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Abstract: This thesis from the �eld of the theory of orthogonal polynomials focuses on the
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Introduction

This master's thesis focuses on the theory of orthogonal polynomials and in particular on the
application of this theory to the solution of Heun's di�erential equation.

Heun's equation is an ordinary linear di�erential equation of the second order in the complex
plane with, in general, four singular points. Some sources, for instance [12], re�ered to this
equation as natural generalization of the Gauss di�erential equation. Similarly as the Gauss
equation, Heun's equation occurs after separation of variables in a certain PDE. Namely, according
to [12], this happens when adding three spins in quantum mechanics.

In the �rst chapter, we will summarize essential results from the theory of orthogonal polynomials.
Two approaches will be described. The �rst one, via the so-called moment functional. This
approach allows us to state that orthogonal polynomials corresponding to a given moment
functional obey certain three-terms recurrence. Conversely, Favard's theorem claims that if
some system of polynomials obeys a certain three-terms recurrence, then there exists a moment
functional for which they are orthogonal. This will be the second approach � via semi-in�nite
Jacobi tridiagonal matrices. Also, we will de�ne Hamburger moment problem. We distinguish
two types of this problem � determinate and indeterminate. Some criterions for determinacy
of the Hamburger moment problem will be given too. The case of the determinate Hamburger
moment problem will be epsecially important for us. Results from the �rst chapter are mainly
taken from [4] and [1].

The second chapter is focused on the theory of the Fuchsian di�erential equations. Heun's
equation is introduced as a special case of this type of di�erential equations. Main re�erence
for this part is [9]. Next, we introduce some notations and results from paper [11] which are
connecting Heun's local function with some orthogonal polynomials.

The third chapter brings some original results for a given Jacobi matrix. Heun's local function
will be found for Heun's equation with just one �xed parameter. Firstly, some restriction
will be required on parametres to apply the theory derived in paper [10]. These results are
also summarized in this chapter. Next, we extend the result to a signi�cantly larger range of
parametres.

The �nal, fourth, chapter focuses on the perturbation theory from two points of view. The
�rst one is the classical perturbation theory due to Kato. Main referrences for this section are
[6] and [8]. The second approach, via the implicit function theorem, is taken from [5]. Both
methods will be applied to the Jacobi matrix from chapter three, in order to �nd it's ground
state. The obtained results from the two methods are then compared.
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Chapter 1

Theory of orthogonal polynomials

The following chapter is based mainly on the books [1] and [4]. First of all, we are going to
introduce orthogonal polynomials as a certain sequence that obeys some relations given by the
so-called moment functional. The vector space of all complex polynomials in a real variable x
is denoted by C[x] in the following chapter. However, if convenient, the domain of these can be
extended to the complex plane. Similarly, R[x] will denote vector space of all real polynomials
of a real variable.

1.1 The moment functional and the orthogonal polynomials

De�nition 1.1.0.0.1. Let {µn}∞n=0 be an arbitrary sequence of complex numbers. Let the linear
functional L : C[x]→ C be given by the condition

L[xn] = µn

for all n ≥ 0. In this case, linear functional L is called the moment functional corresponding to
the sequence of moments {µn}∞n=0. For all n ≥ 0 number µn is called the moment of the n-th
order.

It is clear that for a polynomial π(x) =
∑n

k=0 ckx
k we have L[π(x)] =

∑n
k=0 ckµk due to

linearity of the moment funcitonal. Now we are about to introduce orthogonal polynomials
correspoding to a given moment functional.

De�nition 1.1.0.0.2. Let L be a moment functional. A sequence of polynomials {Pn(x)}∞n=0

satisfying the following conditions for all nonnegative integers m and n

1. Pn(x) is a polynomial of degree n,

2. L[Pm(x)Pn(x)] = 0 for m 6= n,

3. L[P 2
n(x)] 6= 0

is called orthogonal polynomial sequence corresponding to the moment functional L.

In this text, �orthogonal polynomial sequence� will be abbreviated �OPS� due to [4]. Particularly
important for us will be the case where the condition 3 in de�nition 1.1.0.0.2 is speci�ed as
L[P 2

n(x)] = 1. In this case, we are talking about orthonormal polynomial sequence.
From conditions 1 and 3 in de�nition 1.1.0.0.2 it is obvious that P0(x) = a ∈ C \ {0} and

L[1] = µ0 6= 0.
Next proposition will give us some statements equivalent with de�nition 1.1.0.0.2.

13



Proposition 1.1.0.0.3. Let L be a moment functional and let {Pn(x)}∞n=0 be a sequence of
polynomials. Then the following are equivalent:

a. {Pn(x)}∞n=0 is an OPS with respect to L,

b. L[π(x)Pn(x)] = 0 for every polynomial π(x) of degree m ≤ n while L[π(x)Pn(x)] 6= 0 for
every polynomial π(x) of degree m = n,

c. L[xmPn(x)] = Knδm,n where Kn 6= 0, m = 0, 1, . . . n.

Remark 1.1.0.0.4. Let us consider OPS {Pn(x)}∞n=0 corresponding to a moment functional L.
We already know that any polynomial of degree n can be represented as a linear combination

π(x) =
n∑
k=0

ckPk(x), cn 6= 0.

We will take Pm(x) for m = 0, 1, . . . , n and compute

L[π(x)Pm(x)] =

n∑
k=0

ckL[Pk(x)Pm(x)] = cmL[P 2
m(x)].

Thus we have identity for coe�cients ck in the form

ck =
L[π(x)Pk(x)]

L[P 2
k (x)]

,

which strongly reminds identity for Fourier.

As a consequence of preceeding remark, we can state that OPS is determined uniquely up to
an arbitrary nonzero factor. Indeed, if {Pn(x)}∞n=0 is OPS corresponding to a moment functional
L, sequence {cnPn(x)}∞n=0 is also OPS corresponding to the moment functional L. Conversely,
we can state

Consequence 1.1.0.0.5. Let {Pn(x)}∞n=0 be OPS corresponding to a moment functional L and
let {Rn(x)}∞n=0 be another OPS corresponding to the moment functional L. Then there exist
constants cn 6= 0 such that

Rn(x) = cnPn(x).

1.2 Existence of the OPS

Since we are aware of the fact that OPS corresponding to the given moment functional L is
given unambiguously up to a factor, next to discuss will be an existence of the OPS to a given
moment functional L. For these purposes, we will use the following notation.

Notation 1.2.0.0.1. For a moment functional L with a sequence of the moments {µn}∞n=0 we
will denote

∆n := det(µi+j)
n
i,j=0 =

∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn
µ1 µ2 . . . µn+1
...

... . . .
...

...
... . . .

...
µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Theorem 1.2.0.0.2. Let L be a moment functional with moment sequence {µn}. A necessary
and su�cient condition for the existence of an OPS correspoding to the moment functional L is

∆n 6= 0, n = 0, 1, . . . .

Next de�nition will be very important in our approach to the so-called moment problem.

De�nition 1.2.0.0.3. A moment functional L is called positive-de�nite (PD) if and only if
L[π(x)] > 0 for every polynomial π(x) which is non-negative for every x ∈ R and is not identically
zero.

In case of PD moment functional L one convenient property occurs.

Theorem 1.2.0.0.4. Let L be positive-de�nite. Then L has real moments and a corresponding
OPS consisting of real polynomials exists.

Finaly, we state a criteiron for positive-de�niteness for a moment functional L.

Theorem 1.2.0.0.5. A moment functional L is PD if and only if its moments are all real and
∆n > 0 for each n ≥ 0.

1.3 Three-terms recurrence, Favard's theorem and Jacobi matrices

In this section, we will show a one-to-one correspondence between moment functional and
semi-in�nite matrix. We will be able to state this result for a certain type of moment functionals.

De�nition 1.3.0.0.1. A moment functional L is called quasi-de�nite (QD) in case that for every
n ≥ 0

∆n 6= 0

holds true.

From this section on, we are going to assume that sequence {Pn(x)}∞n=0 corresponding
to at least quasi-de�nite moment functional L is orthonormal. In this case, we will use a
symbol

{
P̂n(x)

}∞
n=0

. Obviously, every polynomial can be expressed as a linear combination
of orthonormal polynomials, thus

xP̂n(x) = an,n+1P̂n+1(x) + an,nP̂n(x) + an,n−1P̂n−1(x) + . . . (1.1)

Multiplying both sides of equation 1.1 by polynomials P̂i(x) for i = 0, 1, . . . n and applying the
moment functional L we will get, according to the proposition 1.1.0.0.3,

an,i = 0, pro i = 0, 1, . . . , n− 2,

an,n−1 = L
[
xP̂n(x)P̂n−1(x)

]
,

an,n = L
[
xP̂n(x)P̂n(x)

]
.

15



We also have that an,n+1 = ∆n+1

∆n
6= 0, n ≥ 0. Now let as assume the following representation

xP̂n−1(x) = an−1,nP̂n(x) +Rn−1(x),

here Rn−1(x) is a polynomial of degree not greater than n − 1. Let us multiply both sides by
P̂n(x) and apply the moment functional L. Hence we have

an,n−1 = an−1,n.

Due to this symmetry we see that expression (1.1) is reduced to

xP̂n(x) = αn−1P̂n−1(x) + βnP̂n(x) + αnP̂n+1(x), (1.2)

where αn := an,n+1, βn := an,n. By the preceding it is obvious that terms of the sequence of

orthonormal polynomials
{
P̂n(x)

}
corresponding to a certain at least quasi-de�nite moment

functional L obeys three terms recurrence formula (1.2) with initial data

α0P̂1(x) + (β0 − x)P̂0(x) = 0. (1.3)

It means that if P̂0(x) is known, one is able to compute another P̂n(x) by the recursion. As
P̂0(x) has to be polynomial of degree 0, natural choice is P̂0(x) = 1.

Remark 1.3.0.0.2. Moreover, if the moment functional L is PD, βn ∈ R and αn > 0 for every
n ≥ 0.

Now we are about to state a very useful conversion of the preceding thoughts, which is known
as Favard Theorem.

Theorem 1.3.0.0.3. Let {αn}∞n=0 and {βn}∞n=0 be arbitrary sequences of complex numbers. Let{
P̂n(x)

}
be a sequence of polynomials de�ned by three terms recurrence (1.2) with an initial

data (1.3). Then there exists unambigiously given QD moment functional L such that
{
P̂n(x)

}
is its corresponding sequence of orthonormal polynomials. Moreover, if βn ∈ R and αn > 0 for
each n ≥ 0, the moment functional L is PD.

Now let us conclude the preceding thoughts. First of all, let us denote

J =


β0 α0 0 0 0 . . .
α0 β1 α1 0 0 . . .
0 α1 β2 α2 0 . . .
...

...
...

...
...

. . .

 . (1.4)

De�nition 1.3.0.0.4. A matrix J given by (1.4) is called Jacobi (tridiagonal) matrix.

A symbol C∞ will stand for a vector space of column vectors of complex numbers. Jacobi
matrix J can be considered as an operator on this vector space. Moreover, if we will denote

P(x) :=
(
P̂0(x), P̂1(x), . . . , P̂n(x), . . .

)T
,

then obviously for every x ∈ R is P(x) ∈ C∞ and one can consider equation for formal eigenvalues

JP(x) = xP(x). (1.5)
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With P̂0(x) = 1 according to Favard theorem, equation (1.5) gives us unique QD moment

functional L for which
{
P̂n(x)

}
is the sequence of orthonormal polynomials. Conversely, if we

have a QD moment functional L we can construct Jacobi matrix as it was shown in the beggining
of the section.

Remark 1.3.0.0.5. Again, we assume recurrence

xQn(x) = αn−1Qn−1(x) + βnQn(x) + αnQn+1(x).

However, this time we will replace initial condition with

Q0(x) = 0, Q1(x) =
1

α0
.

Thus we have another solution {Qn(x)}∞n=0 of the considered recurrence.

De�nition 1.3.0.0.6. Polynomials introduced in the remark 1.3.0.0.5 are called the polynomials
of the second kind.

1.4 Zeros of the orthogonal polynomials

There are also some interesting properties of orthogonal polynomials in the brunch of their
roots. The following section will be focused on these. Firstly, let us generalize the de�nition of
positive-de�niteness.

De�nition 1.4.0.0.1. Let E be subset of R. A moment functional L is said to be positive-de�nite
on E if

L[π(x)] > 0

for every polynomial π(x) which is non-negative and non-zero on E. Set E is called the supporting
set of the moment functional L.

Theorem 1.4.0.0.2. Let I ⊂ R be an interval which is supporting set for some PD moment
functional L. Zeros of orthogonal polynomials corresponding to L are all real, simple, and located
in the interior of the interval I.

Due to the fact that there are exactly n di�erent zeros of the polynomial Pn(x) in an interval
I ⊂ R, we can order them increasingly

xn,1 < xn,2 < · · · < xn,n.

Without loss of generality let us assume that Pn(x) is monic. Thus for every x > xn,n is

Pn(x) > 0.

Conversely, for x < xn,1 one has

sgn Pn(x) = (−1)n.

Since Pn(xn,k) = 0 = Pn(xn,k+1) for every k = 1, . . . , n − 1 and Pn(x) is di�erentiable, in each
interval (xn,k, xn,k+1) there is a zero of a polynomial P ′n(x). Since P ′n(x) the polynomial of degree
n− 1, one has all of the zeros.

The following theorem will be an important tool for us and will be often recalled as the

separation theorem for the zeros.
17



Theorem 1.4.0.0.3. Zeros of polynomials Pn(x) and Pn+1(x) are mutually separated, i. e.

xn+1,i < xn,i < xn+1,i+1

for each i = 1, . . . , n.

Remark 1.4.0.0.4. By the separation theorem for the zeros, we have that {xn,k}∞n=k is decreasing
sequence and {xn,n−k+1}∞n=k is increasing sequence. Thus there exist numbers ξi and ηi in R
such that

ξi = lim
n→∞

xn,i

ηj = lim
n→∞

xn,n−j+1

De�nition 1.4.0.0.5. An interval [ξi, ηi] is called the true interval of orthogonality of the OPS
corresponding to a moment functional L.

1.5 Representation theorem

An important question is under which conditions can be a moment functional L represented as
a convergent Stieltjes integral over the real line, this means under which condition the expression

L[xn] =

∫
R
xndψ(x) ∈ R (1.6)

holds for some bounded, non-decreasing function ψ continuous from the right.

De�nition 1.5.0.0.1. A bounded, non-decreasing function ψ continuous from the right for
which

µn :=

∫
R
xndψ(x) ∈ R; n = 0, 1, . . . , (1.7)

holds, is called distribution function solving a problem (1.6).

De�nition 1.5.0.0.2. Under same assumptions as in the de�nition above, a set

σ(ψ) := {x ∈ R; (∀δ > 0) (ψ(x+ δ)− ψ(x− δ) > 0)}

is called spectrum of the function ψ. A point x ∈ σ(ψ) is called spectral point of the function ψ.

Remark 1.5.0.0.3. Conversely, a point x ∈ R does not belong to the spectrum of the function
ψ, if there is δ > 0 such that ψ(y) = constant for every y ∈ [x − δ, x + δ]. Therefore, σ(ψ) is a
closed set.

Problem (1.6) is called Hamburger moment problem.

De�nition 1.5.0.0.4. Two distribution functions ψ1, ψ2 are said to be substantially equal if and
only if there is a constant C such that ψ1(x) = ψ2(x) + C at all common points of continuity.

De�nition 1.5.0.0.5. Hamburger moment problem is called determinate if there is unique
distribution function ψ which obeys (1.6) up to substantially equal functions. Else, Hamburger
moment problem is said to be indeterminate.

Connection between a spectrum de�ned in 1.5.0.0.2 and the spectrum of a certain operator
will be discussed later.
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1.5.1 Gauss quadrature

Remark 1.5.1.0.1. Let us take n ∈ N and a set {t1, t2, . . . , tn} ⊂ R. We set

F (x) :=
n∏
i=1

(x− ti).

Obviously, deg
(
F (x)
x−ti

)
= n− 1. Also,

F ′(tk) 6= 0 k = 1, 2, . . . , n

holds true. For k = 1, 2, . . . , n one can de�ne polynomials

lk(x) =
F (x)

(x− tk)F ′(tk)
.

Again, deg(lk(x)) = n− 1 and moreover

lk(tj) = δj,k.

Then for every set of numbers {y1, y2, . . . , yn} degree of the polynomial

Ln(x) :=
n∑
k=1

yklk(x) (1.8)

does not exceed n− 1. Moreover, it obeys property

Ln(tj) =

n∑
k=1

yklk(tj) =

n∑
k=1

ykδj,k = yj j = 1, 2, . . . , n.

Note that the polynomial (1.8) is the only solution of the task of searching polynomial which
degree does not exceed n− 1 and its graph intersects points (ti, yi).

De�nition 1.5.1.0.2. Polynomials constructed in the preceding remark and de�ned by the
equation (1.8) are called Lagrange interpolation polynomials corresponding to the nodes ti and
coordinates yi.

Let us remind that xn,k denotes k−th root of n-th orthogonal polynomial. The following
theorem is known as the Gauss quadrature formula.

Theorem 1.5.1.0.3. Let L be a PD moment functional. Then for every n ≥ 0, there exist
numbers An,1, . . . An,n such that for every polynomail π(x) ∈ C[x] of degree not exceeding 2n−1

L[π(x)] =
n∑
k=1

An,kπ(xn,k). (1.9)

holds true. Numbers An,1, . . . An,n are positive and obey the condition

n∑
k=1

An,k = µ0. (1.10)
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Due to this theorem we can prove the following proposition which is in the book [4] left as
an excercise for the reader. First of all, we denote a set of roots of all orthogonal polynomials
corresponding to a moment functional L by the symbol N (L), i.e.

N (L) =
∞⋃
n=0

{xn,k}nk=1.

Proposition 1.5.1.0.4. Let L be a positive-de�nite moment functional. Then N (L) is a
supporting set for L.

Proof. Let us take polynomial π(x) of degree n such that π(x) > 0 on N (L). Since L is PD and
π(x) of a degree less than 2n−1, we have according to the theorem 1.9 numbers An,1, . . . , An,n > 0
obeying the relation

L[π(x)] =
n∑
k=1

An,kπ (xn,k) ≥ 0.

The preceeding expression must be positive. Indeed, there must be any j ∈ {1, . . . , n} such that
π(xn,j) 6= 0. If there was not such number, the following expression would be hold

π(x) = c

n∏
k=1

(x− xn,k) = cPn(x)

for some c ∈ R. However, it would contradict the positivity of the polynomial π(x) on the set
N (L). Indeed, according to the separation theorem for the zeros, polynomial Pn(x) changes sign
in the roots of the polynomial Pn+1(x), which are eleements of the set N (L).

Consequence 1.5.1.0.5. Under the same assumptions as in the proposition above, it is obvious
that N (L) ⊂ [ξ1, η1] and N (L) is a supporting set for the positive-de�nite moment functional
L. According to the theorem 1.4.0.0.2 the true interval of orthogonality [ξ1, η1] is the smallest
closed interval which is supporting for L.

1.5.2 Representation theorem

Let L be a positive-de�nite moment functional with moments {µn}∞n=0. From theorem 1.9
we have that for every n ∈ N0 exist numbers An,1, . . . , An,n such that

L[xk] = µk =
n∑
i=1

An,ix
k
n,i, k = 0, 1, . . . , 2n− 1.

We de�ne a sequence {ψn}∞n=0

ψn(x) :=


0 for x < xn,1∑p

i=1An,i for xn,p ≤ x < xn,p+1, where 1 ≤ p < n

µ0 for x ≥ xn,n
. (1.11)

It is readily seen that ψn is

� bounded,
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� continuous from the right,

� non-decreasing.

� and σ(ψn) = {xn,1, . . . , xn,n} and a size of the jump at the point xn,i is An,i.

Due to the last point of the preceding properties, one has∫
R
xkdψn(x) =

n∑
i=1

An,ix
k
n,i = µk k = 0, 1, . . . , 2n− 1. (1.12)

For our next step we will need the following theorems which are known as the Helly selection
principle and Helly's second theorem

Theorem 1.5.2.0.1. Let {φn}∞n=0 be a uniformly bounded sequence of non-decreasing functions
de�ned on real axis. Then there is a subsequence {φ̃n}∞n=0 of the sequence {φn}∞n=0, such that
{φ̃n}∞n=0 converges pointwise in R to a bounded, non-decreasing function.

Theorem 1.5.2.0.2. Let {φn}∞n=0 be a uniformly bounded sequence of non-decreasing functions

de�ned on compact interval [a, b] and let φn
[a,b]−→ φ pointwise, where φ is a bounded, non-

decreasing function. Then for any real function f continuous on the interval [a, b]∫ b

a
fdφn

n→∞−→
∫ b

a
fdφ

holds true.

Sequence {ψn}∞n=0 obeys assumptions of the theorem 1.5.2.0.1, thus there is some subsequence
{ψ̃n}∞n=0 which converges to a bounded, non-decreasing function ψ pointwise in real axis. Now
consider true interval of orthogonality [ξ1, η1]. There are two possibilities. Firstly, [ξ1, η1] is
bounded, then due to the theorem 1.5.2.0.2 and (1.12) we have∫

R
xkdψ(x) =

∫ η1

ξ1

xkdψ = µk = L[xk] k = 0, 1, . . . . (1.13)

First equation holds, because for x ≤ ξ1 is ψ(x) = 0 and for x ≥ η1 is ψ(x) = µ0. Therefore we
can write integration over smaller interval [ξ1, η1]. The second possibility is that interval [ξ1, η1]
is non-bounded. In this case, one does not get answer from Helly's second theorem and it is
necessery to prove (1.13) directly. Answer for this question is given by the following theorem
which proof can be found in [4].

Theorem 1.5.2.0.3. Let L be a positive-de�nite moment functional and the sequence {ψn}∞n=0

de�ned by (1.11). Then there is a subsequence {ψ̃n}∞n=0 which converges on entire real axis to
a distribution function ψ for which σ(ψ) is an in�nite set and ψ is a solution of the Hamburger
moment problem (1.6).

De�nition 1.5.2.0.4. A distribution function φ which is a solution of the Hamburger moment
problem (1.6) is said to be a representation of the positive-de�nite moment functional L. If
φ = ψ (i. e. it is the distribution function from the theorem 1.5.2.0.3) we are talking about
natural representation of L.
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1.5.3 About zeros of OG polynomials and the spectrum of the distribution

function

Theorem 1.5.3.0.1. Let L be a positive-de�nite moment functional. Then there is a representation
φ such that σ(φ) ⊂ [ξ1, η1]. Moreover, true interval of orthogonality [ξ1, η1] is subset of every
closed interval which contains spectrum of any representation of L.

Theorem 1.5.3.0.2. Let φ be a representation of a moment functional L. Then

σ(φ) ∩ (xn,i, xn,i+1) 6= ∅

for n = 2, 3, . . . and 1 ≤ i ≤ n− 1.

Particularly important for us will be the following remark.

Remark 1.5.3.0.3. Recall the notation

ξi = lim
n→∞

xn,i,

ηi = lim
n→∞

xn,n−i+1.

Regarding those limits as elements of the extended real axis, one obviously has ξi−1 ≤ ξi < ηj ≤
ηj+1. Thus, we can de�ne

ξ =

{
−∞ if (∀i ∈ N)(ξi = −∞)

limi→∞ ξi if (∃p ∈ N)(ξp > −∞)
,

and

η =

{
∞ if (∀j ∈ N)(ηj =∞)

limj→∞ ηj if (∃q ∈ N)(ηq <∞)
.

Adding

ξ0 = −∞, η0 =∞,

we have non-decreasing sequence

−∞ = ξ0 ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξ ≤ η ≤ · · · ≤ η2 ≤ η1 ≤ η0 =∞.

Theorem 1.5.3.0.4. Let φ be a representation of a moment functional L.

1. If for some k ∈ N inequality ξk < ξk+1 holds, then

σ(φ) ∩ (ξk, ξk+1] 6= ∅. (1.14)

2. If for some k ∈ N equality ξk = ξk+1 holds. then ξk ∈ σ(φ),

3. ξ ∈ σ(φ).

Theorem 1.5.3.0.5. Let ψ be the natural representation of a moment functional L. If ξ1 > −∞,
then for every i ∈ N, ξi is an element of σ(φ). Moreover, σ(φ) does not contain any smaller point
than ξ except eventually ξi.
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Similar result holds for η.
Proof of the following proposition is left as an excercise for reader in [4], we include proof.

Note that according to [4], for coe�cients of the Gauss quadrature the following equation holds

An,k =
1∑n

k=0 P̂
2
k (xn,k)

. (1.15)

Proposition 1.5.3.0.6. Let −∞ < ξ1 < ξ2 . . . . Then the following inequalities

0 < ψ(ξi)− ψ(ξi−) ≤ 1∑∞
k=0 P̂

2
k (ξi)

hold.

Proof. The �rst inequality is a consequence of theorem 1.5.3.0.5. There exists a subsequence
{ψ̃n} of the sequence {ψn} such that it's pointwise limit is natural representation ψ. According
to de�nition (1.11) and relation (1.15) we have

ψ̃n(xn,k)− ψ̃n(xn,k−1) = An,k =
1∑n

k=0 P̂
2
k (xn,k)

.

Due to the assumption of the proposition, for any k ∈ N inequality ξk−1 < ξk holds. Hence,
there is N ∈ N such that for any n > N inequality xn,k−1 < ξk holds. Moreover, sequence {xn,k}
is decreasing according to the separation theorem for zeros. Thus, for every n ∈ N inequality
ξk < xn,k holds. Since that, we can �nd numbers a, b such as

xn,k−1 < a < ξk < xn,k < b < ξk+1 < xn,k+1 (1.16)

from a certain N ∈ N on. By the choice of these numbers and by the de�nition (1.11) it follows
that

ψ̃n(b)− ψ̃n(a) = ψ̃n(xn,k)− ψ̃n(xn,k−1) =
1∑n

k=0 P̂
2
k (xn,k)

≤ 1∑N
k=0 P̂

2
k (xn,k)

.

Combining of (1.16), monotony of the function ψ and theorem 1.5.3.0.5 one has

ψ(ξk)− ψ(ξk−) = ψ(b)− ψ(a) ≤ 1∑N
k=0 P̂

2
k (xn,k)

.

Taking limit N → ∞ in the last inequality, we have proved the coveted inequality from the
statement.

Theorem 1.5.3.0.7. Let L be a positive-de�nite moment functional and let [ξ1, η1] be bounded
subset of R. Then L is determinate.

1.6 The operator of multiplication by the coordinate

Let us assume operator Q on the Hilbert space H = L2(R, dψ) given by

Dom(Q) := {f ∈ H;x · f(x) ∈ H} ,
(Qf)(x) := x · f(x).

The spectrum of this operator will be denoted by spec(Q) and it's resolvent set by %(Q). Our
goal is to show that σ(ψ) = spec(Q). For later purposes, let us recall well-known Weyl's criterion
for self-adjoint operators.
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Theorem 1.6.0.0.1. Let H be a Hilbert space and T an self-adjoint operator on H. Then

1. λ ∈ %(T ) only if there exists m > 0 such that (∀ϕ ∈ Dom(T )) (‖(T − λ)ϕ‖ ≥ m‖ϕ‖)

2. λ ∈ spec(T ) only if there exists sequence (ϕn)∞n=1 ⊂ Dom(T ) such that (∀n ∈ N)(‖ϕn‖ = 1)
and ‖(T − λ)ϕn‖ → 0.

As can be seen from the theorem 1.6.0.0.1, we need to show that Q is self-adjoint, if we wish
to apply Weyl's criterion.

Proposition 1.6.0.0.2. Q is self-adjoint operator.

Proof. We need to �nd domain of Q∗ and how does it work on it's domain. We know that

Dom(Q∗) = {g ∈ H; (∃h ∈ H)(∀f ∈ Dom(Q))(〈g,Qf〉 = 〈h, f〉)} .

One has

〈g,Qf〉 =

∫
R
g(x)xf(x)dψ(x) =

∫
R
xg(x)f(x)dψ(x).

If h exists, almost for every x ∈ R equality h(x) = x · g(x) must hold. Thus we have

Dom(Q∗) = Dom(Q),

and

(Q∗g)(x) := x · g(x).

Thus Q∗ = Q.

Remark 1.6.0.0.3. Note that due to the fact, that Q is self-adjoint, spec(Q) ⊂ R. At the same
time, σ(ψ) ⊂ R from the de�nition.

Theorem 1.6.0.0.4. Under the same assumptions about ψ and Q, equality

σ(ψ) = spec(Q)

holds.

Proof. We need to show two inclusions. Firstly, consider that λ /∈ σ(ψ). By the de�nition of
σ(ψ), there exists ε > 0 such that function ψ is constant on (λ− ε, λ+ ε). Thus, Borel measure
generated by the function ψ of this interval is zero. Let us denote

(Bλf) (x) = bλ(x)f(x) =
1

x− λ
f(x).

Function bλ is bounded almost everywhere on R (exceptional set is (λ− ε, λ+ ε) which is of the
measure zero). Thus bλ ∈ L∞(R,dψ) and Bλ is bounded operator on H. Bounding constant can
be taken, for instance, as ‖bλ‖L∞ . We will show that Bλ is an inverse operator for Q − λ. We
compute

‖(Q− λ)Bλf − f‖2 =

∫
R
|(Q− λ1)Bλf(x)− f(x)|2 dψ(x) =

∫
R\(λ−ε,λ+ε)

|f(x)− f(x)|2dψ(x).
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The second equality holds, since deleting set of the zero measure does not a�ect result of the
integral. We have Bλ = (Q− λ)−1 ∈ B(H), thus λ ∈ %(Q). Therefore we have inclusion

spec(Q) ⊂ σ(ψ).

Conversely, assume that λ ∈ σ(ψ). Again by the de�nition of σ(ψ) we have for every δ > 0 that

µB((λ− δ, λ+ δ)) = ψ(λ+ δ)− ψ(λ− δ) > 0.

Here µB stands for Borel measure generated by the function ψ. Thus characteristic function of
the interval (λ− δ, λ+ δ] is measurable and∫

R
χ(λ−δ,λ+δ](x)dψ(x) = µB ((λ− δ, λ+ δ]) .

Let us denote δn = 1
n and In =

(
λ− 1

n , λ+ 1
n

)
. Obviously,

‖χIn‖2 =

∫
R
χIn(x)dψ(x) = µB(In) > 0.

With further notation

fn :=
1

‖χIn‖
χIn ,

one has ‖fn‖ = 1. Let us compute

‖(Q− λ)fn‖2 =

∫
R
|x− λ|2 1

‖χIn‖2
χIndψ(x) =

1

‖χIn‖2

∫ λ+ 1
n

λ− 1
n

|x− λ|2dψ(x)

≤ 1

‖χIn‖2
1

n2

∫ λ+ 1
n

λ− 1
n

dψ(x) =
µB
(
λ− 1

n , λ+ 1
n

)
‖χIn‖2

1

n2

n→∞−→ 0,

thus by Weyl's criterion we have λ ∈ spec(Q). Finally,

σ(ψ) ⊂ spec(Q).

Remark 1.6.0.0.5. Finally, we will discuss a relationship between orthonormal polynomials and
operator Q. A sequence of orthonormal polynomials

{
P̂n

}∞
n=0

can be given by the three-terms
recurrence

xP̂n(x) = αn−1P̂n−1(x) + βnP̂n(x) + αnP̂n+1(x),

with initial data

P̂0(x) = 1,

P̂−1(x) = 0.

Let us compute matrix elements for the operator Q. Those are given by

Qm,n :=
〈
P̂m, QP̂n

〉
=

∫
R
xP̂m(x)P̂n(x)dψ(x)

=

∫
R

(
αm−1P̂m−1(x) + βmP̂m(x) + αmP̂m+1(x)

)
P̂n(x)dψ(x).
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In our case

Qm,n = αn−1δm,n−1 + βnδm,n + αnδm,n+1.

This result can be represented by semi-in�nite matrix

Q =


β0 α0 0 0 0 . . .
α0 β1 α1 0 0 . . .
0 α1 β2 α2 0 . . .
...

...
...

...
...

. . .

 = J .

This is exactly already discussed Jacobi matrix.

1.7 Density of the set of polynomials in L2(R, dψ) and unitary

operator between L2(R, dψ) and `2

In the following section, we will discuss isometric operator between L2(R,dψ) and `2 generated
by the solution ψ of the moment problem (1.7). Results are taken from book [1]. Assume

system of orthonormal polynomials
{
P̂n

}∞
n=0

and a system of the polynomials of the second

kind {Qn}∞n=0 for a given Jacobi matrix J . For any n ∈ N0 we de�ne a function

wn(z, t) := −Qn(z)− tQn−1(z)

P̂n(z)− tP̂n−1(z)
. (1.17)

It is the function of complex variable z and real parameter t. Obviously,

wn(z,∞) = wn−1(z, 0).

The following theorem will be important in the sequel text.

Theorem 1.7.0.0.1. Let z ∈ C be �xed such that Im(z) > 0. Let the parameter t vary along
the whole extended real axis. Then the function

w = wn(z, t)

describes a circular contour Kn(z) in the half-plane Im(z) > 0. The center of this circle is at the
point

−Qn(z)P̂n−1(z)−Qn−1(z)P̂n(z)

P̂n(z)P̂n−1(z)− P̂n−1(z)P̂n(z)
,

for its radius one has

1

|z − z|
1∑n−1

k=0 |Pk(z)|2
.

The equation of the circle Kn(z) may be written in the form

w − w
z − z

−
n−1∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 = 0.
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Remark 1.7.0.0.2. Points w lying outside the circle Kn(z) are described by inequality

w − w
z − z

−
n−1∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 < 0

Conversely, points w lying inside the circle Kn(z) are given by

w − w
z − z

−
n−1∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 > 0.

Proposition 1.7.0.0.3. Under the same assumptions as in the theorem above, for every z ∈ C\R
an inclusion

Kn(z) ⊂ Kn−1(z), n ∈ N0

holds.

We conclude, that there is a decreasing sequence {Kn(z)} for �xed point z ∈ C\R. It means
that there exists some limiting set K∞(z). This can be either a circle or a point. Let us take
w ∈ K∞(z) arbitrary. Obviously for every n ∈ N0 we have

n−1∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 < w − w

z − z
.

Taking limit n→∞ on both sides of the previous expression, one gets

∞∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 <∞.

Hence, we have the solution
{
wP̂k(z) +Qk(z)

}∞
k=0

of the recurrence

αn−1yn−1 + (βn − z)yn + αnyn+1 = 0,

belonging to `2 independent on the type of the limiting set.

Theorem 1.7.0.0.4. The solution of the recurrence

αn−1yn−1 + (βn − z)yn + αnyn+1 = 0,

belongs to `2 only if K∞(z) is a circle.

Theorem 1.7.0.0.5. If K∞(z) is a circle for some z ∈ C \ R, then K∞(z) is a circle for any
z ∈ C \ R.

Theorem 1.7.0.0.5 allows us to de�ne the following.

De�nition 1.7.0.0.6. Jacobi matrix J is called of a type C if K∞(z) is a circle for some (and
thus for any) z ∈ C \ R. Conversely, Jacobi matrix J is called of a type D if K∞(z) is a point
for some (and thus for any) z ∈ C \ R.
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Remark 1.7.0.0.7. For Jacobi matrix J of a type D there exists unambigiously given function
w = w(z) such that

∞∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 <∞, (∀z ∈ C \ R) ,

while K∞(z) = {w(z)}. This function is called Weyl's function and will be de�ned more
speci�caly later.

Theorem 1.7.0.0.8. Let {µn}∞n=0 be a positive sequence of moments. If the corresponding
Jacobi matrix is of type C, the Hamburger moment problem (1.7) is indeterminate.

Let us consider a positive sequence of the moments {µn}∞n=0 and a function ψ solving
Hamburger moment problem

µk =

∫
R
ukdψ(u), k ∈ N0.

Symbol L2
ψ will denote space of all quadratic-integrable functions in a space with Borel measure

given by function ψ, that says

f ∈ L2
ψ ⇔

∫
R
|f(u)|2dψ(u) <∞.

L2
ψ is a Hilbert space. Scalar product is given by

(
∀f, g ∈ L2

ψ

)(
〈f, g〉ψ :=

∫
R
f(u)g(u)dψ(u)

)
.

The system of orthonormal polynomials
{
P̂n

}∞
n=0

is obviously orthonormal in L2
ψ. An element

x ≡ {xn}∞n=0 ∈ `2 is said to be �nite if xn 6= 0 just for a �nite number of indices n ∈ N0.
Let us construct a certain operator U : `2 → L2

ψ. The constructions will be devided in several
steps. Firstly, let us take a �nite element x ∈ `2. We de�ne

f(u) ≡ (Ux)(u) := x0P̂0(u) + x1P̂1(u) + · · ·+ xnP̂n(u) . . .

Obviously, f(u) ∈ L2
ψ. Moreover

‖f‖2ψ = ‖Ux‖2ψ =

∫
R
|f(u)|2dψ(u) =

∞∑
i,j=0

xixj

∫
R
Pi(u)Pj(u)dψ(u) =

∞∑
i=0

|xi|2 = ‖x‖2,

here symbol ‖ · ‖ stands for the norm in `2. Similarly,

〈Ux,Uy〉ψ = 〈x, y〉.

In the second step, let us take x ∈ `2 arbitrary. We de�ne

fn(u) :=

n∑
k=0

xkP̂k(u).
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Clearly, ∫
R
|fn(u)− fm(u)|2dψ(u) =

n∑
k=m+1

|xk|2.

Taking limits m,n→∞ on the both sides in the expression above, one gets

lim
n,m→∞

∫
R
|fn(u)− fm(u)|2dψ(u) = 0.

Hence {fn}∞n=0 is a Cauchy sequence in L2
ψ, thus there exists a limit f in L2

ψ. We de�ne

(Ux)(u) := f(u).

We will show that operator U is an isometry. Indeed, let us take x, y ∈ `2 arbitrary. Let us
denote f := Ux, g := Uy. Then

〈x, y〉 =

∞∑
k=0

xkyk = lim
n→∞

n∑
k=0

xkyk = lim
n→∞

〈fn, gn〉ψ = 〈f, g〉ψ.

Next, we justify the last equality. Indeed,

〈fn, gn〉ψ = 〈f, g〉ψ + 〈fn − f, g〉ψ + 〈f, gn − g〉ψ + 〈fn − f, gn − g〉ψ.

Thus

|〈fn, gn〉ψ − 〈f, g〉ψ| ≤ ‖fn − f‖ψ‖g‖ψ + ‖f‖ψ‖gn − g‖ψ + ‖fn − f‖ψ‖gn − g‖ψ.

Taking limit n→∞ in the expression above, we have proven the equality. The preceding process
can be summarized in a theorem.

Theorem 1.7.0.0.9. Any solution of the Hamburger moment problem (1.7) ψ generates linear
map U : `2 → L2

ψ given by

Ux := L2
ψ − lim

n→∞

n∑
k=0

xkP̂k(u).

Furthermore, Dom(U) = `2 and Ran(U) := ∆U is a subspace of L2
ψ. The map U is isometry and

for an inverse map

xk =

∫
R
f(u)P̂k(u)dψ(u). (1.18)

obeys.

(1.18) is an equation for Fourier coe�cients. These can be introduced for any function
F ∈ L2

ψ, we do not have to be restricted for those belonging to ∆U . With a function F we can
associate Fourier series

∞∑
k=0

xkP̂k,
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with xk given by (1.18). We adopt the following notation

F (u) ∼
∞∑
k=0

xkP̂k(u).

The partial sum

n∑
k=0

xkP̂k

is the best approximation of the function F in L2
ψ. It means

In :=

∫
R

∣∣∣∣∣F (u)−
n∑
k=0

xkP̂k(u)

∣∣∣∣∣
2

dψ(u) = min
Rn

∫
R
|F (u)−Rn|2 dψ(u),

where Rn is a polynomial with degree not exceeding n. We have

In =

∫
R
|F (u)|2dψ(u)−

n∑
k=0

|xk|2.

Taking n→∞ one gets Bessel inequality

∞∑
k=0

|xk|2 ≤
∫
R
|F (u)|2dψ(u).

In the case of equality, we are talking about Parseval equality.
Natural question arise, whether ∆U coincides with L2

ψ. The following theorem answers this
question.

Theorem 1.7.0.0.10. Subspace ∆U coincides with L2
ψ only if the set of all polynomials is dense

in L2
ψ.

Consider a set of all solution ψ of the moment problem (1.7). Now, we de�ne function

wψ(z) =

∫
R

dψ(u)

u− z
. (1.19)

De�nition 1.7.0.0.11. A function de�ned by (1.19) is called Weyl's function.

Theorem 1.7.0.0.12. The set of all values of Weyl's functions wψ(z) consider in a point z ∈ C\R
coincides with a closed disc bounded by the circle K∞(z).

For later purposes, we will prove a part of the statement above.

Proof. Let us take z ∈ C\R arbitrary. Symbol w will stand for the value wψ(z). Let us consider
a function

f(u) =
1

u− z
∈ L2

ψ
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and let us �nd it's Fourier coe�cients

xk =

∫
R

1

u− z
P̂k(u)dψ(u) =

∫
R

P̂k(u)− P̂k(z)
u− z

dψ(u) + P̂k(z)

∫
R

dψ(u)

u− z
= Qk(z) + wP̂k(z).

Hence we have

f(u) ∼
∞∑
k=0

(
wP̂k(z) +Qk(z)

)
P̂k(u).

According to Bessel inequality

∞∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 ≤ ∫

R

1

|u− z|2
dψ(u) =

∫
R

1

z − z

(
1

u− z
− 1

u− z

)
dψ(u) =

w − w
z − z

(1.20)

Thus, inequality (1.20) gives us that w is an element of closed disc bounded by K∞(z).

Theorem 1.7.0.0.12 is a prelimianary for a proof of the following important theorem.

Theorem 1.7.0.0.13. If a Jacobi matrix corresponding to the given positive sequence of moments
{µn}∞n=0 is of the type D, then the moment problem (1.7) is determinate.

By the combination of theorem 1.7.0.0.8 and ?? one has

Theorem 1.7.0.0.14. The moment problem (1.7) is determinate only if the corresponding
Jacobi matrix is of the type D.

Finally, let us concentrate on the question of density of the set of polynomials in L2
ψ. Let us

take a solution of the moment problem (1.7) ψ such that∣∣∣∣∫
R
ukdψ(u)

∣∣∣∣ <∞, ∀k ∈ N0.

Then obviously set of all polynomials (with restricted operations) is a subspace of L2
ψ. Let us

choose z ∈ C \ R and �nd a value

w =

∫
R

dψ(u)

u− z
.

According to (1.20) we have

∞∑
k=0

∣∣∣wP̂k(z) +Qk(z)
∣∣∣2 ≤ w − w

z − z
. (1.21)

De�nition 1.7.0.0.15. Under the same assumptions as above, the solution ψ is said to be
N-extremal in z ∈ C \ R if the equality holds in (1.21)

Theorem 1.7.0.0.16. Under the same assumptions as above, if the solution ψ is N-extremal in
some z ∈ C \ R, then ψ is N-extremal in any z ∈ C \ R.

Theorem 1.7.0.0.17. Under the same assumptions as above,
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1. if the set of all polynomials is dense in L2
ψ, then ψ is N-extremal in any z ∈ C \ R,

2. if the solution ψ of the moment problem (1.7) is N-extremal for some z ∈ C \ R, then the
set of all polynomials is dense in L2

ψ.

By the following de�nition, the previous theorem can be formulated in the more compact
form.

De�nition 1.7.0.0.18. Under the same assumptions as above, the solution ψ of the moment
problem (1.7) is said to be N-extremal if one of the following conditions obey

1. ψ is a unique solution,

2. ψ is not unique solution, but a point

w =

∫
R

dψ(u)

u− z

lies on a circle K∞(z) for some (and thus for any) z ∈ C \ R.

Remark 1.7.0.0.19. Under the same assumptions as above, the solution ψ is N-extremal in
some (and thus for any) z ∈ C \ R only if ψ is N-extremal.

Finally, we can modify theorem 1.7.0.0.17.

Theorem 1.7.0.0.20. Under the same assumptions as above, the set of all polynomials is dense
in L2

ψ only if the solution ψ is N-extremal.

Note that in the case of determinate Hamburger problem (thus existence of the unique solution
ψ), the set of all polynomials is dense in L2

ψ.

1.8 Operators on `2 generated by Jacobi matrix

Let us take Jacobi matrix

J =


β0 α0 0 0 0 . . .
α0 β1 α1 0 0 . . .
0 α1 β2 α2 0 . . .
...

...
...

...
...

. . .

 ,

such that αn > 0 and βn ∈ R for all n ∈ N0. Let us denote

PT (x) :=
(
P̂0(x), P̂1(x), . . . , P̂n(x), . . .

)
.

For a chosen x ∈ C, we regard P(x) as an element of the set C∞. By the preceding it follows
that forn any x ∈ C we can write

JP(x) = xP(x). (1.22)

This equation can be seen as an equation for formal eigenvalues.
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De�nition 1.8.0.0.1. Nonzero solution f ∈ C∞ of the equation

J f = λf

is called formal eigenvector of the matrix J associated with a eigenvalue λ. Matrix J is regarded
as an operator on C∞.

Remark 1.8.0.0.2. For any formal eigenvalue λ ∈ C, the corresponding eigenspace is one-
dimensional with basis formed by P(λ).

Let us focus on properties of some operators on the Hilbert space `2 de�ned by Jacobi matrix
J . First, we introduce operator J̇ with a domain

Dom
(
J̇
)

= span{en}∞n=0

by

(∀f ∈ Dom(J̇))(J̇f = J f).

Clearly, J̇ is an operator on `2. Let us investigate it's adjoint operator. Since {en}∞n=0 is ON
basis in `2, for any g ∈ `2 one can write

g =

∞∑
n=0

gnen.

Vector g is an element of Dom
(
J̇∗
)
if there is a vector h =

∑∞
n=0 hnen such as for every

f ∈ Dom
(
J̇
)

〈
g, J̇f

〉
= 〈h, f〉

holds. Obviously, it su�ces to be held for f = ek, where k ∈ N0 is chosen arbitrarily. We have

hk = αk−1gk−1 + βkgk + αkgk+1, ∀k ∈ N.

Thus we require

h =
∞∑
k=0

(αk−1gk−1 + βkgk + αkgk+1)ek = J g ∈ `2.

Adjoint operator J̇∗ is given by

Dom(J̇∗) = {f ∈ `2;J f ∈ `2} (1.23)

and (
∀f ∈ Dom(J̇∗)

)
(J̇∗f = J f). (1.24)

Therefore we have J̇ ⊂ J̇∗, equivalently J̇ is a symmetric operator. Hence, there exists closed
extension J of the operator J̇ and we know that

Dom(J̇∗) = Dom(J)+̇Ker(J̇∗ − i)+̇Ker(J̇∗ + i).
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To determine de�ciency indices we have to �nd non-trivial solution f ∈ `2 of the equation

J̇∗f− if = 0.

According to (1.23) and (1.24) it means to solve equation

J f = if.

Solution of this equation is P(i). Thus we have a non-trivial solution only if

∞∑
n=0

∣∣∣P̂ (i)
∣∣∣2 <∞,

thus it has to be

∞∑
n=0

∣∣∣P̂ (λ)
∣∣∣2 <∞,

for any λ ∈ C \ R. Since coe�cients of the polynomials P̂n(x) are real, dim Ker(J̇∗ − i) =
dim Ker(J̇∗ + i). Thus there are just two possibilities for the de�ciency indices either (1, 1) or
(0, 0). In the second case, one has

J̇∗ = J.

Thus J̇ is essentialy self-adjoint operator on `2. We conclude that J̇ is ESA (or equivalently
has unique self-adjoint extension) only if the corresponding Hambuerger moment problem is
determinate. We have a new criterion for the determinacy of the Hamburger moment problem.

Theorem 1.8.0.0.3. Hamburger moment problem (1.7) is determinate only if

∞∑
n=0

∣∣∣P̂n(z)
∣∣∣2 =∞.

holds for some (and thus for any) z ∈ C \ R.
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Chapter 2

Fuchsian di�erential equations

In the following chapter we will introduce the Heun's equation as a special case of the Fuchsian
di�erential equation. The main source for this chapter is book [9].

De�nition 2.0.0.0.1. Function f is said to be meromorphic on an open set Ω ⊂ C if there
exists subset A ⊂ Ω such that

1. A has no limiting point in Ω,

2. f is holomorphic on Ω \A,

3. f has a pole in every point of the subset A.

De�nition 2.0.0.0.2. Let Ω ⊂ C be an open set. Let F be a complex function de�ned on Ω.
Then

(`F (F )) (z) = F (n)(z) +
n−1∑
k=0

pk(z)F
(k)(z) = 0 (2.1)

is called the Fuchsian di�erential equation if coe�cients pk are meromorphic for k ∈ {0, 1, 2, . . . , n−
1}.

Remark 2.0.0.0.3. In particular, if we set p = p1 and q = p0 in the de�nition above, we get

d2F (z)

dz2
+ p(z)

dF (z)

dz
+ q(z)F (z) = 0. (2.2)

This case is especially important for us, as the Heun equation is the di�erential equation of the
second order.

De�nition 2.0.0.0.4. Point z0 ∈ C is said to be an ordinary point of the equation (2.1) if pk
is holomorphic in z0 for k = 0, 1, . . . , n − 1. Else, point z0 is said to be singular point of the
equation (2.1). Singular point z0 is said to be regular singularity of the equation (2.1) if the
function pk has pole of the order not exceeding n− k in z0 for k = 0, 1, . . . , n− 1.

Remark 2.0.0.0.5. Solution of the equation (2.1) will be found by the Frobenius method. Let
us consider that

F (z) = zρϕ(z), (2.3)

with ρ ∈ C and ϕ being holomorphic in some neighbourhood U of the point 0. Assume that 0
is an isolated singularity. Since ϕ is analytic in 0, it can be expressed as a power series. Due
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to linearity, one can assume that ϕ(0) = 1. Number ρ can be found by plugging expression
(2.3) into equation (2.1) and multiplying this equation by zn. Setting ak(z) = zn−k, the �nal
condition for ρ reads

n∑
k=0

ak(0)ρ(ρ− 1) . . . (ρ− k + 1) = 0. (2.4)

Following the analogous approach, one would get the same result for 0 7→ z0 ∈ C.

Remark 2.0.0.0.6. Returning to remark 2.0.0.0.3 and considering z0 as ordinary point or regular
singularity, one gets existence of the limits

lim
z→z0

(z − z0)p(z) =: A,

lim
z→z0

(z − z0)2q(z) =: B.

Hence, the so-called characteristic equation (2.4), has the form

ρ2 + (A− 1)ρ+B = 0. (2.5)

De�nition 2.0.0.0.7. Solutions ρ1, ρ2 of the equation (2.5) are called characteristic exponents

at the point z0.

Next theorem is adopoted from [3].

Theorem 2.0.0.0.8. Let us assume di�erential equation (2.2) with characteristic exponents
ρ1, ρ2 at a regular singular point z0 such that ρ1 6= ρ2 and ρ1 − ρ2 /∈ Z. Then

F1(z) = (z − z0)ρ1
∞∑
n=0

an(z − z0)n, F2(z) = (z − z0)ρ2
∞∑
n=0

bn(z − z0)n

are linearly independent solutions of the equation (2.2) with the coe�cients an, bn given by a
certain recursive relation. Both solutions F1, F2 converges on a disc given by

0 < |z − z0| < R,

with R being no bigger than the radius of convergence of either (z − z0)p and (z − z0)2q.

De�nition 2.0.0.0.9. Consider a transformation

z =
1

ζ
, (2.6)

F (z) = η(ζ).

If equation (2.1) takes the form of another Fuchsian di�erential equation, we are talking about
the Fuchsian di�erential equation in the point ∞.

Remark 2.0.0.0.10. Note that after substitution (2.6), equation (2.2) takes the form

d2η

dζ2
+

(
2

ζ
− 1

ζ2
p

(
1

ζ

))
dη

dζ
+

1

ζ4
q

(
1

ζ

)
η.
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For us, particularly interesting example is the so-called Heun's equation

d2F (z)

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dF (z)

dz
+

αβz − q
z(z − 1)(z − a)

F (z) = 0, (2.7)

with α, β, γ, δ, ε, a, q being complex parameters such as a 6= 0, 1. Equation (2.7) is clearly
Fuchsian di�erential equation with singularities (0, 1, a,∞ with respectively ordered exponents
0, 1− γ), (0, 1− δ), (0, 1− ε) and (α, β). Parameters are chosen such as they obey characteristic
equation in the singular point ∞. This assumption leads to a requirement on parametres

γ + δ + ε = α+ β + 1.

From now on, let us assume that |a| > 1. If γ 6= 0,−1,−2, . . . , then there is a unique Frobenius
solution in z = 0, with the characteristic exponent zero, up to multiplicative constant. We have

F (z) =

∞∑
r=0

crz
r, c0 6= 0. (2.8)

Since |a| > 1, series (2.8) converge for |z| < 1. Coe�cients cr are given by

−qc0 + aγc1 = 0

Arcr−1 − (Br + q)cr + Crcr+1 = 0, pro r ≥ 1,

together with

Ar = (r − 1 + α)(r − 1 + β)

Br = r ((r − 1 + γ)(1 + a) + aδ + ε)

Cr = (r + 1)(r + γ)a.

Setting c0 = 1 or equivalently F (0) = 1, the multiplicative constant which causes ambiguousness
of the solution, is �xed. Solution (2.8) with the coe�cients obeying conditions above is called
Heun's local function and is denoted by

H`(a, q;α, β, γ, δ; z).

We will adopt notation from paper [11]. Let us denote

a =
1

k2
, q = − s

k2
,

with k ∈ (0, 1). Heun's equation (2.7) then takes the form

d2F (z)

dz
+

(
γ

z
− δ

1− z
− εk2

1− k2z

)
dF (z)

dz
+

s+ αβk2z

z(1− z)(1− k2z)
F (z) = 0.

We adopt the notation for the Heun's local function as well from [11]

Hn(k2, s;α, β, γ, δ; z).

We know that the orthogonal polynomails P̃n(x) obey three-terms recurrence 1

bn−1P̃n−1(x) + (an − x)P̃n(x) + bnP̃n+1(x) = 0, n ∈ N0,

1In this section, deviation of the notation for OPS will be used according to [11]. The reason will be clear in
the next chapter.
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with initial conditions P̃−1(x) = 0 and P̃0(x) = 1. We will set

bn =
√
λnνn+1, an = λn + νn + γn,

with

λn = k2(n+ α)(n+ β),

νn = n(n+ γ − 1),

γn = (1− k2)δn.

For α, β, γ > 0, δ ∈ R and k ∈ (0, 1), polynomials P̃n(x) are orthonormal with respect to a
unique probability measure. It means, that the associated Hamburger problem is determinate.
In particular we have

Hn(k2, s;α, β, γ, δ; z) = F (x, z),

where

F (x, z) :=
∞∑
n=0

(−1)n
√
λ0λ1 . . . λn−1

ν1ν2 . . . νn
Pn(s+ αβk2)zn.
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Chapter 3

Application of the theory of orthogonal

polynomials to a solution of Heun's

equation

Let us suppose that the Hamburger problem is determinate. Since that, there is a unique
self-adjoint extension J of the operator J̇ given by Jacobi matrix J . Resolvent set of the operator
J will be denoted by %(J) as usual. We have

J =

∫
λdEλ,

with Eλ being a projection-valued measure. Therefore for probability measure one has

µ(·) = 〈e0, E(·)e0〉. (3.1)

Moreover, probabilty measure from (3.1) is the only solution to the Hamburger moment problem.
One has

µk = 〈e0, J
ke0〉 =

∫
λkdµ(λ), k ≥ 0.

Suppose that J is bounded below a certain positive constant γ. It says that

(∀f ∈ Dom(J))(〈f,J f〉 ≥ γ‖f‖).

In that case, J−1 existst and is bounded. Inequality

0 ≤ J−1 ≤ 1

γ

holds true. Finally, let us assume that J−1 is a trace-class operator. In that case, all spectral
points except for, eventually, zero are eigenvalues. Furthermore, the spectrum of J−1 is countable
and 0 is it's limiting point. Let us denote

spec
(
J−1

)
=

{
1

λn
;n ≥ 1

}
∪ {0}.

Thus

spec(J) = {λn;n ≥ 0}.
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Note that 0 cannot be an element of spectrum of J, because J is bounded below. It is also clear
that spec(J) = specp(J). Moreover, eigenvalues can be ordered increasingly

0 < γ ≤ λ1 ≤ λ2 ≤ . . . .

Hence limn→∞ λn =∞. We also suppose that for all n ≥ 0, αn > 0. It follows that all eigenvalues
are simple.

3.1 Useful identities

In the following section, we will summarize some useful identities which will be used later.
This section is taken from paper [10].

Equation (1.22) can be rewritten as the well-known three-terms recurrence for orthonormal
polynomials.

P̂0(x) = 1, (3.2)

α0P̂1(x) + (β0 − x)P̂0(x) = 0,

αn−1P̂n−1(x) + (βn − x)P̂n(x) + αnP̂n+1(x) = 0, pro n ≥ 1.

Besides the sequence
{
P̂n(x)

}
, we also recall sequence {Qn(x)}, given by

Q0(x) = 0, (3.3)

Q1(x) =
1

α0
,

αn−1Qn−1(x) + (βn − x)Qn(x) + αnQn+1(x) = 0, n ≥ 1.

With matrix J , equations (3.3) can be rewritten as

(J − z)Q(z) = e0, (3.4)

with QT (z) = (Q0(z), Q1(z), . . . ). Orthonormal polynomials and polynomials of the second kind
are related, as the following proposition says.

Proposition 3.1.0.0.1. For all n ∈ N0

Qn(z) =

n−1∑
j=0

1

αjP̂j(z)P̂j+1(z)

 P̂n(z). (3.5)

holds true.

Proof. Both sequences
{
P̂n(x)

}
and {Qn(x)}∞n=0 obey the same recurrence (up to initial data).

Multiplying the last equation of the recurrences (3.2) and (3.3) by Qn(x) and P̂n(x) respectively
and substracting one from another one gets

αn−1

(
P̂n(x)Qn−1(x)−Qn(x)P̂n(x)

)
− αn

(
P̂n+1(x)Qn(x)−Qn+1P̂n(x)

)
= 0.

It follows

αk

(
P̂k+1(x)Qk(x)−Qk+1P̂k(x)

)
= A, (3.6)
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for any k ∈ N0, with A being a constant. Under an assumption P̂n(x) 6= 0, we can use substitution
Qn(x) = P̂n(x)Hn(x). After this, equation (3.6) takes the form

Hk+1(x)−Hk(x) =
A

αkP̂k(x)P̂k+1(x)
. (3.7)

Note that H0(x) = 0. Taking sum in expression (3.7) for k = 0, . . . , n− 1 one has

Hn(x) =

n−1∑
k=0

A

αkP̂k(x)P̂k+1(x)
.

Thus

Qn(z) =

n−1∑
j=0

A

αjP̂j(z)P̂j+1(z)

 P̂n(z).

It remains to show that A = 1. Indeed, H1(z) = A

α0P̂0(z)P̂1(z)
= Q1(z)

P̂1(z)
= 1

α0P̂1(z)
.

Since matrix J is tridiagonal, power J k makes good sense for any k ∈ N0. Indeed, components
in the matrix multiplication are given by convergent series, since these are reduced to �nite sums.
Applying (3.2) on matrix J , we have

Pn(J )e0 = en. (3.8)

Proposition 3.1.0.0.2. OPS
{
P̂n(x)

}∞
n=0

forms orthonormal basis in the space L2
µ, with measure

µ being given by (3.1).

Proof. The set of all polynomials is dense in L2
µ, as we are assuming determinate Hamburger

moment problem. It remains to show that they are orthonormal. According to equation (3.1)
we have for any polynomial R(λ)

〈e0, R(J )e0〉 =

∫
R(λ)dµ(λ).

Thus

δm,n = 〈em, en〉 = 〈P̂m(J )e0, P̂n(J )e0〉 = 〈e0, P̂m(J )P̂n(J )e0〉 =

∫
P̂m(λ)P̂n(λ)dµ(λ).

In the third equality, (3.8) was used.

De�nition 3.1.0.0.3. For any z ∈ %(J) we de�ne vector-valued function w as

w(z) := (J − z)−1e0 =

∫
P(z)

λ− z
dµ(λ).

Components wk of the function above are called function of the second kind and obviously for
any z ∈ %(J)

wk(z) = 〈ek, (J − z)−1e0〉 =

∫
P̂k(z)

λ− z
dµ(λ).

holds.
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Note that for k = 0 we have Weyl's function.

Proposition 3.1.0.0.4. For any n ∈ N0 and for any z ∈ %(J)

wn(z)P̂n(z) = 〈en, (J − z)−1en〉. (3.9)

holds true.

Proof. We have ∫
P̂n(λ)

P̂n(λ)− P̂n(z)

λ− z
dµ(λ) = 0.

Moreover degree of the polynomial P̂n(λ)−P̂n(z)
λ−z is not exceeding n− 1. Thus

wn(z)P̂n(z) = P̂n(z)

∫
P̂n(λ)

λ− z
dµ(λ) +

∫
P̂n(λ)

P̂n(λ)− P̂n(z)

λ− z
dµ(λ)

=

∫
P̂n(λ)2

λ− z
dµ(λ) = 〈e0, P̂n(z)2(J − z)−1e0〉

= 〈en, (J − z)−1en〉.

J−1 is trace-class only if for some orthonormal basis {xn}∞n=0 in `2 (and thus for any)

trJ−1 =
∞∑
n=0

〈xn, J−1xn〉 <∞

holds. We can choose standard basis {en}∞n=0. Thus J
−1 is trace-class operator only if

trJ−1 =
∞∑
n=0

〈en, J−1en〉 =
∞∑
n=0

wn(0)P̂n(0) <∞. (3.10)

In the second equality, (3.9) was used. In view of (1.22) and (3.4) we have

(J − z)(w(z)P(z) + Q(z)) = e0.

It was claimed in the preceding chapter that w(z)P(z) + Q(z) ∈ `2 for any z ∈ %(J). Thus

w(z)P(z) + Q(z) = (J − z)−1e0 = w(z) ∈ `2.

It follows that

〈e0, w(z)P(z) + Q(z)〉 = w(z).

Another useful will be following Markov's theorem.

Theorem 3.1.0.0.5. Let z ∈ %(J). Then a limit limn→∞
Qn(z)

P̂n(z)
exists and

lim
n→∞

Qn(z)

P̂n(z)
= −w(z) = −〈e0, (J − z)−1e0〉 = −

∫
dµ(λ)

z − λ
= −

∞∑
j=0

1

αjP̂j(z)P̂j+1(z)
. (3.11)

holds true.
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De�nition 3.1.0.0.6. Let J be Jacobi matrix. For any k ∈ N0, let the symbol J (k) denote
matrix obtained from matrix J by delating �rst k columns and �rst k rows. Matrix J (k) is
called the k-th associated matrix corresponding to the matrix J . In particular, J (0) = J .

In [10], one can �nd proof of the following proposition.

Proposition 3.1.0.0.7. Let J be Jacobi matrix corresponding to a determinate Hamburger
moment problem. Then for all k ∈ N0, matrix J (k) corresponds to a determinate Hamburger
moment problem.

For arbitrary k ∈ N0,matrix J (k) determine a system of orthonormal polynomials
{
P̂

(k)
n (x);n ∈ N0

}
unambiguously by

P̂
(k)
0 (x) = 1, (3.12)

J (k)P(k)(x) = xP(k)(x).

These polynomials are called k-th associated orthonormal polynomials. Similarly we can de�ne
polynomials of the second kind

{
Q

(k)
n (x);n ∈ N0

}
, unambiguously as well, by

Q
(k)
j (x) = 0, j = 0, 1, . . . , k (3.13)

(J − x)Q(k)(x) = ek.

Relation between k-th associated polynomials and their polynomials of the second kind reads

P̂ (k)
n (x) =

Q
(k−1)
n+k (x)

Q
(k−1)
n+k (0)

, for n ≥ 0, k ≥ 0. (3.14)

Similarly, J (k) denotes a unique self-adjoint operator on `2 corresponding to the k-th associated
matrix J (k). Since J is bounded below, J (k) is bounded below as well. For any z ∈ %(J) and for
any k ∈ N0 we can de�ne

w(k)(z) := (J − z)−1ek ∈ `2. (3.15)

Column vector w(k)(z) is a solution of the equation

(J − z)w(k)(z) = ek v C∞, 〈e0,w
(k)(z)〉 = wk(z).

Furthermore,

(∀z ∈ %(J))(w(k)(z) = wk(z)P(z) + Q(k)(z) ∈ `2). (3.16)

According to paper [2], generalization of the Markov's theorem holds true.

Theorem 3.1.0.0.8. Under the same assumptions as in the theorem 3.1.0.0.5, the limit limn→∞
Q

(k)
n (z)

P̂n(z)

exists and

lim
n→∞

Q
(k)
n (z)

P̂n(z)
= −wk(z), z ∈ C \ [γ,∞). (3.17)

holds.
43



Due to (3.15) and (3.16), for m ≤ n and for z ∈ %(J), we have

〈em, (J − z)−1en〉 = 〈em, wn(z)P(z) + Q(n)(z)〉 = wn(z)P̂m(z).

The last equality holds because of (3.13). Conversely, for m > n, it is obvious that

〈em, (J − z)−1en〉 = wn(z)P̂m(z) +Q(n)
m (z).

At the same time

〈em, (J − z)−1en〉 = 〈en, (J − z)em〉 = wm(z)P̂n(z).

Thus

(∀m > n)
(
Q(n)
m (z) = wm(z)P̂n(z)− wn(z)P̂m(z)

)
. (3.18)

In particular,

(∀m ≥ 1)
(
Qm(z) = wm(z)− w(z)P̂m(z)

)
. (3.19)

Combining (3.18) and (3.19) one gets

(∀m > n)(∀z ∈ C \ [γ,∞))
(
Q(n)
m (z) = Qm(z)P̂n(z)−Qn(z)P̂m(z)

)
. (3.20)

Finally, substituting (3.5) into (3.20) we have

(∀m > n)(∀z ∈ C \ [γ,∞))

Q(n)
m (z) =

m−1∑
j=n

1

αjP̂j(z)P̂j+1(z)

Pn(z)Pm(z)

 . (3.21)

According to the last equality in (3.11) and (3.21) we have

wn(z) = w(z)P̂n(z) +Qn(z) = −

 ∞∑
j=n

1

αjP̂j(z)P̂j+1(z)

Pn(z). (3.22)

Plugging (3.22) into (3.10), expression for the trace reads

trJ−1 = −
∞∑
n=0

Pn(0)2
∞∑
j=n

1

αjP̂j(0)P̂j+1(0)
.

Next, we de�ne matrix G component-wise

Gm,n := Q(n)
m (0), m, n ≥ 0.

This matrix is obviously strictly lower-triangular. Due to (3.13) we have

JG = I. (3.23)

Matrix G is obviously the only strictly lower-triangular obeying (3.23). Hence, this matrix can
be interpreted as the Green function of the Jacobi matrix J . Due to (3.22), we have

Gm,n = P̂n(0)P̂m(0)

m−1∑
j=n

1

αjP̂j(0)P̂j+1(0)
.

Proof of the following theorem can be found in [10].
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Theorem 3.1.0.0.9. Let J be a Jacobi matrix and {P̂n(x)} be corresponding system of orthonormal
polynomials. Let G be the Green function of the matrix J . Then

P(x) = (I − xG)P(0). (3.24)

Conversely, equation (3.24) determine a strictly lower-triangular matrix unambiguously.

(I − xG) can be expanded to the series in the powers of G, it says

(I − xG) = I +

∞∑
l=1

xlGl.

This series is convergent as for arbitrary �xed matrix element the series terminate after �nite
terms. Thus

(∀n ∈ N0)

P̂n(x) = P̂n(0) +
n∑
l=1

xl
∑

0≤k1<k2<···<kl<n
Gn,klGkl,kl−1

. . .Gk2,k1P̂k1(0)

 . (3.25)

3.2 Worked example

For complex number a, Pochhammer symbol is de�ned as

(a)n =
Γ(a+ n)

Γ(a)
= a(a+ 1) . . . (a+ n− 1). (3.26)

Let us assume α, β, γ > 0. Next, let us set

αn := k
√

(n+ 1)(n+ α)(n+ β)(n+ γ), (3.27)

βn := k2n(n+ α− 1) + (n+ β)(n+ γ),

where k ∈ (0, 1).
Let us denote un := (n + β)(n + γ) and vn := k2n(n + α − 1). With this notation we can

write

αn =
√
unvn+1, (3.28)

βn = un + vn.

It is easy to see that the relation

αn
vn+1

=
un
αn

holds true. One also has

αn
vn+1

=
1

k

√
(n+ β)(n+ γ)

(n+ 1)(n+ α)
.

We already know that OPS
{
P̂n(x)

}∞
n=0

obeys the following three-term reccurence

αnP̂n+1(x) + (βn − x)P̂n(x) + αn−1P̂n−1(x) = 0.
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Setting x = 0 and taking advantage of notatiton (3.28) this equation takes the form

√
unvn+1P̂n+1(0) + (un + vn)P̂n(0) +

√
un−1vnP̂n−1(0) = 0,

which can be rewritten as

√
unvn+1

(
P̂n+1(0) +

√
un
vn+1

P̂n(0)

)
+ vn

(
P̂n(0) +

√
un−1

vn
P̂n−1(0)

)
= 0.

After substitution xn = P̂n+1(0)+
√

un
vn+1

P̂n(0) we obtain a two-term reccurence for the sequence

{xn} with the initial data x0 = P̂1(0) +
√

u0
v1
P̂0(0) = 1

α0

(
α0P̂1(0) + β0P̂0(0)

)
= 0. It's solution

is xn = 0, hence

P̂n+1(0) +

√
un
vn+1

P̂n(0) = 0, n ≥ 0.

Thus we can express P̂n(0) in the form

P̂n(0) = (−1)nk−n

√
(β)n(γ)n
n!(α)n

.

With this result one can evaluate the Green function. Let us recall relation (3.21). According
to that, we have

Gm,n = (−1)n+m+1k−n−m

√
(β)n(β)m(γ)n(γ)m
n!m!(α)n(α)m

m−1∑
j=n

k2jj!(α)j
(β)j+1(γ)j+1

. (3.29)

For coe�cients given by equation (3.27) the corresponding Jacobi matrix is Hamburger
determinate. Indeed,

lim
n→∞

∣∣∣∣∣ P̂n+1(0)

P̂n(0)

∣∣∣∣∣ = lim
n→∞

1

k

√
(n+ β)(n+ γ)

(n+ 1)(n+ α)
=

1

k
∈ (1,∞).

Thus limn→∞

∣∣∣P̂n(0)
∣∣∣ =∞ and therefore the series

∞∑
n=0

∣∣∣P̂n(z)
∣∣∣2

diverges for z = 0 and hence for any z ∈ C \ R. It follows that the corresponding Jacobi matrix
is Hamburger determinate.

For application of the formulas derived in [10], we need to prove, that J−1 is a trace-class
operator, as shown in [10] and summarize in the preceding section. This happens if and only if

trJ−1 = −
∞∑
n=0

P̂n(0)2
∞∑
j=n

1

αjP̂j(0)P̂j+1(0)
<∞. (3.30)
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In our case, equation (3.30) takes the form

trJ−1 =
∞∑
n=0

k−2n (β)n(γ)n
n!(α)n

∞∑
j=n

k2j√
(j + 1)(j + α)(j + β)(j + γ)

√
j!(α)j

(β)j(γ)j

√
(j + 1)!(α)j+1

(β)j+1(γ)j+1
.

(3.31)

Recall that Pochhammer symbol obeys relation (3.26). In order to prove the convergence of
(3.31), we will use the following asymptotic behavior of the Pochhammer symbol

(a)n
n!

=
n−1+a

Γ(a)

(
1 +O

(
1

n

))
.

Thus there are constants C1, C2 > 0 such that

C1n
1
2

(−1−α+β+γ) ≤

√
(β)n(γ)n
n!(α)n

≤ C2n
1
2

(−1−α+β+γ), n ≥ 1. (3.32)

Obviously, omitting the term with n = 0 in (3.31) does not in�uence the convergence. From
(3.32) it is readily seen that the rest of (3.31) can be estimated from above by the expression

C
∞∑
n=1

k−2nn−1−α+β+γ
∞∑
j=n

k2j

(j + 1)1−α+β+γ
,

where C > 0 is a constant. Solving the convergence problem, the constant C can be omitted.
After changing the order of summation one has

∞∑
n=1

k−2nn−1−α+β+γ
∞∑
j=n

k2j

(j + 1)1−α+β+γ
=
∞∑
j=0

k2j
∞∑
n=1

n−1−α+β+γ

(j + n+ 1)1−α+β+γ
=
∞∑
j=0

k2j
∞∑
n=1

nω

(j + n+ 1)2+ω
,

where ω := −1− α+ β + γ. Hence we have to prove the convergence of the sum

∞∑
j=0

k2j
∞∑
n=1

nω

(n+ j + 1)2+ω
.

Our goal is to estimate the second sum with integral. For this sake, let us de�ne for j ≥ 0

gn(j) :=
nω

(n+ j + 1)2+ω

and

f(j) :=
∞∑
n=1

gn(j).

Considering ω > 0, it is easy to check, that gn(j) is decreasing for n ≥
[
ω
2 (j + 1)

]
and increasing

for 1 ≤ n <
[
ω
2 (j + 1)

]
. In the case ω ≤ 0, gn(j) is decreasing for every n ≥ 1.

First, let us compute the following indeterminate integral

I(j) :=

∫
xω

(x+ j + 1)2+ω
dx.
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Using substitution y = x+ j + 1 we get

I(j) =

∫
(y − j − 1)ω

y2+ω
dy =

∫
1

y2

(
1− j + 1

y

)ω
dy.

Next, we use the substitution t = − j+1
y . Hence

I(j) =
1

j + 1

∫
(1 + t)ωdt =

(1 + t)1+ω

(ω + 1)(j + 1)
, ω 6= −1.

Thus

I(j) =
x1+ω

(ω + 1)(j + 1)(x+ j + 1)1+ω
, ω 6= −1.

For ω = −1 one has

I(j) =
1

j + 1
ln

(
x

x+ j + 1

)
.

First of all, let us concentrate on the case ω > 0. Then we have

f(j) =

[ω2 (j+1)]−1∑
n=1

gn(j) +

∞∑
[ω2 (j+1)]

gn(j) (3.33)

≤
∫ [ω2 (j+1)]−1

1

xω

(x+ j + 1)2+ω
dx+ g[ω2 (j+1)](j) +

∫ ∞
[ω2 (j+1)]

xω

(x+ j + 1)2+ω
dx

≤
∫ ∞

0

xω

(x+ j + 1)2+ω
dx+

(
ω
2 (j + 1)

)ω((
ω
2 + 1

)
(j + 1)

)ω+2 =
1

(ω + 1)(j + 1)
+

(
ω
2 (j + 1)

)ω((
ω
2 + 1

)
(j + 1)

)ω+2

=
1

(ω + 1)(j + 1)

(
1 +O

(
1

j

))
as j →∞.

Next, we will solve the case −1 < ω < 0. Then

f(j) ≤
∫ ∞

1

xω

(x+ j + 1)2+ω
dx ≤ 1

(ω + 1)(j + 1)
− 1

(ω + 1)(j + 1)2
(3.34)

=
1

(ω + 1)(j + 1)

(
1 +O

(
1

j

))
as j →∞.

For ω < −1 one can estimate

f(j) ≤
∫ ∞

1

xω

(x+ j + 1)2+ω
dx = lim

x→∞

x1+ω

(ω + 1)(j + 1)(x+ j + 1)1+ω
− 1

(ω + 1)(j + 1)(j + 2)1+ω

(3.35)

=
1

−(ω + 1)j2+ω
· (1 + o(1)) as j →∞.

For the remaining case, ω = −1 one has

f(j) ≤
∫ ∞

1

1

x(x+ j + 1)
dx = lim

x→∞

1

j + 1
ln

(
x

x+ j + 1

)
− 1

j + 1
ln

(
1

j + 1

)
(3.36)

=
1

j + 1
ln(j + 1)
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In view of the estimates (3.33), (3.34), (3.35) and (3.36), the following holds true
∞∑
j=0

k2j
∞∑
n=1

nω

(n+ j + 1)2+ω
≤
∞∑
j=0

f(j)k2j <∞.

We have proven that J−1 is a trace-class operator, thus we can use formulas derived in [10].
Each polynomials P̂n(x) can be written as

P̂n(x) =
n∑

m=0

p(n,m)xm.

Note that p(0, n) = P̂n(0). By (3.25) we have, for n ≥ 1

p(n,m) =
1

m!

dm

dxm
P̂n(x)

∣∣∣
x=0

=
∑

0≤l1<l2<···<lm<n
Gn,lmGlm,lm−1 . . .Gl2,l1P̂l1(0)

= (−1)n+mk−n

√
(β)n(γ)n
n!(α)n

∑
0≤l1<l2<···<lm<n

k−2lm−2lm−1−...−2l1 (β)lm(γ)lm
lm!(α)lm

×

×
(β)lm−1(γ)lm−1

lm−1!(α)lm−1

. . .
(β)l1(γ)l1
l1!(α)l1

n−1∑
jm=lm

k2jmjm!(α)jm
(β)jm+1(γ)jm+1

· · · ×

×
l2−1∑
j1=l1

k2j1j1!(α)j1
(β)j1+1(γ)j1+1

By the virtue of [11] let us set

G(x, z) :=
∞∑
n=0

(−1)n

√
(α)n(β)n
n!(γ)n

P̂n(x)(kz)n. (3.37)

We will �nd Heun's equation for which the function G(x, z) ≡ G(z), as de�ned above in (3.37),
is a local Heun function. We have to be carefull because our coe�cients αn, βn are not exactly
the same as an, bn in [11]. The relation between them is described in the following equations

αn = bn, βn = an + βγ − k2αβ.

The orthonormal polynomails given by these coe�cients will be again denoted by P̃n(x). We
already know that function F (x, z) ≡ F (z) given by

F (x, z) :=

∞∑
n=0

(−1)n

√
(α)n(β)n
n!(γ)n

P̃n(x)(kz)n

is the Heun function for the equation

d2

dz2
F (z) +

(
γ

z
− β + 1

1− z
− εk2

1− k2z

)
d

dz
F (z) +

x− αβk2 + αβk2z

z(z − 1)(1− k2z)
F (z) = 0.

It is easy to check, that polynomials P̂n(x) and polynomials P̃n(x) are connected by the formula

P̂n(x) = P̃n(x+ k2αβ − βγ),

thus the generating function (3.37) is a solution of the equation

d2

dz2
G(z) +

(
γ

z
− β + 1

1− z
− εk2

1− k2z

)
d

dz
G(z) +

x− βγ + αβk2z

z(1− z)(1− k2z)
G(z) = 0.
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3.2.1 Special cases

In some special cases, particular simpli�cation of the epxression for p(n,m) is possible. First,
let us assume

α = β = γ = 1.

Under this assumption one has a solution of the equation

d2G(z)

dz2
+

1− 3z

z(1− z)
dG(z)

dz
+

x− 1 + k2z

z(1− z)(1− k2z)
G(z) = 0.

For coe�ents p(n,m) one has

p(m,n) =
1

m!

dm

dxm
P̂n(x)

∣∣∣
x=0

=
∑

0≤l1<l2<···<lm<n
Gn,lmGlm,lm−1 . . .Gl2,l1P̂l1(0)

= (−1)n+mk−n
∑

0≤l1<l2<···<lm<n
k−2lm−2lm−1−...−2l1×

×
n−1∑
jm=lm

k2jm

(jm + 1)2

lm−1∑
jm−1=lm−1

k2jm−1

(jm−1 + 1)2
· · ·

l2−1∑
j1=l1

k2j1

(j1 + 1)2
,

Note that the indices in this formula satisfy

0 ≤ l1 ≤ j1 < l2 ≤ j2 < · · · < lm−1 ≤ jm−1 < lm ≤ jm < n.

Changing the order of summation in the above expression, we have

p(m,n) = (−1)n+mk−n
∑

0≤j1<j2···<jm<n

kjmk2jm−1 . . . k2j1

(jm + 1)2(jm−1 + 1)2 . . . (j1 + 1)2
×

×
jm∑

lm=jm−1+1

k−2lm

jm−1∑
lm−1=jm−2+1

k−2lm−1 · · ·
j1∑
l1=0

k−2l1 .

Hence,

p(m,n) =
(−1)n+mk−n

(1− k2)m

∑
0≤j1<j2···<jm<n

(1− k2(j1+1))(1− k2(j2−j1)) . . . (1− k2(jm−jm−1))

(j1 + 1)2(j2 + 1)2 . . . (jm + 1)2
.

In this case, the generating function (3.37) takes the form

G(x, z) =
∞∑
n=0

(−kz)nP̂n(x),
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which can also be simpli�ed

G(x, z) =
∞∑
n=0

(−kz)n
n∑

m=0

p(m,n)xm

=

∞∑
m=0

xm
∞∑
n=m

p(m,n)(−kz)n

=
∞∑
m=0

(−x)m

(1− k2)m

∞∑
n=m

zn
∑

0≤j1<j2···<jm<n

(1− k2(j1+1))(1− k2(j2−j1)) . . . (1− k2(jm−jm−1))

(j1 + 1)2(j2 + 1)2 . . . (jm + 1)2

=
∞∑
m=0

(−x)m

(1− k2)m

∑
0≤j1<j2<···<jm<∞

(1− k2(j1+1))(1− k2(j2−j1)) . . . (1− k2(jm−jm−1))

(j1 + 1)2(j2 + 1)2 . . . (jm + 1)2

∞∑
n=jm+1

zn.

Thus we have

G(x, z) =
1

1− z

(
1 +

∞∑
m=0

(−x)m

(1− k2)m
×

×
∑

0≤j1<j2<···<jm<∞

(1− k2(j1+1))(1− k2(j2−j1)) . . . (1− k2(jm−jm−1))

(j1 + 1)2(j2 + 1)2 . . . (jm + 1)2
zjm+1

)
.

Second, let us assume

α = β > 0, γ = 1.

Thus we are looking for a solution of the equation

d2G(z)

dz2
+

(
1

z
− α+ 1

1− z
− (α− 1)k2

1− k2z

)
dG(z)

dz
+

x− α+ α2k2z

z(1− z)(1− k2z)
G(z) = 0.

Similarly as above, we can simplify expression for p(n,m) as

p(m,n) =
1

m!

dm

dxm
P̂n(x)

∣∣∣
x=0

=
∑

0≤l1<l2<···<lm<n
Gn,lmGlm,lm−1 . . .Gl2,l1P̂l1(0)

= (−1)n+mk−n
∑

0≤l1<l2<···<lm<n
k−2lm−2lm−1−...−2l1×

×
n−1∑
jm=lm

k2jm

(jm + 1)(jm + α)

lm−1∑
jm−1=lm−1

k2jm−1

(jm−1 + 1)(jm−1 + α)
×

× · · · ×
l2−1∑
j1=l1

k2j1

(j1 + 1)(j1 + α)
.

Note that

0 ≤ l1 ≤ j1 < l2 ≤ j2 < · · · < lm−1 ≤ jm−1 < lm ≤ jm < n.

Changing the order of summation one has

p(m,n) =
(−1)n+mk−n

(1− k2)m

∑
0≤j1<j2<···<jm<n

(1− k2(j1+1))(1− k2(j2−j1)) . . . (1− k2(jm−jm−1))

(j1 + 1)(j1 + α)(j2 + 1)(j2 + α) . . . (jm + 1)(jm + α)
.
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The generating function is of the form

G(x, z) :=
∞∑
n=0

P̂n(x)
(α)n
n!

(−kz)n

and can be expressed as

G(x, z) = (1− z)−α +

∞∑
m=1

(−x)m

(1− k2)m

×
∑

0≤j1<···<jm<∞

(1− k2(j1+1)) . . . (1− k2(jm−jm−1))

(j1 + 1)(j1 + α) . . . (jm + 1)(jm + α)
×

× (α)jm+1

(jm + 1)!
2F1(1, jm + α+ 1; jm + 2; z)zjm+1.

Finally, assume that

α = γ > 0, β = 1.

Then a discussed equation is of the form

d2G(z)

dz2
+
α− (2 + α)z

z(1− z)
dG(z)

dz
+

x− α+ αk2z

z(1− z)(1− k2z)
G(z) = 0.

The generating function

G(x, z) =
∞∑
n=0

P̂n(x)(−kz)n

can be expressed as

G(x, z) =
1

1− z

(
1 +

∞∑
m=1

(−x)m

(1− k2)m
×

×
∑

0≤j1<···<jm<∞

(1− k2(j1+1)) . . . (1− k2(jm−jm−1))

(j1 + 1)(j1 + α) . . . (jm + 1)(jm + α)

)
.

Note that the orthonormal systems in the second and the third case are the same.

3.2.2 Generalization

Recall that our aim is to solve the Heun's di�erential equation of the special form

d2

dz2
G(z) +

(
γ

z
− β + 1

1− z
− εk2

1− k2z

)
d

dz
G(z) +

x− βγ + αβk2z

z(1− z)(1− k2z)
G(z) = 0. (3.38)
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with an additional condition ε = α − γ. Assumption of positivity of α, β, γ in the approach
above, allows us to show that an inverse operator for Jacobi matrix exists and is trace class.
Hence, according to [10], the expression

G(x, z) :=
∞∑
n=0

(−1)n

√
(α)n(β)n
n!(γ)n

P̂n(x)(kz)n (3.39)

with

p(m,n) = (−1)n+mk−n

√
(β)n(γ)n
n!(α)n

∑
0≤l1<l2<···<lm<n

k−2lm−2lm−1−...−2l1 (β)lm(γ)lm
lm!(α)lm

× (3.40)

×
(β)lm−1(γ)lm−1

lm−1!(α)lm−1

. . .
(β)l1(γ)l1
l1!(α)l1

n−1∑
jm=lm

k2jmjm!(α)jm
(β)jm+1(γ)jm+1

· · · ×

×
l2−1∑
j1=l1

k2j1j1!(α)j1
(β)j1+1(γ)j1+1

is possible expression for the Heun local function of the equation mentioned above.
In this section, our tactics will be slightly di�erent. We will assume that (3.39) together with

(3.40) is a candidate for the solution of the equation (3.38) whenever the RHS of (3.39) makes
good sense. This approach allows us to extend the range of parametres α, β, γ if compared to
the case when the existence of a trace-class inverse is guaranted. The result is summarize in the
theorem below.

Theorem 3.2.2.0.1. Let α, β, γ ∈ {z ∈ C : <(z) > −1 ∨ =(z) 6= 0} and k ∈ (0, 1). Then the
function G = G(z) de�ned by (3.39) and (3.40) is the local Heun function for the Heun di�erential
equation (3.38).

Proof. The �rst goal is to show that the in�nite matrix G de�ned by elements (3.29) is the Green
function for the Jacobi matrix J de�ned by coe�cients (3.27), this is to say that

J · G = 1, (3.41)

here the symbol ·means matrix multiplication. This operation is meaningful since J is tridiagonal.
In the sequel, the symbol · will be omitted. Let n ≥ 0 be arbitrary. Let us compute

(JG)n,l = αn−1Gn−1,l + βnGn,l + αnGn+1,l. (3.42)

As G is strictly lower-triangular, (JG)n,l is not equal to 0 only if l = 0, . . . , n. For l = n one has

(JG)n,n = αnGn+1,n = αn
1

k
√

(n+ 1)(n+ α)(n+ β)(n+ γ)
= 1.
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For l = 0, . . . , n− 1 we �rstly give an auxiliary result

Gn,l = −k

√
(n− 1 + β)(n− 1 + γ)

n(n− 1 + α)
Gn−1,l + (−1)n+l+1k−n−l

√
(β)l(γ)l
l!(α)l

√
(β)n(γ)n
n!(α)n

× k2n−2(n− 1)!(α)n−1

(β)n(γ)n

Gn+1,l = k2

√
(n+ β)(n− 1 + β)(n+ γ)(n− 1 + γ)

n(n+ 1)(n+ γ)(n− 1 + γ)
Gn−1,l+

+

√
(β)l(γ)l
l!(α)l

√
(β)n+1(γ)n+1

(n+ 1)!(α)n+1

(
k2n−2(n− 1)!(α)n−1

(β)n(γ)n
+

k2nn!(α)n
(βn+1(γ)n+1

)
Plugging this result into the equation (3.42) one gets

(JG)n,l = 0.

Hence, (3.41) holds true. Thus, according to theorem 3.1.0.0.9 one has that polynomials P̂n(x)
obey equation (3.24). In our case this equation is equivalent to the equation (3.40). Polynomials
P̂n(x) obey the reccurence

α0P̂1(x) + (β0 − x)P̂0(x) = 0 (3.43)

αnP̂n+1(x) + (βn − x)P̂n(x) + αn−1P̂n−1(x) = 0, n ≥ 1

with αn and βn being de�ned by (3.27). They represent the OPS corresponding to the Jacobi
matrix J with coe�cients (3.27). We will multiply both sides of equation (3.38) by z(1− z)(1−
k2z) and plug expression (3.39) for G(z) into (3.38). After routine manipulation with indices in
the series, the LHS of the equation (3.38) reads

−α0P̂1(x)− β0P̂0(x) + k

√
αβ

γ

(
α1P̂2(x) + (β1 − x)P̂1(x) + α0P̂0(x)

)
z

−k2

√
α(α+ 1)β(β + 1)

γ(γ + 1)

(
α2P̂3(x) + (β2 − x)P̂2(x)− α1P̂1(x)

)
z2

+
∞∑
n=3

(−1)n+1kn

√
(α)n−1(β)n−1

n− 1)!(γ)n−1

(
αnP̂n+1(x) + (βn − x)P̂n(x) + αn−1P̂n−1(x)

)
zn

being equal to zero due to the reccurence (3.43). This shows that expressions (3.39) and (3.40)
describe, indeed, the Heun local solution of the Heun equation (3.38).
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Chapter 4

Ground state of the Jacobi matrix

4.1 Perturbation series

The following section is adopted mainly from books [6] and [8].

4.1.1 Preliminaries

Let X be a Banach space with dimX < ∞. Let T be an operator on X . Let us denote the
eigenvalues of T by spec(T ) = {λh}sh=1. Every eigenvalue is a singular point for the resolvent
R(z) of the operator T . Without loss of generelity, let us take λh = 0 and expand R(z) in the
Laurent series in a neighbourhood of λh = 0. We have

R(z) =
∞∑

n=−∞
znAn, (4.1)

where

An =
1

2πi

∫
Γ
z−n−1R(z)dz, (4.2)

with Γ being a circle enclosing λh = 0 but no other eigenvalue. In (4.2), one can integrate over
slightly smaller circle Γ′without changing the result. Thus

AnAm =

(
1

2πi

)2 ∫
Γ

∫
Γ′
z−n−1w−m−1R(z)R(w)dzdw = (ηn + ηm − 1)An+m+1, (4.3)

where

ηn =

{
1 for n ≥ 0

0 for n < 0
.

Since A2
−1 = −A−1,−A−1 is a projection. Let us denote

P = −A−1 = − 1

2πi

∫
Γ
R(z)dz.

Letting

D := A−2, S := A0,
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one gets from equation (4.3)

A−k = −Dk−1, for k ≥ 2, Ak = Sk+1, for k ≥ 0.

Thus the expression (4.1) can be rewritten as

R(z) = −1

z
P −

∞∑
n=1

z−n−1Dn +

∞∑
n=0

znSn+1.

For a general λh, not necessarily equal to 0, we have

R(z) = − 1

z − λh
Ph −

∞∑
n=1

(z − λh)−n−1Dn
h +

∞∑
n=0

(z − λh)nSn+1
h . (4.4)

From (4.3) one can conclude that

PhDh = DhPh = Dh, PhSh = ShPh = 0.

Expression (4.4) can be seen as a decomposition of the resolvent R(z) according to decomposition
of the Banach space X = Mh uM ′h, where

Mh = PhX , M ′h = (1− Ph)X .

Proposition 4.1.1.0.1. Operator T on X is nilpotent if and only if it's spectral radius is zero.

Since R(z) converges everywhere in Mh and for all z except for z = λh, spectral radius of Dh

must be zero and, regarding the proposition 4.1.1.0.1, Dh is nilpotent.
For h, k ∈ {1, . . . , s} s. t. h 6= k the following holds true

PhPk = δh,kPh,
s∑

h=1

Ph = 1, PhT = TPh.

Multiplying the integral in the equation (4.2) from the left or from the right by operator T
it is readily seen that

AnT = TAn = δn,0 +An−1.

In particular, one has

(T − λh)Ph = Ph(T − λh) = Dh, (T − λh)Sh = Sh(T − λh) = 1− Ph. (4.5)

Proposition 4.1.1.0.2. For k, h ∈ {1, . . . , s}

PhDh = DhPh = δh,kDh, DhDk = 0, for h 6= k.

Let us denote, for h = 1, . . . , s, Mh = RanPh. One has X = M1 uM2 · · · uMs. Mh are
invariant subspaces for T .

De�nition 4.1.1.0.3. For any h ∈ {1, . . . s}, Mh is called algebraic subspace of the operator T
corresponding to the eigenvalue λh. Ph is called eigenprojection corresponding to the eigenvalue
λh. Any non-zero vector u ∈Mh is called generalized eigenvector corresponding to the eigenvalue
λh.
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From (4.5) one has

TMh
= TP 2

h = PhTPh = λhPh +Dh. (4.6)

Now, taking sum from 1 to s in the expression (4.6), we have

T = S +D, (4.7)

with

S =
s∑

h=1

λhPh, D =
s∑

h=1

Dh. (4.8)

According to the proposition 4.1.1.0.2 one has

Dn =
s∑

h=0

Dn
h = 0, for n ≥ max

1≤h≤s
mh.

The preceding shows that any operator T on X can be expressed as a sum of diagonalizable
operator and nilpotent. This expression is unique in the following sense.

Theorem 4.1.1.0.4. Let T be expressed as a sum of diagonalizable operator S and nilpotent
D which commutes with S. Then S and D must obey relations from the equation (4.8).

De�nition 4.1.1.0.5. Expressions (4.7) and (4.8) are called the spectral representation of the
operator T . An eigenvalue λh is said to be semisiple if Dh = 0 and is said to be simple if mh = 1.

Let us note that mh = 1 implies Dh = 0.

Let us consider operator on a Banach space X in the form

T (k) = T + kT (1) + k2T (2) + . . . (4.9)

T is called unperturbed operator and kT (1) + k2T (2) + . . . is called perturbation. According to
[6], the number of eigenvalues of T (k) is a constant s independent of k up to some special values
of k. There are only a �nite number of such exceptional points k in each compact subset of D0,
where D0 is a set of all possible values of k. Recall that resolvent of T (k) is de�ned as

R(k, z) = (T (k)− z)−1 ,

where z lies in the resolvent set of T (k). Let us denote

A(k) = kT (1) + k2T (2) + . . . ,

It is convenient to write R(k, z) as a power series in k with coe�cients depending on z. This
reads

R(k, z) = R(z) (1 +A(k)R(z))−1 (4.10)

= R(z)

∞∑
p=0

(−A(k)R(z))p

= R(z) +

∞∑
n=1

knR(n)(z),
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where

R(n)(z) =
∑

n1+···+np=n
nj≥1

(−1)pR(z)T (n1)R(z)T (n2) . . . T (np)R(z).

According to [6], series above is convergent for su�ciently small k and z ∈ Γ if Γ is a compact
subset of the resolvent set of ρ(T ) with T = T (0). Let λ be one of the eigenvalues of T = T (0)
with algebraic multiplicity m. Let Γ be a positively-oriented circle in the resolvent set ρ(T )
enclosing λ and no other eigenvalue of T . The operator

P (k) = − 1

2πi

∫
Γ
R(k, z)dz

is a projection and is equal to the sum of eigenprojections for all the eigenvalues of T (k) lying
inside Γ ([6]). Integrating (4.10) term by term, one has

P (k) = P +
∞∑
n=1

knP (n) (4.11)

with

P (n) = − 1

2πi

∫
Γ
R(n)(z)dz. (4.12)

Lemma 4.1.1.0.6. Let P (t) be a projection depending continuously on a parameter t varying
in a connected region of complex numbers. Then the ranges P (t)X for di�erent t are isomorphic
to one another. In particular, dimP (t) is constant.

The series (4.11) converges for small |k|. It follows form the lemma 4.1.1.0.6 that the range
M(k) := P (k)X is isomorphic with the algebraic eigenspace M = M(0) = PX of T for the
eigenvalue λ. In particular,

dimP (k) = dimP = m.

Symbol {λh(k)}sh=1 again denotes the set of all eigenvalues of T (k). With additional notation
Mh(k) := Ph(k)X , we have

X = M1(k) uM2(k) u · · ·uMs(k), dimMh(k) = mh,

s∑
h=1

mh = dimX .

From (4.5), the eigennilpotent for the eigenvalue λh(k) is given by

Dh(k) = (T (k)− λh(k))Ph(k). (4.13)

4.1.2 Perturbation series

Our starting point will be the power series for T (k) given by (4.9). Let λ be one of the
eigenvalues of the unperturbed operator T = T (0) with algebraic multiplicity m and let P and
D be the associated eigenprojection and eigennilpotent. The eigenvalue λ is in general split into
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several eigenvalues of T (k), the total projection P (k) for these is holomorphic at k = 0 and is
given by

P (k) =
∞∑
n=0

knP (n), P (0) = P, (4.14)

with P (n) given by (4.12). From now on, suppose there is no splitting of the eigenvalue λ. In
particular it is always true if m = 1. In order to determine the eigenvalue of T (k) associated
with λ, it is enough to solve the eigenvalue problem in the subspace M(k) = P (k)X . This is
equivalent to the eigenvalue problem for the operator

Tr(k) = T (k)P (k) = P (k)T (k) = P (k)T (k)P (k).

Thus

λ(k) =
1

m
tr (T (k)P (k)) = λ+

1

m
tr ((T (k)− λ)P (k)) . (4.15)

Equations (4.14) for the eigenprojection, (4.15) for the eigenvalue and (4.13) fully describe the
eigenvalue problem for T (k). Now we will give an explicit form for those series. The coe�cients
of the series (4.14) are given by

P (n) = − 1

2πi

∑
n1+···+np=n

nj≥1

(−1)p
∫

Γ
R(z)T (n1) . . . T (np)R(z)dz, (4.16)

where Γ is a small, positively-oriented circle around λ. To evaluate the integral above, instead
of R(z) we will substitute it's Laurent series (4.4) at z = λ, for convenience it will be written in
the form

R(z) =

∞∑
n=−m

(z − λ)nS(n+1), (4.17)

with

S(0) = −P, S(n) = Sn, S(−n) = −Dn, n ≥ 1.

Substituting (4.17) into the integrand of (4.16) one has

P (n) = − 1

2πi

n∑
p=1

(−1)p
∑

n1+...np=n
k1+···+kp+1=p
nj≥1,kj≥−m+1

S(k1)T (n1)S(k2) . . . S(kp)T (np)S(kp+1). (4.18)

The just described results were derived without knowing that the series in question has a
nonzero radius of convergence. The following Kato-Rellich Theorem taken from [8] will justify
all the above results.

De�nition 4.1.2.0.1. An operator-valued function T (k) on a complex domain D is called an
analytic family if and only if

1. for each k ∈ D, T (k) is closed and has nonempty resolvent set,
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2. for every k0, there is a λ0 ∈ ρ(T (k0)) so that λ0 ∈ ρ(T (k)) for k near k0 and (T (k)− λ0)−1

is analytic operator-valued function of k near k0.

Theorem 4.1.2.0.2. Let T (k) be an analytic family. Let λ0 be a nondegenerate discrete
eigenvalue of T (k0). Then, for k near k0, there is exactly one point λ(k) of spec(T (k)) near
λ0 and this point is isolated and nondegenerate. λ(k) is an analytic function of k for k near k0.

Note that just derived results hold also for operators on an in�nite-dimensional Banach space
if λh is an isolated point of the sprectrum and the projection is �nite-dimensional.

4.2 Implicit function approach to the perturbation series

In the following section some preliminaries will be needed. We begin with recalling several
well-known propostions.

Proposition 4.2.0.0.1. Let X be a Banach space and let A ∈ B(X ) such that ‖A‖ < 1. Then
(I −A)−1 ∈ B(X ) and

(I −A)−1 =
∞∑
k=0

Ak,

with the series being convergent in B(X ). Moreover,

‖(I −A)−1‖ ≤ 1

1− ‖A‖
Proposition 4.2.0.0.2. Let X be a Banach space, let A be an operator on X , let λ be an element
of the resolvent set of A which will be denoted by %(A). Let us denote by Rλ the resolvent of
the operator A evaluated at λ. Then

1. B
(
λ, 1
‖Rλ‖

)
⊂ %(A),

2. for each µ ∈ B
(
λ, 1
‖Rλ‖

)
the operator-valued function Rµ can be expressed in the form of

a power series

Rµ =
∞∑
n=0

(µ− λ)nRn+1
λ .

This means that R· is an analytic function in the neighbourhood of the point λ.

The implicit function theorem for analytic functions taken from [7] will be useful for our
purposes.

Theorem 4.2.0.0.3. Let F (z, w) be a function of two complex variables which is analytic in a
neighbourhood of the point (z0, w0) and suppose that

F (z0, w0) = 0, ∂wF (z0, w0) 6= 0.

Then there are neighbourhoods N(z0) and N(w0) such that equation

F (z, w) = 0

has a unique root w = w(z) in N(w0) for any given z ∈ N(z0). Moreover, the function w = w(z)
is single-valued and analyitic in N(z0) and satis�es the condition

w(z0) = w0.
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Now we are ready to summarize some results from [5]. Let H be a Hilbert space. Let K be
a self-adjoint operator on H and let F ∈ R be an isolated simple eigenvalue of K, i.e.

dist (F, spec(K) \ {F}) =: d > 0.

Throughout this section, f will denote a normalized eigenvector of K corresponding to the
eigenvalue F . Also, let P be an orthogonal projection on Cf and Q := I − P . Let V1, V2 be
symmetric operators on H. We are going to discuss operator K + kV1 + k2V2, where k is a real
parameter. In particular, we focus on the question whether an eigenvalue F (k) of K+kV1 +k2V2

is in some sense inherited from the eigenvalue F of K.
For any operator A on H we will denote

Ã := QAQ : Dom(A) ∩ Ran(Q)→ Ran(Q).

Clearly,
(
K̃ − F

)−1
is self-adjoint. It follows from the fact that for any operator A on H the

relation

(A∗)−1 =
(
A−1

)∗
holds true if A−1 exists and is densily de�ned. Next we need Ṽ1 and Ṽ2 to be relatively bounded

bounded with respect to the operator K̃. It means:

De�nition 4.2.0.0.4. Under the same assumption as in the preceding text, an operator Ṽ on
Hilbert space H is called relatively bounded with respect to the operator K if the following two
conditions are obeyed at the same time

1. DomK̃ ⊂ DomṼ ,

2. Ṽ
(
K̃ − F

)−1
is bounded.

By regular perturbation theory, it is possible to express F (k) and f(k) as power series in the
parameter k, i.e.

F (k) = F + kλ1 + k2λ2 + . . .

f(k) = f + kg1 + k2g2 + . . . ,

with λi ∈ R, gi ∈ H. F (k) is the only eigenvalue near F for k near 0. Adding normalizing
condition

〈f, f(k)〉 = 1,

equivalently f(k)− f ∈ Ran(Q), thus coe�cients gi are necessarily elements of Ran(Q).
Let us consider an eigenvalue for K + kV1 + k2V2 in the form F + λ, where λ ∈ R. Similarly

for and eigenvector f + g corresponding to the eigenvalue F + λ, where g ∈ Ran(Q) due to the
normalization condition. Hence the equation

(K + kV1 + k2V2)(f + g) = (F + λ)(f + g) (4.19)

should be full�lled. It is clear that for any vectors u, v ∈ H equation u = v holds if and only if
Pu = Pv and Qu = Qv. Applying projection P on the equation (4.19) one obtains

λf = P (kV1 + k2V2)f + P (kV1 + k2V2)g.
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Note that KP = PK. Next we will apply the scalar product with f . Since V is symmetric and
P = P ∗, one gets

λ = 〈(kV1 + k2V2)f, f〉+ 〈(kV1 + k2V2)f, g〉

Analogously, we will apply the projection Q in equation (4.19). Since g = Qg we obtain(
K̃ + kṼ1 + k2Ṽ2 − F − λ

)
g = −Q(kV1 + k2V2)f.

In summary, equation (4.19) is equivalent to the equations

λ = 〈(kV1 + k2V2)f, f〉+ 〈(kV1 + k2V2)f, g〉 (4.20)

and (
K̃ + kṼ1 + k2Ṽ2 − F − λ

)
g = −Q(kV1 + k2V2)f. (4.21)

Regarding λ as another auxiliary parameter, our goal is to express g = g(k, λ) and by plugging
this expression into equation (4.20) to obtain an implicit equation λ = G(k, λ). Let us introduce
some additional notation. Set

Γ0 :=
(
K̃ − F

)−1
,

Γλ :=
(
K̃ − F − λ

)−1
= (I − λΓ0)−1 Γ0.

Thus Γ0 is a self-adjoint operator acting in Ran(Q), so is Γλ if λ /∈ spec
(
K̃ − F

)
. Moreover, Γ0

has the following property.

Proposition 4.2.0.0.5. Under the same assumptions and notation as above,

‖Γ0‖ =
1

d
.

Proof. According to the proposition 4.2.0.0.2, B
(
F, 1
‖Γ0‖

)
⊂ %(K̃). Thus 1

d ≤ ‖Γ0‖. Conversely,
spec(K̃ − F ) ∩B(0, d) = ∅, thus we have

spec(Γ0) ⊂
{

1

λ
;λ ∈ spec

(
K̃ − F

)}
∪ {0} ⊂ B

(
0,

1

d

)
.

Γ0 is self-adjoint and therefore

‖Γ0‖ = rσ(Γ0) ≤ 1

d
.

Here rσ(Γ0) stands for the spectral radius of the operator Γ0. We conclude that ‖Γ0‖ = 1
d .

In a view of equation (4.21), one needs to invert the operator

K̃ + kṼ1 + k2Ṽ2 − F − λ =
(
I + (kṼ1 + k2Ṽ2)Γλ

)(
K̃ − F − λ

)
.
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First bracket is obviously invertible since our assumption is that |λ| < d. Thus it is enough to
show that the second bracket is invertible as well. Again, according to the proposition 4.2.0.0.1,
it su�ces that ‖Γλ(kṼ + k2Ṽ2)‖ < 1. We have

(kṼ1 + k2Ṽ2)Γλ = (kṼ1 + k2Ṽ2)Γ0(I − λΓ0)−1

By corollary after proposition 4.2.0.0.1 one has

‖(kṼ1 + k2Ṽ2)Γλ‖ ≤
(
|k|‖Ṽ1Γ0‖+ |k|2‖Ṽ2Γ0‖

) 1

1− |λ|d
which we want to be less than 1. Thus λ and k are supposed to obey the relation

d|k|‖Ṽ1Γ0‖+ d|k|2‖Ṽ2Γ0‖+ |λ| < d (4.22)

Consequently, there exists a unique solution to (4.21), given by

g(k, λ) = −Γλ

(
1 + (kṼ1 + k2Ṽ2)Γλ

)−1
Q(kV1 + k2V2)f.

Function g(k, λ) is obviously analytic in the domain (4.22). Plugging this result in to the equation
(4.20), we obtain implicit equation

λ = G(k, λ),

where

G(k, λ) =
〈
(kV1 + k2V2)f, f

〉
−
〈
Q(kV1 + k2V2)f,Γλ

(
1 + (kṼ1 + k2Ṽ2)Γλ

)−1
Q(kV1 + k2V2)f

〉
.

Since λ−G(k, λ) is analytic and

(λ−G(k, λ))|(k,λ)=(0,0) = 0, ∂λ(λ−G(k, λ))|(k,λ)=(0,0) = 1,

we have by theorem 4.2.0.0.3 that there exists a unique analytic function λ = λ(k) de�ned on
a neighbourhood of the origin such that λ(0) = 0 and λ(k) = G(k, λ(k)). Thus we have both
eigen-value and eigen-vector given as uniquely determined analytic functions.

4.3 Ground state for the Jacobi matrix

Let us again consider Jacobi matrix

J =


β0 α0 0 0 0 . . .
α0 β1 α1 0 0 . . .
0 α1 β2 α2 0 . . .
0 0 α2 β3 α3 . . .
...

...
...

...
...

. . .

 (4.23)

with

αn := k
√

(n+ 1)(n+ α)(n+ β)(n+ γ),

βn := k2n(n+ α− 1) + (n+ β)(n+ γ),
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where we take k ∈ (0, 1) and α, β, γ > 0. As was described in the preceeding text, one can
de�ne operator J̇ on the hull of cannonical basis {en}∞n=0 of the space `2. This operator
is essentially self-adjoint. Since Jacobi matrix from equation (4.23) can be associated with
determinate Hamburger moment problem, there exisist unique closed, self-adjoint extension J of
the operator J̇ . Moreover, J−1 is a trace-class operator, as was shown above. Spectrum of the
closure satis�es

spec(J) = specp(J) = {λj ; j ∈ N0}.

We would like to apply the theory derived in [5] on the operator J which can be seen the following
sum

J = J0 + kJ1 + k2J2 (4.24)

with the corresponding matrices

J0 = diag{(n+ β)(n+ γ)}∞n=0,

J2 = diag{n(n+ α− 1)}∞n=0,

and

J1 =
1

k


0 α0 0 0 0 . . .
α0 0 α1 0 0 . . .
0 α1 0 α2 0 . . .
0 0 α2 0 α3 . . .
...

...
...

...
...

. . .

 .

For brevity, from now on we will identify operators J∗ with the corresponding matrix J∗ whenever
convenient. It is clear that the ground state of the operator J0 is λ0 = βγ with the multiplicity
1 and with normalized eigenvector e0. Let us denote a projection on the space Ce0 by P . Next,
Q := I − P . We need to show that operators J̃j = QJjQ are relatively bounded with respect to

the operator J0 for j = 1, 2. This means to show that
∥∥∥J̃jΓ0

∥∥∥ <∞ with

Γ0 =
(
J̃0 − λ0

)−1
.

In our case

Γ0 = diag

{
0,

1

1 + β + γ
, . . . ,

1

n2 + (β + γ)n
, . . .

}
Thus

J̃2Γ0 = diag

{
n(n+ α− 1)

n2 + (β + γ)n

}∞
n=0

.

We have

‖J̃2Γ0‖2 = sup
f∈`2
‖f‖=1

‖J̃2Γ0f‖2 = sup
f∈`2
‖f‖=1

∞∑
n=1

∣∣∣∣ n(n+ α− 1)

n2 + (β + γ)n
fn

∣∣∣∣2 ≤M2 sup
f∈`2
‖f‖=1

∞∑
n=0

|fn|2 = M2 <∞,
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where M = supn∈N

∣∣∣ n(n+α−1)
(n+β)(n+γ)

∣∣∣ <∞ as the sequence
{

n(n+α−1)
(n+β)(n+γ)

}
is bounded.

For the second operator one has

Γ0J̃1 =


0 0 0 0 . . .
0 0 a1 0 . . .
0 b1 0 a2 . . .
0 0 b2 0 . . .
...

...
...

...
. . .


with an =

√
(n+1)(n+α)(n+β)(n+γ)

(n+1)2+(β+γ)(n+1)
and bn =

√
(n+1)(n+α)(n+β)(n+γ)

n2+(β+γ)n
. Note that both sequences

{an} and {bn} are positive and bounded. Let us denote their suprema respectively a, b < ∞.
Let us take f ∈ `2 and compute∥∥∥J̃1Γ0f

∥∥∥2
= |a1f2|2 +

∞∑
n=1

|bnfn + an+1fn+2|2

≤ a2‖f‖2 +

∞∑
n=1

bn|fn|2 +

∞∑
n=1

an+1|fn+2|2 + 2

∞∑
n=1

an+1bn|fn||fn+2|

≤ a2‖f‖2 + b2
∞∑
n=1

|fn|2 + a2
∞∑
n=1

|fn+2|2 + 2ab

( ∞∑
n=1

|fn|2
) 1

2
( ∞∑
n=1

|fn+2|2
) 1

2

≤
(
2a2 + 2ab+ b2

)
‖f‖.

Our goal is to �nd the ground state λ0 for which we have

λ0 = βγ + η

with η = η(k) being perturbation depending on the perturbation parameter k. According to
DuStoVit, η is a unique solution of the implicit equation

η = G(k, η), η(0) = 0,

where

G(k, η) =
〈(
kJ1 + k2J2

)
e0, e0

〉
(4.25)

−
〈
Q
(
kJ1 + k2J2

)
e0,Γ(η)

(
I +Q

(
kJ1 + k2J2

)
QΓ(η)

)−1
Q
(
kJ1 + k2J2

)
e0

〉
and

Γ(η) =
(
J̃0 − βγ − η

)−1
.

It is easy to �nd out that

QΓ(η) = diag

{
0,

1

1 + β + γ
, . . .

1

n2 + (β + γ)n− η
, . . .

}
. (4.26)

We have

(kJ1 + k2J2)e0 = kJ1e0 = k
√
αβγe1,
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hence 〈(
kJ1 + k2J2

)
e0, e0

〉
= k 〈J1e0, e0〉 = k

√
αβγ 〈e1, e0〉 = 0.

Moreover, the operator Q(kJ1 + k2J2)Q can be regarded as an operator

RanQ = H1

with H1 being spanned by {e1, e2, . . . }. Let us denote the restriction Q(kJ1 + k2J2)Q to the
subspace H1 by W1(k). Using basis {e1, e2, . . . } in H1 we can regard W1(k) as the tridiagonal
matrix

k2α k
√

2(α+ 1)(β + 1)(γ + 1) 0 . . .

k
√

2(α+ 1)(β + 1)(γ + 1) 2k2(α+ 1) k
√

3(α+ 2)(β + 2)(γ + 2) . . .

0 k
√

3(α+ 2)(β + 2)(γ + 2) 3k2(α+ 2) . . .
...

...
...

. . .


Next, let us denote the restriction of Γ(η) to the subspace H1 by Γ1(η). Explicitly,

Γ1(η) = diag

{
1

n2 + (β + γ)n− η

}∞
n=1

.

Furthemore, f1 ∈ H1 is a column vector

fT1 = (1, 0, 0, . . . ).

With these notations we can rewrite equation (4.25) as

G(k, η) = − αβγk2

1 + β + γ − η

〈
f1, (I +W1(k)Γ1(η))−1 f1

〉
. (4.27)

Let k and η be chosen so that condition (4.22) holds with η = λ. Since that, we can express
equation (4.27) in terms of the Neumann series of the operator (I + Γ1(η)W1(k))−1. It says

G(k, η) = − αβγk2

1 + β + γ − η

〈
f1, I +

∞∑
i=1

(−1)i (W1(k)Γ1(η))i f1

〉
(4.28)

= − αβγk2

1 + β + γ − η

(
1 +

∞∑
i=1

(−1)i
〈
f1, (W1(k)Γ1(η))i f1

〉)
.

Let us compare the implicit function approach for the ground state with Kato's theory. Again,
our aim is to �nd the ground state for the operator (4.24). A particular simpli�cation is possible
for coe�cients (4.18) in the series (4.17), since the ground state is a simple eigenvalue. We will
�nd the perturbation series and compare it with results of the previous method up to the order
k2. Thus we have for our operator

P (1) = −PJ1S − SJ1P (4.29)

P (2) = −PJ2S − SJ2P + PJ1SJ1S + SJ1PJ1S

+ SJ1SJ1P − PJ1PJ1S
2 − PJ1S

2J1P − S2J1PJ1P
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with P being the projection on the eigenspace for the ground state λ0 = βγ and S = S(0)
where S(z) is the so-called reduced resolvent. In particular, we have that projection P can be
represented by a matrix

P = diag{1, 0, 0, . . . }.

Operator S can be found by expanding the resolvent (J0 − βγ − z)−1 in the Laurent series for
z ∈ %(J0). Since βγ is a simple eigenvalue, one has

(J0 − βγ − z)−1 = −1

z
P +

∞∑
n=0

znSn+1 (4.30)

On the other hand, it is straighforward to check that

(J0 − βγ − z)−1 = diag

{
−1

z
,

1

1 + β + γ − z
, . . . ,

1

n2 + (β + γ)n− z
, . . .

}
. (4.31)

Comparing (4.30) with (4.31) and D = 0 gives

S(z) =
∞∑
n=0

znSn+1 = diag

{
0,

1

1 + β + γ − z
, . . . ,

1

n2 + (β + γ)n− z
, . . .

}
.

Thus

S = S(0) = diag

{
0,

1

1 + β + γ
, . . . ,

1

n2 + (β + γ)n
, . . .

}
.

Note that QΓ(z) given by (4.26) is exactly the reduced resolvent. Determining P and S, one can
compute coe�cients (4.29)

P (1) = −
√
αβγ

1 + β + γ


0 1 0 0 . . .
1 0 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 ,

P (2) =

√
α(α+ 1)β(β + 1)γ(γ + 1)

(1 + β + γ)(4 + 2β + 2γ


0 0 1 0 . . .
0 0 0 0 . . .
1 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .



+
αβγ

1 + β + γ


−1 0 0 0 . . .
0 1 0 0 . . .
0 0 0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

With these coe�cients, we plug the expression

P (k) = P + kP (1) + k2P (2) +O
(
k3
)
, for k → 0
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into equation (4.15). Perturbed eigenvalue thus reads

λ(k) = βγ − αβγ

1 + β + γ
k2 +O

(
k4
)
, for k → 0. (4.32)

Now, having computed series for λ(k), let us turn back to the solution of equation (4.28).
This will be provided by iterations

η0 = 0, ηj = G(k, ηj−1), for j ≥ 1.

We thus have

η1 = G(k, 0) = − αβγk2

1 + β + γ

(
1 +

∞∑
i=1

(−1)i
〈
f1, (W1(k)Γ1(0))i f1

〉)

= − αβγk2

1 + β + γ

(
1− (W1(k)Γ1(0))1,1 +

(
(W1(k)Γ1(0))2

)
1,1

+O
(
k4
))

= − αβγk2

1 + β + γ

(
1− α

1 + β + γ
k2 +

2(α+ 1)(β + 1)(γ + 1)

(1 + β + γ)(4 + 2β + 2γ)
k2 +O

(
k4
))

= − αβγ

1 + β + γ
k2 +O

(
k4
)
, for k → 0.

It follows that the �rst iteration of the perturbed ground state λ(1)
0 = βγ + η1(k) reads

λ
(1)
0 = βγ − αβγ

1 + β + γ
k2 +O

(
k4
)
, for k → 0.

This expression coincides with the perturbation series in (4.32).



Conclusion

Contribution of this thesis can be devided into two groups

1. solutions of Heun's equation in case o a special, yet quite general form,

2. an approximation of the ground state of a certain Jacobi matrix.

We have found the solution to the Heun's equation of the form,

d2

dz2
G(z) +

(
γ

z
− β + 1

1− z
− εk2

1− k2z

)
d

dz
G(z) +

x− βγ + αβk2z

z(1− z)(1− k2z)
G(z) = 0,

which di�ers from the general Heun's equation just by setting δ = β + 1. Firstly, we need
to suppose that α, β, γ are positive to apply results from [10]. Via this approach, we have
found solution given by (3.39) together with (3.40). Omitting requirement of positivity, range
of parameters were extended to α, β, γ ∈ {z ∈ C : <(z) > −1 ∨ =(z) 6= 0} as shown in theorem
3.2.2.0.1.

Then we apply the classical perturbation theory to the ground state of the Jacobi matrix
corresponding to the orthogonal polynomials solving the equation above. This approach was
compared with another approach using an implicit function. An implicit function for the ground
state was found and by iteration, it turns out that it coincides with the classical perturbation
series up to the second order of the perturbation parameter.
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