moments
{1n}22 is of the type D, then the moment problem (1.7) is determinate.

By the combination of theorem 1.7.0.0.8 and ?? one has

Theorem 1.7.0.0.14. The moment problem (1.7) is determinate only if the corresponding
Jacobi matrix is of the type D.

Finally, let us concentrate on the question of density of the set of polynomials in Li. Let us
take a solution of the moment problem (1.7) v such that

/Rukdw(u)

Then obviously set of all polynomials (with restricted operations) is a subspace of Li. Let us
choose z € C\ R and find a value
d
oe [ de
RU—Z

< oo, VkeNp.

According to (1.20) we have

IE

<

(1.21)

3 [wBi(z) + Qu(a)| < 22

k=0

|

z —

Definition 1.7.0.0.15. Under the same assumptions as above, the solution v is said to be
N-extremal in z € C\ R if the equality holds in (1.21)

Theorem 1.7.0.0.16. Under the same assumptions as above, if the solution ¢ is N-extremal in
some z € C\ R, then 1 is N-extremal in any z € C\ R.

Theorem 1.7.0.0.17. Under the same assumptions as above,
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1. if the set of all polynomials is dense in Li, then 1 is N-extremal in any z € C\ R,

2. if the solution 1 of the moment problem (1.7) is N-extremal for some z € C \ R, then the
set of all polynomials is dense in L?Z}.

By the following definition, the previous theorem can be formulated in the more compact
form.

Definition 1.7.0.0.18. Under the same assumptions as above, the solution 1 of the moment
problem (1.7) is said to be N-extremal if one of the following conditions obey

1. 9 is a unique solution,

2. 1 is not unique solution, but a point

w:/dwm
My

lies on a circle K (z) for some (and thus for any) z € C\ R.

Remark 1.7.0.0.19. Under the same assumptions as above, the solution 1 is N-extremal in
some (and thus for any) z € C\ R only if ¢ is N-extremal.

Finally, we can modify theorem 1.7.0.0.17.

Theorem 1.7.0.0.20. Under the same assumptions as above, the set of all polynomials is dense
in Li only if the solution % is N-extremal.

Note that in the case of determinate Hamburger problem (thus existence of the unique solution
1), the set of all polynomials is dense in Li.
1.8 Operators on /?> generated by Jacobi matrix

Let us take Jacobi matrix

BQ (7)) 0 0 0
(e7) 51 a1 0 0 ..
‘7 - 0 a1 ,82 (%) 0 ...|>

such that o, > 0 and 3, € R for all n € Ny. Let us denote
PT(z) = (Po(x),Pl(x), o Pola), .. ) .

For a chosen = € C, we regard P(x) as an element of the set C*. By the preceding it follows
that forn any x € C we can write

JP(z) = 2P (x). (1.22)

This equation can be seen as an equation for formal eigenvalues.
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Definition 1.8.0.0.1. Nonzero solution f € C* of the equation
JE= M\

is called formal eigenvector of the matrix J associated with a eigenvalue A\. Matrix J is regarded
as an operator on C*.

Remark 1.8.0.0.2. For any formal eigenvalue A € C, the corresponding eigenspace is one-
dimensional with basis formed by P(\).

Let us focus on properties of some operators on the Hilbert space ¢? defined by Jacobi matrix
J. First, we introduce operator J with a domain

Dom <J> = span{e, }rg
by
(Vf € Dom(J))(Jf = Jf).

Clearly, J is an operator on £2. Let us investigate it’s adjoint operator. Since {e,}>2 is ON
basis in ¢2, for any g € ¢? one can write

00
g = Z gn€n.
n=0

Vector g is an element of Dom (J*) if there is a vector h = >">° ; hye, such as for every

f € Dom (J)

(8. J£) = (0.0
holds. Obviously, it suffices to be held for f = e, where k € Ny is chosen arbitrarily. We have

hi = ar—19k—1 + Brgr + crgr+1, Vk e N

Thus we require

h=>) (ar_19k-1+ Brgk + argri1)er = Jg € (2.

k=0
Adjoint operator J* is given by
Dom(J*) = {f € (%, Jf € (*} (1.23)

and

(Vf = Dom(j*)) (J*E = T1). (1.24)

Therefore we have J C J*, equivalently J is a symmetric operator. Hence, there exists closed
extension J of the operator J and we know that

Dom(J*) = Dom(J)+Ker(J* — i)4+Ker(J* +i).
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To determine deficiency indices we have to find non-trivial solution f € ¢2 of the equation
J*f —if = 0.
According to (1.23) and (1.24) it means to solve equation
Jf=if.

Solution of this equation is P(¢). Thus we have a non-trivial solution only if

2
Z‘P(i)’ < o0,
n=0

thus it has to be
O 2
Z’P()\)‘ < o0,
n=0

for any A € C\ R. Since coefficients of the polynomials P,(z) are real, dimKer(J* — i) =

dim Ker(J* + 7). Thus there are just two possibilities for the deficiency indices either (1,1) or
(0,0). In the second case, one has

J*=J.

Thus J is essentialy self-adjoint operator on ¢2. We conclude that J is ESA (or equivalently
has unique self-adjoint extension) only if the corresponding Hambuerger moment problem is
determinate. We have a new criterion for the determinacy of the Hamburger moment problem.

Theorem 1.8.0.0.3. Hamburger moment problem (1.7) is determinate only if

>

n=0

2
-

holds for some (and thus for any) z € C\ R.
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Chapter 2

Fuchsian differential equations

In the following chapter we will introduce the Heun’s equation as a special case of the Fuchsian
differential equation. The main source for this chapter is book [9].

Definition 2.0.0.0.1. Function f is said to be meromorphic on an open set  C C if there
exists subset A C €) such that

1. A has no limiting point in €,
2. f is holomorphic on Q\ A,
3. f has a pole in every point of the subset A.

Definition 2.0.0.0.2. Let 2 C C be an open set. Let F' be a complex function defined on (2.
Then

n—1
(tr(F) (2) = F™(2) + > pr(2) FF (2) = 0 (2.1)
k=0
is called the Fuchsian differential equation if coefficients py, are meromorphic for k£ € {0,1,2,...,n—

1}.
Remark 2.0.0.0.3. In particular, if we set p = p; and ¢ = pg in the definition above, we get

2F(z z
T 4y

+q(2)F(z) =0. (2.2)

This case is especially important for us, as the Heun equation is the differential equation of the
second order.

Definition 2.0.0.0.4. Point 2y € C is said to be an ordinary point of the equation (2.1) if py
is holomorphic in 29 for £ = 0,1,...,n — 1. Else, point zg is said to be singular point of the
equation (2.1). Singular point zq is said to be regular singularity of the equation (2.1) if the
function pi has pole of the order not exceeding n — k in 2o for K =0,1,...,n — 1.

Remark 2.0.0.0.5. Solution of the equation (2.1) will be found by the Frobenius method. Let
us consider that
F(z) = 2Pp(2), (2.3)

with p € C and ¢ being holomorphic in some neighbourhood U of the point 0. Assume that 0
is an isolated singularity. Since ¢ is analytic in 0, it can be expressed as a power series. Due
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to linearity, one can assume that ¢(0) = 1. Number p can be found by plugging expression
(2.3) into equation (2.1) and multiplying this equation by z". Setting ax(z) = 2"*, the final

condition for p reads
n

> ar(0)p(p—1)...(p—k+1)=0. (2.4)

k=0

Following the analogous approach, one would get the same result for 0 — 2z € C.

Remark 2.0.0.0.6. Returning to remark 2.0.0.0.3 and considering zp as ordinary point or regular
singularity, one gets existence of the limits

lim (z — 2z9)p(2) =: A,

Z—r20
lim (2 — 29)%q(z) =: B.

Z—20

Hence, the so-called characteristic equation (2.4), has the form
P’ +(A—1)p+B=0. (2.5)

Definition 2.0.0.0.7. Solutions p1, p2 of the equation (2.5) are called characteristic exponents
at the point zj.

Next theorem is adopoted from |3].

Theorem 2.0.0.0.8. Let us assume differential equation (2.2) with characteristic exponents
p1, p2 at a regular singular point zg such that p; # ps and p; — p2 ¢ Z. Then

[e.e]

Fi(z) = (2 — 20) Z (z—20)", Fa(z) =(2— 20)" Z bn(z — z0)"
n=0

are linearly independent solutions of the equation (2.2) with the coefficients a,, b, given by a
certain recursive relation. Both solutions Fp, F5 converges on a disc given by

0 < |z — 20| < R,
with R being no bigger than the radius of convergence of either (z — zo)p and (2 — 20)?q.

Definition 2.0.0.0.9. Consider a transformation

(2.6)

If equation (2.1) takes the form of another Fuchsian differential equation, we are talking about
the Fuchsian differential equation in the point oco.

Remark 2.0.0.0.10. Note that after substitution (2.6), equation (2.2) takes the form

d?n 2 1 dp 1 [1
d@+<<‘@p(c>)<+<4 (<>"
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For us, particularly interesting example is the so-called Heun’s equation

d2F(2)+<7+ 5o, >dF(z) aBz —q

dz? 2 z—1 z—-a) dz +z(z—l)(z—a)

F(z)=0, (2.7)

with «, 3,7,0,€,a,q being complex parameters such as a # 0,1. Equation (2.7) is clearly
Fuchsian differential equation with singularities (0,1, a, 00 with respectively ordered exponents
0,1—-7),(0,1-46),(0,1 —¢) and (v, 3). Parameters are chosen such as they obey characteristic
equation in the singular point co. This assumption leads to a requirement on parametres

Yy+d+e=a+ [+ 1

From now on, let us assume that |a| > 1. If v # 0,—1,—2,..., then there is a unique Frobenius
solution in z = 0, with the characteristic exponent zero, up to multiplicative constant. We have

F(z) = icrzr, co # 0. (2.8)
r=0

Since |a| > 1, series (2.8) converge for |z| < 1. Coefficients ¢, are given by
—qco +aye; =0
Arcr_1 — (Br + Q)CT +Crerp1 =0, pror >1,
together with
Ar=(r—14+a)(ir—1+4+75)
By =r((r—14++)(14a)+ad+e¢)
Cr=(r+1)(r+7v)a.

Setting cg = 1 or equivalently F'(0) = 1, the multiplicative constant which causes ambiguousness
of the solution, is fixed. Solution (2.8) with the coefficients obeying conditions above is called
Heun’s local function and is denoted by

Hl(a,q;a, 8,7, 0; 2).

We will adopt notation from paper [11]. Let us denote

1 s
a = ?7 q= _?7
with & € (0,1). Heun’s equation (2.7) then takes the form
d?F(z) (1 b ek? dF(z) s+ apk?z F(z) = 0.
dz z 1—z 1-k22) dz 2(1—2)(1 — k2z2)

We adopt the notation for the Heun’s local function as well from [11]

Hn(k?, s; 0, 8,7, 6; 2).

We know that the orthogonal polynomails P, (z) obey three-terms recurrence !

bn,lf’n,l(x) + (an — .I)pn(l') + bn]anﬂ(x) =0, n € Ny,

'In this section, deviation of the notation for OPS will be used according to [11]. The reason will be clear in
the next chapter.
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with initial conditions P_i(x) = 0 and Py(z) = 1. We will set

by, = V ATLVTL—FI) p = Ap +Vp + Tns
with
Ao = EX(n 4 a)(n + ),

Vn:n<n+fy_1)7
Y = (1 — E*)on.

For a,3,7 > 0,6 € R and k € (0,1), polynomials P, (z) are orthonormal with respect to a
unique probability measure. It means, that the associated Hamburger problem is determinate.
In particular we have

Hn(k2,5;06,5,’}/,5;2) = F(:E?Z)?

= [AoAT - A .
F(z,z) = Z(_l)n %Pn(!?*‘@ﬂkg)z :

n=0

where

38



Chapter 3

Application of the theory of orthogonal
polynomials to a solution of Heun’s
equation

Let us suppose that the Hamburger problem is determinate. Since that, there is a unique
self-adjoint extension J of the operator J given by Jacobi matrix J. Resolvent set of the operator
J will be denoted by o(J) as usual. We have

J = /)\dEA,

with E being a projection-valued measure. Therefore for probability measure one has

p(-) = (e, E(-)eo). (3.1)

Moreover, probabilty measure from (3.1) is the only solution to the Hamburger moment problem.
One has

e = (eo, JFeq) = /)\""du()\), k> 0.

Suppose that J is bounded below a certain positive constant . It says that

(Vf € Dom(J))({f, T1) = ~[If])-

In that case, J~! existst and is bounded. Inequality
0<Jl<?
Y

holds true. Finally, let us assume that J~! is a trace-class operator. In that case, all spectral
points except for, eventually, zero are eigenvalues. Furthermore, the spectrum of J ! is countable
and 0 is it’s limiting point. Let us denote

spec (J 1) = {)\ln > 1} u {0}.

n

Thus

spec(J) = {An;n > 0}.
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Note that 0 cannot be an element of spectrum of J, because J is bounded below. It is also clear
that spec(J) = spec,(J). Moreover, eigenvalues can be ordered increasingly

0<’Y§)\1§)\2§....

Hence lim,, o Ay, = 00. We also suppose that for all n > 0, a, > 0. It follows that all eigenvalues
are simple.

3.1 Useful identities

In the following section, we will summarize some useful identities which will be used later.
This section is taken from paper [10].

Equation (1.22) can be rewritten as the well-known three-terms recurrence for orthonormal
polynomials.

Py(z) =1, (3.2)
aoPi(z) + (Bo — ) Po(z) = 0,
on_1Po_1(2) + (Bp — 2)Po(2) + anPpi1(z) =0, pron > 1.

~

Besides the sequence {Pn(x)} , we also recall sequence {Q,(z)}, given by

Q
an—lQn—l(x) + (ﬁn - x)Qn(l‘) + anQn+1 (l‘) =0, n>1.

With matrix J, equations (3.3) can be rewritten as
(J = 2)Q(2) = e, (3-4)

with Q7' (2) = (Qo(2), Q1(2),...). Orthonormal polynomials and polynomials of the second kind
are related, as the following proposition says.

Proposition 3.1.0.0.1. For all n € Ny

n—1

1 N
n\%) = = = P,(z). 3.5
Onl2) JZ—(:)O‘J‘PJ(Z)PJH(Z) ) 35

holds true.

Proof. Both sequences {]3”(56)} and {Qn(z)}52, obey the same recurrence (up to initial data).

Multiplying the last equation of the recurrences (3.2) and (3.3) by @, (x) and ﬁn(x) respectively
and substracting one from another one gets

a1 (Pa(2) Qo1 (2) = Qul@) Pa() — an (Prss ()Qn(2) = Quir Paz) ) = 0.
It follows

o (Pra (@)Qu(@) = Quin Pele)) = A, (3.6)
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for any k € Ny, with A being a constant. Under an assumption ]3”(33) # 0, we can use substitution
Qn(z) = Py(z)Hy(x). After this, equation (3.6) takes the form
Hyo(x) ~ Hi(x) 2 (3.7)
k+1(7) — Hg(x) = ——= . )
o P () Py ()

Note that Ho(z) = 0. Taking sum in expression (3.7) for £ =0,...,n — 1 one has

n—1

= apPy(z )Pk+1( )

Thus
n—1 A R
Qn(Z) = = = Pn(z)
jgo a; Pj(2) Pj41(2)
It remains to show that A = 1. Indeed, Hi(z) = —4A~— = Q) 1 O

aoPo(2)P1(z) Py (z) agPr(z)

Since matrix 7 is tridiagonal, power J* makes good sense for any k € Ny. Indeed, components
in the matrix multiplication are given by convergent series, since these are reduced to finite sums.
Applying (3.2) on matrix J, we have

Pn(j)eo = €n. (38)

~ o0

Proposition 3.1.0.0.2. OPS {Pn(x)} . forms orthonormal basis in the space Li, with measure
n=

u being given by (3.1).

Proof. The set of all polynomials is dense in Li, as we are assuming determinate Hamburger

moment problem. It remains to show that they are orthonormal. According to equation (3.1)

we have for any polynomial R(\)

<%waw=/mnwu»

Thus
S = (€m, en) = (Pn(T)eo, Pu(T)eo) = (€0, Pru(T) Pu( T )e0) = / P (M) Pa(\)dpa(A)
In the third equality, (3.8) was used. O

Definition 3.1.0.0.3. For any z € o(J) we define vector-valued function w as

w(z) = (J — 2)~leg = / f(_z)zdu@).

Components wy, of the function above are called function of the second kind and obviously for
any z € o(J)

wi(2) = (eg, (J — 2)"Leg) = / P ).

holds.
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Note that for kK = 0 we have Weyl’s function.
Proposition 3.1.0.0.4. For any n € Ny and for any z € o(J)
wn(2)Po(2) = (en, (J — 2) " ten). (3.9)
holds true.
Proof. We have

/p P( PN = Pulz) g3y —

Pa(\)=Pu(2) -
A—z

Moreover degree of the polynomial is not exceeding n — 1. Thus

A—z —z

wn()Pu(z) = Pute) [ S a0 + [ R0 =L g

J~1 is trace-class only if for some orthonormal basis {x,,}°, in £? (and thus for any)

o)

trJ 7 = Z(xn, J1x,) < oo
n=0

holds. We can choose standard basis {e,,}°,. Thus J~! is trace-class operator only if

trJ 1 = i (en, J Ltey) an < 0. (3.10)
n=0

In the second equality, (3.9) was used. In view of (1.22) and (3.4) we have
(J = 2)(w(2)P(2) + Q(2)) = eo.
It was claimed in the preceding chapter that w(2)P(z) + Q(z) € £2 for any z € o(J). Thus
w(2)P(2) + Q(2) = (J — 2) " teg = w(z) € (%
It follows that

(€0, w(2)P(2) + Q(2)) = w(z).

Another useful will be following Markov’s theorem.

Theorem 3.1.0.0.5. Let z € o(J). Then a limit lim, oo ?3"((;) exists and

Q) S L
nlaoo P, (Z) ( ) <e07(J ) e0> ; )P7+1( ) (3 11)

holds true.
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Definition 3.1.0.0.6. Let 7 be Jacobi matrix. For any k € Ny, let the symbol J®*) denote
matrix obtained from matrix J by delating first £ columns and first k¥ rows. Matrix J () ig
called the k-th associated matriz corresponding to the matrix J. In particular, 7 = 7.

In [10], one can find proof of the following proposition.

Proposition 3.1.0.0.7. Let J be Jacobi matrix corresponding to a determinate Hamburger
moment problem. Then for all k& € Ny, matrix J*) corresponds to a determinate Hamburger
moment problem.

For arbitrary k € No, matrix J*) determine a system of orthonormal polynomials {E(Lk) (x);n € No}

unambiguously by

PP (a) =1, (3.12)
TEPE) (1) = 2P®) ().

These polynomials are called k-th associated orthonormal polynomials. Similarly we can define
polynomials of the second kind {Q%k)(ac); n € No}, unambiguously as well, by

QW) =0, j=0,1,....k (3.13)

~ Q(k_l)(x
P (2) ntk , forn>0,k>0. (3.14)
" (k—1)
Qn+k (O

Similarly, J*) denotes a unique self-adjoint operator on ¢2 corresponding to the k-th associated
matrix J*). Since J is bounded below, J*) is bounded below as well. For any z € o(J) and for
any k € Ny we can define

wlb)(2) == (J = 2)"ley, € 2. (3.15)
Column vector w¥)(2) is a solution of the equation
(7 — 2)wP(2) = e v C, (eg, w¥)(2)) = wy(2).
Furthermore,
(Vz € o(J)(WH) (2) = w(2)P(2) + Q¥ (2) € £7). (3.16)

According to paper [2], generalization of the Markov’s theorem holds true.

(k)
Theorem 3.1.0.0.8. Under the same assumptions as in the theorem 3.1.0.0.5, the limit lim,, o %Li((z;)
exists and
(k)
lim QAn (2) = —wi(z), z€C\ [y,00). (3.17)

n—00 Pn(z)

holds.
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Due to (3.15) and (3.16), for m < n and for z € o(J), we have
(€ms (J = 2) " en) = (€m, wa(2)P(2) + Q™) (2)) = wn(2) P (2).
The last equality holds because of (3.13). Conversely, for m > n, it is obvious that
(€m, (T = 2)""en) = wa(2) Bu(2) + QW (2).

At the same time

(em, (J — 2) " en) = (en, (J — 2)€m) = Wi (2) Poa(2).

Thus
(vm > 1) (QU(2) = win(2) Pa(2) = wa(2)Pu(2)) . (3.18)
In particular,
(vm = 1) (Qm(2) = w(2) = w(z) Pu(2)) (3.19)
Combining (3.18) and (3.19) one gets
(vm > n)(vz € C\ [1,50)) (QU(2) = Qum(2)Pa(2) = Qu(2)Pu(2)) . (3.20)

Finally, substituting (3.5) into (3.20) we have

(vm > n)(Vz € C\ [y, 00)) | Q) (=) = - Pu(=)Pu(z) | . (3.21)

= Po(2). (3.22)

Plugging (3.22) into (3.10), expression for the trace reads

e.9] oo 1
trJ L ==Y P,(0)? —— .
e DT

Next, we define matrix G component-wise
Omn i= Q™ (0), m,n > 0.
This matrix is obviously strictly lower-triangular. Due to (3.13) we have
JG =1 (3.23)

Matrix G is obviously the only strictly lower-triangular obeying (3.23). Hence, this matrix can
be interpreted as the Green function of the Jacobi matrix 7. Due to (3.22), we have

m—1
S 1
= @ Pi(0)Pj41(0)

Proof of the following theorem can be found in [10].
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Theorem 3.1.0.0.9. Let .7 be a Jacobi matrix and { P, (z)} be corresponding system of orthonormal
polynomials. Let G be the Green function of the matrix J. Then

P(z) = (I —zG)P(0). (3.24)
Conversely, equation (3.24) determine a strictly lower-triangular matrix unambiguously.
(I — zG) can be expanded to the series in the powers of G, it says

(I —2G)=1+ legl.

=1

This series is convergent as for arbitrary fixed matrix element the series terminate after finite
terms. Thus

n
(Vn € No) | Pol@) = Pa(0) + ) ot > GrkiOhikr s -+ Gkotr Py (0) | . (3.25)
=1 0<k; <ka<---<ki<n

3.2 Worked example

For complex number a, Pochhammer symbol is defined as

I'(a+n)

(a)n, = I'(a) =ala+1)...(a+n—1). (3.26)
Let us assume «, 3,7 > 0. Next, let us set
an =ky(n+1D(n+a)(n+pB)(n+7), (3.27)

Bn i =knn+a—1)+n+8)(n+~),

where k € (0,1).
Let us denote u, := (n + B)(n +v) and v, := k?n(n + « — 1). With this notation we can
write

Q= \/UnUpi1, (3.28)

Bn = Upn + vp.

It is easy to see that the relation
Qn  Up
Un+1 (79

holds true. One also has

Un+1 k

We already know that OPS {ﬁn(x)}oo obeys the following three-term reccurence

n=0

Pt (z) + (Bp — 2)Po(2) + a1 Po_1(z) = 0.
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Setting = 0 and taking advantage of notatiton (3.28) this equation takes the form

VUnUni1 Pri1(0) 4 (n + 0n) Po(0) 4 \/tin—10n Pr_1(0) = 0,

which can be rewritten as

N ey <13n+1(0) + /P, (0)> + n (ﬁn(m + “"‘113n1(0)) — 0.

Un+41 Un

After substitution z, = P,41(0)+ U“il P,,(0) we obtain a two-term reccurence for the sequence

{z,,} with the initial data zg = P;(0) + z—?ﬁo(O) = aio (aoﬁl(O) + ﬁoﬁ0(0)> = 0. It’s solution

is p, = 0, hence

Thus we can express ﬁn(O) in the form
P, (0) = (-1)"k ™"

With this result one can evaluate the Green function. Let us recall relation (3.21). According
to that, we have

m—

G = (1Yt \/<5>n<5>mwv Z % (@); (3.29)

nlm!(a),(a) 1(7) 41

For coefficients given by equation (3.27) the corresponding Jacobi matrix is Hamburger
determinate. Indeed,

NP @) L Pty 1
nh—>nolo ﬁ(o) _n1—>00k\/(n+1)(n+a)_ke(1’ )

Thus lim,, o

ﬁn(O)‘ = oo and therefore the series

o0

n=0

diverges for z = 0 and hence for any z € C\ R. It follows that the corresponding Jacobi matrix
is Hamburger determinate.

For application of the formulas derived in [10], we need to prove, that J~! is a trace-class
operator, as shown in [10] and summarize in the preceding section. This happens if and only if

trJ 7l = — ip Z < 0. (3.30)
n=0




In our case, equation (3.30) takes the form

1N 20 B 5 K M) G+ Da)n
" nZ:ok nl(@)n Z VDG +H )G +B)0 +7) \/(ﬁ)j(’Y)j\/ (B)j+1(Mje1
(3.31)

Recall that Pochhammer symbol obeys relation (3.26). In order to prove the convergence of
(3.31), we will use the following asymptotic behavior of the Pochhammer symbol

= (o)

Thus there are constants C7,Cy > 0 such that

Cln%(_l_a_"_ﬁ_’_v 52%(7) CQn%(—l—OHFﬁ""Y)’ n Z 1 (332)

n!(a)n

Obviously, omitting the term with n = 0 in (3.31) does not influence the convergence. From
(3.32) it is readily seen that the rest of (3.31) can be estimated from above by the expression

2n —1—a+p+y
CZ’f Z +1 el

where C' > 0 is a constant. Solving the convergence problem, the constant C' can be omitted.
After changing the order of summation one has

S 2, —1-atB+y k> Ry —lmotbty 12 n*

- j J v
Z k™ Z ] + 1)1 a+B+y Z Z + n+ 1)1 a+pB+y Z Z ] +n+ 1)2+w
n=1 7=0 n= 1 7=0 n=1
where w := —1 — a + 8 + . Hence we have to prove the convergence of the sum

0
2
]Z(:)ka +]+ 2+w

Our goal is to estimate the second sum with integral. For this sake, let us define for j > 0

nw

gn(J) = IS

and
= Z 9n (])
n=1

Considering w > 0, it is easy to check, that g, (j) is decreasing for n > [¢(j + 1)] and increasing
forl1<n< [%(] + 1)] In the case w <0, g,(j) is decreasing for every n > 1.
First, let us compute the following indeterminate integral

0= | s
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Using substitution y =z + j + 1 we get

Next, we use the substitution t = —%. Hence
. 1 (14 )t
Ij)=— |1+ t)¥dt = ——~F——, -1
G) y+1/< ) GiDGr Y7
Thus
:L,l-l—w
1(j) = , —1.
R P RS e RSV
For w = —1 one has
1 T
1(5) = 1 .
U =571 n<x+j+1>
First of all, let us concentrate on the case w > 0. Then we have
[$G+D)]-1 o
fO =D w)+ D gl (3.33)
=t [5G+1)]
ot e > 2

< AT + gjw . ] +/ ———d

N /1 (x+j+1)2Hw v g[i(ﬁl)](]) [2(+1)] (x+j+1)2tv z

S/ ':U 2+u.)dmjL (2(J+ )) wte ; + (2(J+ )) w—+2

o (z+j+1) (2 +1)(G+1) W+DE+D - (2+1)(G+1))

et (o () =5

Next, we will solve the case —1 < w < 0. Then

) &0 ¥ 1 1
105 [ Gy it S GrgTD T e re T (3:39)

- wrngr (o)) wio

For w < —1 one can estimate

f(')</ooxwdm— lim v — !
V=) Grir ) T e wr D+ D@t D)Fe  (wr DG+ 1)+ 2)i+e
(3.35)
JR— 1 ;
For the remaining case, w = —1 one has
> 1 1 x 1 1
) < — dzx =l | — 1 3.36
f(J)—/1 2@ t+i+1) xinéojﬂn(xﬂﬂ) j+1n<j+1> (3.36)
1
= In(j+1
an(JJr )
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In view of the estimates (3.33), (3.34), (3.35) and (3.36), the following holds true

oo ) oo ne 00 ,
Zk]Z(n+j+1)2+w —Zf(j)k] < 00
=0  n=1 =0

We have proven that J—! is a trace-class operator, thus we can use formulas derived in [10].

~

Each polynomials P, (z) can be written as

Note that p(0,n) = P,(0). By (3.25) we have, for n > 1
1 d™ -

p(n,m) = ﬁdximpn(x) 0 = Z Gl Gl b - - - ng,llﬁll (0)
o< <lo<--<lm<n
—n | (B)n(V)n 2120y (B (V)i
_ (_1)n+mk n Z k m I 1 m m oo
n!(@)n 0<ly<la<<m<n tm!(a)t,,
D Dt B = gl
b1 (@)1, Wy = (B)im+1(7)jm+1
L ),
=l (B)jr+1(7)j1+1
By the virtue of [11] let us set
> n (07 n B ny n
G(z,2) =) (-1) an(x)(kz) . (3.37)
n=0 ' n

We will find Heun'’s equation for which the function G(z, z) = G(z), as defined above in (3.37),
is a local Heun function. We have to be carefull because our coefficients «,, 8, are not exactly
the same as ay, b, in [11]. The relation between them is described in the following equations

ay, = by, Bn = an + By — k2ap.

The orthonormal polynomails given by these coefficients will be again denoted by Pn(m) We
already know that function F(z,z) = F(z) given by

o0

(@n(B)n
F(x,z):= -1nH" P,(x)(kz)"
(2.2) = 30" S T P )
is the Heun function for the equation
d? v B+1 ek? d r — aBk? + aBk*z
—F L _ — — F(z)=0.
dz? (2) + (z 1—2 1- k2z> dz (2) + 2(z = 1)(1 — k2z2) (2)

It is easy to check, that polynomials ﬁn(:z:) and polynomials P, (z) are connected by the formula
P(x) = Pa(z + Kaf — B7),
thus the generating function (3.37) is a solution of the equation

d? v pB+1 ek? d r— By + aBkz
@G(Z) + < a ) dz (2) z(1—2)(1 — k22)
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3.2.1 Special cases

In some special cases, particular simplification of the epxression for p(n,m) is possible. First,
let us assume

o= 6 = ’)/ = 1_
Under this assumption one has a solution of the equation

d2G(z) n 1 -3z dG(z) n r—1+k%2
dz? 2(1—2) dz 2(1—2)(1 — k2z2)

G(z) =0.

For coeffients p(n, m) one has

1 d™ ~

p(m,n) = — = Pa(2) o > Grlon Gl ton—1 - - - Gl L1 (0)
’ = 0<li<la < <lm<n
— (_1)n+mk7n Z k72lm72lm,17...72l1 «
0<li<la<-<lm<n
2im b1 k2im—1 =l g2
X S S
Z (Jm +1)? 2 (Jm—1+1)? Z_: (j1+1)?
Jm=lm Jm—1=lm—1 Ji=l1

Note that the indices in this formula satisfy
0<h <ji<la<je<- <lm1 <Jm-1 <lm < jm<n.
Changing the order of summation in the above expression, we have

fim f2im—1 | J20n
. B " X
(]m + 1)2(]m—1 + 1)2 s (]1 + 1)2

p(m,n) = (=)"*"E= Y
0<j1<g2 - <jm<n

jm jm—l

Ji
X Z k.—2lm Z k—?lm_l L Z k_Qll,
lm:jm71+1 l’mflzjm72+1 1,=0
Hence
p(m,n) = ﬂ Z (1-— k2(j1+1))(1 — k2(j2*j1)) L (1— kQ(jm*jm_l))‘

0<j1 <2 <jm<n
In this case, the generating function (3.37) takes the form

[e.9]

G(z,2) =Y (—k2)"Pu(2),

n=0
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which can also be simplified

n=0 m=0
=52y plmyn)(—kz)"
m=0 n=m

- ()" & 1 — k264D (] — p202=51)) (1 — k2Gm—dm—1
-y (=)™ S o 3 ( ) )...( )
" n=m 0<j1<jo <jm<n (]1 + 1>2(]2 + ].)2 - (]m —+ 1)2
- i ﬂ Z (1 — k20H0) (1 — g202=00)) | (1 — k2Um—dm-1))
(1 - kz)m 0<j1<ga< - <Jm <00 (-h + 1)2(j2 + 1)2 cee (]m + 1)2

Thus we have

1 ()"
G(z,z) = 1—z<1+ Z (1_k2)m><
m=0
0<j1 <fo <+ <fim <00 (]1 + 1)2(j2 + 1)2 s (]m + 1)2

Second, let us assume
a=p>0~v=1.
Thus we are looking for a solution of the equation

d?G(z) 1 at+l (a—1k*\ dG(z) N r—a+ o’k’z
dz? z 1—2z 1—k2z dz 2(1—2)(1 — k22)

G(z) =0.

Similarly as above, we can simplify expression for p(n,m) as

1 d™ -~
m!dzm™ "

= : : gnvlmglmzlm—l s ngyll Pll (O)
0<li<lg< - <lm<n
— (_1)n+mk—n E k—2lm—2lm_1—...—2l1 %
0<li<la< <lm<n
l'm_l

p(m,n) =

=0

n—1 ; ;
k2im Je2dm—1
X g - - E - ; X
- (Jm + 1) (jm + @) ; (Jm—-1+1)(jm-1 + @)

m=lm m—1=lm—1

X A DG a)

J1=h

Note that
OSll S]l <12 S]Q < "‘<lm—1 Sjm—l <lm§jm<n~
Changing the order of summation one has

- (_1)n+mk—n
p(m,n) = W Z

0<71<g2<-<gm<n

(1— k;2(j1+1))(1 — k-Q(jz—jl)) L (1- k.z(jm_jm—l))
1+ D01+ )2 + D02+ @) - G+ D(im + @)
ol




The generating function is of the form

1
(1 — K20ty (1 — k2Um—dm-1))

X . : - . X
0§j1<;jm<oo U1+ D01+ ). (m + 1) + @)

Q) _ . .
(g )”_:JS' o F (1, i + @+ 15 i + 2; 2)27m T,
" !

Finally, assume that
a=7>0,0=1.
Then a discussed equation is of the form

d2G(z) Loz (2 + a)z dG(z) L _Toat ak?z
dz? 2(1—2) dz z2(1—2)(1 —k22)

G(z) = 0.
The generating function
G(z,2) =Y Pp(x)(—k2)"
n=0
can be expressed as
1 o ()™
G =—1 —_—
(z,7) 1—z< +m21 1 —&5m

3 (1 — k201D (1 — 2Um—dm=1)) )

- Gr+ D01 +0) - G + D + @)

0<j1 < <jm<o0

Note that the orthonormal systems in the second and the third case are the same.

3.2.2 Generalization

Recall that our aim is to solve the Heun’s differential equation of the special form

d? G(z)—&—(fy B+1 ek? > dG T — By + apBk?z

dz? 2 1—2z 1-k22)dz (2) z2(1—2)(1 —k2z)
02

G(z) = 0. (3.38)



with an additional condition € = o — 7. Assumption of positivity of «a, 3, in the approach
above, allows us to show that an inverse operator for Jacobi matrix exists and is trace class.
Hence, according to [10], the expression

Gl i= Y (1" [P ) (3.39)
n=0 n

with

p(m’ n) _ (_1)n+mk7n (ﬂ)n(’)/)n Z k*lefﬂmflf...lel (B)lm (’Y)l'm % (340)

- | |
nl(@)n 0<li<lo< - <lm<n tm (@),

BOts Dts Bty = ki)
—1! _

PR DY X
ln—1!(a),, Wy = (B)jm+1(7)jm+1
S EG(a),
(ﬁ)j1+1(7)j1+1

Ji=l

is possible expression for the Heun local function of the equation mentioned above.

In this section, our tactics will be slightly different. We will assume that (3.39) together with
(3.40) is a candidate for the solution of the equation (3.38) whenever the RHS of (3.39) makes
good sense. This approach allows us to extend the range of parametres a, 3, if compared to
the case when the existence of a trace-class inverse is guaranted. The result is summarize in the
theorem below.

Theorem 3.2.2.0.1. Let o, 8,7y € {z€ C:R(z) > -1 V (2) #0} and k € (0,1). Then the
function G = G(z) defined by (3.39) and (3.40) is the local Heun function for the Heun differential
equation (3.38).

Proof. The first goal is to show that the infinite matrix G defined by elements (3.29) is the Green
function for the Jacobi matrix J defined by coefficients (3.27), this is to say that

here the symbol - means matrix multiplication. This operation is meaningful since J is tridiagonal.
In the sequel, the symbol - will be omitted. Let n > 0 be arbitrary. Let us compute

(jg)n,l = O‘n—lgnfl,l + Bngn,l + angn+1,l- (342)
As G is strictly lower-triangular, (JG)y is not equal to 0 only if l = 0,...,n. For [ = n one has

1
(jg)mn = Oéngn—l—l,n = ank\/(n T 1)(n + a)(n + IB)(TL + ’Y) -
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For 1 =0,...,n— 1 we firstly give an auxiliary result

gn,l — —k\/(n -1+ B)(n -1+ 'Y) gn—l,l + (_1>n+l+1k—n—l\/(5.)l(7)l \/(/8)'71(7)71

nn—1+ a) !, n!(a)n
" E=2(n — 1) ()1
(5)“('7)71

nn D) m ) m—14q)  Inut

. \/(B)z(v)z \/(ﬁmmnﬂ <1<:2”—2’<n—1>!<a>n_1+ Ernl(a), )

Guiry = kz\/<n+ﬁ><n— L+ At ) 147)

Ma) | (n+ DN a)nt1 (B)n(¥)n (Brt1(Vnt1

Plugging this result into the equation (3.42) one gets

(jg)n,l = 0.

~

Hence, (3.41) holds true. Thus, according to theorem 3.1.0.0.9 one has that polynomials P, (x)

obey equation (3.24). In our case this equation is equivalent to the equation (3.40). Polynomials
P, (x) obey the reccurence

aoﬁl(x) + (50 — aﬁ)ﬁo(.r) =

anPn+1(x) + (Bn - {L‘)Pn({L') + an—lpn—l(x) =

(3.43)

with ay, and 8, being defined by (3.27). They represent the OPS corresponding to the Jacobi
matrix J with coefficients (3.27). We will multiply both sides of equation (3.38) by z(1 —z)(1 —
k%z) and plug expression (3.39) for G(z) into (3.38). After routine manipulation with indices in
the series, the LHS of the equation (3.38) reads

—apPy (x) — 60130(x) + kﬁ <a1]32(x) + (81 — x)ﬁl(x) + 040]30(36)) z

_;ﬁ\/ = &i)f(fﬁ Y (02By@) + (82— )Ps(a) - an Py () 22

~

- n n (a)n— (6)n— D D n
+nz_:3(—1) +1p, m (anPnH(x) + (Bn, — x)Pp(x) + an,an,l(x)) z

being equal to zero due to the reccurence (3.43). This shows that expressions (3.39) and (3.40)
describe, indeed, the Heun local solution of the Heun equation (3.38). O
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Chapter 4

Ground state of the Jacobi matrix

4.1 Perturbation series

The following section is adopted mainly from books [6] and [8].

4.1.1 Preliminaries

Let X be a Banach space with dim X < oco. Let T be an operator on X. Let us denote the
eigenvalues of T' by spec(T) = {An};_,. Every eigenvalue is a singular point for the resolvent
R(z) of the operator T'. Without loss of generelity, let us take A\, = 0 and expand R(z) in the
Laurent series in a neighbourhood of A\, = 0. We have

R(z)= > "4, (4.1)

where
A= [ =R (4.2)
" 27TZ I‘*Z % '

with T being a circle enclosing A, = 0 but no other eigenvalue. In (4.2), one can integrate over
slightly smaller circle I"without changing the result. Thus

1\2
M= () [ [ e R R = (= DA (43
271 TJrv
where
1 forn >0
= 0 forn<O
Since AZ_1 =—A_1,—A_1 is a projection. Let us denote
P=-A L [ R(z)d
=-A1=—— z)dz.
! 27'('2 T
Letting
D = A_Q, S = A07
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one gets from equation (4.3)
A_p=—-DF! for k> 2, Ay = SFL for k> 0.
Thus the expression (4.1) can be rewritten as

R(Z) — _%P _ izfnlen 4 iznsn+1.
n=1 n=0

For a general A\, not necessarily equal to 0, we have

1 > i o nan
R(z) = —— AhPh =D =) TIDR Y (2= St (4.4)
n=1 n=0

From (4.3) one can conclude that
Py,Dy = Dy Py, = Dy, P,S;, = Sy P, = 0.

Expression (4.4) can be seen as a decomposition of the resolvent R(z) according to decomposition
of the Banach space X = M), + M;, where

My, =P,X, M, =(1-PF,)X.
Proposition 4.1.1.0.1. Operator T on X is nilpotent if and only if it’s spectral radius is zero.

Since R(z) converges everywhere in M}, and for all z except for z = Ay, spectral radius of Dy,
must be zero and, regarding the proposition 4.1.1.0.1, Dy, is nilpotent.
For h,k € {1,...,s} s. t. h # k the following holds true

S
Py Py = 63,1 P, ZPh =1, PT=TP,.
h=1
Multiplying the integral in the equation (4.2) from the left or from the right by operator T’
it is readily seen that
AnT = TAn = On,0 + An—l-
In particular, one has
(T = Aw)Ph = Po(T = Ap) = Dp, (T = Ap)Sh = Sp(T' — Ap) =1 — P, (4.5)
Proposition 4.1.1.0.2. For k,h € {1,...,s}
P}LDh == DhPh = 5h,th7 Dth = O, for h 75 k.

Let us denote, for h = 1,...,s, M, = RanP,. One has X = My + My ---+ M,. M, are
invariant subspaces for T'.

Definition 4.1.1.0.3. For any h € {1,...s}, M, is called algebraic subspace of the operator T'
corresponding to the eigenvalue Ap. Py is called eigenprojection corresponding to the eigenvalue
An- Any non-zero vector u € My, is called generalized eigenvector corresponding to the eigenvalue
Ah-
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From (4.5) one has
Ty, = TP? = P,TP, = APy, + Dy, (4.6)
Now, taking sum from 1 to s in the expression (4.6), we have
T=S+D, (4.7)

with

S = Z APy, D= iDh. (4.8)
h=1 h=1

According to the proposition 4.1.1.0.2 one has

S
D" = E Dj =0, for n > max my,.
heo 1<h<s

The preceding shows that any operator 7" on X can be expressed as a sum of diagonalizable
operator and nilpotent. This expression is unique in the following sense.

Theorem 4.1.1.0.4. Let T be expressed as a sum of diagonalizable operator S and nilpotent
D which commutes with S. Then S and D must obey relations from the equation (4.8).

Definition 4.1.1.0.5. Expressions (4.7) and (4.8) are called the spectral representation of the
operator T. An eigenvalue Ay, is said to be semisiple if D = 0 and is said to be simple if my = 1.

Let us note that my = 1 implies Dy, = 0.

Let us consider operator on a Banach space X in the form
T(k) =T+ kTW + 2T 4 (4.9)

T is called unperturbed operator and kT + k2T®3) 4+ . is called perturbation. According to
[6], the number of eigenvalues of T'(k) is a constant s independent of k up to some special values
of k. There are only a finite number of such ezceptional points k in each compact subset of Dy,
where Dy is a set of all possible values of k. Recall that resolvent of T'(k) is defined as

R(k,2) = (T(k) —2)"",
where z lies in the resolvent set of T'(k). Let us denote
A(k) = kTW 4 273 4

It is convenient to write R(k,z) as a power series in k with coefficients depending on z. This
reads

R(k,z) = R(z) (1 + A(k)R(z)) " (4.10)

3

0
=R(z)+ Y _K'RM(2),
n=1
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where

RM(z)= Y (=DPR()T"R(ET™ ... T R(z).

ni+-+np=n
n;>1

According to [6], series above is convergent for sufficiently small £ and z € I' if ' is a compact
subset of the resolvent set of p(T) with T'= T'(0). Let X\ be one of the eigenvalues of T' = T'(0)
with algebraic multiplicity m. Let I' be a positively-oriented circle in the resolvent set p(7)
enclosing A and no other eigenvalue of T'. The operator

1
P(k) =—— [ R(k,z)d
is a projection and is equal to the sum of eigenprojections for all the eigenvalues of T'(k) lying
inside I" ([6]). Integrating (4.10) term by term, one has

P(k)=P+» k"P™ (4.11)
n=1
with
pm— L [ pm(2yas. (4.12)
2mi Jr

Lemma 4.1.1.0.6. Let P(t) be a projection depending continuously on a parameter ¢t varying
in a connected region of complex numbers. Then the ranges P(¢)X for different ¢ are isomorphic
to one another. In particular, dim P(t) is constant.

The series (4.11) converges for small |k|. It follows form the lemma 4.1.1.0.6 that the range
M (k) := P(k)X is isomorphic with the algebraic eigenspace M = M(0) = PX of T for the
eigenvalue \. In particular,

dim P(k) = dim P = m.
Symbol {\,(k)};_, again denotes the set of all eigenvalues of T'(k). With additional notation
My (k) := Py(k)X, we have
X =M (k) + Ma(k) + -+ + M(k), dim My(k) =my, » my=dimX.
h=1

From (4.5), the eigennilpotent for the eigenvalue A\, (k) is given by

Du(k) = (T(k) = (k) Pa(k). (4.13)

4.1.2 Perturbation series

Our starting point will be the power series for T'(k) given by (4.9). Let A be one of the
eigenvalues of the unperturbed operator T = T'(0) with algebraic multiplicity m and let P and
D be the associated eigenprojection and eigennilpotent. The eigenvalue X is in general split into
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several eigenvalues of T'(k), the total projection P(k) for these is holomorphic at & = 0 and is
given by

P(k)=>» k"P™, PO =p (4.14)
n=0

with P given by (4.12). From now on, suppose there is no splitting of the eigenvalue A. In
particular it is always true if m = 1. In order to determine the eigenvalue of T'(k) associated
with A, it is enough to solve the eigenvalue problem in the subspace M (k) = P(k)X. This is
equivalent to the eigenvalue problem for the operator

Thus

1 1
k) = Etr (T'(k)P(k)) =X+ Etr (T'(k) = N P(k)) . (4.15)
Equations (4.14) for the eigenprojection, (4.15) for the eigenvalue and (4.13) fully describe the
eigenvalue problem for T'(k). Now we will give an explicit form for those series. The coefficients
of the series (4.14) are given by

P — _% S (e / R(z)T™) ... T0w) R(2)dz, (4.16)
m ni+-+np=n r
n;>1

where T' is a small, positively-oriented circle around A. To evaluate the integral above, instead
of R(z) we will substitute it’s Laurent series (4.4) at z = A, for convenience it will be written in
the form

R(z) = i (z — A)rsth), (4.17)

with
SO = _p g =gn gn - _pnop>1.

Substituting (4.17) into the integrand of (4.16) one has

P = — N (=) Z gk (n1) gk2) — glkp)p(ng) glkp+1) (4.18)

p= ni+..np=n
ki+-+kpr1=p
nj Zl,ka—m—l-l

The just described results were derived without knowing that the series in question has a
nonzero radius of convergence. The following Kato-Rellich Theorem taken from [8] will justify
all the above results.

Definition 4.1.2.0.1. An operator-valued function 7'(k) on a complex domain D is called an
analytic family if and only if

1. for each k € D, T'(k) is closed and has nonempty resolvent set,
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2. for every ko, there is a Ay € p(T'(ko)) so that Ao € p(T'(k)) for k near ko and (T'(k) — Xo) ™"
is analytic operator-valued function of k near kg.

Theorem 4.1.2.0.2. Let T'(k) be an analytic family. Let Ao be a nondegenerate discrete
eigenvalue of T'(kp). Then, for k near ko, there is exactly one point A(k) of spec(7'(k)) near
Ao and this point is isolated and nondegenerate. A(k) is an analytic function of k for k near k.

Note that just derived results hold also for operators on an infinite-dimensional Banach space
if A\, is an isolated point of the sprectrum and the projection is finite-dimensional.

4.2 Implicit function approach to the perturbation series

In the following section some preliminaries will be needed. We begin with recalling several
well-known propostions.

Proposition 4.2.0.0.1. Let X be a Banach space and let A € B(X) such that ||A]| < 1. Then
(I — A~ e B(Xx) and

(I - A)_l = ZAkv
k=0

with the series being convergent in B(X). Moreover,

1
1= A7 < 57
1— A
Proposition 4.2.0.0.2. Let X be a Banach space, let A be an operator on X, let A be an element
of the resolvent set of A which will be denoted by p(A). Let us denote by Ry the resolvent of

the operator A evaluated at A\. Then

1. B ()\, m) C o(A),

2. foreach pe B ()\, HI“%/\”) the operator-valued function R, can be expressed in the form of

a power series

o0

R, => (n—N"RyM.

n=0
This means that R. is an analytic function in the neighbourhood of the point A.

The implicit function theorem for analytic functions taken from [7] will be useful for our
purposes.

Theorem 4.2.0.0.3. Let F'(z,w) be a function of two complex variables which is analytic in a
neighbourhood of the point (zp,wp) and suppose that

F(Z()?w()) = 07 8UJF(207 wO) 7é 0.
Then there are neighbourhoods N(zp) and N(wg) such that equation
F(z,w)=0

has a unique root w = w(z) in N(wq) for any given z € N(zp). Moreover, the function w = w(z)
is single-valued and analyitic in N(zp) and satisfies the condition

w(ZQ) = wop.
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Now we are ready to summarize some results from [5]. Let H be a Hilbert space. Let K be
a self-adjoint operator on H and let F' € R be an isolated simple eigenvalue of K, i.e.

dist (F,spec(K) \ {F}) =:d > 0.

Throughout this section, f will denote a normalized eigenvector of K corresponding to the
eigenvalue F. Also, let P be an orthogonal projection on Cf and @ := I — P. Let V1, V5 be
symmetric operators on H. We are going to discuss operator K + kVi 4+ k?Va, where k is a real
parameter. In particular, we focus on the question whether an eigenvalue F(k) of K +kVi +k?V53
is in some sense inherited from the eigenvalue F' of K.

For any operator A on H we will denote

A= QAQ : Dom(A) NRan(Q) — Ran(Q).

- -1
Clearly, (K - F ) is self-adjoint. It follows from the fact that for any operator A on H the
relation
(A*)—l — (Afl)*
holds true if A" exists and is densily defined. Next we need Vi and V5 to be relatively bounded

bounded with respect to the operator K. It means:

Definition 4.2.0.0.4. Under the same assumption as in the preceding text, an operator V on
Hilbert space H is called relatively bounded with respect to the operator K if the following two
conditions are obeyed at the same time

1. DomK C Domf/,
- -1
2.V (K — F) is bounded.

By regular perturbation theory, it is possible to express F'(k) and f(k) as power series in the
parameter k, i.e.

F(k)=F 4 k\ +k*Xo + ...
fk) = f+kg+Kga+...,

with \; € R,g; € H. F(k) is the only eigenvalue near F' for k near 0. Adding normalizing
condition

(f, f(k)) =1,

equivalently f(k) — f € Ran(Q), thus coefficients g; are necessarily elements of Ran(Q).

Let us consider an eigenvalue for K + kVi + k?V5 in the form F + ), where A € R. Similarly
for and eigenvector f + g corresponding to the eigenvalue F' + A, where g € Ran(Q) due to the
normalization condition. Hence the equation

(K+EVi+EV)(f+9) = (F+N(f+9) (4.19)

should be fullfilled. It is clear that for any vectors u,v € H equation u = v holds if and only if
Pu = Pv and Qu = Qu. Applying projection P on the equation (4.19) one obtains

AN = P(EVi + E2Va) f + P(kVi + k2Va)g.
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Note that KP = PK. Next we will apply the scalar product with f. Since V is symmetric and
P = P*, one gets

A= (Vi + EV2)f, ) + (kVi + E*V2) f. 9)
Analogously, we will apply the projection @ in equation (4.19). Since g = Qg we obtain
(f{ YRV K2V, — F - /\) 9= —Q(kVi + k*Va) f.
In summary, equation (4.19) is equivalent to the equations
A= ((kVi + E*V2) [, f) + ((EVi + E*Va) £, g) (4.20)
and
(f( SRV 4+ k2T — F - /\) 9= —Q(kVi + k*Va) f. (4.21)

Regarding A as another auxiliary parameter, our goal is to express g = g(k, \) and by plugging
this expression into equation (4.20) to obtain an implicit equation A = G(k, \). Let us introduce
some additional notation. Set

. -1
Ty = (K - F) ,
. ~1
Ty = (K P A) — (I — \To) "' T,
Thus Iy is a self-adjoint operator acting in Ran(@Q), so is 'y if A ¢ spec (f( — F) Moreover, 'y
has the following property.

Proposition 4.2.0.0.5. Under the same assumptions and notation as above,

1
IToll = =

Proof. According to the proposition 4.2.0.0.2, B (F, HF10||) C o(K). Thus é < [|Tol|- Conversely,
spec(K — F) N B(0,d) = (), thus we have

1 ~ 1
spec(I'g) C {)\;)\ € spec (K — F)} u{0} C B <O, d)'
[y is self-adjoint and therefore

IToll = 75 (To) <

ISHN

Here r,(I'g) stands for the spectral radius of the operator I'y. We conclude that |Tol| = 3. O
In a view of equation (4.21), one needs to invert the operator
KAk +k2Th—F — A= (1+(W1+k2\72)m) (K—F—A).
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First bracket is obviously invertible since our assumption is that |A| < d. Thus it is enough to
show that the second bracket is invertible as well. Again, according to the proposition 4.2.0.0.1,
it suffices that ||[T'\(kV + k%215)|| < 1. We have

(kVi + E2V)T'y = (Vi 4 k2Va)To(I — ATg) ™t

By corollary after proposition 4.2.0.0.1 one has

(k73 + BTN < (JHITATol + 1 TaToll) —
T d

which we want to be less than 1. Thus A and k are supposed to obey the relation
d|k[[|VATo|| + d[k[*|[VaTo|l + |A| < d (4.22)

Consequently, there exists a unique solution to (4.21), given by
- . -1
gk, 2) = =T (14 (Wi + K2TR)TY)  QUVi + K2Va) .

Function g(k, \) is obviously analytic in the domain (4.22). Plugging this result in to the equation
(4.20), we obtain implicit equation

A=G(k, M),
where

~ ~ -1
Gk, \) = (ki + k2Va) £, f) — <Q(kV1 + E2V) £, T (1 + (kW + k:2V2)F,\> QkVi + kQVQ)f> .

Since A — G(k, \) is analytic and

A= G(E, M) gn=0,0 =0, WA =GEN)|rn=00 =1,

we have by theorem 4.2.0.0.3 that there exists a unique analytic function A\ = A(k) defined on
a neighbourhood of the origin such that A(0) = 0 and A(k) = G(k, A\(k)). Thus we have both
eigen-value and eigen-vector given as uniquely determined analytic functions.

4.3 Ground state for the Jacobi matrix

Let us again consider Jacobi matrix
ﬁo (&7s) 0 0 0
ap 1 g 0 O

TJ=10 a1 B2 az 0 ... (4.23)
0 0 a f3 a3

with

an = ky/In+ D(n+a)(n + B)(n + 7
B i=kn(n+a—1)+ (n+B)(n+7),
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where we take k € (0,1) and «, 3,7 > 0. As was described in the preceeding text, one can
define operator J on the hull of cannonical basis {e,}5°, of the space ¢2. This operator
is essentially self-adjoint. Since Jacobi matrix from equation (4.23) can be associated with
determinate Hamburger moment problem, there exisist unique closed, self-adjoint extension J of
the operator J. Moreover, J~! is a trace-class operator, as was shown above. Spectrum of the
closure satisfies

spec(J) = spec,(J) = {)\;;j € No}.

We would like to apply the theory derived in [5] on the operator J which can be seen the following
sum

J=Jo+ kJy + KT, (4.24)
with the corresponding matrices

Jo = diag{(n + B)(n + ) }nZo>
Jo = diag{n(n+ o — 1)},

and

For brevity, from now on we will identify operators J, with the corresponding matrix 7, whenever
convenient. It is clear that the ground state of the operator Jy is Ag = Sy with the multiplicity
1 and with normalized eigenvector eg. Let us denote a projection on the space Ceg by P. Next,
Q =1 — P. We need to show that operators jj = QJ;Q are relatively bounded with respect to

the operator Jy for j = 1,2. This means to show that HijOH < 0o with

Ty = (jo - Ao)fl

In our case

1 1
'y = diag < 0, sy e
° g{ 1+8+~ n?+ (B+~)n }

Thus

= : nn+a—1) %

JoI'g =diag{ —— ———

2o g{n2+(5+7)n}
We have

7 n(n+a—1) 2 G 2 2
||J2FOH2 = sup ||J2F0f|| f < M~ sup |fnl® = M= < oo,
e = L e T;’ :
1 1 -1



where M = sup,,cy

%) < oo as the sequence {%} is bounded.

For the second operator one has

0 0 0 O
0 0 ap O

Fojl — 10 b 0 a9
0

0 b O

\/(n+1)(n+a)(n+/5)(n+’y) and b, — \/(n+1)(n+a)(n+ﬁ)(n+v)
(n+1)2+(B8+7)(n+1) " n?+(B+y)n
{an} and {b,} are positive and bounded. Let us denote their suprema respectively a,b < oo.

Let us take f € ¢? and compute

with a, = . Note that both sequences

- 2 °
HJlFofH = |a1f2‘2+Z‘bnfn+an+1fn+2’2
n=1

oo o o0
< a®||f|” + Z b fnl? + Zan+1‘fn+2’2 +2 Z an+10n fol| fa2l
n=1 n=1 n=1

<P S S 20 (15 (S )
n=1 n=1 n=1 n=1
< (2@2 + 2ab + b2) IIf]]-
Our goal is to find the ground state Ag for which we have
Ao =pBy+n

with n = n(k) being perturbation depending on the perturbation parameter k. According to
DuStoVit, n is a unique solution of the implicit equation

n=G(k,n), n(0)=0,
where
G(k,n) = ((kJ1 + k> J2) eg, eq) (4.25)
—{Q (ki + K21) €0, T(m) (I + Q (ks + K212) QU () ™ Q (K1 + K2J2) e )

and
v = (Jo-87-n) .

It is easy to find out that

) 1 1
QF(n):dlag{O,1+5+7,...n2+(5+7)n_n,...}. (4.26)

We have

(kJy + k:2J2)eg = kJieg = k/afver,
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hence
((kJ1 + k2J2) eo,e0) = k (Jieo, €g) = k/apBy (e1,eq) = 0.
Moreover, the operator Q(kJ; + k%J2)Q can be regarded as an operator
Ran@ = H4

with H; being spanned by {ej,es,...}. Let us denote the restriction Q(kJ; + k2J2)Q to the
subspace H; by Wi(k). Using basis {e1,e2,...} in H; we can regard Wi (k) as the tridiagonal
matrix

ko k2@ +1D)(B+1)(y+1) 0
kyv/2(a+1)(B+1)(y + 1) 2k%(a 4 1) ky/3(a+2)(8+2)(y +2)
0 ky/3(a+2)(8+2)(y +2) 3k%(a + 2)

Next, let us denote the restriction of I'(n) to the subspace H; by I'1(n). Explicitly,

. 1 h
I'i(n) = diag { n2+ (B+7)n—n }nzl .

Furthemore, f; € H; is a column vector

I = (1,0,0,...).
With these notations we can rewrite equation (4.25) as

afyk?

Glkn) = 1757,

(£, (T + WA ()7 1) (4.27)

Let k and n be chosen so that condition (4.22) holds with 7 = A. Since that, we can express
equation (4.27) in terms of the Neumann series of the operator (I + I'y(n)Wy(k))™'. Tt says

G(k,n) = 1+O;§51];2_ <f1,I—|—Z k)1(n))* f1> (4.28)

afByk? ;
_1+ﬁﬂzv—n< +Z ) (£, (W1 ()T () f1>>-

Let us compare the implicit function approach for the ground state with Kato’s theory. Again,
our aim is to find the ground state for the operator (4.24). A particular simplification is possible
for coefficients (4.18) in the series (4.17), since the ground state is a simple eigenvalue. We will
find the perturbation series and compare it with results of the previous method up to the order
k2. Thus we have for our operator

PY = _pPJS—SJP (4.29)
P® = _PJLS — SJP+ PJ,SJS + ST PJ.S
+SJ, S/ P— PJPJ,S?> - PJ,S?J P — S*>J,PJ, P
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with P being the projection on the eigenspace for the ground state Ao = v and S = S(0)
where S(z) is the so-called reduced resolvent. In particular, we have that projection P can be
represented by a matrix

P = diag{1,0,0,...}.

Operator S can be found by expanding the resolvent (Jy — Sy — z)_1 in the Laurent series for
z € o(Jo). Since [ is a simple eigenvalue, one has

. . 71__1 G n gn+1
(Jo—By—2)""'= ZP+ZZS (4.30)

n=0

On the other hand, it is straighforward to check that

-1 _ 1 _1 1 1
(Jo — By —2) —dlag{ z’1+ﬁ+72’”"n2+(ﬁ+7)nz"”}‘ (4.31)

Comparing (4.30) with (4.31) and D = 0 gives

_ naon+l _ J;
S(z)-%z S dlag{o’1+5+7—z"”’n2+(5+7)n—z""}'

Thus

1 1
S=5(0)=di 0, ey N
V) lag{ 1+B8+y" n?+(B+7)n }

Note that QI'(z) given by (4.26) is exactly the reduced resolvent. Determining P and S, one can
compute coeflicients (4.29)

0100
1000
p — VY g 0 0 0 ’

L+8+7f0o 0 0 0
0010
0000
P(z):\/a(a"‘l)ﬁ(ﬁ‘f‘l)V(’Y‘Fl) 100 0
(I+B8+7)A+28+2y [o 0 0 0

-1

o O O O
o O O O

0

0 1
_aBfy Lo o
1+8+v 0 o

With these coefficients, we plug the expression

P(k) =P+ EPW 4+ k2p@ 4 o (k:B) , fork—0
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into equation (4.15). Perturbed eigenvalue thus reads

k) = By — HO“%H +0 (kY), for k— 0. (4.32)

Now, having computed series for A(k), let us turn back to the solution of equation (4.28).
This will be provided by iterations

o = 0, ’I7j = G(k‘,njfl), fOI‘ ] Z 1.

We thus have

m = G(k,0) = —% (1 + ;(—1)" <f1, (Wl(k)rl(O))if1>>
Q 2
=2 (1 RO+ (BN 0)),, + 0 ()

_ __« 200+ 1)(B+1)(y+1)
a 1+6+~y<1 1+B+fy2 (1+B+v)(4+2ﬁ+2v)k2+O(k4)>

afy 2 4
-k O (k*), fork —0.
1+8+~ + ( ) or

It follows that the first iteration of the perturbed ground state )\(()1) = By + ni(k) reads

aBy

1) _ -
)‘0 = By 1+ 8+~

2 +0(kY), fork— 0.

This expression coincides with the perturbation series in (4.32).



Conclusion

Contribution of this thesis can be devided into two groups
1. solutions of Heun’s equation in case o a special, yet quite general form,
2. an approximation of the ground state of a certain Jacobi matrix.

We have found the solution to the Heun’s equation of the form,

d? vy B+1 ek? d r— By + aBk’z
Rz + ( - ) P G e ¢

z 1—2z 1-—k22 Gz) =0,

which differs from the general Heun’s equation just by setting 6 = § + 1. Firstly, we need
to suppose that «, 3,7 are positive to apply results from [10]. Via this approach, we have
found solution given by (3.39) together with (3.40). Omitting requirement of positivity, range
of parameters were extended to o, 5,7 € {z € C: R(2) > —1 V J(z) # 0} as shown in theorem
3.2.2.0.1.

Then we apply the classical perturbation theory to the ground state of the Jacobi matrix
corresponding to the orthogonal polynomials solving the equation above. This approach was
compared with another approach using an implicit function. An implicit function for the ground
state was found and by iteration, it turns out that it coincides with the classical perturbation
series up to the second order of the perturbation parameter.
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