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Abstract. Quantum quartic single-well anharmonic oscillator Vao(x) = x2 + g2x4 and double-well
anharmonic oscillator Vdw(x) = x2(1−gx)2 are essentially one-parametric, they depend on a combination
(g2ℏ). Hence, these problems are reduced to study the potentials Vao = u2 + u4 and Vdw = u2(1 − u)2,
respectively. It is shown that by taking uniformly-accurate approximation for anharmonic oscillator
eigenfunction Ψao(u), obtained recently, see JPA 54 (2021) 295204 [1] and arXiv 2102.04623 [2], and
then forming the function Ψdw(u) = Ψao(u)±Ψao(u−1) allows to get the highly accurate approximation
for both the eigenfunctions of the double-well potential and its eigenvalues.
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1. Introduction
It is already known that for the one-dimensional
quantum quartic single-well anharmonic oscillator
Vao(x) = x2 + g2x4 and double-well anharmonic
oscillator with potential Vdw(x) = x2(1 − gx)2 the
(trans)series in g (which is the Perturbation Theory in
powers of g (the Taylor expansion) in the former case
Vao(x) supplemented by exponentially-small terms
in g in the latter case Vdw(x)) and the semiclassical
expansion in ℏ (the Taylor expansion for Vao(x) sup-
plemented by the exponentially small terms in ℏ for
Vdw(x)) for energies coincide [3]. This property plays
crucially important role in our consideration.

Both the quartic anharmonic oscillator

V = x2 + g2x4 , (1)

with a single harmonic well at x = 0 and the double-
well potential

V = x2(1 − gx)2 , (2)

with two symmetric harmonic wells at x = 0 and
x = 1/g, respectively, are two particular cases of the
quartic polynomial potential

V = x2 + agx3 + g2x4 , (3)

where g is the coupling constant and a is a parameter.
Interestingly, the potential (3) is symmetric for three
particular values of the parameter a: a = 0 and
a = ±2. All three potentials (1), (2), (3) belong to
the family of potentials of the form

V = 1
g2 Ṽ (gx) ,

for which there exists a remarkable property: the
Schrödinger equation becomes one-parametric, both
the Planck constant ℏ and the coupling constant g

appear in the combination (ℏg2), see [2]. It can be
immediately seen if instead of the coordinate x the
so-called classical coordinate u = (g x) is introduced.
This property implies that the action S in the path
integral formalism becomes g-independent and the fac-
tor 1

ℏ in the exponent becomes 1
ℏg2 [4]. Formally, the

potentials (1)-(2), which enter to the action, appear
at g = 1, hence, in the form

V = u2 + u4 , (4)

V = u2(1 − u)2 , (5)

respectively. Both potentials (4), (5) are symmetric
with respect to u = 0 and u = 1/2, respectively.

Namely, this form of the potentials will be used in
this short Note. This Note is the extended version of
a part of presentation in AAMP-18 given by the first
author [5].

2. Single-well potential
In [1] for the potential (4) matching the small distances
u → 0 expansion and the large distances u → ∞
expansion (in the form of semiclassical expansion) for
the phase ϕ in the representation

Ψ = P (u) e−ϕ(u) ,

of the wave function, where P is a polynomial, it
was constructed the following function for the (2n +
p)-excited state with quantum numbers (n, p), n =
0, 1, 2, . . . , p = 0, 1 :

Ψ(n,p)
(approximation) =

upPn,p(u2)

(B2 + u2)
1
4

(
B +

√
B2 + u2

)2n+p+ 1
2
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Figure 1. Two lowest, normalized to one eigenfunc-
tions of positive/negative parity: for single-well poten-
tial (4), see (6) (top) and for double-well potential (5),
see (9)(bottom). Potentials shown by black lines.

× exp
(

− A + (B2 + 3) u2/6 + u4/3√
B2 + u2

+ A

B

)
,

(6)
where Pn,p is some polynomial of degree n in u2 with
positive roots. Here A = An,p, B = Bn,p are two pa-
rameters of interpolation. These parameters (−A), B
are slow-growing with quantum number n at fixed p
taking, in particular, the values

A0,0 = −0.6244 , B0,0 = 2.3667 , (7)

A0,1 = −1.9289 , B0,1 = 2.5598 , (8)

for the ground state and the first excited state, re-
spectively. This remarkably simple function (6), see
Figure 1 (top), provides 10-11 exact figures in energies
for the first 100 eigenstates. Furthermore, the func-
tion (6) deviates uniformly for u ∈ (−∞, +∞) from
the exact function in ∼ 10−6.

3. Double-well potential:
wavefunctions

Following the prescription, usually assigned in folklore
to E. M. Lifschitz – one of the authors of the famous
Course on Theoretical Physics by L. D. Landau and
E. M. Lifschitz – when a wavefunction for single well
potential with minimum at u = 0 is known, Ψ(u),
the wavefunction for double well potential with min-
ima at u = 0, 1 can be written as Ψ(u) ± Ψ(u − 1).
This prescription was already checked successfully for
the double-well potential (2) in [6] for somehow sim-
plified version of (6), based on matching the small
distances u → 0 expansion and the large distances

u → ∞ expansion for the phase ϕ but ignoring sub-
tleties emerging in semiclassical expansion. Taking
the wavefunction (6) one can construct

Ψ(n,p)
(approximation) =

Pn,p(ũ2)

(B2 + ũ2)
1
4

(
αB +

√
B2 + ũ2

)2n+ 1
2

exp
(

− A + (B2 + 3) ũ2/6 + ũ4/3√
B2 + ũ2

+ A

B

)
D(p) ,

(9)
where p = 0, 1 and

D(0) = cosh
(

a0ũ + b0ũ3
√

B2 + ũ2

)
,

D(1) = sinh
(

a1ũ + b1ũ3
√

B2 + ũ2

)
.

Here
ũ = u − 1

2 , (10)

α = 1 and A, B, a0,1, b0,1 are variational param-
eters. If α = 0 as well as b0,1 = 0 the func-
tion (9) is reduced to ones which were explored in [6],
see Eqs.(10)-(11) therein. The polynomial Pn,p is
found unambiguously after imposing the orthogonal-
ity conditions of Ψ(n,p)

(approximation) to Ψ(k,p)
(approximation)

at k = 0, 1, 2, . . . , (n − 1), here it is assumed that the
polynomials Pk,p at k = 0, 1, 2, . . . , (n − 1) are found
beforehand.

4. Double-well potential: Results
In this section we present concrete results for energies
of the ground state (0, 0) and of the first excited state
(0, 1) obtained with the function (9) at p = 0, 1, re-
spectively, see Figure 1 (bottom). The results are com-
pared with the Lagrange-Mesh Method (LMM) [7].

4.1. Ground State (0,0)
The ground state energy for (5) obtained variationally
using the function (9) at p = 0 and compared with
LMM results [7], where all printed digits (in the second
line) are correct,

E(0,0)
var = 0.932 517 518 401 ,

E
(0,0)
mesh = 0.932 517 518 372 .

Note that ten decimal digits in E
(0,0)
var coincide with

ones in E
(0,0)
mesh (after rounding). Variational parame-

ters in (9) take values,

A = 2.3237 ,

B = 3.2734 ,

a0 = 2.3839 ,

b0 = 0.0605 ,

cf. (7). Note that b0 takes a very small value.
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4.2. First Excited State (0,1)
The first excited state energy for (5) obtained varia-
tionally using the function (9) at p = 1 and compared
with LMM results [7], where all printed digits (in the
second line) are correct,

E(0,1)
var = 3.396 279 329 936 ,

E
(0,1)
mesh = 3.396 279 329 887 .

Note that ten decimal digits in E
(0,1)
var coincide with

ones in E
(0,1)
mesh. Variational parameters in (9) take

values,

A = −2.2957 ,

B = 3.6991 ,

a1 = 4.7096 ,

b1 = 0.0590 ,

cf. (8). Note that b1 takes a very small value similar
to b0.

5. Conclusions
It is presented the approximate expression (9) for the
eigenfunctions in the double-well potential (5). In Non-
Linearization procedure [8] it can be calculated the
first correction (the first order deviation) to the func-
tion (9). It can be shown that for any u ∈ (−∞, +∞)
the functions (9) deviate uniformly from the exact
eigenfunctions, beyond the sixth significant figure sim-
ilarly to the function (6) for the single-well case. It
increases the accuracy of the simplified function, pro-
posed in [5] with α = 0 and b0,1 = 0, in the domain
under the barrier u ∈ (0.25, 0.75) from 4 to 6 sig-
nificant figures leaving the accuracy outside of this
domain practically unchanged.
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