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ABSTRACT. Quantum quartic single-well anharmonic oscillator Vo, (z) = 22 + g?z* and double-well
anharmonic oscillator Vg, (x) = 2%(1—gx)? are essentially one-parametric, they depend on a combination

(g%h). Hence, these problems are reduced to study the potentials V,,, = u? + u* and Vi, = u?(1 — u)?,

2

respectively. It is shown that by taking uniformly-accurate approximation for anharmonic oscillator
eigenfunction ¥,,(u), obtained recently, see JPA 54 (2021) 295204 [I] and arXiv 2102.04623 [2], and
then forming the function ¥ g4, (u) = Uuo(u) £ V4, (u—1) allows to get the highly accurate approximation
for both the eigenfunctions of the double-well potential and its eigenvalues.
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1. INTRODUCTION

It is already known that for the one-dimensional
quantum quartic single-well anharmonic oscillator
Vio(z) = 22 + g?2* and double-well anharmonic
oscillator with potential Vg, (z) = 22(1 — gz)? the
(trans)series in g (which is the Perturbation Theory in
powers of g (the Taylor expansion) in the former case
Vao(x) supplemented by exponentially-small terms
in g in the latter case Vg, (x)) and the semiclassical
expansion in A (the Taylor expansion for V,,(z) sup-
plemented by the exponentially small terms in # for
Vaw(x)) for energies coincide [3]. This property plays
crucially important role in our consideration.
Both the quartic anharmonic oscillator

V= ot gt M)

with a single harmonic well at x = 0 and the double-
well potential

Vo= 2?(1-g2)?, (2)

with two symmetric harmonic wells at * = 0 and
x = 1/g, respectively, are two particular cases of the
quartic polynomial potential

V = 2% +agad + g%zt (3)

where g is the coupling constant and a is a parameter.
Interestingly, the potential is symmetric for three
particular values of the parameter a: a = 0 and

a = £2. All three potentials , , belong to
the family of potentials of the form

p V(gz) ,

for which there exists a remarkable property: the
Schrédinger equation becomes one-parametric, both
the Planck constant & and the coupling constant g
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appear in the combination (hg?), see [2]. It can be
immediately seen if instead of the coordinate x the
so-called classical coordinate u = (g z) is introduced.
This property implies that the action .S in the path
integral formalism becomes g-independent and the fac-
tor % in the exponent becomes 5%12 []. Formally, the
potentials (I)-(2), which enter to the action, appear

at g = 1, hence, in the form
Vo= u+ut, (4)

Vo= u?(1—-u)?, (5)

respectively. Both potentials , are symmetric
with respect to uw = 0 and u = 1/2, respectively.

Namely, this form of the potentials will be used in
this short Note. This Note is the extended version of
a part of presentation in AAMP-18 given by the first
author [5].

2. SINGLE-WELL POTENTIAL

In [1] for the potential (4]) matching the small distances
u — 0 expansion and the large distances u — oo
expansion (in the form of semiclassical expansion) for
the phase ¢ in the representation

U = P(u) e ®® |

of the wave function, where P is a polynomial, it
was constructed the following function for the (2n +
p)-excited state with quantum numbers (n,p), n =
0,1,2,... , p=0,1:

\Ij("»P) —

(approxzimation)

ul P p(u?)

1 n 1
(B2 + w)f (B + VBT ¥ &)
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FIGURE 1. Two lowest, normalized to one eigenfunc-
tions of positive/negative parity: for single-well poten-

tial , see @ (top) and for double-well potential ,
9)

see (9) (bottom). Potentials shown by black lines.

2 2 4
Xexp<A+ (B2 43)u?/6 + u'/3 A> |

vB?2 4+ y? B

(6)

where P, , is some polynomial of degree n in u? with

positive roots. Here A = A,, ,, B = B,, , are two pa-

rameters of interpolation. These parameters (—A), B

are slow-growing with quantum number n at fixed p
taking, in particular, the values

Apo = —0.6244 ,Byo = 2.3667 , (7)

5

Agy = —1.9280 ,By; = 2.5598 , (8)

for the ground state and the first excited state, re-
spectively. This remarkably simple function @, see
Figure (top), provides 10-11 exact figures in energies
for the first 100 eigenstates. Furthermore, the func-
tion (6] deviates uniformly for u € (—oco, +00) from
the exact function in ~ 1076,

3. DOUBLE-WELL POTENTIAL:
WAVEFUNCTIONS

Following the prescription, usually assigned in folklore
to E. M. Lifschitz — one of the authors of the famous
Course on Theoretical Physics by L. D. Landau and
E. M. Lifschitz — when a wavefunction for single well
potential with minimum at w = 0 is known, ¥(u),
the wavefunction for double well potential with min-
ima at w = 0,1 can be written as ¥(u) £ ¥(u — 1).
This prescription was already checked successfully for
the double-well potential (2)) in [6] for somehow sim-
plified version of (6]), based on matching the small
distances u© — 0 expansion and the large distances

u — oo expansion for the phase ¢ but ignoring sub-
tleties emerging in semiclassical expansion. Taking
the wavefunction @ one can construct

\I](n:p)

(approximation) =
Pop(@?)
1 n+l
(B> + @)% (aB + VB? + 112)2 "

exp (- A+ (B%2+3)a%/6 + ut/3 N A D
VBZ + a2 ’

where p = 0,1 and

Here {
u = - = 10
m U 5 (10)
a = 1 and A,B,a01,bp,1 are variational param-
eters. If a = 0 as well as by; = 0 the func-

tion (9] is reduced to ones which were explored in [6],
see Egs.(10)-(11) therein. The polynomial P, , is
found unambiguously after imposing the orthogonal-
ity conditions of \Pgséilomimation) to \I/E};g;)romnnation)
at k=0,1,2,...,(n — 1), here it is assumed that the
polynomials Py, at £ =0,1,2,...,(n — 1) are found
beforehand.

4. DOUBLE-WELL POTENTIAL: RESULTS

In this section we present concrete results for energies
of the ground state (0,0) and of the first excited state
(0,1) obtained with the function @D at p = 0,1, re-
spectively, see Figure|l| (bottom). The results are com-
pared with the Lagrange-Mesh Method (LMM) [7].

4.1. GROUND STATE (0,0)

The ground state energy for obtained variationally
using the function at p = 0 and compared with
LMM results [7], where all printed digits (in the second
line) are correct,

EQ0 — 0.932517518401 ,
B9 — 0.932517518372 .

Note that ten decimal digits in qu?l}o) coincide with

ones in Efr?;g)h (after rounding). Variational parame-

ters in @ take values,

A = 2.3237,
B = 32734,
ap = 2.3839 ,
by = 0.0605 ,

cf. . Note that by takes a very small value.

209



Alexander V. Turbiner, Juan Carlos del Valle

AcTA POLYTECHNICA

4.2. FIRST EXCITED STATE (0,1)

The first excited state energy for obtained varia-
tionally using the function @D at p = 1 and compared
with LMM results [7], where all printed digits (in the
second line) are correct,

EOD = 3.396279329936 ,
EYD — 3396279329887 .

Note that ten decimal digits in Eq(,?l’rl) coincide with

ones in B! Variational parameters in @ take

mesh
values,
A = —2.2957,
B = 3.6991 ,
a; = 4.7096 ,
b1 = 0.0590 ,

cf. . Note that b; takes a very small value similar
to bo.

5. CONCLUSIONS

It is presented the approximate expression (|9 for the
eigenfunctions in the double-well potential In Non-
Linearization procedure [§] it can be calculated the
first correction (the first order deviation) to the func-
tion @ It can be shown that for any u € (—o0, +00)
the functions @ deviate uniformly from the exact
eigenfunctions, beyond the sixth significant figure sim-
ilarly to the function (6] for the single-well case. It
increases the accuracy of the simplified function, pro-
posed in [5] with @ = 0 and by ; = 0, in the domain
under the barrier v € (0.25,0.75) from 4 to 6 sig-
nificant figures leaving the accuracy outside of this
domain practically unchanged.
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