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Abstract 

Diabetes mellitus (DM) is a chronic disease affecting large numbers of people worldwide 

and this number is continuously increasing. Self-management is essential for attaining 

optimal long-term glucose control, and requires careful recording of food intake, glycemic 

values, insulin doses and other information. Until now, values have usually been recorded 

in a paper diary. Mobile healthcare and telemedicine provide new possibilities of care 

models for chronic diseases. There is a big potential to increase adherence to self-

management of DM with the use of smartphones and digital therapeutics interventions. 

This thesis focuses on two issues: 

The first one is the development of a mobile application (app) for DM control and self-

management and presents the results of long-term usage of this system in the Czech 

Republic. The development was based on cooperation with both clinicians and patients. The 

mobile app was available free-of-charge on Google Play Store from the middle of 2014 until 

2019 and suitable users who downloaded the app were selected for the long-term analysis. 

The second part of this thesis describes framework for calculation of glycemic variability 

for Continuous Glucose Monitoring (CGM) data. The Matlab framework implements 

important measures of glycemic variability and was used for CGM data extraction in several 

clinical studies. A few requirements for further extension of the functionality such as data 

filtering or time spent in hypoglycemia have emerged from them. 

The thesis shows that the usability of a diabetes mellitus self-management smartphone 

mobile app and web-based systems could be satisfactory and promising. Nonetheless, some 

better ways to motivate people with diabetes to participate in self-management are needed. 

Further studies involving a larger number of patients are needed in order to assess the effect 

on long-term diabetes management. 

 

Keywords: Diabetes Mellitus; Self-Management; Mobile App; Case Study; Long-Term 

Data, Continuous Glucose Monitoring, Glycemic Variability 

  





Abstrakt 

Diabetes mellitus (DM) je chronické onemocnění, které postihuje velké množství lidí 

po celém světě, přičemž jejich počet se neustále zvyšuje. Pro dosažení optimální 

dlouhodobé kontroly glykémie je zásadní samospráva, která vyžaduje pečlivé 

zaznamenávání příjmu potravy, hodnot glykémie, dávek inzulínu a dalších informací. 

Dosud se hodnoty obvykle zaznamenávaly do papírového deníku. Mobilní zdravotní péče 

a telemedicína poskytují nové možnosti modelů péče o chronická onemocnění. Existuje 

velký potenciál pro zvýšení adherence k samosprávě DM s využitím chytrých telefonů 

a digitálních terapeutických intervencí. 

Tato práce se zaměřuje na dvě problematiky: 

První část práce se zabývá vývojem mobilní aplikace pro kontrolu a samosprávu DM 

a představuje výsledky dlouhodobého používání tohoto systému v České republice. Vývoj 

byl založen na spolupráci s lékaři i pacienty. Mobilní aplikace byla od poloviny roku 2014 

do roku 2019 k dispozici zdarma v obchodě Google Play a pro dlouhodobou analýzu byli 

vybráni vhodní uživatelé, kteří si aplikaci stáhli. 

Druhá část práce popisuje rámec pro výpočet glykemické variability pro data 

z kontinuálního monitorování glykémie (CGM). Matlab framework implementuje důležité 

míry glykemické variability a byl použit pro extrakci dat CGM v několika klinických 

studiích. Z nich vyplynuly požadavky na  další rozšíření funkčnosti, například filtrování dat 

nebo doba strávená v hypoglykémii. 

Práce ukazuje, že používání mobilní aplikace pro chytré telefony a webové systémy 

zaměřené na samosprávu DM by mohlo být uspokojivé a slibné. Přesto je zapotřebí lepších 

způsobů motivace pacientů s diabetem k účasti na samosprávě. Další studie zahrnující větší 

počet pacientů jsou nezbytné, aby bylo možné posoudit vliv na dlouhodobou kontrolu 

diabetu. 

 

Klíčová slova: Diabetes Mellitus; Sebeřízení; Mobilní aplikace; Případová studie; 

Dlouhodobá data, Kontinuální monitorování glykémie, Glykemická variabilita 
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1 Introduction 

Diabetes mellitus (DM) is a chronic life-long progressive metabolic disease affecting over 

537 million adults worldwide according to the International Diabetes Federation 

(Whitehead and Seaton, 2016; Brož et al., 2020). It has been characterized by 

hyperglycemia due to absolute or relative insulinopenia and accordingly two major types of 

DM are distinguished: i) Type 1 DM, which is characterized by hyperglycemia due to an 

absolute deficiency of the insulin hormone produced by the pancreas; ii) Type 2 DM, which 

is characterized by hyperglycemia due to a defect in insulin secretion usually with 

a contribution from insulin resistance. It is a disease of high prevalence and is expected to 

grow significantly in the coming years.  

A significant contributing risk factor for developing DM is the global obesity epidemic and 

as a result, DM is associated with the wide spectrum of risk factors for cardiovascular 

diseases (Forouhi and Wareham, 2014; Blaslov et al., 2018). Nowadays, the economic 

impact of the associated healthcare system costs is enormous (Murata et al., 2004). As 

a result, weight reduction methods have become a field of great medical and scientific 

interest. Theoretically, it should be a simple matter to achieve weight loss by dieting, 

producing an energy deficit in which intake is lower than energy expenditure. But 

practically, successful long-term weight loss maintenance by strategies such as changing 

dietary habits or increasing physical activity is difficult. This struggle is well illustrated by 

the typical results in which early weight loss is achieved by most patients, but the weight 

loss is not kept over the long term (Kassirer and Angell, 1998; Mun, Blackburn and 

Matthews, 2001).  

Another approach is the utilization of pharmacotherapy, which in the context of diabetes 

can be focused on weight loss, or on glucose control, resulting in weight loss as a side effect 

(Van Gaal and Dirinck, 2016). However, the long-term outcome is very limited (Mun, 

Blackburn and Matthews, 2001).  

An essential tool of diabetes care is self-management, education, support and motivation 

that allows all other diabetes interventions to work optimally (Holt et al., 2021). The most 

frequently reported self-management process was day-to-day decision making related to 
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self-care, which was a measure of how active and engaged patients were with their own 

diabetes care (Borries et al., 2019).  

Other more aggressive approaches are necessary, especially when a significant weight 

reduction percentage is required or more serious health consequences are involved. The 

most successful strategies are based on surgical therapies. The gastric bypass achieves 

permanent significant long-term weight reduction in most of the patients that have 

undergone this surgery (Mun, Blackburn and Matthews, 2001; Kothari et al., 2017). 

When DM has been diagnosed, in classical treatment an initial consultation is performed 

and follow-up appointments are set up. A personalized face-to-face approach for visit 

frequency is recommended and should be annual at least. However, more frequent contact 

is preferred, especially for recently diagnosed, less involvement or cardiovascular risk 

patients (Holt et al., 2021). Recently, and especially during the coronavirus pandemic, the 

usage of telemedicine has been utilized increasingly worldwide and partially has replaced 

face-to-face visits (Lee and Lee, 2018; Holt et al., 2021). Telemedicine can be defined as 

“healing at a distance” and is described by the following points: i) using information and 

communication technologies; ii) providing remote health-care over geographical distance; 

iii) involving a medical professional on one side and patients on the second side. In addition, 

the use of telemedicine should be individualized depending on personal needs and 

limitations. As a result, the telemedicine has a potential to improve self-management, 

quality of life and treatment of DM (Lee and Lee, 2018; Borries et al., 2019; Timpel et al., 

2020).  

This thesis describes the development of the Mobiab system for DM self-management. We 

hypothesized that the use of telemedicine in diabetes care would improve patient self-

management processes and clinical outcomes of healthcare. The benefits and impacts of the 

system usage was explored and analyzed. In order to achieve that, the collection of long-

term user’s records was gathered and anonymized according to user’s agreement provided 

during the sign-up process. The following part of the thesis is dedicated to the analysis of 

data from Continuous Glucose Monitoring (CGM). For the analysis Matlab framework that 

implements several commonly used metrics was prepared. In order, this data analysis was 

used for a comparison to the newly defined glycemic variability metrics. 
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1.1 Goals of the Thesis 

The overall purpose of this dissertation was to develop a telemedicine system based on the 

quantitative research and behavioral theory. To accomplish this, the study was composed of 

two phases. Phase one includes methodological goal of the design and implementation of 

the telemedicine Mobiab system. Phase two aims at clinical goals of: i) the identification of 

outcomes on glucose management, quality of life and sustainability of the self-management 

when using the Mobiab system; ii) the analysis of glycemic variability from continuous 

glucose monitoring. 

1.2 The Structure of the Thesis 

The thesis is structured as follows:  

Chapter 2 provides an introduction to the topic of the thesis. Namely, section 2.1 gives 

information on diabetes mellitus and its treatment. Section 2.2 describes eHealth and 

mHealth technologies and term telemedicine. In section 2.3 there is a subset of available 

mobile applications for DM self-management. 

Chapter 3 provides information on the Mobiab system, Section 3.1 describes the system 

developed for self-management of DM and its functionalities. Sections 3.2 and 3.3 describe 

the collected data and results respectively. Sections 3.4 and 3.5 provide discussion and 

conclusion. 

Chapter 4 focuses on continuous glucose monitoring (CGM). Section 4.1 provides 

an introduction to CGM. Available data and used methods are described in section 4.2. 

Following sections evaluate achieved results and discussion. 

Chapter 5 describes the glycemic variability (GV) and analysis of several nonlinear 

algorithms. For the analysis the same dataset was used as in the previous chapter. 

Chapter 6 concludes the thesis and summarizes the achievements and contributions and 

offers topics for future work.
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2 Background 

2.1 Diabetes Mellitus 

Diabetes mellitus is a chronic disease affecting large numbers of people throughout the 

world, and this number is continuously increasing. According to the International Diabetes 

Federation, there are 537 million adults worldwide diagnosed with DM (Whitehead and 

Seaton, 2016; Brož et al., 2020). In the Czech Republic in 2020, nearly one million people 

suffered from this disease, i.e. almost 10% of the population of the country (Brož et al., 

2020; SZÚ, 2021). There are two main types of DM (type 1 DM and type 2 DM) and other 

less common types such as gestational diabetes, prediabetes and others (ADA, 2010).  

Type 1 DM. This type is an autoimmune disease, which means that your body attacks itself. 

It is characterized by an absolute lack of insulin secretion from pancreatic B-cells and it is 

responsible for approximately 5-10% of the cases. It is usually diagnosed in children and 

young adults, but it can develop at any age. It used to be known more as "juvenile" diabetes. 

People with type 1 DM need to inject insulin every day. That is why it is also called insulin-

dependent diabetes. The patient has to take some time to adjust to the treatment, but they 

can still do all the things they like to do. It should be mentioned that type 1 DM is not related 

to age or overweight, these factors are associated with type 2 DM. (ADA, 2010; Holt et al., 

2021).  

Type 2 DM. This type is characterized by progressive loss of insulin secretion from B-cells 

with an underlying background of insulin resistance resulting in hyperglycemia, which 

further leads to the development of acute and chronic diabetic complications. Type 2 DM 

accounts for about 90-95% of the cases. Typically, it occurs in middle-aged and older 

people, although it is increasingly common in children. A risk factor for developing of this 

diabetes type is an overweight, not enough exercise, family inheritance, higher blood 

pressure or prediabetes. There is no cure for type 2 DM. However, it can be managed by 

maintaining a healthy lifestyle, self-management and taking medication if necessary. (ADA, 

2010; Riddle et al., 2021).  
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Gestational Diabetes. The definition of gestational diabetes (GDM) is glucose intolerance 

of a variable degree diagnosed with onset or first recognition during a pregnancy. Although 

most cases disappear after giving birth, it is possible that unrecognized glucose intolerance 

may have preceded or started at the same time as the pregnancy. As the continuing epidemic 

of obesity and diabetes in population has led to an increasing prevalence of type 2 DM in 

women of childbearing age, the number of pregnant women with undiagnosed type 2 DM 

has also increased. Approximately 7% of all pregnancies (between 1% and 14% depending 

on the population and tests used) are affected by GDM. (ADA, 2010, 2019). 

Prediabetes. Having prediabetes means to have higher than normal blood sugar levels. 

Unmanaged prediabetes can lead to type 2 DM. Prediabetes does not always have symptoms 

so it is important to be tested for blood sugar levels, especially if the person has risk factors 

for type 2 DM. Weight reduction, regular exercise and a healthy diet can reverse prediabetes 

and prevent the development of type 2 DM (Brož et al., 2020). 

2.1.1 Diagnosis and Treatment 

There are several ways to diagnose diabetes. Each method usually needs to be repeated on 

the second day to diagnose diabetes: i) A1C test, which measures the average blood sugar 

level over the past two or three months. The advantage of this method is that there is no 

need to fast or drink before. The normal value is less than 5.7%, DM is diagnosed on 6.5% 

or higher value; ii) Fasting Plasma Glucose test that measures fasting blood sugar levels. It 

requires no food or drink except water for at least 8 hours before taking the test. The normal 

value is less than 5.6 mmol/l, DM is diagnosed on 6.7 mmol/l or higher value; iii) Oral 

Glucose Tolerance Test that measures blood sugar levels two hours after drinking a special 

sugary drink. The normal value is less than 7.8 mmol/l, DM is diagnosed on 13.0 mmol/l or 

higher value. (ADA, 2010) 

The principle of the treatment is to achieve a glycaemia similar to normal glycaemia, the 

so-called euglycemia. The basis of the treatment is common for all types of diabetes and it 

contains: 

• patient education about diet and exercise, 

• glucometers to self-monitor blood glucose, 

• patient education about self-monitoring the symptoms of hypoglycemia. 
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Self-management is essential for attaining optimal long-term glucose control and requires 

careful recording of food intake, glycemic values, insulin doses and other information. 

A typical part of self-management is using paper-based protocols or diaries for recording 

diabetes related values (Donsa et al., 2016). This can be problematic and complicated 

because the patient has to remember or look up for caloric values. The specific treatment 

for type 1 DM contains: lifelong insulin injections (combination of short-acting and long-

acting), symptom relief and prevention (or delay) of complications by targeting normal 

blood glucose levels. The treatment for type 2 DM is usually focused on early detection and 

treatment of complications (eye exam, urine test, foot care) (World Health Organisation, 

2013; Holt et al., 2021). An important characteristics of diabetes as a disease is that a proper 

diet and cooperation with physicians can prevent its serious complications. On the contrary, 

noncompliance with the given rules can accelerate complications (e.g. atherosclerosis, 

cardiovascular problems) and can lead to kidney damage or amputation of lower limbs 

(World Health Organisation, 2013; Riddle et al., 2021). 

2.1.2 Gamification in Diabetes Care 

The application of gamification involves the use of game elements, design techniques and 

game mechanics to non-game activities or environments. The idea of gamification is to 

educate and motivate players to develop personal skills and modify their behavior. The 

game focuses on our attention, engages the audience, forces people to acquire more effective 

skills and makes otherwise ordinary tasks more fun. In order to achieve this, many apps use 

indicators of progress to measure success, share the success and offer rewards to users to 

keep them self-motivated. For healthcare, gamification is primarily used in applications for 

health and wellness that relate to the prevention, diagnosis and treatment of disease, 

managing chronic conditions, or lifestyle modification. (Richards and Caldwell, 2015; 

Asadzandi et al., 2020) 

Games are a new technology that promises to potentially improve adherence to a treatment 

plan or intervention. In addition, they can be used not only to increase motivation, but also 

to measure motivation and understand cognitive processes, and to inform and help patients 

make good health decisions. Therefore, games can be considered to be potentially effective 

way to promote knowledge from certified and validated sources to development of self-

management skills and overall learning experiences among people with diabetes. However, 

one of the biggest challenges in the treatment of DM is to motivate people with DM to adapt 
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and adhere to the treatment regimen, which is quite different from the previous habits. 

(Makhlysheva, Arsand and Hartvigsen, 2015; Richards and Caldwell, 2015). 

The literature and analyses suggest that DM management can be achieved and/or improved 

in several ways: i) through the use of personalized diaries providing feedback to the 

recorded data; ii) education through games or virtual avatars e.g. virtual pets; iii) balanced 

reward system that keeps the user motivated; iv) additional use of social networks and 

interaction between people with the same diagnosis (Makhlysheva, Arsand and Hartvigsen, 

2015). 

2.2 Telemedicine, eHealth and mHealth 

Telemedicine. The first use of term “telemedicine” was noticed in the early 1960s and it 

can be explained as “healing at a distance”. It allows diagnosing and treating patient’s 

disease remotely by using video consultation or other transition of medical information. 

Internet has brought major changes in the field of telemedicine. The growth of smart devices 

capable of transmitting high quality images has opened up the option of providing remote 

healthcare to patients in their homes or workplaces as an alternative to face-to-face visits in 

primary and specialist care (Nesbitt, 2012; Boyle et al., 2017).  

eHealth. The electronic health (eHealth) can be defined as “using information and 

communication technology for health services and information”. Many services or systems 

such as telemedicine, electronic prescribing, patients web portals (known as IZIP in the 

Czech Republic) or mobile health can be found under this definition (Thestrup, Gergely and 

Beck, 2012; Gee et al., 2015).  

mHealth. The term mHealth is related with telemedicine and eHealth. It can be described as 

“using mobile communication for health services and information.” Mobile healthcare 

provides new possibilities of care models for chronic diseases. The mHealth concept covers 

the evolution of eHealth systems from traditional telemedicine platforms to mobile and 

wireless configurations (Nesbitt, 2012; Thestrup, Gergely and Beck, 2012). 

These tools and care models can contribute to improving the lives of individual patients. 

The care of a chronic disease should be continuous, available between contact visits and 

hospitalization and the patient should learn during the care process. However, there are no 
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data on the impact how mobile technologies influence health outcome (Thestrup, Gergely 

and Beck, 2012). 

At this point, there is a big potential to increase involvement with self-management of DM 

using smartphones and digital therapeutics interventions. Currently, mHealth represents the 

focus of various mobile applications that can also reduce barriers to the availability of the 

healthcare system, e.g. time constraints or limited access to care providers (Adu et al., 

2020). Smartphone diabetes apps might have an extensive range, as more than 6.37 billion 

people in the world use smartphones (Bankmycell.com, 2022), and about 0.5 billion of them 

already use some mobile app for dieting, physical activities and chronic disease 

management (Hood et al., 2016).  

There are numerous mobile apps dealing with DM. For the term “diabetes”, there are more 

than 200 mobile apps available on the Google Play platform(Veazie et al., 2018). However, 

despite the large number of apps in this field only few have been evaluated in health outcome 

studies (Veazie et al., 2018) and just 5 of them have been associated with clinically 

significant improvements in glycated hemoglobin (HbA1c) (Glucose Buddy, Diabeo 

Telesage, Blue Star, WellTang, Gather Health) (Veazie et al., 2018). These studies did not 

assess other parameters, e.g. blood pressure and body weight (Veazie et al., 2018). The 

authors of one study identified and compared 19 mobile apps in terms of the availability of 

features for DM self-management (Izahar et al., 2017). Few of them have been designed 

based on a behavioral model, and endorsed by health care professionals. In addition, it is 

important to have appropriate integration without compromising user safety and privacy.  

The use of mobile apps can improve DM self-management and can contribute to patient 

education and motivate them to maintain healthy behavior. Furthermore, compared to usual 

care of DM treatment, m-health solutions present improvements in adherence to medication 

and glycemic measurements (Bellei et al., 2018). Several small-scale studies have shown 

promising results in terms of targeting blood glucose, medication intake, weight loss and 

quality of life (Turner-McGrievy et al., 2013; Arnhold, Quade and Kirch, 2014; Froisland 

and Arsand, 2015; Huang et al., 2015). To the best of the author’s knowledge, there is no 

published full report on a case study of diabetes self-management over a 5-year period. 
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2.3 Mobile Apps for DM Treatment 

This chapter is devoted to the research of available mobile applications, the features they 

have, the way they are updated or how popular they are among users. The findings in this 

research correspond to the facts from 2016 when the research was conducted. The data were 

the basis for the development of the system proposed and are further supplemented by the 

current state in which the applications are (compared in Table 2.1).  

There are many available mobile applications for a diabetes treatment; however, most of 

them focus only on a specific function (e.g. logging glycaemia, diet recipes). A few of the 

mobile applications are more complex and have multiple functions together. They usually 

contain glycaemia and insulin monitoring and a number of ingested carbohydrates. Activity 

logging, notes and medicament reminder are included sometimes. If the mobile application 

contains a food database instead of ingested carbohydrates, then the Czech language is not 

available. Short reviews of five most downloaded and best rated complex mobile application 

follow below. Since Android devices cover over two-thirds of the market in the USA and 

over three-quarters in the five largest European countries, only mobile applications for 

Android devices are selected.  

Table 2.1 - Availability and rating of selected mobile apps. 

 
Available 

on Google 

Last 

update 

Rating (stars / users) Downloads 

2016 2022 2016 2022 

MySugr Yes 31.01.2022 
4.6 / 

10 620 

4.7 /  

64 134 

500 000 - 

1 000 000 

Over 

1 000 000 

Diabetes Connect Yes 20.12.2020 
4.5 /  

3 032 

4.9 /  

4 779 

100 000 – 

500 000 

100 000 – 

500 000 

Diabetes:M Yes 10.01.2022 
4.7 /  

8 599 

4.6 /  

21 585 

100 000 – 

500 000 

500 000 - 

1 000 000 

BG Monitor Diabetes Yes 23.04.2017 
4.5 /  

465 
N/A 

10 000 – 

50 000 

10 000 – 

50 000 

OnTrack Diabetes No 29.01.2015 
4.4 /  

6 015 
N/A 

100 000 – 

500 000 
N/A 

 

In December 2018, article “Diabetes Mellitus m-Health Applications: A Systematic Review 

of Features and Fundamentals” (Bellei et al., 2018) was published. The authors of the article 

systematically screened and analyzed studies related to the variety of applications aimed at 

monitoring and treating DM. The objective was to examine the functionality of the apps, 

the fundamentals of their design and the way the apps were tested. A total of 679 studies 
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were screened, 39 of which met the inclusion criteria for this study and one from these was 

our Mobiab system described in Chapter 3. The authors conclude in their research that there 

is a variety of approaches used in the DM apps, with comprehensive, customizable, and 

adjusted functionalities for different purposes. In addition, most of the apps are digital 

logbooks for collecting data on various daily tasks from DM treatment (Bellei et al., 2018). 

2.3.1 Review of Selected Mobile Apps 

MySugr - Diabetes Logbook 

MySugr - Diabetes Logbook is a very popular mobile application with many useful features; 

however, only basic features are for free. The Pro version with monthly payment adds 

multiple advanced features (e.g. report for physician, reminders, photo gallery). CGM data 

integration is available via importing CSV file or instant connection with Accu-Check 

devices. A motivation element and challenges for personal therapy goals are implemented 

in the application. As it is shown in Figure 2.1, this application seems well. In 2016, the 

number of downloads was between 500 thousand and 1 million, the last update was done 

on 17th August 2016 and the average rating was 4.6 stars given by 10620 users. In 2022, the 

number of downloads is over 1 million, the last 

update was done on 31th January 2022; thus, 

the application still is being developed. The 

average rating is 4.7 stars given by 64134 

users. 

Diabetes Connect 

The interesting and simple application 

Diabetes Connect offers besides basic features 

also the blood pressure, pulse and weight 

monitoring as it is shown in Figure 2.2. There 

is support for exporting reports into a PDF file. 

Download of the mobile application is for free; 

however, some advanced features are paid. In 

2016, the number of downloads was between 

100 thousand and 500 thousand, the last update 

was done on 22th June 2016 and the average 

 

Figure 2.1 - The mySugr - Diabetes Logbook App. 
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rating was 4.5 stars given by 3032 users. In 

2022, the number of downloads is between 

100 thousand and 500 thousand, the last update 

was done on 20th December 2020 and the 

average rating is 4.9 stars given by 4779 users. 

This rating shows very good and increased 

quality. 

Diabetes:M 

This mobile application tracks almost all 

aspects of the diabetes treatment and provides 

detailed reports, charts and statistics, which are 

shown in Figure 2.3. They can be shared via an 

email with a supervising physician. It also 

supports importing values from various 

glucometers and insulin pumps via the 

exported files. However, there is one 

drawback: in a mobile phone, the design is 

slightly chaotic and some information is not 

shown properly. This drawback is balanced by 

the complexity of the application, to which one 

needs to get used. In 2016, the number of 

downloads was between 100 thousand and 

500 thousand. The last update was done on 

14th August 2016. The average rating is 

4.7 stars given by 8599 users and one-star 

rating was only from 86 users. In 2022, the 

number of downloads is between 500 thousand 

and 1 million, the last update was done on 

10th January 2022 and the average rating is 

4.6 stars given by 21585 users and one-star 

rating is only from few users. 

 

Figure 2.2 - The Diabetes Connect App. 

 

Figure 2.3 - The Diabetes:M App. 
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BG Monitor Diabetes 

This application offers basic logging features 

for free; advanced features (e.g. food database, 

backup, import existing data, tagging) are paid. 

It has an elegant design with a well-arranged 

overview and statistics as it is shown in Figure 

2.4. This mobile application is newer than the 

previous ones, but is no longer updated. 

Therefore, the number of downloads is only 

between 50 thousand and 100 thousand. The 

last update was done on 23th April 2017. In 

2016, the average rating was 4.5 stars given by 

465 users and in 2022 the rating is hidden. 

OnTrack Diabetes 

This application allows easy tracking of 

everything important for diabetics. The 

integration of reminders is an advantage. 

However, a drawback is that it does not contain 

a food database and an activity logging is only 

for information without any caloric values. 

There is an example of adding a new record in 

Figure 2.5. In 2016, the number of downloads 

was between 500 thousand and 1 million, the 

last update was done on 29th January 2015 and 

the average rating was 4.4 stars given by 6015 

users. Unfortunately, the app is no longer 

available on Google Play, which means that its 

development has been probably stopped. No 

reason for this has been found.  

 

 

Figure 2.4 - The BG Monitor Diabetes App. 

 

Figure 2.5 - The OnTrack Diabetes App. 
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3 Diabetes Mellitus Self-Management 

Telemedicine System  

This chapter comments on the development of the mobile app and presents the impact on 

self-management of people with DM. The presented results were accepted as a journal 

article in impacted JMIR Diabetes: V. Burda et al. (2022) ‘Managing Diabetes Using 

Mobiab: Long Term Case Study of the Impact of a Mobile App on Self-Management’, 

Preprint, doi: 10.2196/36675. 

3.1 Introduction 

The Mobiab system was developed within the context of OLDES (www.oldes.eu), an EU 

multicenter project involving 4 companies, 2 universities and 2 university hospitals. The 

OLDES project focused on developing information technology for the purposes of eHealth 

applications (Novák et al., 2009). We defined the essential requirements for a system based 

on interviews and discussions with diabetologists from a university hospital in Prague, 

representatives from the national Czech diabetes association, and patients living with 

diabetes, who were recruited from an outpatient clinic at the university hospital. This 

approach enabled us to involve the needs of health professionals and patients during the 

design and development of the app. Additional information was gathered by searching 

public scientific databases using the following combinations of keywords: “mobile app”, 

“diabetes”, “diabetes management”, “patient adherence, empowerment”, “mobile health”, 

and “self-management.” Several paper-based diabetes diaries were used to define the main 

functionalities that were to be integrated (Schmocker, Zwahlen and Denecke, 2018). 

3.1.1 Architecture and System Functionalities 

The Mobiab system offers an alternative to a paper-based diary – an Android mobile 

application and a web portal aimed at supporting DM self-management. Compared with 

a paper-based diary, the main benefit is the immediate feedback for inputted data in the form 

of graphs and basic statistics showing the user’s compliance with diet or providing self-

monitoring of blood glucose. The Mobiab system was designed in a client-server 
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architecture with a storage system on the server. Mobiab requires an internet connection on 

mobile devices. In the beginning, i.e. in 2014, this approach was restricted by lower 

availability of internet connection (ČSÚ, 2017). However, this is no longer a problem, now 

that internet connection is much more widely available.  

The concept underlying Mobiab consists of a mobile phone app, data collection from 

medical devices, and data storage (Figure 3.1). All medical data are collected on a mobile 

phone and are stored on the server. We prepared a prototype of a Bluetooth connection to 

selected medical devices from ForaCare Suisse AG. The connection works fully 

automatically – records of measurements are downloaded and are stored without any action 

by the user. With users’ consent, the collected behavior data and medical data are then 

available on a desktop computer to selected physicians. Common security standards and 

privacy policies have been followed in the design and development of the Mobiab system. 

Communication between smartphone or computer and server is encrypted via the HTTPS 

protocol. After the app download, registration or login is required at first. The login screen 

requires a unique e-mail address and password to access the app functionality. An expert 

group consisting of endocrinologists, health researchers, nutrition nurses and app developers 

provided useful decisions for the design and development of Mobiab. 

 

 

Figure 3.1 - Scheme of system architecture. 

 

On the grounds of the research of mobile applications and the way of DM treatment, the 

following core requirements for the developed system were defined. These requirements are 

divided into common and individual demands for the mobile Android application and web-

based portal respectively. These are further divided into functional (define what a system is 

supposed to do) and non-functional (define how a system is supposed to be). The essential 

requirements are that the entire Mobiab system (mobile application and web-based portal) 

uses the PHP scripting language and MySQL as the database layer. In the case of the mobile 

application, a minimum API version 14 (Android 4.0) was also required. 
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Common Requirements 

Functional requirements: 

 The system will allow to create and manage a user accounts. 

 The system will be accessible only to logged-in users. 

 The system will display detailed information on calorie intake, expenditure 

(activities performed), glycaemia and insulin dosage for any day. 

 The system will show the user information on the daily calorie intake. 

 The system will display a graph of the user's glycemic profile. 

 The system will allow communication between a user and a physician via messages. 

Non-functional requirements: 

 The system will be simple and intuitive to use. 

 The system will be easy to extend with additional functionality. 

 The system will use encrypted communication over HTTPS protocol. 

 

Android Mobile Application Requirements 

Functional requirements: 

 The system will allow adding, displaying and editing records of consumed food. 

 The system will allow adding, displaying and editing records of activity performed. 

 The system will allow adding, displaying and editing glycaemia values. 

 The system will allow adding, displaying and editing insulin dosage. 

 The system will allow communication between a user and a physician via messages. 

 The system will implement reminders and gamification features. 

Non-functional requirements: 

 The system will be implemented in the Java programming language. 

 The system will be implemented at least for Android version 4.0 (API Level 14). 

 The system can be easily interfaced with other modules and additional applications. 

 The system will communicate with the glucometer via Bluetooth protocol. 
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Web-based Portal Requirements 

Functional requirements: 

 The system will allow to view graphs of calorie intake, carbohydrate diet 

compliance, calorie expenditure (activities performed) and glycemic values for any 

given day. 

 The system allows differentiation of user roles: basic user, physician, administrator. 

 The system will allow a physician to preview their patients' reports. 

Non-functional requirements: 

 The system will be accessible via a web interface. 

 The system will be implemented in the PHP programming language. 

 

3.1.2 Description of Bluetooth Communication 

The Bluetooth (BT) technology in version 1.0 appeared first in devices at the end of the last 

century in 1999, but its origins date back to 1994. Over time, the technology has evolved to 

the current version 5.3, which significantly reduces power consumption. Bluetooth 

transmissions are broadcasting on a radio frequency between 2.402 GHz and 2.480 GHz 

and thus operate in the free radio band without license fees. This band is further divided into 

87 channels that alternate during communication to eliminate possible interference from 

other devices operating in the same band. The Bluetooth technology is a layered architecture 

similar to a network interface. A number of protocols then operate on top of it, such as the 

Service Discovery Protocol (SDP), which allows one device to find available services on 

another device, or for example the Radio Frequency Communication (RFCOMM), which 

provides binary data transfer to emulate the serial port known as RS-232, which has a wide 

range of applications (Zeadally, Siddiqui and Baig, 2019). 

Device Communication and Pairing 

The communication itself then takes place exclusively between two devices that are paired 

together. By pairing, the device is able to identify the data being sent from the other device 

and knows that it is the device that the user has added, thus proving it to be trusted. In order 

to start pairing, the device to be paired must be switched to the visible mode. In this mode, 

other devices can find it under a 48-bit MAC address, based on which they can contact the 
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device for details, and the device will respond to such a call by passing the device name and 

class, available services and other technical information. This is followed by user action to 

select the device and initiate the pairing process. The device responses by either requesting 

a PIN, which it shows on its display, or has a pre-assigned PIN (typically 0000 or 1234). 

If the user enters the correct PIN, the pairing process is complete and the communication 

between the devices can begin. (Zeadally, Siddiqui and Baig, 2019). 

Integration of Bluetooth Glucometer 

For the initial integration with our app, we have chosen the small and lightweight device 

FORA Diamond Mini Bluetooth (DM30b). This glucometer is commonly available through 

retailers and is imported to the Czech Republic by the MTE company, which sells it for 

about 600 CZK including VAT. For this price, the patient gets a Bluetooth glucometer, 

a sampling pen, 10 lancets for the sampling pen, 10 glucose test strips, a USB cable for 

charging, a 230V mains charger and a fabric case. 

For integration into the Mobiab system, a separate plugin has been implemented allowing 

communication between the system and the glucometer. The pairing process is relatively 

simple and user-friendly. First, it is necessary to switch the glucometer to pairing mode by 

pressing the small recessed button on the bottom of the glucometer, and pressing repeatedly 

until the “PAr” is visible on the glucometer display, then switch to “yes” with the large 

button and confirm again with the small button. The glucose meter will turn off and start 

flashing blue and from this time on it is possible to search for a pairing. Next, navigate to 

App Options in the app, enable using of the Bluetooth glucometer and click on Pair button. 

After the mobile phone finds the glucometer, click on “DIAMOND MOBILE” to signal our 

intention to connect it to the phone, no PIN code is requested. If we have followed the 

procedure correctly, a dialogue will pop up on the mobile phone after a while to confirm the 

whole pairing process. 

The developed communication plugin includes a service that runs on the background of the 

mobile phone and waits for an incoming connection with the glucose meter. With this 

approach, it is possible to keep the phone for example on a shelf and calmly measure the 

glucose value and later add a note to the measured values and save them. During the 

development, we have found out that it is sufficient to be in the same room as the phone 

during the measurement for the data to be downloaded from the meter into the phone. This 
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feature provides a good comfort for the user as they do not have to operate the glucometer 

and the mobile phone at the same time. 

3.1.3 Design of the Mobile App 

The mobile app consists of individual modules that are independent of each other and need 

only the basis of the application (Figure 3.2). The main advantage of applying a modular 

approach is that other functionalities can be added easily, and particular users can select 

only certain modules that are suited to their needs. For example, patients with type 2 DM 

and those who do not use insulin can turn off the insulin module. All entered values into the 

modules are visualized intuitively, and enable the user to monitor the changes continuously. 

The modules with their main features are described in the following subsections. 

 

 

Figure 3.2 - Scheme of the mobile application and individual modules. 

 

 

Figure 3.3 - Structure and coherence of Activities in the mobile application. 

 

 



21 

 

In our case, implementing modules means adding a link to another activity that represents 

a functional branch. In Figure 3.3, the different functional branches are color-coded and 

follow the structure of dividing the application into modules. As can be seen such a module 

can be implemented within a single activity (ActivitiesManager), or it can be broadly 

branched and later linked to multiple entry points from a signpost 

(CaloricManagerActivity). If modules are implemented in this way, they become a part of 

the application and the user perceives the application complexly though it is composed of 

single modules.  

From the programmer's point of view, the main advantage of this way of integration is the 

simplicity of the implementation in the application and once the installation package is 

created, the module is part of a single installation. This solution is also suitable when the 

module is part of the main functionality of the application and when we assume that all users 

who install the application will use it. This has the added benefit of managing only one app 

(regional availability, price and other app distribution options) in Google Play online store 

(Android app distribution center).  

This solution does not have many disadvantages, but it depends very much on the type of 

application and module. The biggest disadvantage of bundling all modules together is the 

size of the whole installation package, and thus of the whole installed application. This could 

be handled by implementing each module as an additional application. If a user wants to 

use such a module, they have to install it first before using it. The main app checks if the 

module is installed, and if it is not, the user is redirected directly to Google Play store for 

the specific module. After that, everything will already work the same as if the module is 

integrated directly into the app.  

The another possible disadvantage is the higher complexity of the implementation, when 

each module is programmed as a separate application and it is necessary to properly handle 

that the application works without these modules and to solve any dependencies between 

the modules. A further complication is the greater demands placed on the user, as they must 

install multiple components to achieve the same application performance as if they were 

installed using only one installation package. 
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Food Intake and Physical Activities 

Food Intake. This is the most complex module, and provides the functionality for recording 

food that is consumed. Now this module contains a food database with more than 9000 

Czech food items. The database has been expanded gradually and checked for data accuracy 

by other users. There are several approaches to food consumption logging:  

 search in the whole database, 

 search in favorite items, 

 browse all food items and filter by categories, 

 browse user’s own custom-made meals. 

The user enters the amount of food after searching for the specific food item. The timestamp 

for the consumption and the food category is predefined by the current time; however, this 

can be changed by the user. To enable the user to change their mind, the description of the 

nutrition, and the size of the portion (in grams) and the carbohydrates (in grams) are 

displayed before the final dialog is saved. The changes in values are facilitated by 

an intuitive visualization of all measured medical data (Figure 3.4). A prototype of kitchen 

scales with Bluetooth to make weighting of food easier had been created and tested, but this 

function was hidden due to no available device on the market. Furthermore, on the day detail 

the user can take a photo or select a photo from gallery and add it to the previously entered 

meals. 

Physical Activities. This module was designed similarly to the food intake module: the 

database contains more than 400 activities that can be browsed by categories or searched by 

name. It is necessary to select one activity and to enter the duration of the activity for 

logging. The caloric expenditure is computed with the user’s weight and the duration of the 

activity. Due to this approach, the computed caloric expenditure may not always match the 

real expenditure, and should be considered solely as a guide. 

Glycemic Monitoring and Insulin Dosage 

As the monitoring glycemic values and recording the insulin dosage is an important part of 

treatment for a person with type 2 DM and type 1 DM respectively, these modules should 

have a simple design for easy daily usage.  
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Figure 3.4 - The mobile app: Glycaemia monitoring, Food intake, Insulin doses. 

 

Glycemic Monitoring. The design of the module is intuitive, it has an input part for entering 

values, e.g. glucose levels, the date and time of measurement and notes. The second part of 

the module is an overview of the values for the selected day, or a graph for the selected time 

range (Figure 3.4). In addition, the glucose input module can communicate with the glucose 

meter (FORA Diamond Mini Bluetooth) via Bluetooth protocol and can download the 

measured data and allow the patient to attach their note to it, similar to writing down the 

values in a paper-based diary. The advantage of integration of this module is the 

synchronization with the web-based portal, which the physician has access to and can 

immediately see their patients' glycemic data. The added value compared to the paper-based 

diary is the graphs that show the development of the glycaemia over one or more days. 

Insulin Dosage. The insulin applications module is more complex than the previous 

modules. As shown (Figure 3.4), the user first chooses from three types of insulin (basal, 

prandial and fast correcting), then selects a specific brand name of insulin (user editable), 

the number of applied units, and the date and time of application. The overview section is 

the same as in the Glycaemia Monitoring module. 
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Other Supplementary Modules 

In addition to the main modules described above, several supplementary modules that have 

supportive effect in DM self-care and self-management are also implemented in the system. 

An overview and their summary description follow. 

Weight and Waist Circumference. Since the diabetic diet, which is a part of the treatment 

of type 2 DM, is also based on weight reduction, this module is a useful tool for recording 

weight loss and waist circumference reduction. The user can enter measured values in the 

same way as measured glucose values in the Glycemic monitoring module. 

Blood Pressure Monitoring. As high blood pressure is the most common disease 

associated with diabetes, the app includes a simple module for logging blood pressure 

measurements. The design of this module and its usage are the same as the previous ones 

and differ only in the structure of the input fields. 

Knowledge Base. Another module is a small educational knowledge base, like a Wikipedia 

entry, which contains useful information about DM treatment and self-management. Its 

content is logically categorized into several 

sections: information about diabetes, diabetes 

symptoms, treatments, complications and 

preventions. 

Messaging. A communication module has 

been implemented in a similar way to the SMS 

conversation. This approach has several 

benefits: users are used to this type of 

messaging; therefore, using it is easy for them. 

It is then convenient for doctors and patients 

alike to have the entire history of 

communication they have written each other. 

Moreover, if the doctor compliments their 

patient for exemplary compliance with the 

limits, the communication module can also 

have a motivational function. When the 

communication module is launched, the 

application retrieves the three most recent 

 

 

Figure 3.5 - Preview of communication module. 
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messages that the patient and doctor have sent to each other. The loading of just three 

messages has been chosen as a compromise between the overall size of the data transferred 

and the content of the messages that are most interesting to the user. At the bottom of the 

screen there is a button that allows the user to retrieve more history of their communication. 

However, this module has not been further developed and practically used, for this reason 

it is not discussed further more. 

User Gamification and Motivation 

A special feature implemented in the system is the gamification and motivation support 

modules. The term of gamification means the use of game elements in a non-game 

environment. Its principal tools are, for example, points, virtual money, leaderboards, 

scores, challenges and tasks. The aim is to increase user involvement and motivation to 

a much greater extent. Virtual games have always motivated players in different ways 

depending on the nature of the game.  

The most common way to motivate is through a score that evaluates the user's performance 

in the game. As a rule, the higher score, the better. The score is most often increased for 

tasks completed and the speed of completing them, or conversely it may decrease in case of 

a longer time taken to finish the tasks. In more complex games, other methods are used, 

such as virtual money, which can be exchanged for virtual or real items, as well as gaining 

experience and progressing to other levels, which usually bring more options and different 

gameplay enjoyment. The main goal of such a concept is to keep the user in the game and 

to get them to play as much as possible. That is, to keep them in the so-called “flow zone”. 

The Figure 3.61 explains the 

problem, where the flow zone must 

be challenging enough to keep the 

player from getting bored, but at 

the same time not overestimating 

the player's abilities, because at 

that point it stops being a challenge 

for them and they stop playing 

(Deterding et al., 2011). 

                                                 
1 https://www.researchgate.net/publication/342529935 (April 2022) 

 

Figure 3.6 - The flow zone in relation to challenge and abilities.1 
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In case of DM self-care this module should motivate users to enter caloric intake, physical 

activities, glycemic and other values into the app regularly. In the mobile app 4 modules 

with features aimed at motivating the user to use the mobile application regularly have been 

implemented: 

Animated avatar. Another form of motivation that targets younger users in particular is 

a home-screen widget that includes a picture of an animal or an object, known as an avatar, 

which closely recalls the popular Tamagotchi of the 90's. An animated avatar (e.g. a dog or 

a cat) may be activated and connected with user’s profile. This avatar is supposed to 

personify the user themselves and can have feelings and wishes – it can be hungry, sad or 

happy depending on the values that the user has entered in the mobile application or web-

based portal. 

Gamification system. The goal was to implement a scoring system where the user would 

be rewarded for every performed action that has any sense in support for DM self-

management. For each entry, the user gets a certain number of points, and in addition, if the 

user enters the required information regularly, they will earn bonus points for completing it. 

By doing so, the user can accumulate a certain amount of points, which can be traded for 

small real gifts, e.g. blood glucose test strips, or for virtual accessories for the animated 

avatars. The whole system is set up in the way that each value entered has a different 

importance and can therefore be scored with a different amount of points. The scoring 

system is described in Figure 3.7 and is further divided into 4 levels, according to the total 

continuous time of entering values. This allows the user to move up to a higher level after 

a certain period of time and thus gain a higher daily bonus if the user still meets the 

conditions for that level. If the user stops meeting the conditions, the user will drop down 

one level. 
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Figure 3.7 - Gamification system score settings. 

 

Reminders. The system checks at a specified time whether expected values have been 

entered. For example, in the morning the system checks whether breakfast has been entered. 

If not, the system asks the user to complete the entries. Default reminders can be extended 

by user-defined ones. This gives the user the ability to add their own reminder as they need 

or see fit. For example, the user can have defined reminders for glucose measurements so 

that the user does not forget to measure the high and low glucose profile, or can set 

additional reminders so that the user takes the necessary medication. The reminder function 

is enabled by default when the app is installed, but the user has the option to disable all 

reminders in case they want to save their mobile phone battery more or know that they will 

not be able to enter data for a certain period of time (for example, during a holiday). Then 

the notification will appear in the status/navigation bar. With this notification mechanism, 

it is assumed that the user looks at the phone and actually completes the information that 

was reminded by the notification. 

Facebook Sharing. The use of social networking sites, namely Facebook, to share the 

results among the users of the application appeared to be an interesting way of motivation. 

The users could share their results in a managed Mobiab group to show off how they are 

doing in DM self-management or to communicate with other people with DM. The 

following objects to share were implemented: i) the achieved results (limits) within the day; 

ii) adherence to the drinking regime; iii) performed physical activities. However, this 

module was minimally used, probably due to the older age of the users who did not use 

social networks that much. 
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3.1.4 Design of Web-based Clinical Portal 

A complementary feature to the mobile application should be web-based clinical portal for 

physicians and also for the mobile application users. However, the main presumed use-case 

is the viewing and checking of patient records by a physician. To determine what actions 

a user can perform, it is necessary to define user roles. The basic division is into logged-in 

and non-logged-in users to the web portal. Non-logged-in users have the ability to register, 

log in, or reset a forgotten password. Logged-in users are then divided into three role groups. 

Basic users have access to the functions of the portal that were defined in common 

functional requirements. Physicians can view their patients' reports and set new food intake 

limits. In addition, the physician can use the communication module for reading and sending 

messages with the patient. Administrators have the ability to delete users and change their 

roles.  

The implementation of the communication module on the web portal is very similar to the 

mobile application, but with a few differences. As the web portal does not need to save as 

much screen space as the mobile phone, there is a listing of all messages at one page, along 

with a form to reply or send a new message. Another difference against the mobile phone 

and the physician role is the sending of the message itself. If a patient sends a message from 

a mobile phone or even from a web portal, it is simply stored in the database and can be 

viewed by the recipient immediately after sending. However, if a physician sends a message 

via the web portal, a copy of the message is also sent to the patient's email address that was 

provided in the sign-up process. This functionality was not implemented for physicians to 

ensure that their email inboxes were not overwhelmed with a series of messages from their 

patients. 

The whole clinical portal is written with pure HTML and CSS and is fully valid (XHTML 

1.0 Strict). When deciding on a database system, the choice fell on MySQL. The reason for 

choosing it is the excellent support in PHP, sufficient speed and wide distribution. To avoid 

problems with displaying Czech language diacritics, UTF-8 encoding was chosen. For 

a nicer and clearer appearance of the links, Page Controller is implemented to serve the web 

pages. The web portal also uses the Google Charts API to render charts using the gchartphp 

object wrapper and the PEAR Log component to record user actions.  
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The overall design should be 

minimalistic and as functional as 

possible. This corresponds to the 

layout, where the menu is at the top 

of the page and the corresponding 

content is always below it. Available 

functions are based on defined 

requirements: namely reports (daily, 

weekly, monthly, yearly), doctor-

patient communication and profile 

settings. In addition, a physician 

mode is available for the physician to 

view their patients' report. A preview 

of the whole daily report on web-

based portal is shown in Figure 3.8. 

This report displays in sequence 

from top to bottom: i) total daily 

limits met; ii) limits met by phase of 

the day; iii) the proportion of 

calories, carbohydrates, fat and 

protein in each phase of the day; 

iv) a summary of performed physical 

activities; v) a graph of measured 

glucose levels and applied insulin 

doses; vi) a list of all food entries. 

  

 

Figure 3.8 - Web-based portal preview. 



30 

 

3.2 Data and Methods 

Data were collected through Mobiab over a period of 5 years (from January 2016) although 

Mobiab had been available on Google Play Store from the middle of 2014 only until 2019. 

No advertisement was used to recruit users, they found the mobile application in an organic 

reach. All users agreed to use anonymized data for purposes of research and data analysis 

during sign-up process, which is required for the app usage. Over this period, over 500 users 

from the Czech Republic used the app for different lengths of time. About 200 users did not 

report any DM, about 150 users reported type 1 DM and about 175 users reported 

type 2 DM. Approximately 80% of the users used the mobile app for less than one week. 

As there are many similar apps, they probably just tried several apps as they were looking 

for the app that they found most satisfactory. The remaining 20% of the users used Mobiab 

for a longer time with a decreasing usage trend as it was also noted in (Klasnja et al., 2015). 

However, of the remaining users, only those who fulfilled at least one of the following 

conditions were selected for the analysis: 

1. at least 3600 records of food intakes, 

2. at least 360 records of glycaemia measurements, 

3. at least 360 records of insulin doses, 

4. at least 1080 records of physical activities, 

5. at least 360 records of weight measurements, 

6. at least 360 records of pressure measurements. 

These conditions were estimated by the expected minimum number of records for each 

single day, then multiplied by the number of days in the year and slightly rounded. Meeting 

one of these conditions was considered to provide evidence of long-term usage. More details 

about users are shown in following tables. Table 3.1 presents the basic user data and the 

total number of active days. Table 3.2 shows the relationship between the users and the 

modules they used. For each module, the absolute number of entries and the average number 

of entries per day are presented. 
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Table 3.1 - Basic user data and active days. 

 Sex Birth year Height DM Active days 

ID 1141 Male 1962 173 cm Type 2 1749 

ID 1196 Male 1960 178 cm Type 2 1261 

ID 1224 Female 1976 162 cm Type 1 1623 

ID 1289 Female 1941 162 cm No DM 1626 

ID 1412 Female 1976 162 cm Type 2 96 

ID 1432 Male 1958 175 cm Type 1 804 

ID 1545 Male 1967 188 cm Type 2 881 

ID 1558 Male 1967 170 cm Type 2 247 

 

Table 3.2 - Number of records and daily averages. 

 Food 

entries 

Glycemic 

measures 

Insulin 

Doses 

Physical 

activities 

Weight 

measures 

Pressure 

measures 

Daily avg. Daily avg. Daily avg. Daily avg. Daily avg. Daily avg. 

ID 1141       

 34425 - - 13515 1690 1478 

 19.67 - - 7.73 0.97 0.85 

ID 1196       

 - 1164 - - - - 

 - 0.92 - - - - 

ID 1224       

 9470 1932 2166 4562 - 449 

 5.83 1.19 1.33 2.81 - 0.33 

ID 1289       

 15729 - - - - - 

 9.67 - - - - - 

ID 1412       

 - 466 - - - - 

 - 4.85 - - - - 

ID 1432       

 3757 799 1199 2982 - - 

 5.86 0.99 1.53 4.18 - - 

ID 1545       

 - 857 697 - - 859 

 - 0.97 0.79 - - 0.98 

ID 1558       

 - 538 - - - - 

 - 2.18 - - - - 
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Eight users fulfilled the long-term analysis inclusion criteria. These consisted of 5 males 

and 3 females. Five of them stated that they had type 2 DM, two users had type 1 DM, and 

one user was without DM. The average age of all users was approximately 57 years. All 

8 users were invited to provide medical records, but only one user (ID 1141) was willing to 

share them. The interest lay in the development of the following clinical parameters during 

use of the app: glycated hemoglobin (HbA1c), glycaemia, triglycerides (TAG) and 

cholesterol: total, Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL). The 

summary of records for the whole 7 years of the user who provided medical records are 

presented in Table 3.3. The frequency of the lab’s clinical parameters is sufficient to 

withdraw the conclusion about the patient DM progress (Osborn et al., 2017). In addition 

to his medical records, user ID 1141 provided personal health state remarks that are 

presented in the case study results. 

Table 3.3 - Selected medical records of the user ID 1141. 

 HbA1c 

(mmol/mol) 

Glycaemia 

(mmol/l) 

Cholesterol 

(mmol/l) 

LDL 

(mmol/l) 

HDL 

(mmol/l) 

TAG 

(mmol/l) 

22.01.2014 - 4.6 4.3 2.82 1.15 1.07 

17.04.2016 - 18.17     

26.04.2016 90 7.9 4.17 2.62 1.4 0.85 

21.07.2016 36 4.7     

14.11.2016 29 5 4.58 2.39 1.49 0.67 

06.03.2017 32 4.8 3.81 1.98 1.66 0.53 

17.07.2017 34 4.5 4.05   0.81 

23.04.2018 35 5.3 3.73 2.08 1.48 0.51 

17.09.2018 34 5 4.11 2.52 1.55 0.73 

04.02.2019 - 4.9 3.96 2.54 1.18 0.93 

17.06.2019 35 4.9 3.66 2.03 1.46 0.6 

04.11.2019 35 5.1 4.26 2.57 1.39 0.99 

19.03.2020 36 4.7 3.3 1.65 1.44 0.5 

13.07.2020 35 5.1 3.78 2.09 1.44 0.65 

13.11.2020 36 5.2 3.77 2.01 1.62 0.64 

22.03.2021 35 5.4 3.71 1.98 1.53 0.78 

 

The analysis of the data had to use two approaches, due to missing user medical records; 

the first approach is an analysis of usage of the application, including any beneficial trends 

for DM management. The second approach is to make a direct comparison between the 

medical records and the entered values and trends of the user ID 1141. 
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In addition, in order to verify the correctness of functioning of the application, it was 

necessary to test the application among users. The aim of the testing was to verify the 

functionality of the mobile application, its modules and the web portal, if they were used. 

A total of 11 participants, who responded to our request for completing an anonymous 

questionnaire via Google Forms, were included in this testing. 

The questionnaire was constructed as a static closed-ended with 5-point rating scale. For 

each statement, the participant had to choose from: Strongly Agree (SA), Agree (A), Not 

Sure (NS), Disagree (D), Strongly Disagree (SD). The questions were not mandatory; for 

example, if the participant had not used the module, they would have skipped the assessment 

question, answered as Not Available (N/A). The questionnaire included the questions 

below: 

1. The installation and sign-up was done as standard as installing other applications. 

2. I was quickly familiar with the design and use of the mobile application. 

3. The input of food intake was flawless and the reports are sufficient. 

4. The input of physical activities was flawless and the reports are sufficient. 

5. The input of glycemic measures was flawless and the reports are sufficient. 

6. The input of insulin dosage was flawless and the reports are sufficient. 

7. The mobile application worked error-free and as expected. 

8. The web-based portal worked error-free and as expected. 

9. The overall use was simple and intuitive. 

Furthermore, to these close-ended questions, there was dedicated space for any comment 

about the usage of the system at the end of the questionnaire. The responses to the questions 

are recorded in Table 3.4, where the columns represent the individual questions and the 

rows introduce each participant's answers. The responses are then represented by 

abbreviations according to the scale defined above.  
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3.3 Results 

3.3.1 Adherence Analysis 

At first, the long-term food intake was analyzed. Users with ID 1141 and ID 1289 recorded 

their food intake regularly. They were taking their diet plan strictly and followed energy and 

sugar intake limits. User with ID 1141 still uses the mobile app, and their performance is 

described in detail in the following section. Two other users, ID 1224 and ID 1432, enter 

data irregularly every few days.  

Nevertheless, user ID 1224 used the application for over 4 years, and user ID 1432 used it 

for two years. Interestingly, both of the users have type 1 DM, and they used the app much 

more regularly for entering glycemic values and insulin dosage than for food intake 

recording. The glycemic records (Figure 3.9) show a slight decrease in blood glucose levels 

after a few months of usage of Mobiab. 

 

Figure 3.9 - Records of blood sugar in the first year of the app usage. 

 

A more important fact for this study’s purposes is that user ID 1224 and user ID 1289 carried 

out long-term recordings and were engaged for more than 2 years, and user ID 1432 and 

user ID 1545 were engaged for more than 4 years. Additionally, the other users, ID 1412 

and ID 1558, were involved with Mobiab for a shorter time, 3 months and 8 months 

respectively, but during that time they regularly recorded several measurements per day. 
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3.3.2 Case Study of a Type 2 DM User 

User ID 1141 (male, 60 years old, type 2 DM) was selected for the case study because he 

was willing to share his medical records and other information about his health and lifestyle. 

This person was diagnosed as type 2 DM randomly during an emergency examination on 

17th April 2016. Before that, he had already been treated for high blood pressure and for 

hyperlipidemia. After the diagnosis of DM, he was treated with antidiabetic medication 

(Glucophage XR 500mg) and he was looking for some supporting mobile app. He started 

dieting and the records show that followed the diet constantly for the whole time that he was 

using the app. In total, he has entered over 34 000 food records.  

Positive results came soon. With regular exercise (stationary exercise bike, walking) he 

reduced his weight from 127 kg to 84 kg and his waist circumference fell from 141 cm to 

107 cm within one year. In the last three years, these values have increased moderately, as 

of March 2021, his weight was 101 kg, because he was  not been able to exercise intensely 

due to joint pain and he stopped entering new waist circumference values (Figure 3.10). His 

blood pressure and cholesterol levels also improved and then stabilized (Figure 3.11). All 

these results are in accordance with his medical records (Figure 3.12).  

Unfortunately, the person does not self-monitor blood glucose, and only periodical medical 

records of his glycemic levels are available (Figure 3.13). Based on the usage quality 

questionnaire and a semi-structured interview, he was very satisfied with the mobile app 

and appreciated how easy the app was to use. As of the date of writing this thesis, he is still 

using the Mobiab app, and he will hit 8 years in April 2022. 
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Figure 3.10 - Weight and waist circumference records for the entire period of usage. 

 

 

 

Figure 3.11 - Blood pressure records for the entire period of usage. 
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Figure 3.12 - Medical records for HbA1c and glycaemia. 

 

 

 

Figure 3.13 - Medical records for cholesterol and triglycerides. 
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3.3.3 Satisfaction with Usage of the Mobiab 

A link to the survey was sent out continuously to active users after one month of their usage 

of the system. Through a questionnaire completed by 13 users, their feedback on their 

experience with using the Mobiab system was gained. Due to the guaranteed anonymity, 

responses cannot be linked to specific users. However, the response rate from the users was 

quite disappointing, as the request to fill the questionnaire was sent out to a total of 68 users. 

The responses to the questions are recorded in Table 3.4 and expressed percentages of 

responses to each question are shown in Figure 3.14.  

The results show that users were very satisfied with the ease of installation, which was 

available in the standard way on Google Play (Q1), and that they became familiar with the 

design of the app very quickly (Q2). There was also mostly satisfaction with the module for 

entering glucose measurements (Q5) and also with the module for entering insulin 

dosage (Q6), although only about a third of respondents used this module. There was also 

agreement with the overall ease of use (Q9) and the flawless functionality of the mobile 

app (Q7), but this agreement was not as strong, approximately half of the respondents only 

expressed agreement. In addition, there was one disagreement, which was expressed by one 

identical respondent (P-06). The same respondent also did not express agreement with the 

other questions Q3 and Q4. Approximately three quarters of the respondents who used the 

module of food intake (Q3) were very satisfied, except for the case mentioned above.  

The module for entering physical activities (Q4) appears to be the most problematic. 

Although it should be useful and interesting for both of the main DM types, it was used by 

only about two thirds of the respondents and in addition one third of them were not satisfied 

with it. It is a question about what the problem was; it may be the complexity of the input, 

where the activity has to be manually selected from quite a large number of options first and 

then the duration of the activity has to be entered. The fewest respondents, only less than 

a third, answered the question about the web portal (Q8), they agreed with its functionality 

but it was not strong agreement. 

To summarize the results of the testing, the results were quite positive. More discordant 

evaluation was given to the module for entering physical activities. The evaluation of the 

insulin dosage and the usage of the web-based portal, which was rated by only one third of 

the respondents, should be treated with caution. 



39 

 

Table 3.4 - Responses to usability questionnaire. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

P-01 SA A SA A SA N/A SA N/A SA 

P-02 SA SA SA N/A SA N/A SA N/A SA 

P-03 SA SA A D SA N/A A A A 

P-04 SA SA SA NS N/A N/A A N/A SA 

P-05 SA SA N/A N/A SA SA SA N/A SA 

P-06 SA A NS D N/A N/A D N/A D 

P-07 A SA SA N/A SA SA SA N/A SA 

P-08 SA SA SA SA A N/A SA A A 

P-09 SA SA SA SA A A A SA A 

P-10 SA SA N/A N/A SA A A N/A A 

P-11 SA SA SA A A N/A A A A 

P-12 SA A SA A SA N/A SA N/A SA 

P-13 SA SA N/A N/A A SA SA N/A A 

 

 

 

Figure 3.14 - Results of responses to usability questionnaire. 
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3.4 Discussion 

3.4.1 Principal Results 

The main goal of the Mobiab system is exploring benefits of long-term usage of such as 

technology for DM self-management. The system simplifies manual entering and 

documenting of measured values associated with treatment monitoring and self-

management of DM, and provides a user-friendly summary for the patient of their self-

management efforts. The Mobiab system contributes to the patient’s education and a better 

understanding of the disease by providing continuous recordings of all important data, 

including food intake, caloric expenditure, blood glucose levels, insulin dosage, body 

weight and blood pressure. In addition, it might be argued that the Mobiab system 

contributes to long term outcomes of DM management as demonstrated in several use cases. 

Several studies have suggested the usefulness of electronic self-management systems in 

managing DM. For example, smartphone apps have been shown to improve glycemic 

control, specifically in younger patients (Hou et al., 2016). Another randomized controlled 

trial showed that DM intervention using smartphones has led to improved clinical outcomes 

(Quinn et al., 2011). The US FDA has now approved several (BlueStar) mobile apps for 

DM management (Quinn et al., 2011). And the new German DiGA scheme has also been 

approved (Dahlhausen et al., 2021). These data confirm an increasing trend to introduce 

digital therapeutics intervention into daily clinical practice (Ramakrishnan et al., 2021). 

A further benefit of smartphone apps is that anonymized data can be collected from a larger 

population. 

The collection of medical data using Mobiab was beneficial to users with both diabetes 

types. Previously, it was necessary for patients to record medical values manually in 

a diabetes diary. Using Mobiab, user ID 1141 has already been able to record his food 

consumption, exercises, weight changes and blood pressure continuously for 1749 days. In 

addition, the user achieved positive changes in blood glucose levels (Figure 3.12) and 

weight control (Figure 3.10) within a very short time. Although we cannot quantify the exact 

contribution of the Mobiab app to these improvements, the benefits for patient ID 1141 have 

been considerable. A positive impact of the assistance of the mobile app on diet and blood 

glucose levels were also confirmed in a study focusing on mySugr app benefits (Debong, 

Mayer and Kober, 2019). 
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Some systems applied training participants ranging from using telephone (Holmen et al., 

2014) to face-face support (Waki et al., 2014). The design of the app followed the user 

centered design and the final design was also commented by the expert group. At the end 

no personal training was offered to participants, since it was assumed that the app was easy 

and intuitive to use. However, the onboarding procedure explaining the main app 

functionalities started after installing and launching the app. 

Only a few technology issues were reported. The main comments steamed from the use of 

the app without internet connection, mainly at the beginning of the app launch. While there 

was considerable effort to ensure the whole app functionality without the internet 

connection by caching all parameters as in the case of earlier systems (Chomutare et al., 

2011), after several updates it was decided to remove this feature. This is in line with most 

of the current solutions based on cloud architecture which requires stable connection to 

guarantee the smooth operation (Shen et al., 2018). Furthermore, no similar studies analyzed 

the number of calls that participants or clinicians made for technological support 

(Whitehead and Seaton, 2016). 

The Mobiab dataset is highly variable in terms of the usage of the modules. Not every user 

used the same set of modules that are shown in Table 1. This is a limiting factor for 

a complex analysis of the health impacts. However, this variability of usage of the modules 

should not be classified as an app issue, because it only indicates the well-known highly 

heterogeneous needs of patients with diabetes (Böhm et al., 2020). The hypothesis that 

engaged participants used more modules reflecting their higher discipline was not 

confirmed in our study. Nevertheless, the Mobiab developers will continue to make modules 

more attractive to users, and convince patients that it would also be beneficial to use a wider 

range of modules, e.g. to provide overviews of complex data and explain the impacts on the 

patient’s health. We believe that a broad selection of modules is advantageous for patients, 

thus contributing to personalized DM self-management care which might increase the 

participants’ engagement and long-term outcomes (Grant and Wexler, 2012; Subramanian 

and Hirsch, 2014; Chen et al., 2018). Furthermore, several studies discussed the usefulness 

of using Chronic Care Model to improve clinical and behavioral outcomes applying eHealth 

technology. Consequently, we have identified several improvements that might reduce the 

burden of the disease and increase engagement by expanding the modular architecture 

(Castelnuovo et al., 2015; Gee et al., 2015; Tran et al., 2015). Combination of general and 

tailored educational content might help to cope with medical jargon and misleading 
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information from different sources. In addition, tracking mood on daily or weekly basis 

might be important to provide insight for better glycemic control and to prevent depression 

and diabetes distress (Penckofer et al., 2012; Owens-Gary et al., 2018). 

However, there is a concern about placing too much confidence in managing DM using 

mHealth apps (Faridi et al., 2008; Holmen et al., 2014; Waki et al., 2014). These pilot 

studies have pointed out that some patients with type 2 DM do not believe in the benefits of 

these apps resulting in a low level of usage (Waki et al., 2014; Katz, Dalton and Price, 2015; 

Trawley et al., 2017; Baptista et al., 2019). When discussing self-management of diabetes 

with the use of a mobile app, several research papers have emphasized the need for 

education, peer support, interactive content, blood glucose monitoring, dietary tracking, and 

realistic goal setting (Modave et al., 2016; Peng, Yuan and Holtz, 2016; Boyle et al., 2017; 

Osborn et al., 2017; Pal et al., 2018). Another important concept for increasing the efficacy 

of interventions is the establishment of a two-way communication between the patient and 

care team (Greenwood et al., 2017). We supported this type of communication by 

developing a stand-alone web-based clinical portal for physicians. 

However, the long-term usage of apps developed for managing DM using self-management 

tools remains low (Trawley et al., 2017). Our own experience suggests that our app can 

achieve good outcomes, but it is not a straightforward enough to motivate diabetes patients 

to self-manage their condition consistently in the long term. Long-term engagement with 

mHealth systems does not necessarily require daily interaction; routine DM management 

could lead to reduction of using the technology (Klasnja et al., 2015). 

Most of the studies referenced to in this paper were single-center pilots validating short-

term results of the examined mobile apps. Undoubtedly, more clinical trials with longer 

follow-up periods are needed to evaluate the long-term effect of diabetes-related mobile 

apps on glucose management and quality of life, and sustainability of the self-management 

using the mHealth ecosystem (Doupis et al., 2020). A clinical study for validating the impact 

of the Mobiab system on patient self-management behavior and for exploring the usability 

of the system is currently in development. 
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3.4.2 Limitations 

A strong point of this study is the involvement of four patients diagnosed with type 2 DM, 

two patients with type 1 DM and two patients without DM, each of whom was able to use 

the system for a long time and to enter a significant amount of data. However, the small 

number of participants is a limitation of this study. A very small set of users is insufficient 

to thoroughly test and validate the self-management compliance of the Mobiab system. In 

addition, even this small number of participants did not use all the modules that the system 

provides. 

Another limitation is the integration of one glucometer only. We implemented seamless 

glucose data transfer using a specific glucose meter (FORA Diamond Mini Bluetooth) and 

blood pressure monitor (FORA Active P30 Plus). Technical documentation and cooperation 

with manufacturers would be needed to connect other devices. 

A further limitation is the web-based portal for physicians. Five clinicians in our expert 

advisory group told us that clinicians already use some commercial software (e.g. Medtronic 

CareLink), and that the use of different software is an unnecessary complication. The 

solution would be to have a communication interface to connect the mobile app to an already 

established systems. Data integration with existing hospital information systems was not 

implemented as a part of this work, because there was no specification of the communication 

interface. However, this integration activity remains open for future work, when new 

versions of the hospital system are incorporated with API functionality. 

3.5 Conclusion 

The results of this study have shown that the usability of a smartphone mobile app, and 

server-based systems are potentially satisfactory and promising. The collection of long-term 

data on diabetes and overall metabolic management can be supported by a modular app such 

as Mobiab. Our system, based on the needs and requirements of its intended users, has 

attempted to maximize the potential to enhance self-management and increase user 

adherence. In this study, eight users evaluated the app functionality in long-term monitoring. 

A case study has presented and analyzed the particularly successful involvement with the 

system. However, we cannot yet claim that the Mobiab app has successfully motivated large 

numbers of people with diabetes to self-manage their condition. An assessment of the 
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effectiveness of the app in improving self-management over time requires further studies 

involving a larger number of patients. Some redesign of the mobile app will probably be 

required due to continuous changes in the development of mobile apps. However, the 

principles of the modules and functions work well, and will likely be preserved. 
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4 Continuous Glucose Monitoring and 

Glycemic Variability  

This chapter is based on data, methods and results from several studies in which I have 

participated by processing continuous glucose monitoring data. (Mraz et al., 2014; 

Kavalkova et al., 2015; Kaválková et al., 2016). I was focused mainly on the way of data 

preparation and processing, for which purposes the Matlab framework as described in Data 

and methods section was created. This is followed by summarization of the results, 

discussion and conclusions from these articles.  

4.1 Introduction 

Continuous Glucose Monitoring (CGM) is used for determining levels of glucose over 

continuous time. The device for monitoring consists of three parts: a disposable glucose 

sensor, which is worn for a few days, a link from sensor to receiver and an electronic 

receiver, which displays and records glucose levels. It is necessary to calibrate the device 

with a traditional blood glucose measurement (finger-stick glucose test) (Cunningham, 

2006). Due to measuring blood glucose levels in interstitial fluid, there is a lag in blood 

glucose values. This lag time is usually about 5 minutes, sometimes up to 10–15 minutes. 

This can be a problem if the blood glucose level changes rapidly: CGM shows normal range 

of blood glucose level; however, the patient can fall in hypo/hyper-glycaemia and need 

a treatment (Wentholt et al., 2005; Cunningham, 2006).  

In 2000, when CGM became available, measurement error was more than ±20%, today the 

error has been reduced to ±10% and accuracy continues to improve (Rodbard, 2016). 

Changes of blood glucose levels reacting to food, activities, insulin or other factors can be 

evaluated via CGM. It can help identifying problems in insulin dosing during the time when 

patient does not take a glucose test – typically during the night. The monitoring device can 

be equipped with alarms to alert about hypo/hyper-glycaemia. In studies, it was 

demonstrated that patient’s experience with CGM has a positive effect on DM treatment 

(Deiss et al., 2006; Garg and Jovanovic, 2006; Garg et al., 2006). The effectiveness of CGM 
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is generally associated with an improvement in the HbA1c level and the benefits are also 

associated with insulin pumps. Based on CGM data, insulin infusion can be automatically 

suspended, in response to either observed or predicted hypoglycemic episodes (Vaddiraju 

et al., 2010; Rodbard, 2016). 

Coronary Artery Disease (CAD) is known also as Ischemic Heart Disease (IHD). The risk 

factors of this disease among other include diabetes and obesity. Patients with type 2 DM 

have a higher prevalence of CAD. Therefore, a glycemic variability may play an important 

role in the development of diabetic vascular complications. The factors contributing to the 

risk of cardiovascular disease include hyperglycemia, oscillations of blood glucose levels 

and hypertension. That is why effects of glycemic excursions on vascular complications 

should not be neglected (Tousoulis et al., 2009; Su et al., 2011). 

Glucose Variability or Glycemic Variability (GV) is usually defined by the measurement of 

fluctuations of glucose or other related parameters of glucose homoeostasis over a given 

interval of time, where the time can be within a day or up to several days (Zhou et al., 2020). 

GV is still being explored as a potential predictor of DM complications. Although patients 

may have a similar mean glucose or glycated hemoglobin HbA1c, their daily profile can be 

with differences and with glucose excursions. So the glucose variability might contribute to 

improve DM treatment and may have a role in the prediction of hypoglycemia or 

hyperglycemia (Siegelaar et al., 2010). 

As was written in Introduction chapter of this thesis, there are also more aggressive 

approaches for DM treatment when a significant weight reduction is required, or more 

serious health consequences are involved. Except for the mentioned gastric bypass, which 

is an effective and durable approach to target both obesity and type 2 DM but a very invasive 

procedure with operative risks and possible sequelae, there exists the intermediate possible 

solution in the implantation of Duodenal-jejunal Bypass Liner (DJBL), also called 

EndoBarrier (Patel et al., 2013). The DJBL is an endoscopically and reversible implantable 

device used to noninvasively mimic the effects of gastric by-pass by preventing the contact 

of chymus with duodenum and proximal jejunum and delivering it in a less digested form 

to more distal parts of the intestine (Ruban, Ashrafian and Teare, 2018). To simplify it, it is 

a 60 cm long impermeable fluoropolymer sleeve that can be implanted inside duodenum up 

to 12 months. Obesity is a central physio-pathological mechanism in type 2 DM, and thus 
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DJBL has been used to improve metabolic control (Patel et al., 2013; Ramada Faria, Nunes 

Santos and Simonson, 2017). 

4.2 Data and Methods 

The data for processing were provided by Third Department of Medicine, Department of 

Endocrinology and Metabolism, Charles University in Prague. These data were collected 

between years 2013 and 2015. The patients’ basic characteristics about the data are shown 

in Table 4.1 and are divided into 5 columns: at baseline (Visit 1), during DJBL implantation 

(Visit 2-4; 1, 3 and 10 months with DJBL) and 3 months after DJBL removal (Visit 5). 

All participants provided written informed consent before beginning the study. DJBL 

implantation was implanted in all 30 patients successfully, the mean time for implantation 

procedure was 18 minutes. No serious adverse events occurred during the study. Mild 

abdominal pain and nausea after implantation were experienced by 72% of patients during 

first 14 days after implantation, 33% of patients during the first month and 10% of patients 

after 1 month. Four patients had to be hospitalized after implantation for 2 days due to 

nausea or vomiting or for blood sugar monitoring. All of them were discharged without any 

subsequent problems. The rest of the patients were discharged the following day after the 

procedure (Kaválková et al., 2016). 

Table 4.1 - The baseline characteristics of study subjects. 

 Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 

Number of subjects 30 30 30 30 28 

Body weight (kg) 129.7±4.4 123.9±4.2 118.7±4.2 117.3±4.3 120.3±4.5 

Waist circumference (cm) 133.6±2.7 129.4±2.4 125.6±2.6 124.0±2.7 124.3±2.2 

BMI (kg/m2) 42.7±1.2 41.0±1.2 39.0±1.2 38.4±1.1 39.0±0.9 

Fasting glucose (mmol/L) 12.3±0.7 10.1±0.6 9.54±0.6 8.45±0.5 9.88±0.8 

HbA1c (mmol/mol) 75.0±3.4 66.5±2.8 58.4±2.8 55.4±2.5 61.1±3.3 

 

The CGM data then contain 91 measuring periods from 30 participants with type 2 DM, 

obesity, or body mass index over 30 kg/m2, and their glycated hemoglobin HbA1c was 

53 mmol/mol. The body weight and antidiabetic treatment were stable for at least 3 months 

before the beginning of the study. During the study they were treated only with diet, oral 

antidiabetics, insulin or some combination of previous. The distribution of participants by 

sex is: 20 men (58 measuring periods) and 10 women (33 measuring periods) and their age 
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was between 33 and 65 years. They were examined on five visits: before DJBL implantation 

(Visit 1), and 1 month (Visit 2), 5 months (Visit 3) and 10 months (Visit 4) after DJBL 

implantation. Except for two participants, they were examined also 3 months after DJBL 

removal (Visit 5). Each patient was usually recorded in three or four measuring periods. 

Each continuous glucose measuring was performed for 7 days and the values were recorded 

in 5-minute interval. The average number of glycaemia values in measuring period is 1589 

(Kaválková et al., 2016). 

The provided data were in CSV format exported from Medtronic Diabetes iPro 2 device. 

In the data file, the first 12 lines are used for the description of measurement. These lines 

contain related information about the patient, used type of sensor, number of records, time 

range of measurement and some other descriptions lines. Data recorded from sensor start at 

13th line. These data are structured into 17 columns, where the date (2nd column), time 

(3rd column) and glycaemia value in mmol/l (10th column) are the most interesting and 

useful. Other columns contain unused raw data from sensor, type of record action, counter 

or patients’ logs (activity, medicament), which are in most cases empty because patients do 

not use these functions on CGM device. 

For the future data processing in Matlab framework it was needed to extract date, time and 

glycaemia value to accepted format with some restrictions: 

• each record is in a new line in this order: date, time, glycaemia value, 

• delimiter used between values is |, 

• date format: DD-MM-YY; day/month can contain only one number, 

• time format: HH:MM:SS; hour can contain only one number, 

• glycaemia value: XX.X; one decimal number, dot as decimal point. 

Examples of accepted records: 

• 24-7-14|10:44:35|9.3 

• 27-10-13|17:53:31|7.4 

• 21-7-14|7:36:16|   (no glycaemia value = record is ignored) 

The conversion from data in CSV file format to format accepted by the Matlab framework 

was done manually with prepared conversion scripts. The reason for this approach was to 

check each step and ensure that all data had been converted correctly. 
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4.2.1 Glycemic Variability Implemented Methods 

As the data from CGM are generated in such large quantities; thus, a systematic approach 

to review and interpret these data is needed. Traditionally the HbA1c was considered as the 

gold standard for evaluation of glycemic control, but GV seems to be a more meaningful 

measure (Zhou et al., 2020).  

There are many of measures of glycemic variability for these purposes; however, there is 

no universally accepted standard for classifying GV. The easiest way to get an insight into 

a patient's glucose is Standard Deviation (SD) and Coefficient of Variation (CV). Other 

frequently used methods include Mean Amplitude of Glycemic Excursion (MAGE), 

Continuous Overlapping Net Glycemic Action (CONGA) and Average Daily Risk 

Range (ADRR) (Rodbard, 2009; Weber and Schnell, 2009; Cameron, Donath and Baghurst, 

2010; Siegelaar et al., 2010).  

For collective evaluation and computing various metric of glycaemic variations, the Matlab 

framework was developed and implements all of the above metrics. For each metric exists 

a corresponding method, that can be used separately or together; for one patient or for more 

patients at once. Batch processing of multiple patients is done by MultipleLoad function and 

the output is a Matlab matrix with evaluated data. The descriptions and formulae of these 

functions for interpreting the measuring of glycemic variability follow. 

Standard Deviation and Coefficient of Variation 

As it was mentioned, calculation of Standard Deviation (SD) and Coefficient of Variation 

(CV) is the easiest way and seems preferable. SD is a statistic that measures the variability 

or dispersion in a set of values relative to its mean:  the lower it is, the closer the values are 

to the mean. The standard deviation is calculated as the square root of variance by 

determining each data point's deviation relative to the mean (1). Calculating standard 

deviation is the easiest way to get a meaning of the glucose variability in an individual 

patient (Siegelaar et al., 2010).  

 

𝑆𝐷 = √
∑(𝑥𝑖 − 𝑥̅)2

𝑘 − 1
 

xi = individual observation 

𝑥̅ = mean of observation 

k = number of observation 

(1) 
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Additionally, CV can be calculated to correct the mean (2). The coefficient of variation 

represents the ratio of the standard deviation to the mean, and this is useful especially when 

two or more sets of data with different measures or values are to be compared. Calculating 

SD and CV from CGM data seems preferable for the analysis of glycemic variability 

(Siegelaar et al., 2010). 

 

𝐶𝑉 =  
𝑠

𝑥̅
 

s = standard deviation 

𝑥̅ = mean of observation 
(2) 

 

Mean Amplitude of Glycemic Excursion 

The Mean Amplitude of Glycemic Excursion (MAGE) algorithm (3) was first proposed and 

described in the original article by Service et al. in 1970 and is widely used nowadays. It 

was designed for calculating average size of fluctuations between adjacent peaks and nadirs 

in one day. MAGE plays a significant role in vascular endothelial dysfunction and 

cardiovascular events in patients with DM (Akasaka et al., 2017). It was considered to be 

“a gold standard”; however, there are several significant limitations. The arbitrary definition 

of peaks and nadirs with 1 standard deviation for 24-hour period is the most limiting. Thus, 

this has implication when attempting to use it in the CGM analysis (Weber and Schnell, 

2009; Cameron, Donath and Baghurst, 2010; Siegelaar et al., 2010).  

 

𝑀𝐴𝐺𝐸 =  ∑
𝜆

𝑥
 

𝑖𝑓 𝜆 > 𝑣 

𝜆 = each blood glucose increased or decreased 

(nadir to peak or peak to nadir) 

n = number of observations 

v = 1SD of mean glucose for 24-hour period 

(3) 

 

The manual procedure to estimate the MAGE value is time consuming and error prone; 

therefore, an automated method to calculate MAGE from CGM data is particularly needed. 

In addition, as CGM becomes more attractive and more accessible, the availability of an 

automated MAGE algorithm provides a research tool for examining the properties of GV 

and it should facilitate a determination an advantage to indices of GV in terms of its ability 

to predict adverse outcomes (Baghurst, 2011).  
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Continuous Overlapping Net Glycemic Action 

The Continuous Overlapping Net Glycemic Action (CONGA), published in 2004 by 

McDonnell et al., seems to be a promising measure of GV which was specifically designed 

for CGM analysis. The value for CONGAn varies systematically with the value of n, where 

n is a size of “window” (duration of the time segment) used to compute the GV (Rodbard, 

2009). The calculation (4) is described as the difference between the current observation 

and the n hours previous the observation. This is done for each observation after the first 

n hours of observations. This method has benefits of being highly reproducible and in ability 

to be adjusted for varying time intervals in dependence on the needs of specific issue being 

addressed and it does not require to identify peaks or nadirs (Weber and Schnell, 2009; 

Cameron, Donath and Baghurst, 2010; Siegelaar et al., 2010). 

 

𝐶𝑂𝑁𝐺𝐴𝑛 = √
∑ (𝐷𝑡 − 𝐷̅)2𝑡𝑘∗

𝑡=𝑡1

𝑘∗ − 1
 

 

 

where  𝐷𝑡 = 𝐺𝑉𝑡 − 𝐺𝑉𝑡−𝑚 

and 𝐷̅ =
∑ 𝐷𝑡

𝑡𝑘
𝑡=𝑡1

𝑘∗  

k* = number of observations where there is an 

observation n × 60 minutes ago 

 

m = n × 60 

 

GVt = difference between glucose value 

reading at time t and t minus n hours ago 

(4) 

 

Low/High Blood Glucose Index 

Low and High Blood Glucose Index (LBGI, respectively HBGI) is a measure for 

representing frequency and extent of low and high blood glucose values. CGM data or data 

from self-monitoring of blood glucose can be used for computation. Since the basic 

assumption is that the BG data are represented on a skewed scale, they will be first log-

transformed and then the risk index of each value can be calculated (Weber and Schnell, 

2009). 

 

𝑓(𝐵𝐺) = 1.509 × [(ln(𝐵𝐺))1.084 − 5.381]            

𝑓(𝐵𝐺) = 1.509 × [(ln(18 × 𝐵𝐺))1.084 − 5.381] 

if  BG  in mg/DL 

if  BG  in mmol/L 

 

 

  (5) 

 𝑟𝑙(𝐵𝐺) =  𝑟(𝐵𝐺)      𝑖𝑓  𝑓(𝐵𝐺) < 0  𝑒𝑙𝑠𝑒   0          

𝑟ℎ(𝐵𝐺) =  𝑟(𝐵𝐺)      𝑖𝑓  𝑓(𝐵𝐺) < 0  𝑒𝑙𝑠𝑒   0         

where 

𝑟(𝐵𝐺) = 10 × 𝑓(𝐵𝐺)2 
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Finally, the LBGI and HBGI can be computed as the average of these transformed values: 

 

𝐿𝐵𝐺𝐼 =
1

𝑛
∑ 𝑟𝑙(𝐵𝐺𝑖)

𝑛

𝑖=1

 𝐻𝐵𝐺𝐼 =
1

𝑛
∑ 𝑟ℎ(𝐵𝐺𝑖)

𝑛

𝑖=1

 (6) 

 

The procedure of data transformation (5) for calculation of LGBI and HGBI is also used as 

a part of the following Average Daily Risk Range measure. 

Average Daily Risk Range 

The Average Daily Risk Range (ADRR) algorithm (7) was created by Kovatchev et al. in 

2006 in order to describe the notion of glycemic variation more specifically. The ADRR is 

a valid measure of GV of which score corresponds to a patient's risk for variability: < 20, 

low risk; 20 – 40, moderate risk, > 40, high risk. A logarithmic transformation of the glucose 

scale was proposed to be symmetric about 0 and it defines 6.25 mmol/L as the clinical and 

numerical mean. An important fact for calculating the ADRR value is that it is not necessary 

to have values from CGM or measurements for each day. It is sufficient to have 14 days 

with at least 3 values per day during 1 month. The optimal time for risk range evaluation is 

1 month with a frequency of 3-5 measurements per day. (Kovatchev et al., 2006; Weber and 

Schnell, 2009; Patton and Clements, 2013).  

 

𝐴𝐷𝑅𝑅 =
1

𝑀
∑[𝐿𝑅𝑖 + 𝐻𝑅𝑖]

𝑀

𝑖=1

 

where    𝐿𝑅𝑖 = 𝑚𝑎𝑥[𝑟𝑙(𝑥1
𝑖), … , 𝑟𝑙(𝑥𝑛

𝑖)]  

and    𝐻𝑅𝑖 = 𝑚𝑎𝑥[𝑟ℎ(𝑥1
𝑖), … , 𝑟ℎ(𝑥𝑛

𝑖)] 

for day i; i=1,2,…,M  

(7) 

 

The ADRR was developed to quantify the risk of hyperglycemia and hypoglycemia based 

on the presence of extremely high and low blood glucose levels and it was designed to be 

equally sensitive to both values: hyperglycemia above 22.2 mmol/l and hypoglycemia 

below 2.2 mmol/l. This equality distinguishes this algorithm from other known measures of 

variability, which are more affected by episodes of hyperglycemia than hypoglycemia, due 

to the inherent asymmetry of both the blood glucose scale and the distribution of blood 

glucose values observed in people with diabetes. (Weber and Schnell, 2009; Cameron, 

Donath and Baghurst, 2010; Patton and Clements, 2013).  
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In addition, the ADRR can address some advantages over CONGA: i) the ADRR has an 

increased sensitivity to hypoglycemia than other GV measures; ii) the ADDR can be 

calculated also from self-monitoring of blood glucose (SMBG); iii) there are glucometers 

available on the market that can automatically calculate the ADRR (Kovatchev et al., 2006). 

However, there are also disadvantages, for example there may occur a problem with 

Medtronic CGM devices, which suspend these extreme values and do not record them as 

a glucose value. 

4.2.2 Other Methods for Glycemic Variability 

Besides the methods previously described and implemented in the Matlab framework, there 

is a number of other measures for evaluating the glycemic variability and quality of 

glycemic management. Their summary, comparison and review were published by David 

Rodbard in article “Interpretation of Continuous Glucose Monitoring Data: Glycemic 

Variability and Quality of Glycemic Control” and by Cameron et al. in article “Measuring 

Glycaemic Variation” (Rodbard, 2009; Cameron, Donath and Baghurst, 2010). Since we 

have not used these methods in any study and they have not been implemented in the Matlab 

framework, there is only a brief summary. 

Mean of Daily Differences 

The Mean of Daily Differences (MODD) is an index of intraday GV. Its calculation is 

defined as difference between measured glucose values that were obtained at the same time 

on two following days and under standardized conditions of meals, mealtimes, exercise, and 

therapy. Furthermore, this measure has modification MODDd, where d stands for number 

of days between compared observations, i.e. value and value exactly d × 24 hours later. In 

comparison MODD1 is almost perfectly correlated with CONGA24. (Rodbard, 2009). 

Glycemic Risk Assessment Diabetes Equation 

The Glycemic Risk Assessment Diabetes Equation (GRADE) is a function to calculate the 

risk values for individual glucose concentrations within a glucose profile. It can be easily 

generated from any blood glucose profile and can be used as a complement to HbA1c to 

reflect the level of risk associated with GV. The GRADE score is then classified by the 

percent contribution into three classes: < 70 mg/dL (< 4 mmol/l), hypoglycemia; 

70 – 140 mg/dL (4 - 7.8 mmol/l), euglycemia; > 140 mg/dL (> 7.8 mmol/l), hyperglycemia 

(Hill et al., 2007; Service, 2013). 



54 

 

Index of Glycemic Control 

The Index of Glycemic Control (IGC) is the summation of the hypoglycemia and 

hyperglycemia index, the weighted averages of their respective regions of glycemic status 

and more weight are given to severe hypo/hyperglycemic values. The IGC shows how far 

a CGM has diverged from the target glucose levels. Moreover, it has the possible advantage 

of adjustable parameters and thus it can be set to be more sensitive to the range of severe 

hypoglycemia than other GV measures (Rodbard, 2009). 

Lability Index / HYPO Index 

The Lability Index is calculated within a strict 4-week time window and requires at least 

2 SMBG values, where each one is within 1-12 hours of each other. The HYPO score is 

used with the lability index as a non-mathematical approach to quantify the extent of 

a patient's hypoglycemia. Unfortunately, this measure is not suitable for CGM because of 

the required fixed time interval and the inability of the index to handle more frequent 

readings than 1 hour (Cameron, Donath and Baghurst, 2010). 

4.3 Results 

The framework for Matlab is a very useful tool that enables computation of a large number 

of measures of glycemic variability as a basis for evaluating studies. It supports several 

commonly used metrics for interpretation of CGM data. This framework was used for 

processing CGM data and the results were used in several studies (Mraz et al., 2014; 

Kavalkova et al., 2015; Kaválková et al., 2016). 

The aim of the study “Continuous exenatide infusion improved perioperative glucose 

control and reduced glycemic variability in cardiac surgery patients: the executive trial” 

(Mraz et al., 2014) was to find effects of reduction of operation-related hyperglycemia with 

exenatide infusion. After evaluating CGM data the improvement of perioperative glucose 

control was showed in comparison to placebo group subjects (average glycaemia 6.1 ± 2.5 

vs 6.8 ± 2.8 mmol/l, p<0.001; time in range 4.5-6.5 mmol/l was 55.0 ± 3.4 vs 38.6 ± 3.3 %; 

time above target range 39.7 ± 3.3 vs. 53.5 ± 3.6%, p<0.01). Moreover, there was no 

increased risk of hypoglycemia. Exenatide infusion also reduced glycemic variability 

(SD 1.4 ± 0.5 vs 2.0 ± 0.6, p<0.01; MAGE 2.5 ± 1.1 vs. 3.3 ± 0.9, p<0.01) and decreased 

the need of temporary pacing (16.7 vs 47.4 % of subjects, p<0.05). There were no significant 
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differences in perioperative hemodynamics, but there were differences in postoperative 

echocardiographic parameters and inotropic medication dosage between groups (Mraz et 

al., 2014). 

From computed CGM data the standard deviation was selected as the primary measure of 

glycemic variability for the study “Endocrine effects of duodenal-jejunal exclusion in obese 

patients with type 2 diabetes mellitus”. The statistical significance was assigned to P<0.05. 

In the context of DM, the interesting findings from this study are the effect of DJBL on 

glucose variability and blood pressure which are represented in Table 4.2. The study 

concludes that DJBL implantation markedly improved blood glucose control, decreased 

glucose variability and reduced body weight. To check the possibility of longer durability 

of DJBL after its removal, patients were examined also 3 months after DJBL removal. 

Decreased body weight and improved blood glucose control persisted with only a slight 

deterioration. In addition, both the anthropometric and glucose control parameters were 

noticeably below the baseline values. Another interesting finding is that systolic and 

diastolic blood pressure was significantly decreased (Kaválková et al., 2016). 

Table 4.2 - The influence of DJBL implantation according to CGM data. 

 

Visit 1 

(before DJBL) 

Visit 2 

(with DJBL) 

Visit 4 

(with DJBL) 

Visit 5 

(removed DJBL) 

Number of subjects 27 24 24 16 

Glucose (mmol/l) 12.3 ±0.7 10.1 ±0.6 8.45 ±0.5 9.88 ±0.8 

24-h mean glucose 

(mmol/l) 
10.5 ±0.5 9.49 ±0.5 8.70 ±0.5 9.91 ±0.5 

24-h glycemic 

variability (mmol/l) 
2.39 ±0.17 1.89 ±0.14 1.96 ±0.18 2.44 ±0.28 

Morning systolic blood 

pressure (mmHg) 
150.2 ±3.7 145.9 ±3.0 143.1 ±3.0 143.6 ±2.5 

Morning diastolic blood 

pressure (mmHg) 
92.1 ±1.5 88.2 ±1.8 86.8 ±1.8 87.5 ±1.7 

 

The third study “Ten Months of Treatment with Endoscopic Duodenal-Jejunal By-pass 

Liner Reduces Glycemic Variability, Increases Serum Fibroblast Growth Factor 19 

(FGF19), and Partially Restores the Incretin Effect in Obese Subjects with Type 2 Diabetes 

Mellitus. Diabetes” analyzed a part of the same CGM data as the previous study. However, 

only the effect of the implantation of DJBL was examined in this paper. Thus, the partial 

results are similar, just results after removal of DJBL are missing (Kavalkova et al., 2015). 



56 

 

4.4 Discussion 

Evaluation of CGM data for several studies was performed. There was shown the 

importance of systematic approach to review and interpret these data. There are many 

measures of glycemic variability. However, it will be important to address some non-linear 

methods for description of glycemic variability as non-linear process in time. The 

computation of glycemic variability measures is very simple with the Matlab framework. 

The most important measures are implemented in the framework; some less frequently used 

measures might be implemented in the future. An automated conversion of data from 

various formats would be also done in the next version. The studies have also indicated that 

a filtering of evaluated data would be useful. Sometimes it is necessary to calculate the 

measures separately for day and night. It is also interesting to know how long a patient 

spends in hypoglycemia or in hyperglycemia; thus, this function should be also added into 

the Matlab framework. 

From the studies carried out, the DJBL implantation significantly improved glycemic 

control, reduced glycemic variability and reduced body weight in obese patients with poorly 

controlled type 2 DM. The range of reductions in HbA1c and body weight in the “Endocrine 

effects of duodenal-jejunal exclusion in obese patients with type 2 diabetes mellitus” 

(Kaválková et al., 2016) study was greater than in the meta-analysis of recently published 

studies of DJBL implantation, in which HbA1c differences did not reach statistical 

significance (Rohde et al., 2016). The higher efficacy of DJBL may have been caused by 

the relatively poor glucose management and higher body weight of the patients at baseline. 

The results of the study should be also viewed in relation to the lack of a control group that 

would have undergone a sham procedure. In summary, the published data as well as our 

data indicate that the antidiabetic and weight loss efficacy of DJBL implantation is much 

lower compared to bariatric surgery. The other interesting result was a significant reduction 

in systolic and diastolic blood pressure. This drop was achieved after DJBL implantation 

after 1 month for systolic blood pressure and after 3 months for diastolic blood pressure. It 

is also interesting to note that blood pressure remained reduced even 3 months after DJBL 

removal. (Kaválková et al., 2016). 
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4.5 Conclusion 

The conclusion of the study “Continuous exenatide infusion improved perioperative glucose 

control and reduced glycemic variability in cardiac surgery patients: the executive trial” 

(Mraz et al., 2014) was that perioperative administration of exenatide improved glucose 

control and decreased glycemic variability without increasing the risk of hypoglycemia in 

subjects undergoing elective coronary artery bypass graft (CABG). Except for the decreased 

need of temporary pacing, exenatide did not significantly affect parameters of cardiac 

function (Mraz et al., 2014). 

According to the two performed studies “Ten Months of Treatment with Endoscopic 

Duodenal-Jejunal By-pass Liner Reduces Glycemic Variability, Increases Serum Fibroblast 

Growth Factor 19 (FGF19), and Partially Restores the Incretin Effect in Obese Subjects 

with Type 2 Diabetes Mellitus. Diabetes” (Kavalkova et al., 2015) and “Endocrine effects 

of duodenal-jejunal exclusion in obese patients with type 2 diabetes mellitus” (Kaválková 

et al., 2016), it is concluded that the implantation of DJBL leads to a lasting reduction of 

body weight and improvement of all measures of glycemic control. The effects of DJBL on 

body weight and glucose control mostly persisted 3 months after its discontinuation, while 

its positive effects on lipids and glucose variability were completely reversed. For these 

effects, the changes in the incretin system and the increase in fibroblast growth factor 19 

(FGF19) may be at least partly responsible (Kaválková et al., 2016). 
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5 Glycemic Variability Analysis Using 

Nonlinear Methods 

This chapter is based on the journal article in Complexity, which we have published: 

D. Cuesta-Frau, D. Novák, V. Burda et al. (2019) ‘Influence of duodenal-jejunal 

implantation on glucose dynamics: A pilot study using different nonlinear methods’, 

doi: 10.1155/2019/6070518. In this chapter most of the text is used as published in the 

journal. Some subsections are slightly expanded or their structure is modified from the 

original article. 

We hypothesized that DJBL, described in section 4.1, also influences the glucose dynamics 

in type 2 DM, based on the induced changes already demonstrated in other physiological 

characteristics and parameters. In order to assess the validity of this assumption, we 

conducted a quantitative analysis based on several nonlinear algorithms (Lempel–Ziv 

Complexity, Sample Entropy, Permutation Entropy, and modified Permutation Entropy), 

well suited to the characterization of biomedical time series. We applied them to glucose 

records drawn from two extreme cases available of DJBL implantation: before and after 

10 months. The results confirmed the hypothesis and an accuracy of 86.4% was achieved 

with modified Permutation Entropy. Other metrics also yielded significant classification 

accuracy results, all above 70%, provided a suitable parameter configuration was chosen. 

With the Leave–One–Out method, the results were very similar, between 72% and 

82% classification accuracy. There was also a decrease in entropy of glycaemia records 

during the time interval studied. These findings provide a solid foundation to assess how 

glucose metabolism may be influenced by DJBL implantation and open a new line of 

research in this field. 

5.1 Introduction 

Glycemic Variability (GV) is a parameter that mathematically defines blood glucose 

oscillations within a defined time. It turned out that glycated hemoglobin and other 

parameters used to diabetes compensation do not necessarily reflect a real control of 

diabetes of all patients. The patients with oscillations of blood glucose from hypoglycemic 
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to hyperglycemic values with satisfactory glycated hemoglobin represent a typical example 

of this fact. It was showed that glycemic variability may become an important parameter 

reflecting the quality of diabetes compensation and the risk of long-term complications. 

However, further studies are necessary to confirm this prospect (Haluzík, 2012; Fuqua, 

2015). Hypoglycemia is a complication of diabetes treatment. Because the main goal of 

diabetes treatment is lowering blood glucose, occurrence of hypoglycemia is a frequent 

problem which sometimes has severe consequences such as seizure, coma and death. These 

complications could be avoided if it was possible to predict hypoglycemia (Siegelaar et al., 

2010). Glycemic variability is a feasible candidate because severe hypoglycemia is preceded 

by disturbances of blood glucose. The authors of the Diabetes Outcomes in Veterans Study 

suggested that minimizing glycemic variability is a plausible method for offsetting the 

increased risk of hypoglycemia (Kovatchev et al., 2000; Murata et al., 2004; Siegelaar et 

al., 2010). 

The glucoregulatory system is effectively a complex system, with several acting variables 

(caloric intake, exercise), a number of active hormones (insulin, glucagon, catecholamine, 

growth hormone, and incretin), and some well–established feedback and feedforward loops 

(DeFronzo, 2004; Gagliardino, 2005). The analysis of such a complex physiological system 

can be addressed using system dynamics characterization methods. Several methods well 

suited to time series of limited duration were used in this pilot study to characterize the 

effects of DJBL. Sample Entropy (SampEn) is a robust measure of regularity in sequences 

(Richman and Moorman, 2000), whilst Lempel–Ziv complexity (LZC) is easy to compute 

a nonlinear algorithm to estimate the complexity in time series (Zhang, Roy and Jensen, 

2001). Permutation Entropy (PE) is another complexity measure introduced in 2002 as 

a robust method to deal with real-world time series (Bandt and Pompe, 2002). In spite of 

the proficiency of PE in time series analyses, it neglects equalities within signals. Modified 

PE (mPE) was proposed to address this shortcoming in the original PE algorithm (Bian et 

al., 2012). 

5.2 Data and Methods 

The experimental data of glucose time series were the same as used to assess the endocrine 

effects of DJBL (Chapter 4.2). There were 91 records from 30 participants with type 2 DM 

(20 men, 10 women; aged between 33 and 65). This database contained records taken 
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before implantation (baseline, BL-; 27 records), 1 month after implantation (01M+; 

24 records), 10 months after implantation (10M+; 24 records), and 3 months after device 

removal (03M-; 16 records). Sampling frequency was 5 minutes. The original records 

in Figure 5.1 were noisy, with missing samples and missing epochs completely at random. 

Missing values were quite frequent (value spikes down to 0 in the plots). Records 

representing here 03M- and BL- classes were omitted in the experiments due to their short 

length. 

 

Figure 5.1 - Example of raw glycaemia records from the database. 

 

In order to avoid the influence of these artifacts on the results, missing single samples were 

linearly interpolated with mean substitution (Masconi et al., 2015). The samples were taken 

from the central part of the records to avoid border effects. Records with less than 1440 

samples (5 days) were excluded from the experiments, since the nonlinear methods used in 

the analysis are also very sensitive to the number of samples (Yentes et al., 2013). Record 

was then set to the central 1440 samples, if longer, to also avoid border effects: tissue 

equilibrium, measuring device configuration, calibration, and stabilization (Weinstein et al., 

2007). As a result of all this preprocessing, 60 records out of 91 were finally available, an 

example shows Figure 5.2. 
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Figure 5.2 - Example of processed glycaemia records from the database. 

 

Nevertheless, these records have not been analyzed yet from a system dynamics standpoint, 

and our hypothesis was focused first on the two, in principle, most different scenarios: 

before DJBL implantation (BL-), and just before device removal (10M+). The rationale for 

this specific selection is that one month after implantation it will arguably be more difficult 

to find changes in glucose dynamics, due to the time passed. After DJBL removal, the 

glucose metabolism tends to return to that of the baseline period (de Moura et al., 2015; 

Kaválková et al., 2016). Furthermore, quantitative endocrine effects seem to confirm that 

main differences are between these two stages, as shown in Table 5.1. Thus, in this 

table, 4 out of the 5 physiological features provide significant differences between 

10M+ and BL-, giving quantitative support to the study selection. This support is in terms 

of a significance analysis of these differences obtained using Student’s t–test (𝛼 = 0.05, 

sample size of 30, and normality not required (de Winter, 2013)). As shown in the 𝑝 column, 

only the differences in hip circumference could not be considered significant. The final 

experimental set was composed of 11 BL- records (positives P in the classification analysis) 

of 1440 samples and 11 10M+ records (negatives N) of the same length. These 22 records 

included the same 11 patients in both classes to ensure a paired test (7 males, 4 females), 

and the others in these classes were discarded. The dataset is relatively small, but the 

implantation of DJBL and glucose monitoring for several days is difficult and costly, in 

terms of workload, time, and resources. 
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Table 5.1 - Main characteristics and parameters of the complete dataset. 

 BL- 10M+ 𝑝 

Body weight (Kg) 129.7 ± 4.4 117.3 ± 4.3 𝑝 = 0.0450 

BMI (km/m2) 42.7 ± 1.2 38.4 ± 1.1 𝑝 < 0.0001 

Glucose (mmol/L) 12.3 ± 0.7 8.45 ± 0.5 𝑝 < 0.0001 

Hip circumference (cm) 132.8 ± 3.5 126.2 ± 2.8 𝑝 = 0.2000 

HbA1c (mmol/mol) 75.0 ± 3.4 58.4 ± 2.8 𝑝 < 0.0001 

HBGI (Variability) 12.8 ± 8.2 7.4 ± 5.1 𝑝 = 0.0367 

 

Table 5.1 also includes a variability analysis result, the High Blood Glucose Index (HBGI). 

This index attempts to improve the assessment of glycemic alterations through data 

transformation and is a well-established tool to estimate the risk of hyperglycemia in 

diabetic patients. Average long-term blood glucose values are not a very reliable tool for 

glycemic control, but the analysis of short-term peaks and valleys has proven to have a much 

more clinical relevance (Weber and Schnell, 2009). HBGI provides an estimation of the 

hyperglycemia probability for the patients, and its differences have been found to be 

statistically significant for BL- and 10M+ in this case. 

The separability of classes BL- and 10M+ was assessed by means of the Area under 

Curve (AUC) of the associated Receiver Operating Curve (ROC), AUC–ROC. Statistical 

analyses based on paired Student’s t–test or the Wilcoxon signed rank test, depending on 

the distribution of the data, were performed to assess the significance of the results. The 

acceptance threshold was set at 𝛼 = 0.05. Additionally, the classification capability of the 

results was quantified using the separability, specificity and accuracy classification 

performance indicators. They were obtained using the closest point to (0,1) in the ROC as 

the classification threshold. In this framework, positives (P) were assigned to the BL- class, 

negatives (N) to the 10M+ class, being sensitivity = TP / (TP + FN), 

specificity = TN / (TN + FP), and accuracy = (TN + TP) / (TN + TP + FN + FP). 

 

5.2.1 Lempel–Ziv Complexity 

In order to compute Lempel–Ziv Complexity (LZC) from a time series, the signal must first 

be converted into a sequence of symbols. In this study, the signal was parsed into a binary 



64 

 

sequence using the median as the threshold (𝑇𝑑). For an input time series x = {𝑥1, 𝑥2, ..., 𝑥𝐿} 

of length 𝐿, the symbols in the binary sequence 𝑃 = {𝑠1, 𝑠2, . . ., 𝑠𝐿} are created by: 

 

𝑠𝑖 = {
0  𝑖𝑓  𝑥𝑖 < 𝑇𝑑

1  𝑖𝑓  𝑥𝑖 ≥ 𝑇𝑑
 (8) 

 

The binary sequence 𝑃 is then scanned from left to right to identify the different 

subsequences held within it and a complexity counter 𝑐 is increased by one every time a new 

subsequence is found (a detailed description of the algorithm can be found in (Zhang, Roy 

and Jensen, 2001)). This complexity counter needs to be normalized to obtain a measure of 

complexity independent of the length of the time series (Lempel and Ziv, 1976): 

 

𝐿𝑍𝐶 =  
𝑐

𝐿/ log2 𝐿
 (9) 

 

LZC captures the dynamics of the time series by reflecting the rate of new subsequences 

present within it. 

5.2.2 Permutation Entropy 

Permutation Entropy (PE) is a method measuring the entropy within a time series based on 

the probability of occurrence of all possible permutations of a certain length within it (Bandt 

and Pompe, 2002). With the exception of LZC, all other methods used in this study require 

the selection of values for different input parameters. In the case of PE, the computation 

relies on the selection of the embedding dimension 𝑛 and the time delay 𝑙. The choice of 

embedding dimension 𝑛 is determined by the number of samples available, as the number 

of permutations must be less than the length of the time series (i.e., 𝑛! ≤ 𝐿) (Bandt and 

Pompe, 2002). In order to compute PE as follows (Bian et al., 2012), embedding vectors 

need to be created from the original time series as follows: 

 

𝑋𝑖 = [𝑥𝑖, 𝑥𝑖+𝑙, … , 𝑥𝑖+(𝑛−1)𝑙] (10) 

 

For each embedding vector, the lowest data point in the embedding vector is assigned a 0, 

the second lowest 1, and on until all data points in the embedding vector have been replaced 

with their ranking order. Once all possible embedding vectors in the time series have been 
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created and ranked, PE can be calculated by applying Shannon’s Entropy to quantify the 

proportion of possible permutations within the time series: 

 

PE(𝑛, 𝑙) = − ∑ 𝑃𝐴 ln 𝑃𝐴

𝑘

𝐴=1

 (11) 

 

where 𝑘 is the number of different subsequence ranked vectors in the original time series 

and PA is the fraction of the subsequence ranked vectors. A less regular signal will have 

a greater range of embedding vectors and, therefore, a higher PE. 

One limitation of the original PE algorithm is that it ignores any repeated values in the 

embedding vector, assigning the first repeated value in the vector a lower integer in the 

ranking than subsequent repeats. This was addressed with the introduction of Modified 

Permutation Entropy (mPE) (Bian et al., 2012), in which repeated values are given the same 

ranking value. Then, entropy is evaluated applying Shannon’s entropy as is done in PE (Bian 

et al., 2012). 

The outcome of PE will be influenced by the choice of embedding dimension 𝑛 and delay 𝑙. 

A greater value of 𝑛 will give a greater possible range of ranking vectors and, therefore, 

a greater resolution. It has been recommended to use a range of values from 𝑛 = 3 to 7 but 

the total number of permutations (given by 𝑛!) must be less than the length of the original 

time series (Bandt and Pompe, 2002). However, small embedding dimensions might be too 

small to accurately track the dynamical changes in a signal (Cao et al., 2004). Hence, PE 

and mPE were computed with 𝑛 = 4 to 6. In terms of the time delay, a value of 1 was chosen 

as this would retain the original relationships between data-points (Bian et al., 2012). 

5.2.3 Sample Entropy 

Sample Entropy (SampEn) was first defined in (Richman and Moorman, 2000). SampEn 

starts by creating a set of embedded vectors x𝑖 of length 𝑚: 

 

X𝑖 = {𝑥𝑖, 𝑥𝑖+𝑙, … , 𝑥𝑖+𝑚−1} where 𝑖 = 1, . . ., 𝐿−𝑚+1 (12) 

 

The distance between subsequences is then defined as 𝑑𝑖𝑗 = max(|𝑥𝑖+𝑘−𝑥𝑗+𝑘|), with 

0 ≤ 𝑘 ≤ 𝑚 − 1, 𝑗 ≠ 𝑖. According to a predefined threshold 𝑟, two subsequences are considered 
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similar if 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] ≤ 𝑟. This similarity is quantized for two consecutive subsequence 

lengths (𝑚 and 𝑚 + 1), with 𝐵𝑖(𝑟) number of 𝑗 such that 𝑑[𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] ≤ 𝑟, and 𝐴𝑖(𝑟) 

number of 𝑗 such that 𝑑[𝑋𝑚+1(𝑖), 𝑋𝑚+1(𝑗)] ≤ 𝑟. These two values 𝐵 and 𝐴 enable the 

computation of the statistics associated with SampEn: 

 

𝐵𝑖
𝑚(𝑟) =

1

𝐿 − 𝑚 − 1
𝐵𝑖(𝑟) 

 

𝐵𝑚(𝑟) =
1

𝐿 − 𝑚
∑ 𝐵𝑖

𝑚(𝑟)

𝐿−𝑚

𝑖=1

 

𝐴𝑖
𝑚(𝑟) =

1

𝐿 − 𝑚 − 1
𝐴𝑖(𝑟) 

 

𝐴𝑚(𝑟) =
1

𝐿 − 𝑚
∑ 𝐴𝑖

𝑚(𝑟)

𝐿−𝑚

𝑖=1

 

(13) 

 

from which the final value for SampEn can be obtained (for finite time series): 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = lim
𝑁→∞

(− log [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
]) 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝐿) = − log [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
]           

(14) 

 

The length 𝐿 is usually given by the acquisition stage, but the parameters 𝑚 and 𝑟 must be 

carefully chosen to ensure an optimal performance of SampEn relative to class separability. 

The optimal selection of regularity estimators parameters 𝑚 and 𝑟 is still an open question. 

Frequent recommendations suggest adopting a parameter configuration in the vicinity of 

𝑚 = 2 and 𝑟 = 0.2 (Pincus, Gladstone and Ehrenkranz, 1991). Nevertheless, this selection is 

lacking in terms of genericity, as many works have already demonstrated (Karmakar et al., 

2007; Liu et al., 2011; Yentes et al., 2013; Restrepo, Schlotthauer and Torres, 2014). 

Although computationally more expensive, we varied SampEn parameters from 1 to 3 for 𝑚 

and from 0.01 to 0.30 for 𝑟, in 0.01 steps (𝑟 was not multiplied by the standard deviation of 

the sequences since they were normalized in advance, zero mean, and unitary standard 

deviation). This enabled us to avoid the possible bias in the results due to the selection of 

a specific method for SampEn parameter optimization, despite still looking at regions 

usually recommended for 𝑚 and 𝑟 (Pincus, Gladstone and Ehrenkranz, 1991; Richman and 

Moorman, 2000; Zhao et al., 2015) 
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5.3 Results 

All four methods showed a decrease of complexity between BL- and 10M+ (i.e. decrease 

of LZC, SampEn, PE, and mPE values). However, for LZC differences between the 

2 classes were not significant (see Table 5.5). On the other hand, different combination of 

input parameters in SampEn, PE, and mPE resulted in significant differences between 

classes. 

The results are expressed in terms of AUC, statistical significance, classification sensitivity, 

specificity, and accuracy. The threshold for classification was taken as the ROC point 

closest to point (0,1). These calculations were carried out for all the values in input 

parameters for which the AUC was at least 0.70. Most of the AUC values fall in the 

0.50−0.60 region, with more promising results at low 𝑟 values (𝑟 < 0.10, optimal region), 

and in the 0.20 zone (suboptimal region). In more detail, the numerical results for the highest 

AUC region are listed in tables. Table 5.2, Table 5.3 and Table 5.4 show classification 

analysis results for PE, mPE and SampEn respectively, in terms of highest AUC, including 

sensitivity (proportion of 10M+ correctly identified), specificity (proportion of BL- 

correctly identified), and accuracy (proportion of total cases correctly classified), and their 

significance 𝑝. This corresponds to the optimal parameter zone, where some AUC values 

are above 0.80. 

 

Table 5.2 - Classification analysis results for PE. 

𝑛 AUC 𝑝 Sensitivity (%) Specificity (%) Accuracy (%) 

6 0.7355 0.0244 63.6 90.9 77.3 

 

Table 5.3 - Classification analysis results for mPE. 

𝑛 AUC 𝑝 Sensitivity (%) Specificity (%) Accuracy (%) 

4 0.7438 0.0244 72.7 81.8 77.3 

5 0.7769 0.0137 72.7 90.9 81.8 

6 0.7851 0.0098 72.7 100 86.4 
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Table 5.4 - Classification analysis results for SampEn. 

m r AUC 𝑝 Sensitivity (%) Specificity (%) Accuracy (%) 

1 0.08 0.7933 0.0427 63.6 90.9 77.3 

1 0.09 0.8016 0.0305 72.7 81.8 77.3 

1 0.10 0.7933 0.0188 81.8 72.7 77.3 

1 0.16 0.7355 0.0648 72.7 72.7 72.7 

1 0.19 0.7768 0.0272 81.8 63.6 72.7 

1 0.20 0.7272 0.0451 54.5 90.9 72.7 

1 0.24 0.7603 0.0472 72.7 72.7 72.7 

1 0.25 0.7190 0.0583 72.7 63.6 68.2 

2 0.08 0.7603 0.0257 72.7 72.7 72.7 

2 0.09 0.8016 0.0289 81.8 72.7 77.3 

2 0.10 0.7933 0.0173 81.8 72.7 77.3 

2 0.19 0.7520 0.0288 72.7 63.6 68.2 

2 0.20 0.6942 0.0609 54.5 81.8 68.2 

2 0.24 0.7438 0.0462 72.7 72.7 72.7 

3 0.08 0.7933 0.0215 72.7 72.7 72.7 

3 0.09 0.8429 0.0271 72.7 90.9 81.8 

3 0.10 0.8264 0.0086 90.9 72.7 81.8 

3 0.16 0.7355 0.0532 81.8 63.6 72.7 

3 0.19 0.7272 0.0236 72.7 63.6 68.7 

3 0.20 0.7107 0.0596 45.5 81.8 63.7 

3 0.24 0.7355 0.0507 63.6 72.7 68.7 

1 0.08 0.7933 0.0427 63.6 90.9 77.3 
 

Table 5.5, Table 5.6, Table 5.7 and Table 5.8 summarize the numerical results for the two 

classes (BL-; 10M+), including mean and standard deviation (SD). These values were 

computed using the parameter configuration scheme stated above. It is important to note 

that some configuration parameters did not yield significant results, such as 𝑛 = 3 for PE 

(Table 5.6) and mPE (Table 5.7). As in previous similar studies (D. Cuesta-Frau et al., 2018; 

David Cuesta-Frau, Miró-Martínez, et al., 2018; David Cuesta-Frau, Varela-Entrecanales, 

et al., 2018), it seems the greater the embedded dimension 𝑛, the better classification 

performance using PE–based measures.  

In order to illustrate the differences between the classes studied better, a Leave–One–Out 

test (David Cuesta-Frau, Miró-Martínez, et al., 2018) was applied using the data presented 

in Table 5.8. The classification threshold was set at the optimal SampEn value at which the 

classification accuracy was maximal. For both classes, there were 3 misclassified instances. 
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Therefore, the overall classification accuracy using the Leave–One–Out cross validation 

was 72.7%. As expected, the performance was lower than using all the records, but still very 

significant. This method was also applied to the Modified Permutation Entropy results in 

Table 5.7, when 𝑛 = 6. In this case, there were 2 misclassified instances, achieving 

a classification accuracy of 82%. 

Table 5.5 - Lempel–Ziv Complexity individual results. 

Subject BL- 10M+ 

1 0.2113 0.1676 

2 0.1530 0.1749 

3 0.0947 0.1311 

4 0.1676 0.1530 

5 0.1822 0.1239 

6 0.2842 0.1457 

7 0.1384 0.1530 

8 0.1239 0.1457 

9 0.1093 0.1020 

10 0.1822 0.1384 

11 0.1457 0.1676 

mean ± SD 0.1629 ± 0.0528 0.1457 ± 0.0214 
 

Table 5.6 - Permutation Entropy individual results. 

 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

Subject BL- 10M+ BL- 10M+ BL- 10M+ BL- 10M+ 

1 1.5131 1.1105 2.4970 1.5694 3.5541 2.0522 4.5778 2.5522 

2 1.1824 1.1688 1.6784 1.6891 2.1995 2.2423 2.7291 2.7994 

3 1.1279 1.1341 1.6425 1.5961 2.1819 2.0835 2.7465 2.5888 

4 1.2189 1.1447 1.8155 1.6146 3.4558 2.1075 3.1213 2.6170 

5 1.1358 1.1672 1.6402 1.6812 2.1761 2.2046 2.7335 2.7255 

6 1.5166 1.1369 2.5011 1.5947 3.5701 2.0686 4.5942 2.5614 

7 1.1220 1.1154 1.6156 1.5780 2.1372 2.0690 2.6745 2.5696 

8 1.1527 1.1451 1.6876 1.6734 2.2577 2.2221 2.8539 2.7863 

9 1.0638 1.1926 1.5742 1.7023 2.0880 2.2140 2.6170 2.7293 

10 1.1453 1.1244 1.6538 1.5727 2.1947 2.0412 2.7450 2.5038 

11 1.1117 1.0477 1.5838 1.4787 2.0904 1.9190 2.6209 2.3806 

mean 1.2082 1.1352 1.8083 1.6136 2.4460 2.1113 3.0921 2.6194 

STD 0.1566 0.0380 0.3475 0.0674 0.5607 0.0992 0.7512 0.1286 

𝑝 0.1475 0.0830 0.0420 0.0244 
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Table 5.7 - Modified Permutation Entropy individual results. 

 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

Subject BL- 10M+ BL- 10M+ BL- 10M+ BL- 10M+ 

1 1.2301 0.9643 1.0896 0.7487 0.9834 0.6330 0.8655 0.5554 

2 1.0249 0.9643 0.7971 0.7544 0.6723 0.6400 0.5899 0.5624 

3 1.0423 1.0017 0.8249 0.7732 0.7040 0.6524 0.6221 0.5727 

4 1.0570 1.0163 0.8500 0.7793 0.7328 0.6570 0.6524 0.5764 

5 1.0029 1.0459 0.7879 0.8193 0.6727 0.6934 0.5950 0.6086 

6 1.2328 1.0098 1.0879 0.7781 0.9837 0.6512 0.8738 0.5672 

7 1.0468 1.0345 0.8252 0.8043 0.7048 0.6793 0.6239 0.5958 

8 1.0517 1.0625 0.8359 0.8426 0.7106 0.7179 0.6281 0.6333 

9 1.0296 1.0224 0.8266 0.7944 0.7080 0.6682 0.6271 0.5849 

10 1.0172 1.0273 0.8024 0.7876 0.6856 0.6590 0.6036 0.5731 

11 1.0093 1.0180 0.7913 0.7954 0.6703 0.6709 0.5910 0.5895 

mean 1.0677 1.0152 0.8650 0.7888 0.7480 0.6657 0.6611 0.5836 

STD 0.0828 0.0302 0.1123 0.0272 0.1180 0.0244 0.1048 0.0225 

𝑝 0.1748 0.0244 0.0137 0.0098 

 

Table 5.8 - SampEn individual results. 

 𝑚 = 3, 𝑟 = 0.09 𝑚 = 2, 𝑟 = 0.25 

Subject BL- 10M+ BL- 10M+ 

1 0.5020 0.3604 0.2972 0.2304 

2 0.4304 0.3668 0.1667 0.2384 

3 0.3730 0.4253 0.1639 0.1643 

4 0.4354 0.3909 0.2069 0.1562 

5 0.4862 0.3874 0.2337 0.1984 

6 0.6553 0.2854 0.3584 0.1250 

7 0.4030 0.3541 0.1414 0.1797 

8 0.3798 0.3709 0.1602 0.1530 

9 0.3021 0.2585 0.1112 0.1666 

10 0.4130 0.3449 0.2151 0.1710 

11 0.3906 0.3079 0.2126 0.1957 

mean 0.4337 0.3502 0.2061 0.1799 

STD 0.0914 0.0489 0.0714 0.0337 

𝑝 0.0073 0.0234 
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5.4 Discussion 

Our results show that it is possible to identify the effects of DJBL in the dynamics of 

glycaemia records with nonlinear analysis methods. A significant decrease in entropy 

(estimated with SampEn, PE, and mPE) of glycaemia records from BL- to 10M+ was 

observed. Complexity, quantified with LZC, also decreased in 10M+, but differences were 

not significant. 

There is no gold standard for the unsupervised selection of parameters 𝑚 and 𝑟 for SampEn 

calculations, despite the numerous efforts in this regard (Sheng Lu et al., 2008; Mayer et 

al., 2014; Zhao et al., 2015). In order to leave no stone unturned, we adopted a maximalist 

strategy where a wide range of values were tested. As a result, this parameter analysis for 

SampEn provided an optimal combination with 𝑚 = 3 and 𝑟 = 0.09. In this case, the AUC 

was maximal, AUC = 0.8429, with significant (reject hypothesis) classification capabilities 

between BL- and M10+ (sensitivity = 72.7%, specificity = 90.9%, and accuracy = 81.8%). 

However, there were other values for 𝑚, with 𝑟 in the vicinity of 0.09, that also yielded 

good significant accuracy. In fact, the results seem to be almost independent of 𝑚. 

The optimal value of 𝑟 (𝑟 = 0.09), falls practically within the usually recommended interval, 

𝑟 ∈ [0.1, 0.25] (Pincus, Gladstone and Ehrenkranz, 1991). There is another region of 

acceptable results for 𝑟 = 0.19. These specific values seem to be related to the resolution of 

the measurements, which was 0.1 mmol/L and the dissimilarity measure (𝑑 < 0.1, and 

𝑑 < 0.2). As for the 𝑚 parameter, significant performance was achieved in all tested cases. 

As it is also the case with SampEn, there is no consensus on the choice of input parameter 

values for the calculation of PE and mPE. However, some guidelines exist and were 

followed in this pilot study. Firstly, the delay was equal to 1 to guarantee that no down-

sampling of the original time series would occur. Secondly, the embedding dimension 

determining the size of the permutation vectors was selected taking into account its upper 

limit (Bandt and Pompe, 2002) and the reported results showing that small embedding 

dimensions could fail to identify changes in the dynamics of a signal (Cao et al., 2004).  

Therefore, a range of values from 𝑛 = 4 to 6 was tested, with results showing that greater 

values of 𝑛 lead to better discrimination between both classes. The highest accuracy was 

observed with 𝑛 = 6 for both PE (77.27%) and mPE (86.36%), with the latter outperforming 

SampEn. It is worth noting that the entropy of glucose time series estimated with PE and 
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mPE decreases from class BL to 10M+ for all subjects but two, but the subjects where this 

decrease is not observed are different for both methods. Furthermore, our results suggest 

that mPE is a more accurate method to characterize subtle differences in glucose time series 

than PE.  

Despite the analysis limitations due to small database size, records length, and artifacts, the 

results confirmed there are differences between BL- and 10M+ records that can be 

associated with changes in the underlying glucose dynamics after DJBL implantation. With 

a high degree of accuracy (86.4%), it was possible to correctly distinguish between the two 

classes. As far as we know, this is the first evidence in this classification context beyond 

variability and it opens a new perspective for the research of the DJBL implantation effects. 

The results are consistent. For most of the cases where AUC was relatively high 

(AUC > 0.75), the hypothesis was rejected and the classification accuracy was higher than 

70%. The opposite also holds true when no significant difference was apparent. Namely, 

there is a good correlation among all the features used to assess the classification 

capabilities; there were no antagonistic results (AUC > 0.75 with 𝑝 > 𝛼). 

5.5 Conclusion 

We explored the possible influence on the glucose dynamics of DJBL implantation using 

several nonlinear methods. The best results were obtained with mPE calculated with an 

embedding dimension of 6 and with SampEn with input parameter values 𝑚 = 3 and 

𝑟 = 0.09, although many other parameter configurations yielded suboptimal but relevant 

results. A similar approach was followed in other previous works related to blood glucose 

(Crenier et al., 2016) or body temperature time series (Cuesta et al., 2007). 

The performance of the method proposed could arguably be enhanced using other methods 

of theoretically better consistency (Chen et al., 2009). For instance, other modifications of 

PE can be considered, like fine-grained PE, based on incorporating the size of the 

differences between data–points into permutations and not just ranking them from smallest 

to largest (Xiao-Feng and Yue, 2009), or the weighted PE, based on weighting permutation 

patterns depending on the amplitudes of their constituent data–points (Fadlallah et al., 

2013). Other effects should be studied, such as the influence of the artifacts, the 

characterization of the time–of–day variations (chronobiology), and the possible differences 
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between other stages of the DJBL implantation. The availability of a validated set of 

methods for glucose dynamics assessment will arguably become a powerful tool for the 

study of disease onset and progression. 

In summary, the DJBL implantation does alter the glucose metabolism of the subjects, and 

these changes can be detected by an analysis as the one proposed in this paper. This analysis 

may increase the clinical uses of the new information gathered. Additionally, there is room 

for improvement in terms of more accuracy and/or more classes. 
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6 Summary and Future Work 

In the thesis presented, the mobile app and web-based portal for support of DM self-

management have been designed and implemented, as it is described in Chapter 3. The 

system was designed with principles of telemedicine using mHealth and eHealth approaches 

(Chapter 2.2) and is based on an analysis of the features of similar mobile applications 

available at the time of early development (Chapter 2.3). In addition, data from users who 

had been using the application for a long time were evaluated. The most active patient is 

a user who has records for more than 7 years and still uses the system. The results are 

potentially satisfactory and promising; however, a small set of users poses limits to validate 

effectiveness of DM self-management using the Mobiab system. Furthermore, a Matlab 

framework for extracting and evaluating data gained from continuous glucose monitoring 

sensors has been created. These data have been processed and the calculated GV measures 

have been used in several studies and articles (Chapter 4) and in addition, the same data 

were used for comparison of new glycemic variability methods (Chapter 5). 

6.1 Thesis Contributions 

 I have implemented working telemedicine Mobiab system that contains Android 

mobile application and web-based portal for desktop computers. The Android 

app was available on Google Play Store from the middle of 2014 only until 2019. 

In this period over 500 users from the Czech Republic downloaded and used the 

app for different lengths of time. From this usage the data were obtained for the 

analysis of using this system, especially long-term data over one year were 

interesting.  

 I have analyzed the usage of the Mobiab system from the user’s records and it 

has been discovered how users use the Mobiab system and what the main 

advantages and shortcomings of this system are. A strong point is that users are 

able to use the system for a long time and enter a significant amount of data. 

However, a small number of total users is a limitation factor to test and validate 

the self-management compliance of the Mobiab system. 
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 A useful Matlab framework for CGM data analysis has been implemented. It 

consists of a method for data extraction from Medtronic format and five standard 

metrics used for glucose variability description. 

 We successfully explored the possible influence on the glucose dynamics of 

DJBL implantation using several nonlinear methods. This analysis may increase 

the clinical uses of the new information gathered. 

6.2 Future Work 

Based on the results of this thesis, following steps in the future work need to be addressed:  

 The redesign of mobile app is necessary to meet the current design principles 

according to new Android standards. Then it will be possible to republish the 

app on Google Play. Additionally, the cross-platform development to support 

Apple devices should be considered. 

 Support for more blood glucose meters and other Bluetooth devices across 

several manufacturers have to be implemented. 

 Integration with commercial software (e.g. Medtronic CareLink) is proving to 

be necessary because the use of another web-based portal for a clinician is an 

unnecessary complication. Interfaces such as REST API with specific 

connection module or export in required formats should be prepared. 

 More long-term data should be collected to confirm the effect of using the 

Mobiab system in comparison with the patients that do not use the system. 

 The Matlab framework for extracting CGM data could be improved for fully 

automatic data extraction and evaluation of different input devices and file 

formats. 

 In the explored nonlinear methods there is an occasion for improvement in terms 

of more accuracy and/or more classes and also other effects should be studied, 

such as the influence of the artifacts, the characterization of the time–of–day 

variations (chronobiology), and the possible differences between other stages of 

the DJBL implantation. 
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